A DETERMINATION OF THE MINIMUM FREQUENCY REQUIREMENTS FOR A PATRIOT BATT. (U) AIR FORCE INST OF TECH.
WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI. G H SWANSON

UNCLASSIFIED DEC 82 AFIT/GCS/MA/82D-9 . F/G 17/2.1 NL
A DETERMINATION
OF THE MINIMUM FREQUENCY REQUIREMENTS
FOR A PATRIOT BATTALION
UHF COMMUNICATION SYSTEM

THESIS

Gregory H. Swanson
AFIT/GCS/MA/82D-9 Captain USA

Approved for Public Release; Distribution Unlimited
A DETERMINATION
OF THE MINIMUM FREQUENCY REQUIREMENTS
FOR A PATRIOT BATTALION UHF COMMUNICATION SYSTEM

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
In Partial Fulfillment of the
Requirements for the Degree of
Master of Science

by

Gregory H. Swanson
Captain USA
Graduate Computer Science

December 1982

Approved for Public Release; Distribution Unlimited
This research was performed to provide a quantitative estimate of the minimum frequency requirements for a PATRIOT battalion UHF communication system. To the extent specified by the stated assumptions and constraints, a determination is available from the simulation model described in this thesis.

Thanks are due to Captain Role Black of the Math Department, Air Force Institute of Technology, for his continuing interest in this thesis and for his many useful suggestions which properly defined the scope of this research. Mr. George Foust of Cas Inc. was extremely helpful in curve-fitting antenna and receiver rejection patterns and analyzing the results to verify the simulation model. Major Dick Wilbanks and Mr. Gene Ashley of the PATRIOT Project Office were instrumental in gathering the much needed information to begin this research.

A very special thanks goes to my wife, Helen, for her encouragement throughout the life of this project.

Gregory H. Swanson
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>List of Figures</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>Abstract</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>I.</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>The Problem Statement</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Goals</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Importance of This Study</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Model Application</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Thesis Overview</td>
<td>6</td>
</tr>
<tr>
<td>II.</td>
<td>Background</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Previous Studies</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>The ABM Plan</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>The PATRIOT UHF Communication System</td>
<td>11</td>
</tr>
<tr>
<td>III.</td>
<td>The Methodology</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Simulation Requirements</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Scenario</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>FORTRAN 77</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Primary Variables of Interest</td>
<td>15</td>
</tr>
<tr>
<td>IV.</td>
<td>The Simulation Model</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Data Output Decision</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Deployment Input</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Inter-nodal Distance Calculations</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Inter-nodal Angle Calculations</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Azimuth Calculations</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Interconnection Input</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Link-Node Azimuth Difference Calculations</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Antenna Pattern Characteristics</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Receiver Rejection Characteristics</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Link-Node Antenna Rejection Calculations</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Initial Frequency Assignments</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Total Link-Node Rejection</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>S/I Requirement</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Critical Separation Calculations</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Double Check Frequency Assignments</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Frequency Requirements Output</td>
<td>29</td>
</tr>
<tr>
<td>V.</td>
<td>Sample Results</td>
<td>30</td>
</tr>
</tbody>
</table>
VI. Summary, Conclusions and Recommendations...... 38
 Summary.. 38
 Conclusions.................................... 38
 Recommendations.............................. 40
Bibliography..................................... 43
Appendix A: Grid Coordinates and Code Listing...... 44
Vita.. 69
LIST OF FIGURES

1. An ABM Assignment Problem............................ 4
2. Simulation Model Representation.......................... 18
3. Nodal Relationships.. 22
4. A Worst Case... 25
5. A Simple Network... 26
6. Deployment One... 30
7. Frequency Assignment Codes................................ 31
8. Deployment Two... 32
9. An ABM Problem?... 33
10. Deployment Three... 34
11. An ABM Attempt.. 35
12. A Worst Case... 36
ABSTRACT

This thesis presents a methodology which simulates the UHF communications network for the Army's PATRIOT battalion. A computer simulation model was developed that reads in coordinates for eleven communicating nodes and their interconnections, and results in the minimum number of frequencies required to support the UHF communications network. Current concepts of PATRIOT battalion employment doctrine determine the frequency requirements obtained. Concepts of antenna rejection at transmitting and receiving nodes, propagation losses, and radio rejection characteristics are incorporated in the model. The model was experimented upon, using deployments currently accepted within the Air Defense Community, and the results of the model are analyzed in this report.
A DETERMINATION
OF THE MINIMUM FREQUENCY REQUIREMENTS
FOR A PATRIOT BATTALION UHF COMMUNICATION SYSTEM

I. INTRODUCTION

Patriot is an air defense guided missile system designed to replace both Nike Hercules and Improved HAWK (I-HAWK) in the field armies. The Patriot air defense system is composed of individual battalions each consisting of headquarters and firing elements. The future Patriot battalion may consist of eleven such elements with UHF links being the main communications medium between these elements.

Traditional frequency assignment methodology, most notably the ABM plan (Ref. 8:2-27), requires unique frequencies be assigned to each communications link in a network. Thus a very large number of frequencies are required to support a communications network. Since each of the eleven Patriot battalion elements will communicate with up to three or four other elements simultaneously, assigning unique frequencies to each link within the Patriot battalion is unacceptable and a determination of the number of frequencies actually required to support the Patriot battalion is necessary.

This thesis is a modeling effort to determine the minimum frequency requirements for a Patriot battalion UHF communication system. The research reported herein involves
the development of a computer model which reads in a set of coordinates of up to eleven communicating nodes and their interconnections, calculates antenna rejection losses at transmitting and receiving nodes, calculates propagation losses and radio off-frequency rejection at receiving nodes, assigns UHF frequencies to the communications network, and double-checks and outputs the battalion frequency requirements.

To simulate the PATRIOT battalion UHF communications network, an eleven node network is used. Six engagement control stations (ECS) and one information and coordination central (ICC) intercommunicate to exchange command and status information. Four communication relay sets (CRS) are used to retransmit radio transmissions, impaired due to terrain or distance factors. The effect of adjacent battalions is not simulated. The simulation model can later be expanded to include all nodes within a specified envelope, constrained by specific antenna and propagation loss characteristics, or unique groups of frequencies can be used at each battalion and repeated at distant battalions based upon the propagation loss characteristics.

The frequency assignment methodology used in this report is a preliminary accomplishment of this model and was required since traditional frequency assignment algorithms are inefficient in that they require unique frequencies for each link. The frequency assignment methodology
developed in this report will allow initial frequency assignments to be performed based upon the co-site mutual interference requirements alone (Ref. 8:2-20 - 2-33).

The Problem Statement

The primary problem addressed in this effort is that very little quantitative frequency assignment planning for the PATRIOT battalion UHF communication network has been performed. The limited extent to which this topic has been previously studied was verified by a rather thorough literature search of documents held by both the PATRIOT Project Office and CAS Inc.

Current frequency assignment methods such as the ABM plan are in the process of automation (Ref. 9:5-1 - 5-20). However, these methods require large numbers of frequencies when a limited number of frequencies are available (Ref. 10:1). Such methods are unacceptable to PATRIOT since they do not provide for the complex interconnections used with PATRIOT (Ref. 4:1-4). Although the PATRIOT Air Defense System utilizes the Army's standard UHF radio, the AN/GRC-103 Radio Set, the method of communication equipment configuration is unique. Three radio sets are integrated into the ICC and ECS shelters while four radio sets are integrated into the CRS shelters. One Antenna Mast Set (AMS) is used to support all antennas required at a node.

Figure 1 illustrates a problem ABM methodology would
have with a frequent occurrence within a PATRIOT battalion.

Figure 1. An ABM Assignment Problem

Using the ABM plan, the symbols A, B, and M are assigned to each radio station in a communications network to identify frequencies which may be used by a station. No radio station can be connected to another station assigned the same letter code. In Figure 1, it would not be possible to assign a frequency to the middle station using such methodology.

Goals

Several goals were set at the outset of this work in order to properly measure the degree to which the thesis' overall objective was being met, that objective being to develop a method to answer "what is the minimum number of frequencies required to support a PATRIOT battalion UHF communication system?". These goals were:
1. Construct a computer model to simulate the PATRIOT battalion UHF communication network.

2. Test the model to insure it behaves properly by applying both internal and external verification procedures.

3. Construct a more efficient frequency assignment algorithm than those currently available.

4. Draw general conclusions about the minimum UHF frequency assignment requirements based upon the model's output.

Importance of This Study

There are several reasons why this problem is being studied in addition to the purely academic goal of gaining a better understanding of what computer simulation is all about. Foremost, this is a topic of current Army interest (Ref. 4:1). The PATRIOT Project Office suggested this topic as a candidate for a thesis study and has actively supported the research. Secondly, by constructing a computer model and then documenting the thought processes used in the model's development, one should obtain a better understanding of the real frequency requirements within a directional communications network and improvements may be incorporated into traditional frequency assignment methodology. Finally, by experimenting with the model using some reasonable deployments, a determination may be made as to UHF frequency
requirements within a PATRIOT battalion and an automated system, based upon this effort, to assist the PATRIOT Air Defense planners, refined and incorporated in the onboard software.

Model Application

If this simulation model succeeds in addressing the relevant issues and interactions within the PATRIOT UHF communications network, it may find broad use in developing frequency assignments requirements in tactical simulation models of a far larger scope. One example of a larger scope model is the Army Tactical Frequency Engineering System (ATFES), Frequency Assignment Capability for the Tactical Systems (FACTS) Program. It is also clear that there is yet much to be accomplished in studying this relatively small facet of the overall automated system issue. Hopefully, this thesis can act as the basis model for any future sophistication that may be desired.

