BIS(BIPYRAZINE)RUTHENIUM(II) COMPLEXES:
CHARACTERISATION SPECTROSCOPY AND ELECTROCHEMISTRY(U)
TEXAS UNIV AT AUSTIN R J CRUTCHLEY ET AL. DEC 82 TR-26
UNCLASSIFIED N00014-78-C-0592
F/G 7/4 NL
Bis(Bipyrazine)Ruthenium(II) Complexes: Characterisation, Spectroscopy
and Electrochemistry

BY
R.J. Crutchley*, A.B.P. Lever* and A. Poggi

Prepared for Publication
in
Inorganic Chemistry

York University
Department of Chemistry
Downsview (Toronto)
Ontario M3J-1P3

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.
Bis(bipyrazine) ruthenium(II) complexes of general formula cis-[Ru(BPZ)$_2$X$_2$]$_2^{n+}$ are reported where $X = $ Cl$^-$, Br$^-$, SCN$^-$, NO$_2^-$, CO$_3^{2-}$, oxalate$^{2-}$, H$_2$O, OH$^-$ and (OH)(H$_2$O)$^-$$^+$2, and $n = 0, 1, 2$. The complexes are characterised by microanalysis, electronic, vibrational and nmr spectra and conductivity. Electrochemical data are reported and interpreted in terms of the Ru(III)/Ru(II) and BPZ/BPZ couples. Two principal charge transfer bands in the electronic spectra of these complexes are rationalised in terms of the effective charge on the ruthenium atom as indicated by the electrochemical data and simple ideas on ligand electronegativity. The pK_a values for the species [Ru(BPZ)$_2$(H$_2$O)$_2$]$_2^{n+}$ and [Ru(BPZ)$_2$(H$_2$O)(OH)]$^{n+}$ are reported.
Contribution from the Dept. of Chemistry, York University, Downsview (Toronto), Ontario, Canada, M3J 1P3

Bis(bipyrazine) Ruthenium(II) Complexes: Characterisation, Spectroscopy and Electrochemistry.
By R.J. Crutchley*, A.B.P. Lever* and A. Poggi

Abstract:
Bis(bipyrazine) ruthenium(II) complexes of general formula cis-[Ru(BPZ)$_2$X$_2$]$_n^+$ are reported where $X = \text{Cl}^-$, Br^-, SCN$^-$, NO$_2^-$, CO$_3^{2-}$, oxalate$^{2-}$, H$_2$O, OH$^-$ and (OH)(H$_2$O)$_x$, and $n = 0$, 1, or 2. The complexes are characterised by microanalysis, electronic, vibrational and nmr spectra and conductivity. Electrochemical data are reported and interpreted in terms of the Ru(III)/Ru(II) and BPZ/BPZ$^-$ couples. Two principal charge transfer bands in the electronic spectra of these complexes are rationalised in terms of the effective charge on the ruthenium atom as indicated by the electrochemical data and simple ideas on ligand electronegativity. The pK_a values for the species $(\text{Ru(BPZ)}_2(\text{H}_2\text{O})_2)^{2+}$ and $(\text{Ru(BPZ)}_2(\text{H}_2\text{O})(\text{OH}))^+$ are reported.

Recently we have reported the synthesis of an important new photocatalyst, the ruthenium(II) tris(bipyrazine) cation. The chemical, physical and photophysical properties of this cation have been discussed. Moreover it has been shown to form a series of protonated species in acid media, including a hexaprotonated species in concentrated sulfuric acid.

We believe that bipyrazine ruthenium(II) complexes may have an important role to play in the development of future photocatalysts and to this end wish to report the syntheses and characterisation of bis(bipyrazine) ruthenium(II) complexes, cis-Ru(BPZ)$_2$X$_2$ where X is Cl$^-$.
Br\(^-\), I\(^-\), SCN\(^-\), NO\(_2\)^-, H\(_2\)O, OH\(^-\), CO\(_3\)^-, and oxalate. The complexes are characterised by electronic, vibrational and nmr spectra, and electrochemistry.

