CHANNEL STABILIZATION STUDY

Potamology Program (P-I)

Report 3

Prepared by

U. S. Army Engineer District, Memphis
B314 Clifford Davis Federal Building
Memphis, Tenn. 38103

Prepared for

U. S. Army Engineer Division, Lower Mississippi Valley
P. O. Box 80, Vicksburg, Miss. 39180

December 1982
The objective of this study was to determine, by review and analysis of prototype data and appropriate use of mathematical model, the effect of channel stabilization features on water surface profiles, channel alignment, and geometry development, and to use this information for future analysis of problem areas and design of stabilization features. The study reach selected was the Meriwether-Cherokee Reach, Mile 877 to Mile 860, on the Mississippi River.

(Continued)
20. ABSTRACT (Continued).

An attempt was made to establish certain hydraulic characteristics in the study reach for pre- and post-dike construction years. An effort was then made to compare these characteristics and determine if there were changes and how stabilization features contributed to these changes. Additional goals of the study were to answer questions of whether the dikes achieved their intended purpose, how long did it take for the dikes to show an effect, and has the river stabilized since the construction of the dikes.

The investigation indicated certain trends concerning the effectiveness of dike systems, which are as follows:

a. The effect of dike systems on the water surface is negligible at stages over midbank (Q=400,000 cfs). At lower flows, a 4- to 5-ft rise in stage occurred over a period of five years, then a steady decline has taken place. This decline is seen at other stations downstream and would lead one to believe the effects of the dike system have diminished and other controls have taken over.

b. Although the overall effect of the dike systems on the Thalweg profile is one of significant beneficial depths, it can be seen that at locations where a smooth transition is not maintained a deposition problem may occur. This may result in the need for dredging at low flows.

c. This reach indicates that the effects of dike systems on channel geometry are negligible immediately upstream or downstream of the dikes. However, channel areas opposite the dike fields have more than doubled at some sections for extreme low flow conditions. In most cases there is degradation in the channel and aggradation in the dike fields. Dikes have been successful in improving the channel, as well as the alignment.

d. A dike field not immediately preceded by another dike field may take an extended period of time before changes are seen, with effects still being seen for some seven or eight years after construction. Dike fields following within a mile or two of another dike field begin showing changes right away and effects seem to slow significantly after three or four years.
The study reported herein is a component of the Potamology Program (P-1) of the Lower Mississippi Valley Division. The Potamology Program is conducted under the direction of the Commander, Lower Mississippi Valley Division, and is a comprehensive study of physical forces which influence the flood carrying capacity and navigability of the lower Mississippi River. The purpose of the Potamology Program is to define cause-and-effect relationships that result in short-term and long-term changes in the the lower Mississippi River's stage-discharge relationships and to develop improved design concepts and criteria for construction of channel stabilization works which will improve flood control and navigation along the lower Mississippi River.

The Potamology Program is composed of two major components: Sedimentation, Mississippi River Basin; and Aggradation and Degradation, Mississippi River. This study is one item under the Aggradation and Degradation, Mississippi River component.

The study reported herein was the responsibility of the U. S. Army Engineer District, Memphis, Tennessee. The study was conducted during the period 1981-1982.
ACKNOWLEDGMENTS

This study was conducted under the direction of Mr. Andy Lowery. Mr. Rick Wells was responsible for compiling the data and preparation of the report.

Colonel William H. Reno and Colonel John F. Hatch, Jr. were District Engineers during the preparation of this report.
CONTENTS

Preface i
Acknowledgments ii

I. INTRODUCTION

Purpose 1
Description 1
History of Construction 2

II. COMPARISON OF PRE AND POST DIKE CONSTRUCTION YEARS

Channel Roughness 4
Specific Gage Record 5
Thalweg Profile 6

III. DISCUSSION AND CONCLUSIONS

Discussion 8
Conclusions 10

Plates 1-37
CHANNEL STABILIZATION STUDY

I. INTRODUCTION

Purpose

1. This study is a unit study within Study I (Aggradation-Degradation Investigations, Mississippi River) of the (P-1) Program. The study reach selected was the Merriwether-Cherokee Reach, Mile 877 to Mile 860. The objective of the study was to determine, by review and analysis of prototype data and appropriate use of mathematical model, the effect of channel stabilization features on water surface profiles, channel alignment, and geometry development, and to use this information for future analysis of problem areas and design of stabilization features.