Thesis Overview

Chapter II, Background, puts this thesis in proper perspective by providing a more detailed insight into the problem. Included in this chapter is a description of the ABM frequency assignment plan. Chapter III, The Methodology, explains what events were made a part of the model and the manner in which these events interact. Chapter IV, The
Simulation Model, contains the details of the computer model including a description of the model's logic and mechanics. Chapter V, Sample Results, demonstrates the model's capability by an analysis of the output produced from the consideration of deployments currently accepted within the air defense community. Finally, Chapter VI, Summary, Conclusions, and Recommendations, provides a recap of the main points, draws conclusions based upon the model's performance, and illuminates those shortcomings in the present effort which, if corrected, should produce a better product.
II. BACKGROUND

This chapter is intended to provide the reader with a better perspective of the scope of this problem. It does this by describing some important points made by previous studies of this topic and related issues. Following this is a discussion of the traditional ABM frequency assignment plan. Finally, the PATRIOT UHF communication system, which is modeled in this computer simulation, is described in sufficient detail to acquaint the reader with its capabilities and concepts of employment.

Previous Studies

Many models have been constructed which have attempted to quantify the performance of the Army's AN/GRC-103 Radio Set. These models have been used to analyze the probability of message transfer for both link-to-link and multi-routed communication systems in benign and ECM environments.

One such model is CASCOM, a communications model developed by CAS Inc. (Ref. 1:15). CASCOM provides for the evaluation of both point-to-point (link-to-link) and netted (multi-routed) communication structures. Input parameters can be effectively utilized to enable CASCOM to portray any specific type of communication system using JTIDS or the AN/GRC-103 family of equipments against any desired threat.
level. To date, CASCOM has been used by the PATRIOT Project Office to portray PATRIOT's multi-routed network, I-HAWK's point-to-point network utilizing AN/TRC-145 Radio Terminals, and air defense group communications which involve combinations of point-to-point and multi-routed communication networks (Ref. 2:2-13).

Such models as CASCOM, while very powerful in determining communications performance, are not designed as automated tools to assist the PATRIOT air defense and communications planners. This need has, however, been identified as requiring development (Ref. 7:1-4).

The Frequency Assignment Capability for Tactical Systems (FACTS) is used to make frequency assignments for multi-channel radio networks. The program has been designed to make compatible assignments for the AN/GRC-50 (UHF), AN/GRC-103 (Bands I, III, and IV), AN/GRC-144 (Tropo), and AN/GRC-144 (Microwave) Radio Sets. The required input includes the system terminal locations and the frequency resources of the network. The user assigns a color to each site (red, green, or blue) so that sites that are directly connected will not have the same color. Using automated ABM methodology, FACTS makes unique frequency assignments satisfying the co-site mutual interference requirements (Ref. 9:5-1 - 5-2).

A study by CAS Inc. investigated frequency assignment methodology for use within the PATRIOT battalion.
Traditional frequency assignment methods as well as combinations of methods were analyzed to determine viability. An efficient frequency assignment method, suitable for PATRIOT was not found to be currently available (Ref. 3:3).

The ABM Plan

To ensure a satisfactory radio-relay circuit, operating frequencies in a given area must be chosen so as to avoid mutual interference. At UHF, transmitting frequencies at a station must be well separated from the receiving frequencies to guard against intra- and inter-radio transmitter to receiver interference. The receiving frequencies at a station must also be well separated from each other to guard against receiver-to-receiver interference (Ref. 8:2-22).

The ABM frequency assignment plan divides a broad frequency region (all or a large part of a band allocated), into six frequency blocks of suitable widths, based upon transmitter-to-receiver separation requirements. The symbols A, B, and M are assigned to each radio station to identify the group of frequencies that may be used to transmit at that station and the group that may be used to receive. Consecutive transmitting and receiving frequencies are then selected from the respective groups (Ref. 10:14-25).

While current assignment methods using ABM methodology have worked well for determining UHF frequencies for conventional UHF communication configurations, they are deficient
for use with the PATRIOT UHF communication system since they
do not provide for the complex interconnections used with
PATRIOT (Ref. 4:3).

The PATRIOT UHF Communication System

The PATRIOT battalion consists of the Bn Hq and Hq Bat-
tery, and six ADA Batteries, each of which contains up to
eight launching stations. The PATRIOT UHF communications
system is composed of an Information and Coordination Cen-
tral (ICC) located at the battalion headquarters, six
Engagement Control Stations (ECS), one with each battery,
and a growth potential for four Communication Relay Sets
(CRS) deployed to retransmit UHF communication traffic
between the ICC and ECS. An Antenna Mast Set (AMS), co-
located with each ICC, ECS, and CRS, support the antennas
for all UHF communication links (Ref. 5:8-1 - 8-6).

The communications equipment provided in the ICC
includes three UHF radio stacks. Each stack consists of an
AN/GRC-103 Radio Set, TSEC/KG-27 Electronic Key Generator,
TD-660 Voice Multiplexer and TD-1065 High Speed Serial Data
Buffer. The ECS also contains three stacks of UHF communica-
tions equipment while the CRS contain four stacks.

The main communications medium of the PATRIOT battalion
when deployed is the UHF link. The ICC and ECS are all
expected to have at least two UHF links operating, each to
another shelter. Each link may be either direct or via a
CRS if a suitable line-of-sight path is not available. Since the ICC and ECS each have three UHF radios and the CRS has four, the resultant network may be very complex.
III. THE METHODOLOGY

Simulation Requirements

There are specific basic requirements that the simulation model must perform in order that it become representative of the real world environment. The most important requirement is the proper representation of the PATRIOT battalion's UHF communication network. The desired network algorithm must be one that is conceptually correct for the environment being modeled. For this thesis, the network is specified in terms of grid coordinates to insure it is representative of PATRIOT's current employment doctrine.

Another important modeling requirement is that the communication signal rejection and path loss algorithms must be technically correct. Technical characteristics needed to develop these algorithms were obtained from PATRIOT Project Office files, technical manuals, and from the manufacturer.

The last major requirement is that the frequency assignment algorithm within the model must make maximum use of available frequencies and permit frequency sharing since frequency requirements exceed the number of frequencies available.

Scenario

Each node within the PATRIOT battalion is susceptible
to signal interference. Mutual interference within each node is alleviated by choosing frequency assignment algorithms which insure adequate guard bands between operating frequencies. Inter-nodal interference is calculated from antenna rejection, path loss, and receiver rejection characteristics to determine the degree to which operational frequencies may be shared.

The model begins by calculating and storing all inter-nodal distances. Inter-nodal angles are calculated and converted to azimuths which are used in conjunction with the antenna patterns for the UHF parabolic antenna to determine antenna rejection at both the transmitting and receiving nodes. Path loss calculations are performed to determine additional rejection based upon receive distances to desired and interfering nodes.

Also in this model are frequency assignment algorithms designed to make maximum use of operational frequencies by permitting frequency sharing whenever possible. Frequencies are initially assigned based upon intra-nodal mutual interference requirements alone. The initial assignments are then modified to alleviate any inter-nodal interference. The final frequency assignments are then double-checked and output along with the minimum frequency requirement for the battalion.
FORTRAN 77

The FORTRAN 77 computer language was selected as the language of this computer model to be compatible with other air defense performance models used by the PATRIOT Project Office. The CASCOM model may be modified to incorporate this computer model to provide a basis for an automated system to assist the PATRIOT air defense and communications planners. The FACTS program may also be modified to permit the employment of frequency sharing within standard UHF communications networks.

The implementation of the computer simulation model in FORTRAN 77 required some additional effort to be taken in the input/output operations. However, this mild limitation presented no difficulty in the development of this thesis.

Primary Variables of Interest

The user of this model is required to select the values of several different variables; thus, any particular run or series of runs will be expressly tailored to the user's needs. In so doing, each variable value can become the basis for as much in depth testing of the model's results as desired. Four of the variables in this model will be examined in more detail.

One variable is the location of each node. Each of the battalion elements, ECS, ICC, and CRS, can be either
interactively input by the operator or read-in in tabular form from a file. Eight digit grid coordinates are used to describe the unit locations with an accuracy of ten meters. Eleven unit locations are possible but not required since the interconnectivity variables discussed next will determine whether or not a unit location will be used to determine the frequency requirements of the battalion.

Another variable is the network interconnectivity. The interconnections for each node can also be interactively input by the operator or included in the unit location table read-in from a file. The interconnectivity of the network is prescribed by identifying which nodes are linked (which nodes are communicating with one another). A node can be interconnected with a maximum of four other nodes as in the case of the CRS.

The antenna pattern is another variable of interest. Antenna pattern characteristics are developed from a curve fit and input by the operator. The curve fit describes the antenna rejection in decibels as a function of the off-axis angle, in degrees, from the main lobe.

The last variable of interest in this thesis is the frequency rejection characteristics of the receiver. The bandpass rejection characteristics of the receiver are also developed from a curve fit and input by the operator. The concept of this off-frequency rejection allows receiver's reception azimuth to have less of an impact when a potential
The interfering signal is off-frequency.

The basic requirements and methodology of the computer simulation model have now been defined. The next chapter, The Simulation Model, will develop the details of the computer model.
IV. THE SIMULATION MODEL

This chapter explains the development of the individual routines of the simulation model. Each routine performs a specific function and calculates data to be used in subsequent routines. The complete code listing for this model is contained in Appendix A.

Figure 2 is a representation of the major routines appearing within the simulation model.

Figure 2. Simulation Model Representation
Data Output Decision

This routine allows the operator to specify what data is to be printed out. All arrays which predicate the final results are available to be printed out. These include the inter-nodal distance array, the inter-nodal angle array, the inter-nodal azimuth array, the interconnection array, the link-to-node azimuth difference array, the link-to-node antenna rejection array, the link-to-node total rejection array, and the initial frequency assignment array.

If only the abbreviated output is required, the output consists of the battalion deployment, the antenna pattern and receiver rejection characteristics, the S/I requirement, the final frequency assignments, and the frequency requirements.