Experimental Section

Electronic spectra were recorded with a Perkin-Elmer-Hitachi Model 340 microprocessor UV/VIS spectrometer, infrared spectra were recorded with a Beckman IR12 spectrometer, \(^1\)H NMR spectra were obtained using a Varian EM360 60 MHz nmr spectrometer. Tetramethylsilane at 0.00 ppm or residual protons of dimethyl-d\(_6\) sulfoxide at 2.50 ppm were used as internal references. Conductivity data were obtained with a Wayne-Kerr conductivity bridge, and electrochemical data using Princeton Applied Research equipment\(^5\) (and cell set-up\(^2\)) as previously described.

Preparation of complexes: Ru(BPZ)\(_2\)Cl\(_2\).2H\(_2\)O This complex was initially reported via the photoanation of Ru(BPZ)\(_3\)Cl\(_2\). It may be prepared, directly, as follows.

RuCl\(_3\)·nH\(_2\)O (0.35g) and BPZ (0.6g) were stirred and refluxed in DMF (50ml). After 11 h, the purple solution was filtered and ether added thereto to precipitate Ru(BPZ)\(_2\)Cl\(_2\). The crude product was washed with ether and recrystallised from acetonitrile to yield black microcrystals of Ru(BPZ)\(_2\)Cl\(_2\).2H\(_2\)O (yield 0.6g, 85%). Anal. C, H, N, Cl.

The bromo and iodo complexes prepared in a similar fashion from an in situ generation of the corresponding ruthenium halides, as follows.

Preparation of in situ RuX\(_3\), X = Br, I. To a solution of RuCl\(_3\)·nH\(_2\)O (1.5g) in water (40ml) was added 10 N NaOH (2ml). The solution was boiled and filtered and the black precipitate of RuO\(_2+x\)·yH\(_2\)O was washed with water and acetone. After drying, the oxide was placed in a beaker together with concentrated HX (30ml, X = Br or I). The mixture was digested at low temperature until evaporated almost to dryness (overheating can lead to the formation of insoluble products). The ruthenium halide was then vacuum dried. The yield is almost quantitative. The iodide should be used fresh since it becomes inert over a period of time.

Ru(BPZ)\(_2\)Br\(_2\).2H\(_2\)O was prepared as for the chloride. Anal. C, H, N, Br.

Ru(BPZ)\(_2\)I\(_2\) was prepared in an analogous fashion except that the product
was thrown out of solution by adding methanol (75ml) and ether (300ml), and storing the solution in a freezer overnight. Anal. C, H, N.

Ru(BPZ)₂(NO₂)₂ 0.5H₂O. 0.5CH₃CN: Ru(BPZ)₂Cl₂ (0.5g) and sodium nitrite (1.0g) were refluxed in 1:1 ethanol/water (30ml) for one hour with constant stirring. Upon cooling and leaving overnight in the freezer, the orange red nitro product (0.35g, 66%) was obtained. Anal C, H, N.

Ru(BPZ)₂(NCS)₂. 1.5H₂O: This was prepared in the same fashion as the nitro derivative, but using ammonium thiocyanate (2.0g). However after 1.5 hr, additional water (10ml) was added, and the ethanol removed by azeotropic distillation. After storage overnight at room temperature, black microcrystals of the thiocyanate product (0.4g, 70%) were obtained. Anal. C, H, N.

Ru(BPZ)₂(C₂O₄)₂H₂O: Ru(BPZ)₂Cl₂ (1.0g) and ammonium oxalate (2.0g) were placed in a 4:1 water/ethanol solution (50ml) and refluxed for 2hr. with constant stirring. The red solution was filtered hot and the filtrate cooled to room temperature. The black microcrystals which formed were washed with water and ethanol (yield 0.6g, 58%). Anal. C, H, N.