2. An attempt was made to establish certain hydraulic characteristics in the study reach for pre- and post- dike construction years. An effort was then made to compare these characteristics and determine if there were changes and how stabilization features contributed to these changes. Additional goals of the study were to answer questions of whether the dikes achieved their intended purpose, how long did it take for the dikes to show an effect, and has the river stabilized since the construction of the dikes?

Description

3. The Merriwether-Cherokee Reach includes two complete bendways located near Tiptonville, approximately 130 miles upstream of Memphis (see Plates 1
The reach is immediately preceeded by a moderately sinuous channel with no dikes. The nearest upstream dikes are the Kentucky Point Dikes some ten miles upstream. The upper portion of the reach is a right to left crossing as it approaches Merriwether Bend, which is a six mile long bendway with a 12,000-15,000 foot radius. The channel then crosses again as it approaches Little Cypress Bend. Little Cypress Bend is a bendway to the left approximately 4 miles long with a 10,000-12,000 foot radius. The river continues on a sinuous alignment downstream of the study reach.

This situation, prior to dike construction, resulted in a meandering channel which narrowed in the bendways and caused wide, shallow crossings. These conditions contributed to an inefficient navigation channel at low stages. Low water channel widths before dike construction average around 2,000 feet, while an average channel width after dike construction was about 2,300 feet. Further inspection showed a slight decrease in width at the crossings from pre-construction to post-construction and about a twenty percent increase in width in the bendways. Low and high water slopes through the reach for pre-dike construction years average 0.60 to 0.53 feet per mile, respectively. Post-dike construction years show average low and high water surface slopes through the reach of 0.55 and 0.49 feet per mile, respectively.

History of Construction

4. At the upstream end of the study reach there was an active bank caving problem on the right bank which was endangering the controlling levee. In 1952 and 1953 bank stabilization was completed on approximately 2 miles of shoreline from Mile 877 to Mile 875. At Mile 875 the channel begins an approximately 6
mile long bendway to the right, where active caving was beginning to produce an undesirable alignment. In 1934 bank stabilization was begun at Mile 872 and extended downstream. By 1961 the stabilization had extended downstream to Mile 867 and by 1973 it had extended upstream to Mile 874. Continuing downstream the channel crosses from left to right and begins a bend to the left, Little Cypress Bend. Active caving in this bendway was threatening distortion of the curvature of this bend which would have resulted in an undesirable alignment. In 1957 the majority of the bank in this bendway was stabilized from Mile 865 to Mile 862. By 1965 the bank from Mile 866 to Mile 859 had been stabilized.

5. In 1931 two right bank pile dikes had been constructed between Mile 875 and Mile 874 as an attempt to correct an undesirable alignment that was developing in this reach. In 1956 the Ruddles Point Dikes were completed to improve the alignment and to further develop the existing channel. In 1967 three of these pile dikes were stone filled and an additional stone dike was constructed just downstream of these dikes to hold the existing alignment and to improve the navigation channel at low flows.

6. After the construction of the Ruddles Point Dikes an undesirable channel was developing downstream near Stewart Towhead. Three Stewart Towhead pile dikes were constructed near Mile 872 and Mile 871 in 1959 to improve the navigation channel. By 1967 these three dikes had been improved and stone filled. One additional stone dike at Mile 870 was built in 1967. Dikes five and six were completed downstream of the above mentioned dikes in 1969. (See Plate 2)
7. The Below Cherokee Dikes, consisting of two left bank stone dikes, were built in 1969 as a feature of the Channel Improvement Program to stabilize the crossing from the Merriwether Cherokee Revetment to the Little Cypress Revetment.

II. COMPARISON OF PRE AND POST DIKE CONSTRUCTION YEARS

Channel Roughness

8. The period examined covered 22 years, from 1957 through 1978, and begins prior to the construction of stone dikes in this reach. Using hydrographic surveys, water surface vs. river mile was plotted for each year used in the study to produce an actual water surface slope profile. This profile represented the actual water level at the time of the survey with a given flow condition. This flow was determined by establishing a lag time relationship between the Hickman Gage at Mile 922 and the Tiptonville Gage at Mile 872. This was done by plotting stage vs. time for both gages and comparing the peaks and valleys. It could be seen that there was approximately a one day lag from the Hickman Gage to the Tiptonville Gage. By knowing the discharge at Hickman for a certain date, a discharge could then be found for Tiptonville which is near the middle of the study reach.