Deployment Input

Each of the battalion elements, ECS, ICC, and CRS, can either be interactively input or read-in in tabular form from a file. Interactive input allows the operator complete freedom in constructing a network to be analyzed. The ability to read the deployment in from a table increases the speed at which runs can be replicated. For ease of input in the interactive mode, the eight digit coordinates are read-in four digits at a time, the easting coordinates first (right) and the northing coordinates second (and up). In the tabular form the coordinates are entered as a single
Inter-nodal Distance Calculations

The inter-nodal distances are calculated using the Pythagorean Theorem. Each distance is stored in an array to be checked and used to determine propagation losses for desired and interfering signals in a subsequent routine.

Inter-nodal Angle Calculations

The inter-nodal angles are calculated by taking the arctangent of the northing-by-easting differences. Angles of 90, 0, and -90 degrees are initially checked for to preclude the \text{ARCTAN(INFINITY)} error condition. Each angle is stored in an array to be checked and used to determine inter-nodal azimuths in the next routine.

Azimuth Calculations

The inter-nodal azimuth calculations are performed by determining which quadrant the azimuth is in and then subtracting the inter-nodal angle in quadrants I and III or adding the inter-nodal angle in quadrants II and IV. Each azimuth is stored in an array to be checked and used as a basis to determine antenna rejection values in subsequent routines.
Interconnection Input

Each of the battalion elements ECS, ICC, and C&S, can be interconnected with up to four nodes. For ease of input, the interconnectivity can be input interactively or in the same table containing the location input. In the interactive mode, the operator is asked the number of interconnections for each node and then asked to input those interconnections. Initial interconnectivity arrays with variable lengths are then constructed to insure the input operation is as user-friendly as possible. An expanded interconnectivity array is then constructed identifying all nodes and whether they are or are not interconnected. This array is stored to be checked and used in subsequent routines when node-to-node links are required.

Link-to-Node Azimuth Difference Calculations

This routine calculates the differences in azimuths between all links and nodes and stores them in a three-dimensional array based upon each unique link vs each unique node. The operation of this routine is explained using Figure 3.

First a check is performed to insure two nodes (I and J) are independent nodes. Then the azimuth difference from the valid link (I-to-J) to each valid node (K and N) is calculated and stored in the three-dimensional array. In Figure 3, valid nodes are nodes independent of the link 1-to-J.
This process is then repeated for each link. If the option is selected to print out all the preliminary data, eleven two-dimensional arrays will be output, each array containing the difference between each link with a unique transmitting node, and each node in the deployment.

Figure 3. Nodal Relationships

Antenna Pattern Characteristics

In order to determine the antenna rejection at transmitting and receiving nodes, the antenna pattern is required. The PATRIOT AMS utilizes a directional parabolic dish for UHF frequency. An antenna pattern curve-fit provides a description of the characteristics as defined by

\[Y = AB^X \]

where \(Y \) is the rejection in \(\text{dB} \), \(X \) is the degrees off main-lobe, and \(A \) and \(B \) are constants produced by the curve fit. The parameters \(A \) and \(B \) are interactively input by the
operator.

Receiver Rejection Characteristics

The receiver rejection characteristics are used to determine if a node receiving from two closely situated transmitting nodes will actually be interfered with. A bandpass rejection curve-fit provides a description of the characteristics as defined by

\[
Y = A + BX + CX**2 + DX**3 + EX**4 + FX**5
\]

where \(Y \) is the off-frequency rejection in \(\text{db} \), \(X \) is the frequency difference, and \(A \) through \(F \) are constants produced by the curve fit. The parameters \(A \) through \(F \) are interactively input by the operator.

Link-to-Node Antenna Rejection Calculations

By using the antenna pattern characteristics, the difference in azimuths between each unique link and each unique node in the deployment can be transformed into rejection in \(\text{db} \). The link-to-node azimuth difference array is transformed into a link-to-node antenna rejection array as the first step in the process of determining if the S/I requirement will be exceeded, causing interference in place of the desired signal. This array will be used for determining both the transmit and receive antenna rejection, which will be added to the path losses and receiver rejec-
tion to determine the total rejection of interfering nodes by receiving nodes.

Initial Frequency Assignment

The construction of a more efficient frequency assignment algorithm was required in this routine; one that would make maximum use of operational frequencies by permitting sharing whenever possible. The new frequency assignment plan first assigns frequency pair codes to links and then transforms the frequency pair codes into actual frequencies.

Unlike the ABM plan which assigns a frequency code to each node in the network and then assigns a unique frequency to each link depending upon the frequency code of the node, the method developed in this report assigns a frequency code to each link and uses the same frequency pair for each unique frequency code. As a worst case, five unique frequency pairs may be required within the PATRIOT battalion where the maximum communications capability is utilized. An example of this would be in the case where four CRS and one ECS or ICC are interconnected. In this case, to insure that no link assigned a certain frequency code will be connected with a node where another link is assigned that code, the code assignment depicted in Figure 4 may exist.

The frequency pairs are then assigned to the links based upon the unique frequency codes. Frequencies are assigned beginning with 800Mhz. Transmit frequencies are
separated by 5.0 Mhz to insure that co-located radios do not provide for transmitter-to-receiver mutual interference (Ref. 10:14). The last transmit frequency and the first receive frequency are separated by 24 Mhz to insure that there is no internal transmitter-to-receiver mutual interference (Ref. 6:2).

Figure 4. A Worst Case

Total Link-to-Node Rejection

Now that initial frequency assignments have been performed, they must be checked to insure interfering signals will not preclude the reception of desired signals. To make this check, the total rejection of each interfering signal must be calculated. The total rejection is composed of the antenna rejection at the transmitting and receiving nodes,
the path loss difference between the desired and interfering signals, and the bandpass rejection of the receiver. Figure 5 depicts a simple network which will be used to explain this routine.

The angle A provides for a certain amount of rejection in the signal transmitted from node I to node J and received by node K. This rejection is extracted from the antenna rejection array as the value $\text{REJECT}(I,J,K)$. The angle B provides for additional rejection in the signal transmitted from node I to node J and received by node K since the antenna at node K is directed toward node N. This rejection is extracted from the antenna rejection array as $\text{REJECT}(K,N,I)$. The other two elements of the total rejection are then calculated.

The path loss calculations are performed using procedures previously used in PATRIOT Project Office studies.
where

\[\text{PATH LOSS} = 32.5 + 20 \log(\text{DISTANCE}) + 20 \log(\text{FREQUENCY}) \]

where the distance is in kilometers and the frequency in megahertz (Ref. 1:4). The path loss difference can be reduced to

\[\text{PATH LOSS DIFFERENCE} = 20 \log(D1 - D2) \]

since the constant subtracts out and the term based upon the frequency difference is of little importance considering the frequencies used. Using the distance array calculated earlier, the path loss is calculated based upon the desired and interfering signals and added to the total rejection. Finally the bandpass rejection is calculated based upon the difference in the desired and interfering signals and added to the total rejection.

S/I Requirement

The signal-to-interference (S/I) requirement or noise figure for the AN/GRC-103 Radio Set is 11db (Ref. 8:1-2). Therefore, the desired signal must be 11db greater than the interfering signal to allow for reception of the desired signal. The S/I requirement is then compared to the total rejection in the next routine to determine which links are not viable due to an interfering signal.
Critical Separation Calculations

This routine determines which links interfere with receiving nodes. To determine which links will cause interference, each node's rejection of each link is checked to insure it is above the S/I requirement. If the S/I requirement is not met, the interfering link, the receiving node, and the rejection are identified to the operator. The link causing the interference is then given a unique frequency and checked to insure it will not cause interference again. The operator is notified that the interfering link has been modified. The frequency assignment algorithms developed in this report are then used to minimize the number of unique frequencies required for the critical links. First, unique frequency codes are assigned to the critical links, and then the critical frequencies are assigned based upon the frequency codes.

Double-check Frequency Assignments

The frequency assignments are again checked to insure that receiving nodes are maintaining their S/I requirement. If there are links causing interference, they are again printed out along with the receiving node and the rejection.

This routine may be overkill since test cases have not shown a problem once critical frequencies have been assigned when required; however, future use will show if this routine may be needed.
Frequency Requirements Output

Once the frequency assignments have been performed, the minimum number of frequencies is output to the operator, as well as those frequencies required.
V. SAMPLE RESULTS

To offer an example of the frequency requirements calculations which this model provides, four PATRIOT battalion deployments will be analyzed. The first three deployments were supplied by the PATRIOT Project Office as currently accepted within the air defense community as representative of PATRIOT deployment planning. The fourth was developed as a typical worst-case deployment. The grid coordinates for these deployments are contained in Appendix A.

Figure 6 depicts the first PATRIOT supplied deployment.
Figure 7 depicts the frequency assignment codes assigned for deployment one. These codes are assigned using the frequency assignment algorithm employing the shared frequency concept developed in this report.

The model predicts that a frequency requirement for only eight frequencies exists when operational frequencies are shared. Analysis of the output reveals that this deployment contains no interfering signals causing the S/I requirement of any one node to be violated, and therefore only the four pairs of frequencies required due to intra-nodal interference are required to support deployment one.
Figure 8 depicts the second PATRIOT supplied deployment. As in the case of the first deployment, the model predicts that only eight frequencies are required to support the UHF communication system. This deployment also contains no interfering signals causing the S/I requirement of any one node to be violated and only four frequency pairs are required due to the frequency assignment algorithm developed in this report.

![Graph](image)

Figure 8. Deployment Two

The minimum number of frequencies theoretically possible for the first two deployments is eight frequencies since at least one CRS in both deployments (Nodes 2 and 8 in the first deployment and Nodes 4 and 9 in the second...
deployment), transmit on four operational links. Since each link requires both a transmit and receive frequency, eight frequencies must be required as a minimum in both deployments.

Had the ABM plan been used to assign frequencies to the first deployment, the frequency codes depicted in Figure 9 would be assigned and thirty-four frequencies would be required. Figure 9 also depicts that using ABM methodology would cause a problem once the code 'A' is assigned to node 9 unless some type of an heuristic technique such as a branch-and-bound algorithm is used. Had the ABM plan been used to assign frequencies to the second deployment, thirty-four frequencies would again be required.