Ru(BPZ)₂(CO₃).5H₂O: Ru(BPZ)₂Cl₂ (0.5g) and potassium carbonate (1.0g) were placed in 1:1 ethanol/water solution (30ml) and refluxed for 2hrs. with constant stirring. The hot solution was filtered and placed in a freezer overnight. Black microcrystals of the carbonate species were collected and washed with water and ethanol (yield 0.4g, 74%). Anal. C, H, N. (The H analysis was slightly high). Both the oxalate and carbonate are only very sparingly soluble in organic solvents limiting the collection of data on these complexes. The complexes are soluble in water and the low conductivity of such solutions infers that little hydrolysis takes place at least at room temperature.

Results and Discussion

The complexes Ru(BPZ)₂X₂, X = Cl⁻, Br⁻, I⁻, SCN⁻ and NO₂⁻ are non-conducting in acetonitrile consistent with a six coordinate un-ionised pseudo octahedral formulation.

The 1H NMR spectra are fully consistent with a cis-stereochemistry, the trans form probably being inhibited because of proton-proton
repulsion between trans planar BPZ groups. The 1H NMR spectrum of Ru(BPZ)$_2$Cl$_2$ has already been adequately discussed. Chemical shifts for the various protons (see I) are reported in Table 1, with assignments based upon our earlier analysis. Briefly, the complexes have C_2 symmetry and thus each complex contains two magnetically inequivalent pyrazine moieties. The protons of one pyrazine ring are influenced by the anisotropic effect of a neighbouring pyrazine ring and experience chemical shifts similar to those of the tris(bipyrazine) cation. Protons of the other pyrazine moiety will be shifted downfield relative to the other ring as confirmed nicely by experiment (Fig.3: ref.2, and Table 1). As shown in Table 1, the protons H$_3$, H$_3^\prime$, H$_5$, H$_5^\prime$ and H$_6^\prime$ remain fairly constant whereas the chemical shift of H$_6$ varies considerably with variation of X. For X = Cl$^-$, Br$^-$ and I$^-$, H$_6$ shifts downfield as the radius of X increases suggesting a van der Waals deshielding interaction. For X = NO$_2^-$ and SCN$^-$, the magnetic anisotropy of X must also be taken into account. The J values given in Table 1 are slightly dependent on the ligand. The exact nature of this dependence requires further study.

The IR spectrum of the nitro complex shows N=O stretching vibrations at 1300 and 1350 cm$^{-1}$ consistent with N bound nitro coordination, rather than O bound nitrito. The thiocyanate derivative shows (CN) at 2100 cm$^{-1}$ (broad), but the (CS) frequency is apparently obscured by BPZ absorption. In parallel with Ru(Bipy)$_2$(NCS)$_2$, it is probable that the thiocyanate is N-bound. Indeed the data to be discussed below would be inconsistent with S bonding.

Infrared spectra for the carbonate and oxalate species are consistent with a coordinated anion in the solid state. The carbonate complex exhibits bands at ca 1600, 1260, 1040, 840 and 760 cm$^{-1}$ consistent with bidentate bound carbonate. The oxalate complex exhibits a broad band at 1690 cm$^{-1}$, plus other absorption, consistent with bound rather than ionic oxalate.

Electrochemical data are reported in Table 2. The BPZ ligands are reduced at potentials similar to that of the tris(bipyrazine) cation.
The first reduction potential is about 200mV less positive than for the tris(bipyrazine)ruthenium(II) cation probably because the polarising power of the ruthenium has been reduced by the replacement of a hard bipyrazine ligand by softer anions. This is reflected by the oxidation couple Ru(III)/Ru(II) which is dependent upon X. With X a halogen, the potentials are less positive than with the harder nitrogen ligands, NO₂⁻ and SCN⁻, and much less than for the tris(bipyrazine) case with X = BPZ.

