TECHNICAL REPORT ARLCD-TR-82026

CARS SPECTRA
FROM LEAN AND STOICHIOMETRIC CH(4)-N(2)0 FLAMES

L. E. HARRIS

MARCH 1983

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND
LARGE CALIBER
WEAPON SYSTEMS LABORATORY
DOVER, NEW JERSEY

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
CARS spectra from lean and stoichiometric CH(4)-N(2)O flames

L.E. Harris

Broadband CARS spectra were obtained from both the reaction zone and post-flame region of lean and stoichiometric CH(4)-N(2)O flames. To assess methods of obtaining concentration from broadband spectra, N(2) CARS spectra were obtained from a series of air and argon (AIR/AR) mixtures at room temperature. The concentration of N(2) with good accuracy (6%) was obtained both from fitting the shape of the broadband spectra and from the ratio of the resonant to nonresonant susceptibility. Both methods were utilized in interpreting flame spectra.
20. ABSTRACT (cont)

CARS spectra of both N(2) and N(2)O were obtained from the reaction zone of near 0.3 equivalence ratio (fuel/oxidizer) CH(4)-N(2)O flames. Spectra were obtained from room temperature to near the adiabatic flame temperature. Simultaneous observation of both N(2) and N(2)O spectra allows determination of temperature and concentration of both species from the same point in the flame. The spectra demonstrated the high spatial resolution of CARS.

In addition, N(2) CARS spectra were obtained from the post-flame region of 0.3, 0.4, 0.5 and 1.0 CH(4)-N(2)O flames. The N(2) spectra were used to obtain concentration and temperature profiles by a least squares fit to model calculations. The temperatures obtained varied with reactant flow rates. However, at appropriate flow rates, the concentrations and temperatures obtained close to the burner surface were in accord with thermochemical calculation.

The temperature and concentration profiles obtained from both N(2) and N(2)O CARS spectra can be used to understand the elementary processes occurring in the CH(4)-N(2)O flames investigated.
CONTENTS

Introduction 1
Experimental Method 2
Results 3
Theory 3
Air/Argon Mixtures 4
Reaction Zone Spectra 5
Post-Flame Spectra 6
Discussion 7
References 11
Distribution List 31
TABLES

1 Concentration of air (%) in air/ar mixtures at 300 K 13
2 Temperature and concentration in the reaction zone of a CH₄-N₂O flame (2 mm above the burner) 13
3 Thermochemical calculations for CH₄-N₂O flames 14
4 Measured and calculated temperature (K) and N₂ concentration (%) in a CH₄-N₂O flame 14
5 Temperature and N₂ concentration profile in a CH₄-N₂O flame \((\phi = 0.5) \) at a flow of 16.9 cm/s \((T_{CALC} = 2734K, C_{CALC} = 58\%) \) 15
6 Temperature and N₂ concentration profile in a CH₄-N₂O flame \((\phi = 0.5) \) at a flow of 33.4 cm/s \((T_{CALC} = 2734K, C_{CALC} = 58\%) \) 15

FIGURES

1 Nonplanar BOXCARS spectrometer where BS is a 50% beam splitter, M is a Mirror, OF is an optical flat rotatable about its horizontal axis and T is a beam terminator 17
2 Normalized nitrogen CARS spectra from room temperature air/argon mixtures containing 0% to 23% air 18
3 Normalized nitrogen CARS spectra from room temperature air/argon mixtures containing 3% to 100% air 19
4 Experimental (•) and calculated N₂ CARS spectra at room temperature in a 9% air/argon mixture (nonplanar CARS) 20
5 Experimental (•) and calculated N₂ CARS spectra at room temperature in a 20% air/argon mixture (nonplanar CARS) 21
6 Experimental (•) and theoretical \(\log \left(\frac{I_{10} - I_{nr}}{I_{nr}} \right) \) where \(I_{10} \) and \(I_{nr} \) are the maximum intensities of nitrogen Q₁₀ and the nonresonant susceptibility versus \(\log [C(\%)] \) 22
7 CARS spectra observed 1 mm above the burner head in a 0.27 CH₄-N₂O flame (the distance indicated is from the centerline of the burner) 23
CARS spectra observed 1 mm above the burner head in a 0.27 CH₄–N₂O flame (•) compared to theoretical spectra (solid line), calculated at T = 800 K and C = 14% N₂ and T = 1200 and C = 20% N₂ for spectra obtained 1.40 (TOP SPECTRUM) and 1.14 mm (BOTTOM SPECTRUM) from the centerline of the flame, respectively.

TOP SPECTRUM: N₂ CARS spectrum observed 2 mm above the centerline of 0.3 CH₄–N₂O flame (•) compared to theoretical spectrum calculated at T = 2550 K and C = 62% N₂.

BOTTOM SPECTRUM: N₂ CARS spectrum observed 1 mm above the centerline of a 0.27 CH₄–N₂O flame (•) compared to theoretical spectrum calculated at T = 2300 K and C = 33% N₂.

(I₂/N₂O) (•) obtained from CARS spectra taken 1 mm above the burner head of a 0.27 CH₄–N₂O flame and corresponding temperatures (•) versus distance from the centerline of the burner.

Experimental (•) and calculated N₂ CARS spectra (solid line) 2 mm above the centerline of the burner surface: BOTTOM, 0.4 flame; TOP, 1.0 flame.

Experimental (•) and calculated N₂ CARS spectra (solid line) from a 0.5 flame at various distances from the burner surface: BOTTOM, 2 mm; TOP, 10 mm.

Experimental (•) and calculated N₂ CARS spectra (solid line) from 0.5 flame at various distances from the burner surface: BOTTOM, 20 mm; TOP, 40 mm.