Figure 9. An ABM Problem?
Figure 10 depicts the third PATRIOT supplied deployment. The model predicts that a frequency requirement for ten frequencies exists.

![Diagram of Deployment Three](image)

Figure 10. Deployment Three

Also depicted in Figure 10 are the frequency assignment codes. Because of the concentration of communications due to both the proximity of the CRS to each other and the UHF network operating at near capacity, the link from node 9 to node 10 requires a fifth frequency pair. This deployment contains no interfering signals causing the S/I requirement of any node to be violated so that only the ten frequencies required due to intra-nodal interference are required to
support the deployment.

Figure 11 shows one attempt at assigning frequency codes to the third deployment using the ABM plan. Due to the concentration of communication links discussed earlier, the ABM plan will not work. However, had the ABM plan succeeded in assigning frequencies to this deployment, thirty-six unique frequencies would have been required.

Figure 11. An ABM Attempt

The deployment depicted in Figure 12 is a hypothetical deployment developed to show the critical frequency routine mechanism. The model predicts that a frequency requirement
for nine frequencies exists. Eight of the required frequencies are due to the initial assignment of four frequency pair codes. The ninth frequency is assigned by the critical frequency algorithm.

![Diagram](image)

Figure 12. A Worst Case

The initial frequency assignment algorithm assigns both Link 1-to-2 and Link 3-to-4 the same frequency. The rejection algorithms calculate the rejection of link 1-to-2 at node 4 and the rejection of link 4-to-3 at node 1 to be less than the S/I requirement of 11db. This occurs since there is no transmit or receive antenna rejection and no receiver off-frequency bandpass rejection. The only rejection is attributed to path loss. Since the interfering transmitter is 60km from the receiving node and the desired signal is coming from a transmitter 20km away, the rejection due to
the path loss difference is only 9.54db, which violates the S/I requirement of 11db. A unique frequency is then assigned to link 1-to-2 and link 4-to-3, the ninth frequency. It would seem the same situation would exist between nodes 8, 9, 10, and 11 as does for nodes 1, 2, 3, and 4; however, since the initial frequency assignment for link 8-to-9 is not the same as for link 10-to-11, the additional rejection due to the receiver off-frequency rejection allows for the S/I requirement to be exceeded.
VI. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

Summary

This research addressed the problem of determining the minimum frequency requirements for a PATRIOT battalion UHF communication system. In an attempt to increase the understanding of the frequency requirements, a computer model was developed to simulate a PATRIOT UHF communication system and the model was subsequently experimented on to predict the frequency requirements. The resulting model, with its appropriate assumptions and constraints, is described in this thesis.

Conclusions

Four goals were set at the beginning of this research in order to measure the degree to which this research succeeded in solving the stated problem. These goals will be separately discussed.

The first goal was to construct a computer model. This goal was met by the writing of a computer program which simulates the PATRIOT battalion UHF communication system. The detailed description of how the model performs this simulation is contained in Chapter IV.

The second goal was to determine, by internal and external verification, that the model behaves properly.
Internal verification was accomplished by rigorous examination of numerous print-outs of the model's data output executed on AFIT's Harris 500. Each table was verified to insure the algorithms for each routine from inter-nodal distance calculations to frequency assignments operated properly and passed the correct set of data to the next routine.

External verification of the model was accomplished by analyzing each algorithm and the resultant output with PATRIOT Project Office representatives. The personnel who participated in this feedback of information were highly qualified PATRIOT system analysts regularly performing data analysis for the PATRIOT Project Office. The model was also validated to a certain degree by the use of CAS Inc. antenna patterns and an adaptation of the path loss calculation algorithms that were used in the CASCOM model.

The third goal, which was the construction of a more efficient frequency assignment algorithm, was performed by developing new frequency assignment methodology by which individual communicating links are assigned unique values so that no links that are directly connected will have the same value. Frequency assignments are then made based upon the unique link values.

The final goal was to draw general conclusions about the minimum UHF frequency requirements for the PATRIOT battalion based upon the model's output. This goal was met by the interpretation of the model's minimum requirements.
predictions. As was discussed in Chapter V, the minimum UHF frequency requirements for the PATRIOT battalion can be met with a greatly reduced number of frequencies than would traditionally have been required using the unique frequency assignment concept. In the first two deployments, the frequency requirements have been reduced by 75%, from thirty-four to eight frequencies required. In the third deployment, the ABM plan could not be used to make frequency assignments. Had it succeeded, or a modification of the the ABM plan possible, thirty-six unique frequencies would have been required. This requirement was reduced to ten frequencies, again nearly a 75% reduction in frequency requirements.

Recommendations

As this research effort drew to a close, reflection upon what was accomplished logically led to several ideas which could enhance the benefits to be gained by this simulation model. These ideas are described in this section.

Currently, the model simulates the UHF communication network for a PATRIOT battalion. One idea for improving the model is to allow for multiple battalions to be characterized within the model. This would allow for a further reduction in the number of frequencies required since with the current model, adjacent battalions would require unique frequency blocks to preclude inter-battalion interference. Also the present model has constrained the available
frequencies to a certain list of specific frequencies. However, since available frequencies are actually allocated by system, the frequencies available for assignment must be an additional attribute to be handled by the model.

At this state of model development, a modification of the deployment influences the frequency assignments within the battalion. A logical improvement to this would be to allow flexibility in the frequency assignment algorithms to allow for certain nodes to exit and enter the battalion without restructuring frequency assignments. The frequency assignment algorithm would require an upgrade to check frequency assignments of operating nodes before making an assignment to a new arrival. The assignment algorithm also can be upgraded to check to see if any shared frequency can be used in lieu of a unique frequency when S/I requirements at a node are not met, as in the case of the fourth deployment.

At present, the maximum inter-connection capacity at a node is four links. By increasing this capability, additional air defense systems employing the AN/GRC-103 Radio Set can be simulated. Such a capability seems desirable since the PATRIOT and IHAWK Air Defense Systems will co-exist for a time in the field.

Developing an upgrade of this model with algorithms to profile communication links, such as in the FACTS program, would provide a solid foundation for the development of an
automated system, incorporated in the onboard software, to assist the PATRIOT air defense planners.

Since such a system would include a digitized terrain base, terrain masking algorithms could be incorporated into the rejection calculations. However, since the frequency requirements have been reduced to near theoretical limits of the node itself, such algorithms may not be efficient.

It may soon be feasible to validate this model using the PATRIOT system. Such testing would substantiate the operation of this model so that work on an automated system, so badly needed, could progress.

One final recommendation is required. It is recommended that a model such as this one not be used in a tactical environment without a threat analysis to determine the implications of using a limited number of shared frequencies. A further discussion of this subject is beyond the scope of this report.

APPENDIX A

GRID COORDINATES AND CODE LISTING

The first two pages of this appendix contain the grid coordinates for the deployments analyzed in Chapter V. The remaining pages of this appendix contain the code listing for this computer simulation model.

Deployment One

<table>
<thead>
<tr>
<th>COORDINATES</th>
<th>LINKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICC 06045190</td>
<td>2 5 9</td>
</tr>
<tr>
<td>ECS 01555280</td>
<td>1 3 11 10</td>
</tr>
<tr>
<td>ECS 01965763</td>
<td>2 4 5</td>
</tr>
<tr>
<td>ECS 11007300</td>
<td>3 5 6</td>
</tr>
<tr>
<td>ECS 12556035</td>
<td>1 3 4</td>
</tr>
<tr>
<td>ECS 16166000</td>
<td>4 8 7</td>
</tr>
<tr>
<td>ECS 30504135</td>
<td>6 8 9</td>
</tr>
<tr>
<td>CRS 14955498</td>
<td>6 7 9 10</td>
</tr>
<tr>
<td>CRS 17554205</td>
<td>1 7 8</td>
</tr>
<tr>
<td>CRS 06474400</td>
<td>2 8 11</td>
</tr>
<tr>
<td>CRS 02003800</td>
<td>2 10</td>
</tr>
</tbody>
</table>

Deployment Two

<table>
<thead>
<tr>
<th>COORDINATES</th>
<th>LINKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>08501905</td>
<td>4 6 11</td>
</tr>
<tr>
<td>08501500</td>
<td>3 4 7</td>
</tr>
<tr>
<td>00000700</td>
<td>2 4</td>
</tr>
<tr>
<td>03001800</td>
<td>2 3 5 1</td>
</tr>
<tr>
<td>10602790</td>
<td>4 6 7</td>
</tr>
<tr>
<td>15502660</td>
<td>1 5 8</td>
</tr>
<tr>
<td>12501950</td>
<td>2 5 9</td>
</tr>
<tr>
<td>33002450</td>
<td>6 9 10</td>
</tr>
<tr>
<td>25601740</td>
<td>7 8 10 11</td>
</tr>
<tr>
<td>22500750</td>
<td>8 9 11</td>
</tr>
<tr>
<td>16850825</td>
<td>1 9 10</td>
</tr>
</tbody>
</table>
Deployment Three

<table>
<thead>
<tr>
<th>Number</th>
<th>9 10 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>28383831</td>
<td></td>
</tr>
<tr>
<td>38454714</td>
<td>3 8 9</td>
</tr>
<tr>
<td>29734921</td>
<td>2 4 9</td>
</tr>
<tr>
<td>12714189</td>
<td>3 5 10</td>
</tr>
<tr>
<td>10743873</td>
<td>4 6 10</td>
</tr>
<tr>
<td>14182674</td>
<td>5 7 11</td>
</tr>
<tr>
<td>34892793</td>
<td>6 8 11</td>
</tr>
<tr>
<td>37153676</td>
<td>2 7 11</td>
</tr>
<tr>
<td>34214485</td>
<td>1 2 3 10</td>
</tr>
<tr>
<td>21423800</td>
<td>1 4 5 9</td>
</tr>
<tr>
<td>26253375</td>
<td>1 6 7 8</td>
</tr>
</tbody>
</table>

Deployment Four

<table>
<thead>
<tr>
<th>Number</th>
<th>2 5 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>00002000</td>
<td></td>
</tr>
<tr>
<td>20002000</td>
<td>1 5 6</td>
</tr>
<tr>
<td>40002000</td>
<td>6 7 4</td>
</tr>
<tr>
<td>60002000</td>
<td>3 7 11</td>
</tr>
<tr>
<td>10001000</td>
<td>1 2 8 9</td>
</tr>
<tr>
<td>30001000</td>
<td>2 9 3 10</td>
</tr>
<tr>
<td>50001000</td>
<td>3 4 10 11</td>
</tr>
<tr>
<td>00000000</td>
<td>1 5 9</td>
</tr>
<tr>
<td>20000000</td>
<td>5 8 6</td>
</tr>
<tr>
<td>40000000</td>
<td>6 7 11</td>
</tr>
<tr>
<td>60000000</td>
<td>4 7 10</td>
</tr>
</tbody>
</table>
PROGRAM FREQRU

PROGRAM FREQRU READS IN A SET OF COORDINATES FOR 11 COMMUNICATING NODES AND WHAT 9 NODES ARE INTERCONNECTED, AND OUTPUTS THE MINIMUM NUMBER OF FREQUENCIES REQUIRED TO SUPPORT THE UHF COMMUNICATION SYSTEM.