The electronic spectra of these bis(bipyrazine) complexes (Table 3) show two MLCT bands, one near 18,000 and the other near 25,000 cm⁻¹, due to transitions from Ru(t₈)⁶ to the first two acceptor π* orbitals on the coupled bipyrazine ligands (see ref.2). The uv absorptions near 32,000 and 42,000 cm⁻¹ are internal π-π* transitions on the bipyrazine ligands. The shoulder between these two transitions may be π-π* or perhaps n-π*. It is not likely to be an MLCT transition, though tentatively assigned as such in ref.2, since, unlike the other MLCT transitions, it is almost invariant in position with change in X.

The MLCT bands shift to the red in passing from the very hard BPZ to the hard nitrogen (SCN⁻ and NO₂⁻) and oxygen ligands (carbonate etc) to the softer halides, the charge transfer frequencies being directly proportional to the Ru(III)/Ru(II) oxidation potentials. As charge is placed on the ruthenium atom, making it less positive, this facilitates both electrochemical oxidation, and charge transfer from metal to ligand.

Aquo and hydroxy species

If dilute perchloric acid is added to Ru(BPZ)₂CO₃, the cation [Ru(BPZ)₂(H₂O)₂]²⁺ is formed. Although not isolated, this species has electronic spectra (Table 3, Fig.1) consistent with the slightly harder nature of water relative to halogen, and consistent with previous data reported for the bipyridine analog.10 If NaOH is added to this solution, two new species may be detected (Fig.1). In strong base solution, the two MLCT charge transfer bands are shifted 2700 - 3000 cm⁻¹ to the red. When an acid solution of the dihydrate complex is titrated with base, (or a basic solution is treated with acid), an intermediate is seen with spectra lying between these two species, i.e.
shifted about 1300 - 1800 cm\(^{-1}\) to the red of the dihydrate. Indeed titration of an acid solution with standard NaOH results in two successive sets of isosbestic points being observed; plotting the peak position of the lower energy MLCT band against titre, yields a double sigmoidal curve with inflection points at pH = 7.6 and pH = 9.8.

These data are entirely consistent with the hydrolysis of [Ru(3PZ)\(_2\)(H\(_2\)O)\(_2\)]\(^{2+}\) with a pK\(_a\) of 7.6 to yield [Ru(BPZ)\(_2\)(H\(_2\)O)(OH)]\(^+\) followed by its hydrolysis with a pK\(_a\) of 9.8 to yield Ru(BPZ)\(_2\)(OH)\(_2\). Corresponding data for the bipyridine analogs do not appear to have been reported. However the pK\(_a\) value for the hydrolysis of Ru(bipy)\(_2\)(py)(H\(_2\)O)\(^2+\) is 10.8,\(^{12}\) and the consecutive values for the rhodium(III) and rhodium(II) species Rh(bipy)\(_2\)(H\(_2\)O)\(^{3+}\) and Rh(bipy)\(_2\)(H\(_2\)O)\(^2+\) are 4.8 and 6.87, and 8.6 and 11.1 respectively\(^{13}\); these results are consistent with our data.

The MLCT band positions of the hydroxy species span the halide data suggesting that hydroxide ion acts as a soft ligand towards Ruthenium(II) transferring appreciable charge density to the metal.

Further photochemical studies of these species are in hand. We note that the hydroxy species may be useful starting materials towards the generation of Ru(IV) oxo species which would parallel those formed with bipyridine\(^{12,14}\) but would be much stronger oxidising agents. Indeed the procedures outlined here provide new synthetic routes into bis(bipyrazine) Ruthenium(II) chemistry and later may allow the generation of bis(bipyrazine)osmium(II) complexes whose bipyridine analogs are of especial photocatalytic interest.\(^{15}\)

Acknowledgements: This is part of a joint project with Prof.A.J.Bard (Univ. of Texas at Austin), supported by the Office of Naval Research (Washington DC), to whom we are indebted. We are also grateful to the Natural Sciences and Engineering Research Council (Ottawa, Canada) for financial support.
References