Temperature versus distance above the burner surface for a 0.5 flame at a flow of 16.8 (•) and 33.4 (o) cm/s.
INTRODUCTION

Recently, coherent anti-stokes raman scattering (CARS) spectroscopy has undergone several modifications to enhance its usefulness for investigating flames. CARS can arise from the nonlinear response of homogeneous media. The nonlinear response of a homogeneous medium upon which waves ω_1 and ω_2 are incident generates an oscillating polarization. The lowest order nonlinearity is the third order susceptibility, $\chi^{(3)} (-\omega_3, \omega_1, \omega_1, \omega_2)$, which generates a frequency component of the polarization at $\omega_3 = 2\omega_1 - \omega_2$ by the process termed "three wave mixing" (ref 1). Resonant enhancement of three wave mixing occurs if $\omega_1 - \omega_2$ is made equal to a Raman active vibration, ω_3, in which case the enhancement of the signal ω_3 is termed a CARS process (ref 2). Since CARS is a coherent process, ω_3 is maximized if the wavevectors, k_i, are phasematched so that $2k_1 = k_2 + k_3$ where $k_i = \omega_i n_i / c$, c the speed of light, and n_i the refractive index at frequency ω_i. In gases, which are nearly dispersionless, colinear beams are phasematched. Using this geometry, since CARS is generated by an iterative growth process, the spatial resolution is poor. If ω_1 is split and phasematching achieved, ω_3 is maximized and, since CARS generation occurs only where all three beams intersect, the spatial resolution is improved. The split ω_1 phasematched geometry is termed "BOXCARS" (ref 3). BOXCARS in which the wavevectors are not phasematched in one plane is termed folded (or nonplanar) BOXCARS and has the advantage that ω_3 is easily spatially isolated from the generating beams (refs 4 through 6).

Conventionally ω_2 is narrowband and scanned to obtain the spectrum at ω_3. However, to obtain spectra in transient and/or turbulent media it is appropriate to use a broadband $\omega_2 \{ \sim 150 \, \text{cm}^{-1} \}$ full width at half height (FWHH) to obtain the full rovibrational spectrum at ω_2 within the time duration of the laser pulse (\sim 10 ns) (ref 7). Averaging of the single-shot spectra may be undertaken to improve the signal-to-noise according to the constraints of the experiment.

BOXCARS has been used to obtain temperature and concentration of post-flame gases in stationary flames using broadband (ref 8) and narrow band (ref 9) spectra, and transient flames using single-shot (ref 10) spectra. Recently, laser absorption measurements of the temperature and concentration of radicals have been reported in the thin reaction zone of atmospheric flames (ref 11). CARS measurements in the reaction zone of a flame have not been reported even though BOXCARS has more precisely defined spatial resolution in the direction of the laser beams than line-of-sight methods such as laser absorption. In addition CARS allows direct monitoring of the rovibrational levels of the reactant molecules as they undergo flame decomposition processes.

Because of these capabilities, simultaneous measurement of N_2 and N_2O CARS was undertaken in the reaction zone of a lean CH_4-N_2O flame. A lean CH_4-N_2O flame near lift-off creates sufficiently sharp spatial and temperature gradients to show the capabilities of CARS. N_2O CARS spectra, which have not been previously reported, have structure at lower temperatures than diatomics due to the population of low-lying bending modes. N_2O CARS spectra are especially suitable for studying initial decomposition reaction in a CH_4-N_2O flame. The measurements were extended for N_2 CARS to the post flame region of a series of flames with equivalence ratio increasing to 1.0 to evaluate the agreement of temperatures and
concentrations determined from CARS spectra with the results of thermochemical
calculations (ref 12).

EXPERIMENTAL METHOD

CARS spectra were generated using the apparatus shown in figure 1. Non-
planar BOXCARS was utilized to achieve phasematching. The output of a Quanta-Ray
DCR-1A Nd/YAG laser at 1.06 microns (700 mj) is doubled to generate the pump beam
at 5320 A (250 mj) with a bandwidth near 1 cm⁻¹. The pump beam is separated from
the primary beam using prisms. The pump beam is split using beam splitter BS1 to
generate ω₁p and ω₁s. ω₁s is used to pump a dye laser to generate the Stokes
beam, ω₂. The dye laser consists of a flowing dye cell in a planar Fabry-Perot
oscillator cavity pumped slightly off-axis by 20% of ω₁s with the output ampli-
fied by an additional dye cell pumped by the remainder of ω₁s. The dye laser was
operated broadband using Exciton Rhodamine 640 in dry methanol at a concentra-
tion of 2.4 x 10⁻⁴ M and 3.2 x 10⁻⁵ M in the oscillator and amplifier dye cell, re-
spectively, to produce 30 mj centered at 6060 A (16502 cm⁻¹) with a bandwidth of
121 cm⁻¹. To achieve BOXCARS geometry, ω₁p is again split with beam splitter,
BS2, to generate ω₁ and ω₁s. In the optical configuration used to generate non-
planar BOXCARS, the ω₁, ω₁s, and ω₂ beams are parallel and situated on a circle of
1 inch diameter at the focusing lens (200 mm focal length) with ω₁ and ω₁s in the
central horizontal plane of the lens and ω₂ below ω₁ and ω₁s in the central verti-
cal plane. Telescopes are inserted in the ω₁p and ω₁ beams to allow the focal
spot size of both beams to be equalized. The telescopes also allow the position
of the ω₁, ω₁s, and ω₂ beamwaists to be adjusted so that they all intersect after
focusing. This was achieved using 0.85 and 2x Galilean telescopes in ω₁p and ω₂,
respectively. To achieve phasematching a 12.5 mm thick optical
flat rotatable about it's horizontal axis was inserted into ω₂ before focusing.
It is adjusted to maximize the ω₂ signal. The beams were recollimated with a
lens (200 mm focal length) after which the ω₁ was located below the plane of
ω₁ and ω₁s. ω₁, ω₁s, and ω₂ were terminated with a neutral density filter
(OD4). ω₁ was focussed using a 50 mm focal length lens onto the slits of a 1/4-
meter monochromator equipped with a 1,800 line per millimeter grating and 100-
micron slits. The signal was detected by a PAR SIT detector and processed by a
PAR OMA2 system. Neon lines were used to calibrate the monochrometer. The FWHH
of the Neon lines nearest ω₁ were determined to be 6.4 cm⁻¹ with 2.33 cm⁻¹ per
channel.