VARIABLE DECLARATIONS

X(I) LASTING COORDINATES FOR NODES
Y(I) NORTHING COORDINATES FOR NODES
U(I) GRID COORDINATES FOR NODES
D(I,J) ARRAY CONTAINING DISTANCES BETWEEN NODES I AND J
ANG(I,J) ARRAY CONTAINING ANGLES BETWEEN NODES I AND J
AZ(I,J) ARRAY CONTAINING AZIMUTHS BETWEEN NODES I AND J
PI 3.141592
CONNECT(I,J) ARRAY SHOWING WHICH NODES ARE CONNECTED
LINK(I,J) ARRAY SHOWING WHICH NODES ARE CONNECTED AND WHICH NOT
AZDIFF(I,J,K) ARRAY CONTAINING DIFFERENCES IN AZIMUTH BETWEEN
LINKS(I,J) AND NODES(K)
REL(I,J,K) ARRAY CONTAINING THE SEPARATION IN DB BETWEEN
LINKS(I,J) AND NODES(K) BASED UPON ANTEENA REJECTION AT THE
LINK(I,J)
REL(REJ(I,J,K) ARRAY CONTAINING THE SEPARATION IN DB BETWEEN
LINKS(I,J) AND NODES(K) BASED UPON THE ANTENNA REJECTION AT
LINK(I,J)
LINKS(I,J) AND NODES(K), AND THE PROPAGATION LOSS BETWEEN
LINKS(I,K) AND (K,K)
MIN THE MINIMUM SEPARATION IN DB BETWEEN THE NODE(K) AND
THE LINK(I,J)
SIGLOSS THE FREE SPACE PATH LOSS OF THE DESIRED SIGNAL DUE
TO DISTANCE
INTLOSS THE FREE SPACE PATH LOSS OF THE INTERFERRING SIGNAL
DUE TO DISTANCE
SLKLU THE SIGNAL TO INTERFERENCE REQUIREMENT
RELRIJ THE S/I REQUIREMENT MINUS THE TOTAL REJECTION
H,B PARAMETERS TO CURVE FIT THE ANTENNA PATTERN
T MAXIMUM SIDELOBE REJECTION OF ANTENNA
AA,BB,CC,DD,EE,FF PARAMETERS TO CURVE FIT THE REJECTION PATTERN
I,J,K,N LOOP COUNTERS
NUMCRIT THE NUMBER OF UNIQUE FREQUENCIES REQUIRED FOR THE LINKS WHICH
DO NOT EXCEED THE S/I REQUIREMENT
MAXLINKS THE MAXIMUM NUMBER OF LINKS FOR A NODE
NUMFREQ THE NUMBER OF FREQUENCIES REQUIRED TO SUPPORT
THE COMMUNICATION NETWORK
FREIDIF DIFFERENCE IN FREQUENCIES BETWEEN TWO TRANSMITTERS
FREUDEJ FREQUENCY REJECTION IN DB
FREQ(I,J) ARRAY HOLDING FREQUENCY ASSIGNMENTS
PROBLEM VARIABLE TO ENSURE 24MHZ FREQUENCY SEPARATION MET
DEPIN FLAG TO DETERMINE IF DEPLOYMENT INPUT IS INTERACTIVE
FLAG FLAG TO DETERMINE IF ARRAYS ARE TO BE PRINTED OUT
MAX THE MAXIMUM SEPARATION IN KM BETWEEN THE NODE(K) AND
THE NODES IT COMMUNICATES WITH
NUMITS NUMBER OF UNITS IN DEPLOYMENT

REAL X(1:11),Y(1:11),COUR(I:11),DI(1:11,1:11)
REAL AMG(1:11,1:11),AZ(1:11,1:11)
REAL PI,CONNECT(I:1:1,1:4),LINK(1:11,1:11)
REAL AZDIFF(1:11,1:11,1:11),REJECT(I:11,1:11,1:11)
REAL TOTREJ(I:11,1:11,1:11),MIN,SGLOSS,INTLOSS
REAL SIRED,FIRECR,FREQ(I:11,1:11),PROBLEM,MAX
CHARACTER FLAG*1,DEPIN*
INTEGER I,J,K,N,NUMCRIT,MAXLINKS,NUMFREQ
INTEGER*4 COORD
PI=3.1415927
IN=5
PRINT *,
PRINT *,
PRINT *,
PRINT *,
PRINT *,
5 FORMAT (* *)

DETERMINE IF DEPLOYMENT INPUT TO BE INTERACTIVE
PRINT *, IS DEPLOYMENT INPUT INTERACTIVE? Y(ES) OR N(OD)
READ (*,A1) DEPIN
IF (DEFIN.EQ. 'N') THEN
 GO TO 105
END IF

* WHAT DATA TO BE PRINTED OUT IF INTERACTIVE
PRINT *, 'DO YOU WANT ALL ARRAYS PRINTED OUT? Y(ES) OR N(0)'
READ (*, '(A1)') FLAG

* INTERACTIVELY READ IN GRID COORDINATES
NUMITS=11
DO 110 I=1,11
 WRITE (*, 40) I
 FORMAT (' ENTER EASTING COORDINATES FOR NODE ',I2)
 READ *,X(I)
 WRITE (*, 50) I
 FORMAT (' ENTER NORTHING COORDINATES FOR NODE ',I2)
 READ *,Y(I)
 PRINT *
 PRINT *
 CONTINUE

IF (DEFIN.EQ. 'Y') THEN
 GO TO 205
END IF

* READ INPUT FROM TABLE
READ (IN,7) NUMITS,FLAG
FORMAT (12,I2,1X,A)
PRINT *
PRINT *
PRINT *
PRINT *
PRINT *
WRITE (OUT,1200) NUMITS
1200 FORMAT ('NUMBER OF UNITS IN DEPLOYMENT IS: ',I5)
DO 205 I=1,NUMITS
READ (IN,1001) X(I),Y(I),(CONNECT(I,J),J=1,4)
205 CONTINUE

105 CONTINUE
1001 FORMAT (2F4.0,2X,4(F2.0,1X))
205 CONTINUE
* ECHO THE COORDINATES
PRINT *,
DU 305 I=1,11
COUR(I)=X(I)+10000+Y(I)
COURD=COUR(I)
WRITE (OUT,20) I,COURD
20 FORMAT (" NODE",2X,12,2X,"COORDINATES",3X,10)
305 CONTINUE
* CALCULATE THE DISTANCE BETWEEN THE NODES IN KILOMETERS
DO 200 I=1,NUNITS
DO 200 J=1,NUNITS
D(I,J)=(SQR((X(I)-X(J))**2+(Y(I)-Y(J))**2))/100
200 CONTINUE
* WRITE OUT THE DISTANCES BETWEEN THE NODES
IF (FLAG.EQ."N") THEN
GU 10 300
END IF
WRITE (OUT,60)
60 FORMAT (3X,'DISTANCE (KM) BETWEEN NODES')
WRITE (OUT,70) (I,I=1,NUNITS)
70 FORMAT (12X,11(' NODE',12,2X))
WRITE (OUT,5)
309 DO 700 J=1,NUNITS
WRITE (OUT,10) I,(D(I,J),J=1,NUNITS)
10 FORMAT (" NODE",12,3X,11F8.2)
WRITE (OUT,5)
700 CONTINUE
100 CONTINUE
I. Calculate the angles between the nodes

DO 400 I=1,NUNITS
 DO 400 J=1,NUNITS
 IF ((X(J)-X(I))EQ.0.AND.(Y(J)-Y(I))GT.0) THEN
 ANG(I,J)=90.0
 ELSE IF ((X(J)-X(I))EQ.0.AND.(Y(J)-Y(I))EQ.0) THEN
 ANG(I,J)=0.0
 ELSE IF ((X(J)-X(I))EQ.0.AND.(Y(J)-Y(I))LT.0) THEN
 ANG(I,J)=-90.0
 END IF
 IF ((X(J)-X(I))EQ.0) THEN
 GO TO 400
 END IF
 ANG(I,J)=ATAN((Y(J)-Y(I))/(X(J)-X(I)))*180/Pi
 400 CONTINUE
 WRITE (UOUT,5)

PRINT OUT THE ANGLES BETWEEN THE NODES

IF (FLAG.EQ.'N') THEN
 GO TO 500
END IF

WRITE (UOUT,90)
90 FORMAT (32X,'ANGLE (DEGREES) BETWEEN NODES')
WRITE (UOUT,111) (I,1=1,NUNITS)
111 FORMAT (12X,11I('NODE',I2,2X))
WRITE (UOUT,5)
DO 500 I=1,NUNITS
 WRITE (UOUT,80) I,(ANG(I,J),J=1,NUNITS)
80 FORMAT (' NODE',I2,3X,11F9.2)
WRITE (UOUT,5)
WRITE (UOUT,5)
500 CONTINUE