Table 1. 1H NMR Spectra of Ru(BPZ)$_2X_2$ Speciesa

<table>
<thead>
<tr>
<th>Complex</th>
<th>H3, H5, H6, H${5'}$, H${6'}$, J${3,6}$, J${5,6}$, J${5',6'}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ru(BPZ)$_2$(NO$_2$)$_2$</td>
<td>10.02 9.03 9.63 9.93 8.44 7.88 1.0 1.0 3.2 3.2</td>
</tr>
<tr>
<td>Ru(BPZ)$_2$(NCS)$_2$</td>
<td>10.02 9.08 9.23 9.85 8.38 7.89 0.9 0.9 3.2 3.4</td>
</tr>
<tr>
<td>Ru(BPZ)$_2$Cl$_2$</td>
<td>10.03 8.98 9.92 9.86 8.28 7.88 0.8 0.8 3.3 3.3</td>
</tr>
<tr>
<td>Ru(BPZ)$_2$Br$_2$</td>
<td>10.03 9.00 10.11 9.86 8.32 7.92 0.9 0.9 3.5 3.3</td>
</tr>
<tr>
<td>Ru(BPZ)$_2$I$_2$</td>
<td>10.00 8.99 10.33 9.84 8.33 7.92 0.9 0.9 3.3 3.3</td>
</tr>
</tbody>
</table>

a Recorded in d$_5$-DMSO. * from tetramethylsilane in ppm; J in Hz. H$_3$, H$_5$, and H$_6$, are in the ring trans to coordinated ligands other than bipyrazine.

Table 2. Electrochemical Data in Acetonitrile, versus scea

<table>
<thead>
<tr>
<th>Complex</th>
<th>Ru(III)/Ru(II)</th>
<th>BPZ/BPZ$^-$</th>
<th>BPZ$^-$/BPZ$^+$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ru(BPZ)$_2$$_2^{2+}$</td>
<td>1.86</td>
<td>-0.80</td>
<td>-0.98, -1.24</td>
</tr>
<tr>
<td>Ru(BPZ)$_2$(NO$_2$)$_2$</td>
<td>1.18c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ru(BPZ)$_2$(NCS)$_2$</td>
<td>0.94d</td>
<td>-0.93</td>
<td>-1.18c</td>
</tr>
<tr>
<td>Ru(BPZ)$_2$Cl$_2$</td>
<td>0.80c</td>
<td>-1.04c</td>
<td>-1.27c</td>
</tr>
<tr>
<td>Ru(BPZ)$_2$Br$_2$</td>
<td>0.79c</td>
<td>-1.09c</td>
<td>-1.22c</td>
</tr>
<tr>
<td>Ru(BPZ)$_2$I$_2$</td>
<td>0.80d</td>
<td>-1.05c</td>
<td>-1.18c</td>
</tr>
</tbody>
</table>

a 0.1M Tetraethylammonium hexafluorophosphate. All data are averages of anodic and cathodic peaks at 100 mV/s scan rate. The waves are reversible except for those indicated otherwise. b data from ref. 2. c partially reversible. d irreversible.
Table 3 Electronic Spectra of Ru(BPZ)$_2$X$_2$ Speciesa