Flame measurements were made on a premixed CH₄-N₂O flame maintained on a
circular burner of 1.4 cm diameter. The burner surface was constructed of a
matrix of steel syringe needles of 0.2 cm outer diameter so that a flat flame is
obtained under suitable flow conditions. Matheson technical grade methane and
chemically pure nitrous oxide were separately flowed through Matheson rotameters
prior to premixing. The flow through the burner was adjusted to 16.1 cm/s to
maintain a 0.27 fuel-air equivalence ratio flame, which is near lift-off, local-
ized at a few syringe tubes near the center of the burner. The oblong shaped
flame increased in size to approximately 5 mm in diameter at 10 mm above the
burner surface. Increasing the methane flow to that for a 0.31 equivalence ratio
flame gave a flat flame at a flow of 16.3 cm/s. The flow conditions for the
other flames used are given in the results section. The center line of the
burner was placed at the intersection of the ω₁, ω₁s, and ω₂ beamwaists. The
burner was mounted on horizontal and vertical translation stages.
RESULTS

Theory

N_2 CARS spectra were calculated using the method outlined in reference 13 and N_2 spectral parameters given in references 13 and 14. The observed CARS spectrum is proportional to the square of the modulus of the third order susceptibility, $\chi^{(3)}$, which is the sum of a resonant term, χ_r, related to a nuclear displacement and a nonresonant term, χ_{nr}, related to electronic displacement.

$$\chi^{(3)} = \chi_r + \chi_{nr}$$ \hspace{1cm} (1)

The resonant term is calculated as a sum of Lorentzian line shapes of each $Q(J)$ rotational transition

$$\chi_r = \sum_j \frac{k_j \Gamma_j}{2\Delta\omega_j - i\Gamma_j}$$ \hspace{1cm} (2)
given that

$$k_j = \frac{2N}{\hbar} / \alpha_j / 2 (\Delta p_j^{(0)}) \Gamma_j^{-1}$$ \hspace{1cm} (3)

where N is the number density, α_j is the isotropic polarizability matrix element for the transition, $\Delta p_j^{(0)}$ is the normalized population difference between the molecular energy levels involved in the transition, Γ_j is the isolated pressure-broadened linewidth, and $\Delta\omega_j = \omega_1 - \omega_2 - \omega_3$. The calculated $\chi^{(3)}/2$ is first convoluted over the laser shapes and then over a triangular instrumental slit function.

χ_r is the sum of real and imaginary components χ' and χ'', respectively, so that

$$\frac{\chi^{(3)}}{2} = \chi'^2 + 2\chi'\chi_{nr} + \chi''^2 + \chi_{nr}^2$$ \hspace{1cm} (4)

χ' and χ'' display resonant and dispersive behavior with respect to the detuning frequency, $\Delta\omega_j$.

As the concentration of the resonant species is lowered the cross term $\chi'\chi_{nr}$, which is dispersive, modulates the shape of the spectrum. The observation of dispersively modulated spectra allows estimation of the concentration in addition to the temperature based on model calculations.

As an alternative to determining concentration from the shape of the total spectrum, concentration can be estimated from the ratio of the total CARS intensity, I, to the nonresonant intensity, I_{nr}, at any frequency at which a resonant transition of the species occurs. In broadband CARS the nonresonant susceptibility is usually observed directly in regions where no resonance occurs. The spectral distribution of the nonresonant susceptibility which mirrors that of ω_2, can be obtained either from measurements of the distribution of ω_2 or directly from
measurements on a nonresonant gas. The spectral distribution of the nonresonant susceptibility is relatively constant (as can be ascertained by measurements before and after a series of experiments). Therefore, measurement of the nonresonant susceptibility at any frequency in the broadband spectrum will allow estimation of \(I_r \), the nonresonant susceptibility at the frequency at which the intensity of the resonant transition, \(I \), occurs. The function \((I - I_r)/I_r \) should be independent of the laser intensity (although of course the precision will be affected by the intensity) and according to equations 2 and 3 vary with concentration quadratically at high concentration and linearly at lower concentration when \(\chi^2 \ll 2 \chi \chi \). If \(I_r \) is estimated at a frequency at which the nonresonant susceptibility begins to have some significant contribution from the resonant susceptibility at higher concentrations a lowering of the quadratic dependence would be observed. This effect would depend on the ratio of the resonant to nonresonant susceptibility cross section for the system under investigation. The effect would be minimized by proper choice of the frequency at which the nonresonant susceptibility is determined.

Air/Argon Mixtures

\(N_2 \) CARS spectra were taken at 2 mm above the burner head of mixtures of room temperature premixed air and argon (AIR/AR) flowing through the burner. The composition of the AIR/AR mixtures was set by adjusting the flow of argon and air separately prior to premixing. The total flow for argon was at a rate at which no signal was observed from nitrogen diffusing into the argon flow from the surrounding air. The percentage of air in the mixtures varied from 0% to 30%. The spectra of the mixtures are shown in figures 2 and 3. The compositions of the mixtures for which \(N_2 \) CARS spectra were taken are given in table 1. CARS spectra for which the air concentrations were determined from a fit of the total spectra to the calculated spectra are shown in figures 4 and 5. The concentration determined by the best visual match between the calculated and experimental spectra were 9% and 20% air for gas mixtures whose compositions were 8.54% and 19.7%, respectively.

Concentrations determined from the function \((I - I_r)/I_r \) are given in table 1. \(I \) was determined from the intensity of the broadband CARS spectra at the frequency of the maximum of the nitrogen \(Q_{10} \) resonance. \(I_r \), which was 80% of the peak nonresonant susceptibility at the frequency of \(I \), was determined from the intensity in the broadband spectra at the frequency at which the nonresonant susceptibility is 80% of the peak value on the other side of the peak of the nonresonant susceptibility curve from that at which the nitrogen resonance occurs to avoid interference from the resonant susceptibility.

The values calculated for \((I - I_r)/I_r \) are shown in figure 6 along with \((I - I_r)/I_r \) determined from model spectra. The calculated and experimental log \((I - I_r)/I_r \) agreed closed as can be seen from figure 6. The percent of air in the mixtures (table 1) was determined from the theoretical curve given in figure 6. For higher concentration the slope of the curve is near two. The slope as expected decreases for lower concentration. The agreement between the experimentally determined and known percent of air was 6.1%. In this method of determining composition it is not necessary to obtain a calibration curve since the experimental and theoretical spectra are in good agreement. In addition, this
method offers rapid data reduction of large amounts of data with reasonable accuracy. Fitting the full spectrum by a least squares method should give increased precision.