CONVERT THE ANGLES BETWEEN NODES TO AZIMUTHS BETWEEN THE NODES
DO 101 I=1,NUNITS
 DO 101 J=1,NUNITS
 IF ((Y(J)-Y(I)).GE.0 AND (X(J)-X(I)).GE.0) THEN
 AZ(I,J)=90.0-ANG(I,J)
 ELSE IF ((Y(J)-Y(I)).LT.0 AND (X(J)-X(I)).GE.0) THEN
 AZ(I,J)=90.0+ABS(ANG(I,J))
 ELSE IF ((Y(J)-Y(I)).LT.0 AND (X(J)-X(I)).LT.0) THEN
 AZ(I,J)=270.0-ANG(I,J)
 ELSE
 AZ(I,J)=270.0+ABS(ANG(I,J))
 END IF
 101 CONTINUE
WRITE (OUT,5)

PRINT OUT THE AZIMUTHS BETWEEN THE NODES
 IF (FLAG.EQ.'N') THEN
 GO TO 800
 END IF
WRITE (OUT,21)
21 FORMAT (3X,'AZIMUTH (DEGREES) BETWEEN NODES')
WRITE (OUT,31) (I=1,NUNITS)
31 FORMAT (12X,11('NODE',12,2X))
WRITE (OUT,5)
DO 600 I=1,NUNITS
 WRITE (OUT,41) (AZ(I,J),J=1,NUNITS)
41 FORMAT ('NODE',12,3X,11FB.2)
WRITE (OUT,5)
WRITE (OUT,5)
600 CONTINUE
IF (DEPIN.EQ.'N') THEN
 GO TO 700
END IF

INITIALIZE AN ARRAY TO SHOW WHICH NODES ARE INTERCONNECTED
DO 800 I=1,11
 DO 800 J=1,4
 CONNECT(I,J)=0
 800 CONTINUE
WRITE (OUT,5)
 * READ IN WHICH NODES ARE INTERCONNECTED
 * DO 700 I=1,11
 WRITE (*,51) I
 FORMAT('HOW MANY NODES CONNECT TO NODE ',I2)
 READ *,N
 WRITE (*,61) N
 61 FORMAT('NOW ENTER THE',I2,' NODES BY NUMBER')
 READ *,CONNECT(I,J),J=1,N
 PRINT *,CONNECT(I,J)
 700 CONTINUE
 *
 * IDENTIFY WHICH NODES ARE INTERCONNECTED AND WHICH ARE NOT
 * DO 900 I=1,NUNITS
 IF 900 J=1,NUNITS
 IF (CONNECT(I,1).EQ.J.OR.CONNECT(I,2).EQ.J.
 OR.CONNECT(I,3).EQ.J.OR.CONNECT(I,4).EQ.J) THEN
 LINK(I,J)=1.0
 ELSE
 LINK(I,J)=0.0
 END IF
 900 CONTINUE
WRITE (OUT,5)
 * PRINT OUT WHICH NODES ARE INTERCONNECTED
 IF (FLAG.EQ.'N') THEN
 GO TO 201
 END IF
WRITE (OUT,71)
21 FORMAT (37X,'CONNECTED NODES')
22 WRITE (OUT,81) (I, I=1,NUNITS)
23 81 FORMAT (12X,11('NODE',12,2X))
24 WRITE (OUT,5)
25 DO 200 I=1,NUNITS
26 WRITE (OUT,91) I,(LINK(I,J),J=1,NUNITS)
27 91 FORMAT (' NODE',12,2X,11F8.2)
28 WRITE (OUT,5)
29 WRITE (OUT,5)
30 200 CONTINUE
31
32 * INITIALIZE AN ARRAY TO STORE THE DIFFERENCE IN AZIMUTHS BETWEEN
33 * LINKS AND NODES. USE -1 SINCE 0.0 IS POSSIBLE IF THE AZIMUTH
34 * DIFFERENCE IS 0.0
35
36 DO 401 I=1,NUNITS
37 DO 401 J=1,NUNITS
38 DO 401 K=1,NUNITS
39 AZDIFF(I,J,K)=-1
40 401 CONTINUE
41
42 * IDENTIFY THE DIFFERENCES IN AZIMUTHS BETWEEN ALL LINKS AND NODES
43
44 DO 301 I=1,NUNITS
45 DO 301 J=1,NUNITS
46
47 * SAME NODE
48
49 IF (I.EQ.J) THEN
50 GO TO 301
51 END IF
52 IF (LINK(I,J).EQ.1.0) THEN
53 DO 501 K=1,11
54 IF (((I.EQ.K).OR.(J.EQ.K)) .OR. (I.EQ.K)) THEN
55 GO TO 501
56 END IF
57 AZDIFF(I,J,K)=ABS(AZ(I,J)-AZ(I,K))
58 501 CONTINUE
59 301 CONTINUE
60
61
IF (AZDIFF(I,J,K),GE,180.0) THEN
 AZDIFF(I,J,K)=360.0-AZDIFF(I,J,K)
END IF
501 CONTINUE
END IF
501 CONTINUE

PRINT DIFFERENCES IN AZIMUTHS BETWEEN ALL LINKS AND NODES
176
177 IF (FLAG.EQ.'N') THEN
178 GO TO 601
179 END IF
180 DO 601 I=1,NUNITS
181 WRITE (OUT,5)
182 WRITE (OUT,12)
183 12 FORMAT (37X,'SEPARATION BETWEEN LINKS AND NODES')
184 WRITE (OUT,22) (N,N=1,NUNITS)
185 22 FORMAT (13X,11('NODE',12,2X))
186 WRITE (OUT,5)
187 DO 601 J=1,NUNITS
188 WRITE (OUT,32) I,J,(AZDIFF(I,J,K),K=1,NUNITS)
189 32 FORMAT (' LINK',12,-',',12,11F8.2)
190 WRITE (OUT,5)
191 WRITE (OUT,5)
601 CONTINUE

ANTENNA PATTERN CHARACTERISTICS
145
146 WRITE (OUT,5)
147 WRITE (OUT,5)
148 WRITE (OUT,1000)
149 1000 FORMAT (" THE ANTENNA PATTERN IS DEFINED AS: ",/
150 + " REJECTION(IN DB)=A+(B+DEGREES OFF MAIN Lobe)";/
151 + " REJECTION CANNOT EXCEED MAXIMUM SIDELOBE OF G",/)
152 PRINT *,
153 PRINT *, ENTER THE VALUE FOR A:
154 READ *,A
155
PRINT *, "ENTER THE VALUE FOR B"
READ *, B
PRINT *, "ENTER THE VALUE FOR C"
READ *, C
WRITE (OUT,5)
WRITE (OUT,5)

FREQUENCY REJECTION CHARACTERISTICS OF THE RECEIVER

WRITE (OUT,5)
WRITE (OUT,5)
WRITE (OUT,1400)

1400 FORMAT (" THE BANDPASS REJECTION IS DEFINED AS: ",/,
+ " REJECTION(IN DB)=A+B*FREQUIF+C*FREQUIF**2/",/,
+ " D*FREQUIF**3+E*FREQUIF**4+F*FREQUIF**5")",/)

PRINT *, "ENTER THE VALUE FOR A"
READ *, AA
PRINT *, "ENTER THE VALUE FOR B"
READ *, BB
PRINT *, "ENTER THE VALUE FOR C"
READ *, CC
PRINT *, "ENTER THE VALUE FOR D"
READ *, DD
PRINT *, "ENTER THE VALUE FOR E"
READ *, EE
PRINT *, "ENTER THE VALUE FOR F"
READ *, FF
WRITE (OUT,5)
WRITE (OUT,5)
CONSTRUCT AN ARRAY IDENTIFYING THE REJECTION AT EACH LINK
FOR EACH NODE

DO 701 I=1,NUNITS
DO 701 J=1,NUNITS
DO 701 K=1,NUNITS
IF (AZDIFF(I,J,K).EQ.-1) THEN
 REJECT(I,J,K)=-1
ELSE
 REJECT(I,J,K)=A*(B**AZDIFF(I,J,K))
 IF (REJECT(I,J,K).GT.C) THEN
 REJECT(I,J,K)=C
 END IF
IF (AZDIFF(I,J,K).EQ.0) THEN
 REJECT(I,J,K)=0
 END IF
701 CONTINUE