<table>
<thead>
<tr>
<th>Complex</th>
<th>Ruthenium to Diimine MLCT</th>
<th>pi-pi* Bipyrazine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ru(BPZ)$_3^{2+}$</td>
<td>22,575(4.18) 29,155(4.27)</td>
<td>33,900(4.79) 37,455(4.34)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>41,495(4.37)</td>
</tr>
<tr>
<td>Ru(BPZ)$_2$(NO$_2$)$_2$</td>
<td>20,660(3.94) 28,735(3.97)</td>
<td>32,365(4.57) 37,735sh</td>
</tr>
<tr>
<td></td>
<td></td>
<td>37,455(4.34) 42,020(4.29)</td>
</tr>
<tr>
<td>Ru(BPZ)$_2$(NCS)$_2$</td>
<td>19,010(3.96) 26,740(3.95)</td>
<td>32,155(4.59) 37,455sh</td>
</tr>
<tr>
<td></td>
<td></td>
<td>42,200(4.41)</td>
</tr>
<tr>
<td>Ru(BPZ)$_2$Cl$_2$</td>
<td>18,020(4.03) 25,315(3.94)</td>
<td>32,050(4.54) -</td>
</tr>
<tr>
<td></td>
<td></td>
<td>41,325(4.31)</td>
</tr>
<tr>
<td>Ru(BPZ)$_2$Er$_2$</td>
<td>18,250(3.99) 25,510(3.91)</td>
<td>31,950(4.53) 38,170sh</td>
</tr>
<tr>
<td></td>
<td></td>
<td>42,020(4.36)</td>
</tr>
<tr>
<td>Ru(BPZ)$_2$I$_2$</td>
<td>18,115(3.90) 25,510(3.89)</td>
<td>31,450(4.46) -</td>
</tr>
<tr>
<td></td>
<td></td>
<td>42,735(4.43)</td>
</tr>
<tr>
<td>Ru(BPZ)$_2$(Ox)$_2$,c</td>
<td>19,380(4.08) 26,740(3.97)</td>
<td>32,360(4.70) 37,455sh</td>
</tr>
<tr>
<td></td>
<td></td>
<td>41,495(4.30)</td>
</tr>
<tr>
<td>Ru(BPZ)$_2$CO$_3$,c</td>
<td>20,080(3.93) 26,320sh</td>
<td>32,360(4.59) 37,595sh</td>
</tr>
<tr>
<td></td>
<td></td>
<td>41,840(4.22)</td>
</tr>
<tr>
<td>Ru(BPZ)$_2$(H$_2$O)$_2$,c,d</td>
<td>20,240(4.11) 27,780sh</td>
<td>32,680(4.74) 37,595sh</td>
</tr>
<tr>
<td></td>
<td></td>
<td>42,195(4.33)</td>
</tr>
<tr>
<td>Ru(BPZ)$_2$(H$_2$O)(OH),c,e</td>
<td>18,870(4.04) 26,040(3.96)</td>
<td>32,260(4.71) 38,460sh</td>
</tr>
<tr>
<td></td>
<td></td>
<td>42,020(4.37)</td>
</tr>
<tr>
<td>Ru(BPZ)$_2$(OH)$_2$,c,f</td>
<td>17,480(4.05) 24,690(3.97)</td>
<td>31,550(4.65) 38,460sh</td>
</tr>
<tr>
<td></td>
<td></td>
<td>42,195(4.36)</td>
</tr>
</tbody>
</table>

a) Data in wavenumbers, log e in parentheses: all data in acetonitrile except where noted. Data for the tris(bipyrazine) complex from ref.2. b) oxalate. c) in water. d) pH = 3. e) pH = ca 8.5. f) pH = 14.
Legend: The electronic spectra of