Reaction Zone Spectra

Broadband N₂ and N₂O spectra were obtained from the reaction zone of both the 0.27 and 0.30 equivalence ratio flames. In addition, N₂ spectra were obtained in the post-flame region of these flames. The 0.27 equivalence ratio flame was scanned horizontally from the outer wall of the burner to the centerline at a height of 1 mm above the burner surface. N₂ and N₂O spectra obtained from the region of largest concentration and temperature gradient prior to the disappearance of N₂O are shown in figure 7. The 0.30 equivalence ratio flame, which was a flat flame, was scanned vertically along the center line. Spectra similar to that shown in figure 7 were obtained below the region of maximum temperature.

To identify N₂O CARS spectra, which had not been reported previously, CARS spectra were also taken 1 mm above the centerline of the burner with room temperature N₂O gas flowing through the burner at a velocity sufficient to remove N₂ from the sampling volume. Spectra were taken above both a room temperature burner and a burner heated by heat transfer from a flame extinguished immediately prior to the measurement. The room temperature N₂O spectra had a prominent peak at 2224.7 cm⁻¹ with a low intensity shoulder at 2208.8 cm⁻¹. The spectra taken above the hot burner showed four peaks of progressively diminishing intensity at 2224.7, 2208.8, 2192.8, and 2174.7 cm⁻¹. Similar peaks have been observed at 2223.8, 2209.5, and 2195.6 cm⁻¹ in the infrared and Raman at 337 K and assigned to \(v_3 + v_2 - v_2 \) and \(v_3 + 2v_2 - 2v_2 \) where \(v_1, v_2, \) and \(v_3 \) are the NO stretch at 1285, the bend at 558.8 and the NN stretch at 2223.5 cm⁻¹, respectively (ref 15). The positions of \(v_3, v_3 + v_2 - v_2, v_3 + 2v_2 \) and \(v_3 + 3_2 - 3_2 \), using Susuki's values (ref 16) for the spectroscopic constants are calculated to occur at 2223.5, 2201.5, 2195.3, and 2180.3 cm⁻¹ in good agreement with the N₂O peak position observed in the spectrum taken above the hot burner. The spectra taken in the flame (fig. 7) show, in addition to a peak attributable to the N₂ Q branch fundamental, \(Q_{10} \), at 2330 cm⁻¹ and associated hot bands, the same peaks that occur in N₂O above the hot burner. An expanded version of the spectrum taken 1.4 mm from the centerline is shown in figure 8. This spectrum clearly shows the resolved structure of hot N₂O.

The spectra shown in figure 7 and similar spectra taken at other positions in the flame allow the determination of temperature and concentration of N₂ and N₂O. Comparison of the half width of the nitrogen \(Q_{10} \) transition and the modulation of spectra by the nonresonant susceptibility with model calculations allows the estimation of temperature to ±100 K and concentration to ±10% when no hot bands are observed. Observation of hot bands allows least squares fitting of the calculated and experimental Q peak maxima to give temperature to ±50 K and concentration to ±5% based on replicate determinations. Calculated spectra are shown in figures 8 and 9. The temperature and concentrations estimated for the 0.27 flame are given in table 2.
In addition, the concentration of N\textsubscript{2}O can be estimated from the resonant and nonresonant intensity at \nu\textsubscript{3} as discussed. Knowing the spectrum of the nonresonant susceptibility, the nonresonant intensity at \nu\textsubscript{3} can be obtained from each broadband spectrum. The square root of the ratio of the resonant to nonresonant intensity, which is linear with concentration, was used to obtain N\textsubscript{2}O concentration utilizing the broadband N\textsubscript{2}O spectrum at room temperature for calibration. In this case experimental calibration is needed since the N\textsubscript{2}O CARS spectra were not calculated. (The effect of temperature, which was small since both the resonant and nonresonant susceptibility scale similarly with temperature, was determined from model calculations). Having obtained the concentration of N\textsubscript{2}O, the N\textsubscript{2} concentration can be obtained from the ratios of N\textsubscript{2} to N\textsubscript{2}O intensity (fig. 10) taking into account that resonant cross section of N\textsubscript{2}O is 0.53 that of N\textsubscript{2} (ref 17).

Post-Flame Spectra

The agreement of temperature and concentration obtained from N\textsubscript{2} CARS spectra with the results of thermochemical calculations (table 3) was investigated in the post-flame gases of lean and stoichiometric flames. Temperature and concentration were determined along the centerline of the burner as a function of distance above the burner. The temperature as indicated by the height of the Q\textsubscript{21} and Q\textsubscript{32} nitrogen hot bands increased with the rate of flow. As discussed, in a 0.3 flame at 2 mm above the burner N\textsubscript{2}O was observed along with N\textsubscript{2}. At 3 mm and 4 mm above the burner surface, N\textsubscript{2} was observed at temperatures of 2350 K and 2453 K, respectively. At 5 mm the temperature and concentration (table 2) were determined from the spectra shown in figure 9. Above 5 mm (up to 6 cm) the temperature decreased while the concentration remained constant within experimental error. In lean and stoichiometric flames investigated with equivalence ratios higher than 0.3, at sufficiently high flow rates, N\textsubscript{2}O was not observed and Q\textsubscript{21} and Q\textsubscript{32} N\textsubscript{2} relative heights indicated temperatures substantially above the values given by the thermochemical calculations with Q\textsubscript{32} indicating temperatures higher than Q\textsubscript{21} and up to 4000 K in some instances. The cause of these anomalous spectra is presently being investigated. At lower flow rates the spectra (fig. 11) obtained 2 mm above the burner surface in 0.4, 0.5 and 1.0 flames in addition to the 0.3 at 5 mm, gave temperatures and concentrations (table 4) consistent with the thermochemical calculations.

The experimental precision of the temperatures and concentrations was determined by comparison of four replicate measurements on the 1.0 flame. The error determined in this manner is consistent with the photon statistics of the measurements. The percent error in the measurements for the other flames should be similar since all the spectra were summed (200 scans) to give near to 10,000 counts at Q\textsubscript{10}.