PRINT REJECTION AT EACH LINK FOR EACH NODE

IF (FLAG.EQ.'N') THEN
 GO TO 801
END IF

DO 801 I=1,11
WRITE (OUT,5)
WRITE (OUT,42)
FORMAT(37X,'REJECTION BETWEEN LINKS AND NODES')
WRITE (OUT,52) (N,N=1,NUNITS)
FORMAT (12X,N,NODE',12,2X)
WRITE (OUT,5)
DO 801 J=1,NUNITS
WRITE (OUT,52) I,J,(REJECT(I,J,K),K=1,NUNITS)
FORMAT (' LINK',12,-,-,12,1I6.2)
WRITE (OUT,5)
WRITE (OUT,5)
801 CONTINUE
572
573 * CONSTRUCT AN ARRAY IDENTIFYING THE TOTAL REJECTION AT EACH LINK
574 * FOR EACH NODE
575
576 DO 901 I=1,NUNITS
577 DO 901 J=1,NUNITS
578 DO 901 K=1,NUNITS
579 TOTREJ(I,J,K)=REJECT(1,J,K)
580 901 CONTINUE
581
582 * ASSIGN FREQUENCIES TO LINKS BASED UPON MY ABCDE PLAN
583
584 * INITIALIZE THE ASSIGNMENT ARRAY
585
586 MAXLINKS=0
587 DO 902 I=1,NUNITS
588 DO 902 J=1,NUNITS
589 FREQ(I,J)=LINK(I,J)*1.0
590 902 CONTINUE
591
592 * ASSIGN FREQUENCY PAIRS TO LINKS
593
594 DO 802 I=1,NUNITS
595 DO 802 J=I,NUNITS
596 IF (FREQ(I,J).EQ.0) THEN
597 IF (FREQ(I,N).EQ.1.0.OR.FREQ(J,N).EQ.1) THEN
598 901 GO TO 1
599 END IF
600 902 CONTINUE
601 FREQ(I,J)=1
602 FREQ(J,I)=1
603 903 CONTINUE
604 DO 103 N=1,11
605 IF (FREQ(I,N).EQ.2.0.OR.FREQ(J,N).EQ.2) THEN
606 903 CONTINUE
607 904 CONTINUE
608 GO TO 6
609 103 CONTINUE
610
GO TO 2
END IF
CONTINUE
FREQ(1,J)=2
FREQ(J,1)=2
GO TO 6
DO 203 N=1,NUMITS
IF (FREQ(I,N).EQ.3 .OR. FREQ(J,N).EQ.3) THEN
GO TO 3
END IF
CONTINUE
FREQ(I,J)=3
FREQ(J,1)=3
GO TO 6
DO 303 N=1,NUMITS
IF (FREQ(I,N).EQ.4 .OR. FREQ(J,N).EQ.4) THEN
GO TO 9
END IF
CONTINUE
FREQ(I,J)=4
FREQ(J,1)=4
GO TO 6
FREQ(I,J)=5
FREQ(J,1)=5
END IF
IF (FREQ(I,J).GT.MAXLINKS) THEN
MAXLINKS=FREQ(I,J)
END IF
CONTINUE
ASSIGN FREQUENCIES TO LINKS - THIS PROGRAM DEFAULTS TO A SEED OF 800MHZ WITH 24MHZ SEPARATION BETWEEN XMITTER-RCVR SAME RADIO AND 5 MHZ XMITTER-RCVR CO-LOCATED RADIOS
DO 403 I=1,NUMITS
DO 403 J=1,NUMITS
IF (FREQ(I,J).GT.0 .AND. FREQ(I,J).LE.5) THEN

IF (FREQ(I,J).EQ.1) THEN
 FREQ(I,J)=800.0
ELSE IF (FREQ(I,J).EQ.2) THEN
 FREQ(I,J)=844.0
END IF

IF (FREQ(I,J).EQ.3) THEN
 FREQ(I,J)=805.0
END IF

IF (FREQ(I,J).EQ.4) THEN
 FREQ(I,J)=849.0
END IF

IF (FREQ(I,J).EQ.5) THEN
 FREQ(I,J)=810
END IF

IF (FREQ(I,J).EQ.6) THEN
 FREQ(I,J)=854
END IF

IF (FREQ(I,J).EQ.7) THEN
 FREQ(I,J)=815
END IF

IF (FREQ(I,J).EQ.8) THEN
 FREQ(I,J)=859
END IF

IF (FREQ(I,J).EQ.9) THEN
 FREQ(I,J)=820
END IF

IF (FREQ(I,J).EQ.10) THEN
 FREQ(I,J)=884
END IF

END IF

! 463 CONTINUE

! NOW IDENTIFY THE REJECTION AT EACH NODE FOR EACH LINK AND ADD THE
! MINIMUM ANTENNA REJECTION, PATH LOSS, AND FREQUENCY REJECTION
! TO THE TOTAL REJECTION ARRAY

DO 102 I=1,NUNITS
 DO 102 J=1,NUNITS
 DO 102 K=1,NUNITS
 MIN=100.0
 DO 202 N=1,NUNITS
 IF (K.NE.N.AND.I.NE.K) THEN
 SIGLOSS=20.0*(ALOG10(D(K,N)))
 INTLOSS=20.0*(ALOG10(D(I,K)))
 FREQDIFF=ABS(FREQ(I,J)-FREQ(U(N,K)))
 FREJAA=FREQUENT+BB+FREQDIFF+CC+KREJECT**2+DD+FREQDIFF**3+
 EE+FREQDIFF**4+FF+FREQDIFF**5
 IF (FREQUENT.GT.30.0) THEN
 FREQUENT=30.
 END IF
 END IF
 END IF
 END IF
 END IF
 END IF
END IF

! 102 CONTINUE

! 103 CONTINUE

! 104 CONTINUE

! 105 CONTINUE

! 106 CONTINUE

! 107 CONTINUE

! 108 CONTINUE

! 109 CONTINUE

! 110 CONTINUE

! 111 CONTINUE
! FREQUEJ=0.0
! END IF
! IF (LINK(K,N).EQ.0.0).AND.(REJECT(I,J,K).GE.0).
! + AND.(REJECT(K,N,I).EQ.0.0).THEN
! MIN=REJECT(K,N,I)-SIGLOSS+FREQUEJ
! END IF
! + AND.REJECT(I,J,K).GE.0).THEN
! MIN=0.0-SIGLOSS+FREQUEJ
! END IF
! 202 CONTINUE
! IF (MIN.EQ.100.0) THEN
! GO TO 102
! END IF
! TOTREJ(I,J,K)=TOTREJ(I,J,K)+MIN+INTLOSS
! 102 CONTINUE
!
! PRINT THE TOTAL REJECTION AT EACH LINK FOR EACH NODE
! IF (FLA,EQ.'N') THEN
! GO TO 502
! END IF
! CONTINUE
! DO 502 I=1,NUMITS
! WRITE (OUT,5)
! WRITE (OUT,13)
! 5 FORMAT (32X,'TOTAL REJECTION BETWEEN LINKS AND NODES')
! WRITE (OUT,23) (N,M=1,NUMITS)
! 23 FORMAT (12X,11('NODE',I2,2X))
! WRITE (OUT,5)
! DO 502 J=1,NUMITS
! WRITE (OUT,33) I,J,(TOTREJ(I,J,K),K=1,NUMITS)
! 33 FORMAT (' LINK',I2,11F8.2)
! WRITE (OUT,5)
! WRITE (OUT,5)
502 CONTINUE

* PRINT OUT FREQUENCY ASSIGNMENTS NOT CONSIDERING CRITICAL LINKS

IF (FLAG.EQ.'N') THEN
 GO TO 503
END IF
WRITE (OUT,5)
WRITE (OUT,63)
FORMAT (37X,'FREQUENCY ASSIGNMENTS W/O CRITICAL LINKS')
WRITE (OUT,73) (I,I=1,NUNITS)
FORMAT (12X,11('NODE',I2,2X))
WRITE (OUT,5)
DO 503 I=1,NUNITS
WRITE (OUT,83) I,(FREQ(I,J),J=1,NUNITS)
FORMAT (' NODE',I2,2X,11F8.2)
WRITE (OUT,5)
WRITE (OUT,5)
503 CONTINUE

* S/I REQUIREMENT FOR AN/GRC-103 IS 11.0 DB

WRITE (OUT,5)
WRITE (OUT,1010)
1010 FORMAT (" THE S/I REQUIREMENT FOR AN/GRC-103 IS 11.0 DB")
WRITE (OUT,5)
WRITE (OUT,5)

IDENTIFY CRITICAL SEPARATIONS BETWEEN LINKS AND NODES-
* SEPARATIONS WHICH DO NOT ALLOW FOR 11.0 DB OF REJECTION

DO 602 I=1,NUNITS
 DO 602 J=1,NUNITS
 DO 602 K=1,NUNITS
 DO 602 N=1,NUNITS
 IF (LINK(I,N).EQ.1) THEN
 WRITE (OUT,5)
 WRITE (OUT,1010)
 WRITE (OUT,5)
 WRITE (OUT,5)
 END IF
 END DO 602 K
END DO 602 J
END DO 602 I
END
CRITREJ = SIREJ + 10 + TOTREJ(I, J, K)
IF (CRITREJ.GT.6 AND TOTREJ(I, J, K).NE.-1) THEN
 WRITE (OUT, 5)
 WRITE (OUT, 43) I, J, K, TOTREJ(I, J, K)
 FORMAT (' LINK', 12, ' ', 12, ' TO NODE', 12, ' ', 11FB.2, 'DB')
 43
 CHECK TO DETERMINE IF CRITICAL LINKS REQUIRE UNIQUE FREQUENCIES
 44
 FREQDIF = ABS(FREQ(I, J) - FREQ(N, K))
 FREQREJ = AA*BB*FREQDIF*CC*FREQDIF**2*DD*FREQDIF**3 +
 EE*FREQDIF**4*FF*FREQDIF**5
 IF (FREQREJ.GE.SIREJ) THEN
 WRITE (OUT, 1020)
 FORMAT (' NO PROBLEM')
 ELSE
 WRITE (OUT, 1030)
 FORMAT (' PROBLEM')
 FREQ(I, J) = 900.0
 FREQDIF = ABS(FREQ(I, J) - FREQ(N, K))
 FREQREJ = AA*BB*FREQDIF*CC*FREQDIF**2*DD*FREQDIF**3 +
 EE*FREQDIF**4*FF*FREQDIF**5
 IF (FREQREJ.GE.SIREJ) THEN
 WRITE (OUT, 1040)
 FORMAT (' PROBLEM CORRECTED')
 END IF
 END IF
 END IF
 END IF
 CONTINUE

ASSIGN FREQUENCY CODES TO CRITICAL LINKS

NUMCRIT = 0
DO 801 I = 1, NUMITS
 DO 803 J = 1, NUMITS
 IF (FREQ(I, J).EQ.490.0) THEN
 IF (FREQ(I, J).EQ.490.0) THEN
 NUMCRIT = NUMCRIT + 1
 END IF
 END IF
 END DO
 END DO
801 CONTINUE
803 CONTINUE
IF \(\text{FREQ}(I,N) = 1 \) OR \(\text{FREQ}(J,N) = 1 \) THEN
GO TO 111
END IF

CONTINUE

FREQ(1,J) = 1
GO TO 666

DO 104 N = 1, MUNITS
IF \(\text{FREQ}(I,N) = 2 \) OR \(\text{FREQ}(J,N) = 2 \) OR \(\text{FREQ}(N,I) = 2 \) THEN
GO TO 222
END IF