a) Ru(HPZ)$_2$(H$_2$O)$_2$$^{2+}$ in water at pH 3;
b) Ru(HPZ)$_2$(H$_2$O)(OH)$^+$ in water at pH 8.5; c) Ru(HPZ)$_2$(OH)$_2$ in water at pH 14.
\[a = \text{Ru}(\text{BPZ})_2(\text{H}_2\text{O})_2^{2+} \]
\[b = \text{Ru}(\text{BPZ})_2(\text{H}_2\text{O})(\text{OH})^+ \]
\[c = \text{Ru}(\text{BPZ})_2(\text{OH})_2 \]
<table>
<thead>
<tr>
<th>No. Copies</th>
<th>No. Copies</th>
</tr>
</thead>
</table>
| Dr. Paul Delahay
Department of Chemistry
New York University
New York, New York 10003 | 1 |
| Dr. E. Yeager
Department of Chemistry
Case Western Reserve University
Cleveland, Ohio 41106 | 1 |
| Dr. D. N. Bennion
Department of Chemical Engineering
Brigham Young University
Provo, Utah 84602 | 1 |
| Dr. R. A. Marcus
Department of Chemistry
California Institute of Technology
Pasadena, California 91125 | 1 |
| Dr. J. J. Auborn
Bell Laboratories
Murray Hill, New Jersey 07974 | 1 |
| Dr. Adam Heller
Bell Laboratories
Murray Hill, New Jersey 07974 | 1 |
| Dr. T. Katan
Lockheed Missiles and Space Co., Inc.
P. O. Box 504
Sunnyvale, California 94088 | 1 |
| Dr. Joseph Singer, Code 302-1
NASA-Lewis
21000 Brookpark Road
Cleveland, Ohio 44135 | 1 |
| Dr. B. Brummer
EIC Incorporated
55 Chapel Street
Newton, Massachusetts 02158 | 1 |
| Library
P. R. Mallory and Company, Inc.
Northwest Industrial Park
Burlington, Massachusetts 01803 | 1 |
| Dr. P. J. Hendra
Department of Chemistry
University of Southampton
Southampton SO0 5NH
United Kingdom | 1 |
| Dr. Sam Perone
Chemistry & Materials Science Department
Laurence Livermore National Lab.
Livermore, California 94550 | 1 |
| Dr. Royce W. Murray
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27514 | 1 |
| Naval Ocean Systems Center
Attn: Technical Library
San Diego, California 92152 | 1 |
| Dr. C. E. Mueller
The Electrochemistry Branch
Materials Division, Research and Technology Department
Naval Surface Weapons Center
White Oak Laboratory
Silver Spring, Maryland 20910 | 1 |
| Dr. G. Goodman
Johnson Controls
5757 North Green Bay Avenue
Milwaukee, Wisconsin 53201 | 1 |
| Dr. J. Boechler
Electrochimica Corporation
Attn: Technical Library
2485 Charleston Road
Mountain View, California 94040 | 1 |
| Dr. P. P. Schmidt
Department of Chemistry
Oakland University
Rochester, Michigan 48063 | 1 |
TECHNICAL REPORT DISTRIBUTION LIST, 359

<table>
<thead>
<tr>
<th>No.</th>
<th>Copies</th>
<th>No.</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. H. Richtol</td>
<td>Chemistry Department</td>
<td>Rensselaer Polytechnic Institute</td>
<td>Troy, New York 12181</td>
</tr>
<tr>
<td>Dr. A. B. Ellis</td>
<td>Chemistry Department</td>
<td>University of Wisconsin</td>
<td>Madison, Wisconsin 53706</td>
</tr>
<tr>
<td>Dr. M. Wrighton</td>
<td>Chemistry Department</td>
<td>Massachusetts Institute of Technology</td>
<td>Cambridge, Massachusetts 02139</td>
</tr>
<tr>
<td>Larry E. Plew</td>
<td>Naval Weapons Support Center</td>
<td>Code 30736, Building 2906</td>
<td>Crane, Indiana 47522</td>
</tr>
<tr>
<td>S. Ruby</td>
<td>DOE (STOR)</td>
<td>6C0 E Street</td>
<td>Providence, Rhode Island 02192</td>
</tr>
<tr>
<td>Dr. Aaron Wold</td>
<td>Brown University</td>
<td>Department of Chemistry</td>
<td>Providence, Rhode Island 02192</td>
</tr>
<tr>
<td>Dr. R. C. Chudacek</td>
<td>McGraw-Edison Company</td>
<td>Edison Battery Division</td>
<td>Post Office Box 28</td>
</tr>
<tr>
<td>Dr. A. J. Bard</td>
<td>University of Texas</td>
<td>Department of Chemistry</td>
<td>Austin, Texas 78712</td>
</tr>
<tr>
<td>Dr. M. M. Nicholson</td>
<td>Electronics Research Center</td>
<td>Rockwell International</td>
<td>3370 Miraloma Avenue</td>
</tr>
</tbody>
</table>