At a lower flow rate in the 0.5 flame lower temperatures were obtained. The profiles in the 0.5 flame at flows of 16.9 and 33.4 cm/s are given in tables 5 and 6, respectively. The N\textsubscript{2} spectra at the higher flow are shown in figures 12 and 13. A comparison of the differing profiles is given in figure 14. In the 1.0 flame, lower flame velocity resulted in flashback before any lowering in measured temperature was observed.
To summarize, in the 0.3 flame close to the burner surface (1 mm above) N$_2$O spectra along with N$_2$ spectra were observed. Higher above the burner surface (5 mm) a maximum temperature and concentration in agreement with thermochemical calculations was observed. In the 0.4 flame at the same flow, 16.8 cm/s and position in the flame N$_2$O was not observed and the measured temperature and concentration are in close agreement with theory. In the 0.5 flame at nearly the same flow temperatures lower than theory are measured. At sufficiently high flow, 56.7 and 60.5 cm/s in the 0.5 and 1.0 flames, respectively, anomalous spectra giving apparent temperature much higher than theory were encountered. In the 0.5 and 1.0 flames, at flow intermediate between striking back and those at which anomalous spectra were encountered, the temperature and concentration were consistent within experimental error with theory. The intermediate range of flows at which agreement with theory was obtained increased with the calculated flame temperature as the equivalence ratio was increased toward 1.0.

DISCUSSION

Measurements were made in AIR/AR mixtures to assess the use of CARS to determine concentration. Visually matching the shape of modulated CARS spectra with the results of model calculations for 9% and 20% AIR mixtures gives results within the accuracy of the flow meters (5%). A least squares fit of all the points would improve the precision. Alternately, comparing the experimental function (I-Inr)/Inr obtained from two experimental points with the theoretical function (I-Inr)/Inr versus concentration also allows evaluation of the concentration to close to the accuracy of the flow meters. These methods of obtaining concentration were used in obtaining the reaction zone and post-flame region results.

CARS N$_2$O spectra obtained above both room temperature and heated burner heads are in good agreement with previously reported Raman and infrared spectra (ref 15) and with the results of calculations made using the spectral constants of Suzuki (ref 16). CARS N$_2$O spectra has the advantage of having structure useful for making measurements of temperature and concentration at much lower temperatures than diatomics such as nitrogen. From the temperature obtained from N$_2$ spectra (table 2) the normalized intensity of the N$_2$O $v_3 + v_2 - v_2$ band relative to v_3 is greater than 0.1 above 600 K, whereas the normalized intensity of the N$_2$O $v_3 + v_2 - v_2$ band does not reach 0.1 until the temperature exceeds 1500 K. The higher intensity of the N$_2$O $v_3 + v_2 - v_2$ band arises from the low energy and double degeneracy of the v_2 vibration. Thus N$_2$O and similar triatomics are especially valuable for characterizing the lower temperature regions of the profiles obtained in the 0.27 flame. In this region the N$_2$ spectra were not sufficiently intense to precisely estimate temperature. The complete modeling of N$_2$O CARS spectra which is now underway will allow these calculations to be made.

The simultaneous observation of N$_2$ spectra along with N$_2$O spectra allows determination of N$_2$ to N$_2$O relative concentration, N$_2$ and N$_2$O temperature and concentration. The random error in the N$_2$O resonant to nonresonant intensity ratios depend solely on the photon statistics of the measurements. (In the worst case the resultant error would be 5% in N$_2$ concentration). The accuracy of the N$_2$ concentrations determined from the relative intensity of N$_2$ to N$_2$O also depends on the relative ratios of the Raman cross sections. The N$_2$ temperature and
concentrations determined from the shape of the N\textsubscript{2} CARS signal depends on the N\textsubscript{2} spectral parameters and the spectral simulation model which together have been estimated to give errors of \(\pm 100 \) K at low temperature and 10\% in concentration in flames when only N\textsubscript{2}O is observed. The average difference between N\textsubscript{2} concentration determined from intensity ratio and band shape is only 10\% which is consistent with the estimated error in the methods used. When additional hot bands are observed the precision is increased to \(\pm 50 \) K in temperature and 5\% in concentration.

The data in figure 10 give insight into the chemical and physical processes occurring in the very spatially inhomogeneous 0.27 flame. N\textsubscript{2} from the surrounding air diffuses into the flame for a distance of approximately 2 mm at which point N\textsubscript{2} CARS spectra is no longer observed (fig. 10). N\textsubscript{2} is again observed when measurements are made closer than 2.3 mm from the centerline of the flame. The \((N\textsubscript{2}/N\textsubscript{2}O)^{1/2}\) ratio then rises exponentially as measurements closer to the flame are made with a concomitant rise in temperature.

H\textsubscript{2}-N\textsubscript{2}O flames have been studied in detail using mass spectometric means to obtain concentration (ref 18). From these studies it is suggested that the H\textsubscript{2}-N\textsubscript{2}O flame has a two-stage reaction zone. In the first stage (T<1700 K) the kinetics follow the usual bimolecular elementary steps of the hydrogen-oxygen system:

\[
\begin{align*}
H_2 + OH &\rightarrow H_2O + H & \text{r. 1} \\
H_2 + O &\rightarrow OH + H & \text{r. 2} \\
H + O_2 &\rightarrow OH + H & \text{r. 3} \\
\text{plus reaction} & & \\
H + N_2O &\rightarrow N_2 + OH & \text{r. 4}
\end{align*}
\]

where \(k_4 = 6 \times 10^{13} \exp (-13100/RT) \text{cm}^3 \text{mole}^{-1}\text{s}^{-1} \) all these reactions are characterized by a relatively low activation energy.