CONTINUE

FREQ(1,J) = 2
GO TO 666

DO 204 N = 1, MUNITS
IF \(\text{FREQ}(I,N) = 3 \) OR \(\text{FREQ}(J,N) = 3 \) OR \(\text{FREQ}(N,I) = 3 \) THEN
GO TO 333
END IF

CONTINUE

FREQ(1,J) = 3
GO TO 666

DO 304 N = 1, MUNITS
IF \(\text{FREQ}(I,N) = 4 \) OR \(\text{FREQ}(J,N) = 4 \) OR \(\text{FREQ}(N,I) = 4 \) THEN
GO TO 555
END IF

CONTINUE

FREQ(1,J) = 4
GO TO 666

FREQ(I,J) = 5
GO TO 666

IF \(\text{FREQ}(I,J) \geq \text{NUMCRIT} \) THEN
NUMCRIT = FREQ(I,J)
END IF

END IF

CONTINUE
ASSIGN UNIQUE FREQUENCIES TO CRITICAL LINKS BEGINNING WITH 900.0 MHZ USING 24.0 MHZ INTERVALS

\[\text{DO 404 I=1,NUNITS} \]
\[\text{DO 404 J=1,NUNITS} \]
\[\text{IF (FREQ(I,J).GT.0.AND.FREQ(I,J).LE.5) THEN} \]
\[\text{IF (FREQ(I,J).EQ.1) THEN} \]
\[\text{FREQ(I,J)=900.0} \]
\[\text{ELSE IF (FREQ(I,J).EQ.2) THEN} \]
\[\text{FREQ(I,J)=924.0} \]
\[\text{ELSE IF (FREQ(I,J).EQ.3) THEN} \]
\[\text{FREQ(I,J)=948.0} \]
\[\text{ELSE IF (FREQ(I,J).EQ.4) THEN} \]
\[\text{FREQ(I,J)=972.0} \]
\[\text{ELSE IF (FREQ(I,J).EQ.5) THEN} \]
\[\text{FREQ(I,J)=996.0} \]
\[\text{END IF} \]
\[\text{END IF} \]
\[\text{IF (FREQ(I,J).EQ.-1) THEN} \]
\[\text{FREQ(I,J)=0} \]
\[\text{END IF} \]
\[\text{404 CONTINUE} \]

DOUBLE CHECK FREQUENCY ASSIGNMENTS FOR PROBLEMS

SUPCRIT=0

IF (NUMCRIT.GT.0) THEN
\[\text{WRITE (OUT,5)} \]
\[\text{WRITE (OUT,5)} \]
\[\text{WRITE (OUT,1170)} \]
\[\text{1170 FORMAT (" DOUBLE CHECK FREQUENCY ASSIGNMENTS")] \]
\[\text{WRITE (OUT,5)} \]
\[\text{WRITE (OUT,5)} \]
\[\text{DO 1300 I=1,NUNITS} \]
\[\text{DO 1300 J=1,NUNITS} \]
\[\text{DO 1300 K=1,NUNITS} \]
DO 1300 N=1,NUMITS
IF (LINK(K,N).EQ.1) THEN
CRITREJ=SIREQ-TOIREJ(I,J,K)
IF (CRITREJ.GT.0.AND.TOIREJ(I,J,K).NE.-1) THEN
WRITE (OUT,5)
WRITE (OUT,1301) I,J,K,TOIREJ(I,J,K)
FORMAT (' Link',I2,'-',',',12,' TO NODE',12,'=',1X,'H.',2,' DB')
* CHECK TO DETERMINE IF CRITICAL LINKS REQUIRE UNIQUE FREQUENCIES
FREDIFF=ABS(FREQ(I,J)-FREQ(N,K))
FREDOEJ=AA*BB*FREDIFF*CC*FREDIFF**2+DD*FREDIFF**3+
EE*FREDIFF**4+FF*FREDIFF**5
IF (FREDOEJ.GE.SIREQ) THEN
WRITE (OUT,1320)
FORMAT (' NO PROBLEM')
ELSE
WRITE (OUT,1330)
FORMAT (' PROBLEM')
FREQ(I,J)=1000.0
WRITE (OUT,1335)
FORMAT (' 1000.0MHZ ASSIGNED ')
FREDIFF=ABS(FREQ(I,J)-FREQ(N,K))
FREDOEJ=AA*BB*FREDIFF*CC*FREDIFF**2+DD*FREDIFF**3+
EE*FREDIFF**4+FF*FREDIFF**5
IF (FREDOEJ.GE.SIREQ) THEN
WRITE (OUT,1340)
FORMAT (' PROBLEM CORRECTED')
SUPCRIT=SUPCRIT+1
END IF
END IF
END IF
CONTINUE
* PRINT OUT FREQUENCY ASSIGNMENTS CONSIDERING CRITICAL LINKS
1031 WRITE (OUT,5)
1032 WRITE (OUT,93)
1033 FORMAT (32X,'FREQUENCY ASSIGNMENTS')
1034 WRITE (OUT,14) (1,1=1,NUNITS)
1035 14 FORMAT (12X,11('NODE',I2,2X))
1036 WRITE (OUT,5)
1037 DO 504 I=1,NUNITS
1038 WRITE (OUT,24) I,(FREQ(I,J),J=1,NUNITS)
1039 24 FORMAT (' NODE',I2,2X,11F8.2)
1040 WRITE (OUT,5)
1041 WRITE (OUT,5)
1042 504 CONTINUE
1043 *
1044 CALCULATE THE MINIMUM NUMBER OF FREQUENCIES REQUIRED TO SUPPORT
1045 THE BATTALION
1046 *
1047 NUMFREQ=MAXLINKS+2+NUMCRT+SUPCRT
1048 *
1049 PRINT OUT THE MINIMUM NUMBER OF FREQUENCIES REQUIRED
1050 *
1051 WRITE (OUT,5)
1052 WRITE (OUT,5)
1053 WRITE (OUT,5)
1054 WRITE (OUT,53) NUMFREQ
1055 53 FORMAT (13,1X,'FREQUENCIES ARE REQUIRED')
1056 WRITE (OUT,1050)
1057 1050 FORMAT ('-----------------------------')
1058 WRITE (OUT,5)
1059 IF (MAXLINKS.GE.1) THEN
1060 WRITE (OUT,1060)
1061 1060 FORMAT (' 800.0MHz 844.0MHz')
1062 END IF
1063 IF (MAXLINKS.GE.2) THEN
1064 WRITE (OUT,1070)
1065 1070 FORMAT (' 805.0MHz 849.0MHz')
1066 END IF
IF (MAXLINKS.GE.1) THEN
 WRITE (OUT,1080)
 1080 FORMAT (" 810.0MHz 854.0MHz")
END IF
IF (MAXLINKS.GE.4) THEN
 WRITE (OUT,1090)
 1090 FORMAT (" 815.0MHz 859.0MHz")
END IF
IF (NUMCRIT.GE.5) THEN
 WRITE (OUT,1100)
 1100 FORMAT (" 820.0MHz 864.0MHz")
END IF
IF (NUMCRIT.GE.1) THEN
 WRITE (OUT,1110)
 1110 FORMAT (" 900.0MHz")
END IF
IF (NUMCRIT.GE.2) THEN
 WRITE (OUT,1120)
 1120 FORMAT (" 924.0MHz")
END IF
IF (NUMCRIT.GE.3) THEN
 WRITE (OUT,1130)
 1130 FORMAT (" 948.0MHz")
END IF
IF (NUMCRIT.GE.4) THEN
 WRITE (OUT,1140)
 1140 FORMAT (" 972.0MHz")
END IF
IF (NUMCRIT.GE.5) THEN
 WRITE (OUT,1150)
 1150 FORMAT (" 996.0MHz")
END IF
IF (SUPCRIT.GT.0) THEN
 WRITE (OUT,1155)
 1155 FORMAT (" 1000.0MHz")
END IF
WRITE (OUT,5)
WRITE (OUT,5)
VITA

Gregory H. Swanson was born in Heidelberg, Germany on 4 January 1952. He graduated from high school in Kansas City, Missouri in 1970 and attended the University of Missouri-Columbia from which he graduated in May 1974 with a Bachelor of Science degree in Electrical Engineering.

He entered commissioned service in the US Army through ROTC upon graduation from the University of Missouri in 1974. After completing the Signal Officer Basic Course at Ft. Gordon, Georgia, he was assigned to Wildflecken, Germany as a Battalion Communications Officer for the 2/15 Infantry Battalion. He completed the Signal Officer Advanced Course upon returning from Germany and was subsequently assigned as a Communications Research and Development Officer for the PATRIOT Project Office at Redstone Arsenal, Alabama in June 1981.

He is married to the former Helen Louise Helmer of Kansas City, Missouri. They have two daughters, Tonya and Christie.

Permanent Address: 6741 N. Holmes
Kansas City, Missouri 64118
A DETERMINATION OF THE MINIMUM FREQUENCY REQUIREMENTS FOR A PATRIOT BATTALION UHF COMMUNICATION SYSTEM

Gregory H. Swanson
CPT, USA

Air Force Institute of Technology (AFIT/EN)
Wright-Patterson AFB OH 45433

December 1982

76

Approved for Public Release; Distribution Unlimited

Frequency Requirements
Frequency Sharing
Signal Interference

This thesis presents a methodology which simulates the UHF communications network for the Army's PATRIOT battalion. A computer simulation model was developed that reads in coordinates for communicating nodes and their interconnections, and results in the minimum number of frequencies required to support the UHF communications network. Current concepts of PATRIOT battalion employment doctrine determine the frequency requirements obtained. Concepts of antenna rejection at transmitting and receiving nodes, propagation losses,
and radio rejection characteristics are incorporated in the model. The model was experimented upon, using deployments currently accepted within the Air Defense Community and the results of the model are analyzed.
END
FILMED
3-83
DTIC