TECHNICAL REPORT DISTRIBUTION LIST, 359

<table>
<thead>
<tr>
<th>No.</th>
<th>Copies</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Donald W. Ernst</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Naval Surface Weapons Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code R-33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White Oak Laboratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silver Spring, Maryland 20910</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. R. Nowak</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code 6130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20375</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. John F. Houlihan</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Shenango Valley Campus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pennsylvania State University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sharon, Pennsylvania 16146</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. D. F. Shriver</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Department of Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northwestern University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evanston, Illinois 60201</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. D. H. Whitmore</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Department of Materials Science</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northwestern University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evanston, Illinois 60201</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Alan Bewick</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Department of Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southampton, S09 5NH England</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. A. Himy</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>NAVSEA-5433</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC #4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2541 Jefferson Davis Highway</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arlington, Virginia 20362</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. John Kincaid</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Department of the Navy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strategic Systems Project Office</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Room 901</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20376</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mr. James R. Moden</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Naval Underwater Systems Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code 3632</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Newport, Rhode Island 02840</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Bernard Spielvogel</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>U. S. Army Research Office</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. O. Box 12211</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research Triangle Park, NC 27709</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Denton Elliott</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Air Force Office of Scientific Research</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bolling AFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20332</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. David Aikens</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chemistry Department</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rensselaer Polytechnic Institute</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Troy, New York 12181</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. A. P. B. Lever</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chemistry Department</td>
<td></td>
<td></td>
</tr>
<tr>
<td>York University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Downview, Ontario M3J1P3 Canada</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Stanislaw Szpak</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Naval Ocean Systems Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code 6343</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Diego, California 95152</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Gregory Farrington</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Department of Materials Science and Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of Pennsylvania</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Philadelphia, Pennsylvania 19104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Bruce Dunn</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Department of Engineering & Applied Science</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of California</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Los Angeles, California 90024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Copies</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>M. L. Robertson</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Manager, Electrochemical and Power Sonices Division Naval Weapons Support Center Crane, Indiana</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Elton Cairns</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Energy & Environment Division Lawrence Berkeley Laboratory University of California Berkeley, California</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Micha Tomkiewicz</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Department of Physics Brooklyn College Brooklyn, New York</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Lesser Blum</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Department of Physics University of Puerto Rico Rio Piedras, Puerto Rico</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Joseph Gordon, II</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>IBM Corporation K33/281 5600 Cottle Road San Jose, California</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Robert Somoano</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Jet Propulsion Laboratory California Institute of Technology Pasadena, California</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Johann A. Joebstl</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>USA Mobility Equipment R&D Command DRDME-EC Fort Belvoir, Virginia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Judith H. Ambrus</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>NASA Headquarters M.S. RTS-6 Washington, D.C.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Albert R. Landgrebe</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Copies</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td></td>
</tr>
</tbody>
</table>
| Dr. J. J. Brophy
University of Utah
Department of Physics
Salt Lake City, Utah 84112 | 1 |
| Dr. Walter Roth
Department of Physics
State University of New York
Albany, New York 12222 | 1 |
| Dr. Thomas Davis
National Bureau of Standards
Polymer Science and Standards Division
Washington, D.C. 20234 | 1 |
| Dr. Charles Martin
Department of Chemistry
Texas A&M University | 1 |
| Dr. Anthony Sammells
Institute of Gas Technology
3424 South State Street
Chicago, Illinois 60616 | 1 |
| Dr. H. Tachikawa
Department of Chemistry
Jackson State University
Jackson, Mississippi 39217 | 1 |
| Dr. W. M. Risen
Department of Chemistry
Brown University
Providence, Rhode Island | 1 |