The second stage (T>1700 K) is dominated by the unimolecular decomposition of N\textsubscript{2}O

\[
N_2O + M \rightarrow N_2 + O + M & \text{ r. 5}
\]

where \(k_5 = 1.3 \times 10^{15} \exp (-56500/RT) \). Molecular oxygen is produced via

\[
N_2O + O \rightarrow N_2 + O_2 & \text{ r. 6}
\]

and NO via

\[
N_2O + O \rightarrow 2NO & \text{ r. 7}
\]

where \(k_6 = 5.4 \times 10^{14} \exp (-32000/RT) \text{cm}^3 \text{mole}^{-1}\text{s}^{-1} \) with \(k_6/k_7 = 3.2 \).
The data given in table 2 and figure 10 are consistent with the kinetics proposed above for stage one, in that \(N_2 \) is observed to occur at temperatures below the 1700 K at which the stage two reactions become significant. Thus reaction 4 is seen as a possible source of the \(N_2 \) observed at low temperature in the \(CH_4-N_2O \) flame. Further kinetic analysis particularly dependent on temperature and concentration from \(N_2O \) spectra, will determine whether reaction 4 can quantitatively account for the \(N_2 \) and \(N_2O \) profiles observed in the \(CH_4-N_2O \) flame.

In the post-flame region the variation of measured temperature with flow can be partially accounted for by the variation of the position of the reaction zone with respect to the burner as a function of flow. In the 0.3 flame, the burning velocity is sufficiently low to be displaced by a flow of 16.8 cm/s above the burner surface to allow observation of \(N_2O \) spectra from the reaction zone. As the burning velocity increases for the flames with increased equivalence ratio the flow is not sufficient to allow observation of \(N_2O \); however, temperature is observed to increase with flow which indicates that the reaction zone is displaced sufficiently above the burner surface to inhibit heat lost to the burner. The displacement of the reaction zone above the burner surface so that heat loss to the surface is inhibited is consistent with the agreement within experimental error of the measured and calculated flame temperatures (refs 19 and 20). The anomalously high temperature indicated at still higher flows is perhaps related to distortion of the reaction zone by turbulence induced by the high flow (refs 19 and 20). Further work is needed to interpret the spectra at high flow.

Broadband CARS has been shown to provide temperature and concentration with good precision for major flame species which can perhaps be extended to transients with resonance enhancement. The spatial resolution of the technique was adjusted to obtain information from the thin resolution zone (\(<1 \text{ mm}\)) of the atmospheric \(CH_4-N_2O \) flame. The technique also has the potential for time resolved single shot (10 ns) measurements for use in transient media. These capabilities as has been shown in the \(CH_4-N_2O \) flame can be used to obtain information on the elementary reactions occurring in both transient and stationary flames.
REFERENCES

Table 1. Concentration of air (%) in air/ar mixtures at 300 K

<table>
<thead>
<tr>
<th>Concentration Experimental (%)</th>
<th>Calculated (%)</th>
<th>Difference between columns 1 and 2</th>
<th>% Difference between columns 1 and 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.06</td>
<td>5.92</td>
<td>1.1</td>
<td>16.1</td>
</tr>
<tr>
<td>8.54</td>
<td>7.80</td>
<td>0.7</td>
<td>8.7</td>
</tr>
<tr>
<td>12.0</td>
<td>11.6</td>
<td>0.4</td>
<td>3.3</td>
</tr>
<tr>
<td>13.8</td>
<td>14.8</td>
<td>-1.0</td>
<td>7.2</td>
</tr>
<tr>
<td>19.7</td>
<td>18.8</td>
<td>0.9</td>
<td>4.5</td>
</tr>
<tr>
<td>22.8</td>
<td>22.7</td>
<td>0.1</td>
<td>0.50</td>
</tr>
<tr>
<td>30.2</td>
<td>31.0</td>
<td>-0.8</td>
<td>2.65</td>
</tr>
<tr>
<td>Mean (±)</td>
<td></td>
<td>0.7 (0.3)</td>
<td>6.1 (5.1)</td>
</tr>
</tbody>
</table>

Table 2. Temperature and concentration in the reaction zone of a CH₄-N₂O flame (2 mm above the burner)

<table>
<thead>
<tr>
<th>Distance from flame center (mm)</th>
<th>Concentration from intensity (%) N₂0</th>
<th>N₂</th>
<th>Concentration and temperature from N₂ spectral shape N₂ (%) T(K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>--</td>
<td>33</td>
</tr>
<tr>
<td>1.14</td>
<td>0</td>
<td>--</td>
<td>20</td>
</tr>
<tr>
<td>1.27</td>
<td>20</td>
<td>19</td>
<td>17</td>
</tr>
<tr>
<td>1.40</td>
<td>28</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>1.52</td>
<td>43</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>1.65</td>
<td>58</td>
<td>9.4</td>
<td></td>
</tr>
<tr>
<td>1.78</td>
<td>69</td>
<td>7.9</td>
<td></td>
</tr>
<tr>
<td>2.03</td>
<td>83</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>2.16</td>
<td>93</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Thermochemical calculations for CH₄-N₂O flames

<table>
<thead>
<tr>
<th>Species</th>
<th>0.1</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5 Composition (%)</th>
<th>0.7</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>0.02</td>
<td>0.43</td>
<td>0.99</td>
<td>1.77</td>
<td>3.80</td>
<td>7.35</td>
</tr>
<tr>
<td>CO₂</td>
<td>1.62</td>
<td>4.28</td>
<td>5.14</td>
<td>5.69</td>
<td>6.09</td>
<td>5.66</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td>0.11</td>
<td>0.27</td>
<td>0.50</td>
<td>1.14</td>
<td>2.30</td>
</tr>
<tr>
<td>H₂</td>
<td></td>
<td>0.14</td>
<td>0.32</td>
<td>0.59</td>
<td>1.43</td>
<td>3.55</td>
</tr>
<tr>
<td>H₂O</td>
<td>3.13</td>
<td>8.46</td>
<td>10.66</td>
<td>12.60</td>
<td>15.90</td>
<td>19.30</td>
</tr>
<tr>
<td>N₂</td>
<td>64.82</td>
<td>61.64</td>
<td>60.03</td>
<td>58.40</td>
<td>55.40</td>
<td>51.28</td>
</tr>
<tr>
<td>NO</td>
<td>1.33</td>
<td>2.25</td>
<td>2.42</td>
<td>2.43</td>
<td>2.17</td>
<td>1.48</td>
</tr>
<tr>
<td>O</td>
<td>0.12</td>
<td>0.79</td>
<td>1.21</td>
<td>1.54</td>
<td>1.87</td>
<td>1.58</td>
</tr>
<tr>
<td>OH</td>
<td>0.27</td>
<td>2.53</td>
<td>2.27</td>
<td>2.93</td>
<td>3.81</td>
<td>4.02</td>
</tr>
<tr>
<td>O₂</td>
<td>28.69</td>
<td>20.37</td>
<td>16.71</td>
<td>13.50</td>
<td>8.41</td>
<td>3.49</td>
</tr>
<tr>
<td>T(K)</td>
<td>21.72</td>
<td>25.41</td>
<td>26.54</td>
<td>27.38</td>
<td>28.46</td>
<td>29.20</td>
</tr>
</tbody>
</table>

Table 4. Measured and calculated temperature (K) and N₂ concentration (%) in a CH₄-N₂O flame

<table>
<thead>
<tr>
<th>HT(mm)</th>
<th>5</th>
<th>2</th>
<th>2</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow (cm/s)</td>
<td>16.8</td>
<td>16.8</td>
<td>33.4</td>
<td>51.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Equivalence ratio (F/O)</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEXP</td>
<td>2550</td>
<td>2688</td>
<td>2782</td>
<td>2982 ± 52 (2%)</td>
</tr>
<tr>
<td>TCALC</td>
<td>2541</td>
<td>2654</td>
<td>2738</td>
<td>2920</td>
</tr>
<tr>
<td>CEXP</td>
<td>60</td>
<td>58</td>
<td>54</td>
<td>45 ± 3 (6%)</td>
</tr>
<tr>
<td>CCALC</td>
<td>62</td>
<td>60</td>
<td>58</td>
<td>51</td>
</tr>
</tbody>
</table>

14
Table 5. Temperature and N$_2$ concentration profile in a CH$_4$-N$_2$O flame ($\phi = 0.5$) at a flow of 16.9 cm/s (TCALC = 2734K, CCALC = 58%)

<table>
<thead>
<tr>
<th>Height above burner (mm)</th>
<th>Temperature (K)</th>
<th>Concentration (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2566</td>
<td>54.7</td>
</tr>
<tr>
<td>5</td>
<td>2559</td>
<td>46.5</td>
</tr>
<tr>
<td>10</td>
<td>2563</td>
<td>46.5</td>
</tr>
<tr>
<td>15</td>
<td>2491</td>
<td>51.6</td>
</tr>
<tr>
<td>20</td>
<td>2320</td>
<td>47.6</td>
</tr>
<tr>
<td>30</td>
<td>2090</td>
<td>51.9</td>
</tr>
<tr>
<td>40</td>
<td>1840</td>
<td>49.6</td>
</tr>
<tr>
<td>50</td>
<td>1820</td>
<td>50.5</td>
</tr>
<tr>
<td>60</td>
<td>1700</td>
<td>51.8</td>
</tr>
</tbody>
</table>

Table 6. Temperature and N$_2$ concentration profile in a CH$_4$-N$_2$O flame ($\phi = 0.5$) at a flow of 33.4 cm/s (TCALC = 2734K, CCALC = 58%)

<table>
<thead>
<tr>
<th>Height above burner (mm)</th>
<th>Temperature (K)</th>
<th>Concentration (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2782</td>
<td>54.2</td>
</tr>
<tr>
<td>10</td>
<td>2742</td>
<td>55.3</td>
</tr>
<tr>
<td>20</td>
<td>2713</td>
<td>50.8</td>
</tr>
<tr>
<td>30</td>
<td>2631</td>
<td>47.2</td>
</tr>
<tr>
<td>40</td>
<td>2521</td>
<td>51.1</td>
</tr>
<tr>
<td>50</td>
<td>2404</td>
<td>50.7</td>
</tr>
<tr>
<td>60</td>
<td>2282</td>
<td>51.4</td>
</tr>
</tbody>
</table>
Figure 1. Nonplanar BOXCARS spectrometer where BS is a 50% beam splitter, M is a Mirror, OF is an optical flat rotatable about its horizontal axis and T is a beam terminator.
Figure 2. Normalized nitrogen CARS spectra from room temperature air/argon mixtures containing 0% to 23% air.
Figure 3. Normalized nitrogen CARS spectra from room temperature air/argon mixtures containing 3% to 100% air.
Figure 4. Experimental (·) and calculated N₂ CARS spectra at room temperature in a 9% air/argon mixture (nonplanar CARS)
Figure 5. Experimental (•) and calculated N₂ CARS spectra at room temperature in a 20% air/argon mixture (nonplanar CARS)
Figure 6. Experimental (•) and theoretical log \(\frac{I_{10} - I_{nr}}{I_{nr}} \) where \(I_{10} \) and \(I_{nr} \) are the maximum intensities of nitrogen \(Q_{10} \) and the nonresonant susceptibility versus log [C(%)].
Figure 7. CARS spectra observed 1 mm above the burner head in a 0.27 CH$_4$-N$_2$O flame (the distance indicated is from centerline of the burner)
Figure 8. CARS spectra observed 1 mm above the burner head in a 0.27 CH$_4$-N$_2$O flame (•) compared to theoretical spectra (solid line), calculated at T = 800 K and C = 14% N$_2$ and T = 1200 and C = 20% N$_2$ for spectra obtained 1.40 (TOP SPECTRUM) and 1.14 mm (BOTTOM SPECTRUM) from the centerline of the flame, respectively.
Figure 9. TOP SPECTRUM: N_2 CARS spectrum observed 2 mm above the centerline of 0.3 CH$_4$-N$_2$O flame (•) compared to theoretical spectrum calculated at $T = 2550$ K and $C = 62\%$ N$_2$

BOTTOM SPECTRUM: N_2 CARS spectrum observed 1 mm above the centerline of a 0.27 CH$_4$-N flame (•) compared to theoretical spectrum calculated at $T = 2300$ K and $C = 33\%$ N$_2$
Figure 10. \(\frac{I_{N_2}}{I_{N_2O}} \) (○) obtained from CARS spectra taken 1 mm above the burner head of a 0.27 CH\(_4\)-N\(_2O\) flame and corresponding temperatures (•) versus distance from the centerline of the burner.
Figure 11. Experimental (•) and calculated N_2 CARS spectra (solid line) 2 mm above the centerline of the burner surface: BOTTOM, 0.4 flame; TOP, 1.0 flame
Figure 12. Experimental (*) and calculated N_2 CARS spectra (solid line) from a 0.5 flame at various distances from the burner surface: BOTTOM, 2 mm; TOP, 10 mm.
Figure 13. Experimental (•) and calculated N_2 CARS spectra (solid line) from 0.5 mm flame at various distances from the burner surface:BOTTOM, 20 mm; TOP, 40 mm
Figure 14. Temperature versus distance above the burner surface for a 0.5 flame at a flow of 16.8 (•) and 33.4 (o) cm/s
DISTRIBUTION LIST

Commander
U.S. Army Armament Research and Development Command
ATTN: DRDAR-TSS (5)
 DRDAR-GCL
 DRDAR-LC, J. Frasier
 DRDAR-LCA, A. Moss
 DRDAR-LCA-G, J. Lannon
 D. Downs
 L. Harris (10)
 T. Vladimiroff
 A. Beardell
 Y. Carignon
 J. Fendell
 K. Aron
 E. Petro
 DRDAR-LCE, R. Walker
 P. Marinkas
 C. Capellos
 F. Owens

Dover, NJ 07801

Administrator
Defense Technical Information Center
ATTN: Accessions Division (12)
Cameron Station
Alexandria, VA 22314

Director
U.S. Army Materiel Systems Analysis Activity
ATTN: DRXSY-MP
Aberdeen Proving Ground, MD 21005

Commander/Director
Chemical Systems Laboratory
U.S. Army Armament Research and Development Command
ATTN: DRDAR-CLJ-L
 DRDAR-CLJ-L
 DRDAR-CLB-PA
APG, Edgewood Area, MD 21010
Commander
U.S. Army Materiel Development
and Readiness Command
ATTN: DRCDMD-ST
5001 Eisenhower Avenue
Alexandria, VA 22333

Commander
U.S. Army Watervliet Arsenal
ATTN: SARWV-RD, R. Thierry
Watervliet, NY 12189

Commander
U.S. Army Aviation Research
and Development Command
ATTN: DRSAV-E
P.O. Box 209
St. Louis, MO 63166

Director
U.S. Army Air Mobility Research
and Development Laboratory
Ames Research Center
Moffett Field, CA 94035

Commander
U.S. Army Communications Research
and Development Command
ATTN: DRDCO-PPA-SA
Fort Monmouth, NJ 07703

Commander
U.S. Army Electronics Research
and Development Command
Technical Support Activity
ATTN: DELSD-L
Fort Monmouth, NJ 07703

Commander
U.S. Army Missile Command
ATTN: DRSMI-R
DRSMI-YDL
Redstone Arsenal, AL 35809

Commander
U.S. Army Natick Research
and Development Command
ATTN: DRXRE, D. Sieling
Natick, MA 01762
Science Applications, Inc.
ATTN: R. B. Edelman
Combustion Dynamics and Propulsion Division
23146 Cumorah Crest
Woodland Hills, CA 91364

Shock Hydrodynamics, Inc.
ATTN: W. H. Anderson
4710-16 Vineland Avenue
N. Hollywood, CA 91602

Thiokol Corporation
Elkton Division
ATTN: E. Sutton
Elkton, MD 21921

Thiokol Corporation
Huntsville Division
ATTN: D. Flanigan
R. Glick
Technical Library
Huntsville, AL 35807

Thiokol Corporation
Wasatch Division
ATTN: J. Peterson
Technical Library
P.O. Box 524
Brigham City, UT 84302

TRW Systems Group
ATTN: H. Korman
One Space Park
Redondo Beach, CA 90278

United Technologies
Chemical Systems Division
ATTN: R. Brown
Technical Library
P.O. Box 358
Sunnyvale, CA 94086

Universal Propulsion Co.
ATTN: H. J. McSpadden
1800 W. Deer Valley Road
Phoenix, AZ 85027

Battelle Memorial Institute
ATTN: Technical Library
R. Bartlett
505 King Avenue
Columbus, OH 43201
Commander
Naval Research Laboratory
Chemistry Division
ATTN: A. Harvey
Washington, DC 20375

General Motors Research Laboratory
ATTN: J. H. Bechtel
Warren, Michigan 48090

System Research Laboratory
ATTN: L. Goss
2600 Indian Ripple Rd
Dayton, Ohio 45440

Exxon Research and Engineering
ATTN: A. Dean
M. Chou
P.O. Box 45
Linden, NJ 07036

Ford Motor Company
Research Staff
ATTN: K. Marko
L. Rimai
Dearborn, Michigan 48120

Sandia Laboratories
Applied Physics Division I
ATTN: L. Rahn
D. Stephenson
Livermore, CA 94550

Rensselaer Polytechnic Institute
Dept. of Chem. Engineering
ATTN: A. Fontijn
Troy, NY 12181

University of California,
San Diego
Ames Department
ATTN: F. Williams
P.O. Box 109
La Jolla, CA 92037

University of California
Dept. of Mechanical Eng.
ATTN: J. W. Daily
Berkeley, CA 94720

Univ. of Dayton
University of Dayton Research Inst.
Dayton, OH 45406
University of Florida
Dept. of Chemistry
ATTN: J. Winefordner
Gainesville, Florida 32601

University of Illinois
Dept. of Mechanical Eng.
ATTN: H. Krier
144 MEB, 1206 W. Green St.
Urbana, IL 61801

University of Minnesota
Dept. of Mechanical Eng.
ATTN: E. Fletcher
Minneapolis, MN 55455

University of California,
Santa Barbara
Quantum Institute
ATTN: K. Schofield
M. Steinberg
Santa Barbara, CA 93106

University of Southern California
Department of Chemistry
ATTN: S. Benson
Los Angeles, CA 90007

Stanford University
Department of Mech. Eng.
ATTN: R. Hanson
Stanford, CA 93106

University of Texas
Department of Chemistry
ATTN: W. Gardiner
H. Schaefer
Austin, TX 78712

University of Utah
Dept. of Chemical Engineering
ATTN: A. Baer
G. Flandro
Salt Lake City, UT 84112