9. Sections from the hydrographic surveys were then coded into the HEC 2 backwater model. The same flows as those found on the survey dates for each year were used in the model with the only variable being the Manning's roughness coefficient. These coefficients were adjusted wherever necessary until the computed water surface profile matched the prototype to within one tenth of a
foot. For the purpose of comparison a weighted average of these roughness coefficients was calculated for each year. These values were plotted against time in years as shown on Plate 3 and against discharge as shown on Plate 3A.

10. In years prior to dike construction there seemed to be a relatively smooth, slightly increasing trend in roughness coefficients with an average value around 0.029. Post construction years show an erratic but still increasing trend with an average around 0.032. The most notable feature of the graph is the increase in erratic behavior during and after dike construction. Further study shows the more significant increases in roughness values occur at lower discharges. A look at the roughness values vs. only high discharges shows a smoother, only slightly increasing trend.

Specific Gage Records

11. One method for observing changes in water surface for various discharges is to plot the specific gage records. At the Tiptonville Gage a stage-discharge curve was plotted for each year from 1952-1980. Stages were read from these curves for different discharges and plotted for each year (see Plate 4). These plots showed that for higher flows ($Q=400,000$ cfs) there has been no significant change in water surface levels. For lower flows there was a continuous rise in water surface levels for about 5 years after dike construction. Then there seems to be a continuous decline in the extreme low flow condition, with a decline and a leveling off in the medium low flow case.
12. The Thalweg was plotted for each year of the study. An average profile for the years 1959-1963 was determined and used for comparison purposes as an average pre-dike construction condition. The same was done for years 1967 and 1968 and this was used as an average during construction condition. The latest available survey was used as a post-dike construction condition and all three conditions were plotted on the same graph, showing the bendways, crossings, and dikes in the study reach. (Plate 5)

13. A deepening of the bendways is an obvious occurrence over the twenty years of study. By looking at pre- and post- dike construction years only, one might contribute this deepening to the building of dikes. By plotting another profile representing the Thalweg at the time of dike construction, it can be seen that the channel had done some deepening before the actual construction of the dikes. While the dike fields seem to have improved the depth of the channel both entering the bendway and exiting the bendway, reveting the outside bank of the bendway has probably contributed to this improved depth as much as the dike fields. None of the stabilization measures seems to have had much affect on the Thalweg profile in the crossings.

14. Plates 6 thru 28 show a comparison of the pre-dike construction, channel cross-section to the post-dike construction, channel cross-section. Each plate has a table showing various hydraulic parameters for each cross-section, for both an LWRP elevation and a -10 stage. As one follows the sections downstream,
the channel has no significant changes until you reach the Ruddles Point Dike Field. An improved channel, in width as well as depth, can be seen all the way through the dike field with an average increase of almost 20 percent in the area at the LWRP elevation and an average increase of over 70 percent in area at -10 stage. Plates 29 and 30 show the change in area through the reach from pre-dike construction to post-dike construction for both the LWRP elevation and the -10 stage.

15. The improving channel continues downstream into the Stewart Towhead Dike field. Much improved widths and depths are seen through Mile 870. From Mile 870-868.5 the channel has widened but has apparently lost some depth. The resulting channel area has still increased slightly for LWRP but has decreased at a -10 stage. The channel seems to have stabilized through the remainder of Stewart Towhead Dike field and begins a quicker crossing from left bank to right bank as a result of the Below Cherokee Dike field. As the channel is shifted to the outside bank, it continues to improve in both width and depth until it gets below Mile 865. From this area to the downstream limit of the study reach the channel seems to have stabilized.

16. Plates 31 thru 37 show a more detailed plot of the sections that showed a significant change. The purpose here was to determine what type of change took place, a gradual or a sudden change. In general it appeared that the channel in the upstream half of the study reach reacted for a period of 7 to 8 years, while the reactions in the downstream half of the study reach slowed considerably after 3 to 4 years.
III. DISCUSSION AND CONCLUSIONS

Discussion

17. An effort was made using a practical (using actual prototype data), rather than a theoretical, approach to determine whether the construction of dikes has affected the water surface levels in the study reach. The Manning's roughness value analysis showed an increase in value for post-construction years. Looking at this and the specific gage record graphs for the Tiptonville gage, you can possibly conclude the following:

a. For medium range flows (400,000 cfs - 600,000 cfs) the average stage for a given flow has risen approximately one foot.

b. For flows greater than 600,000 cfs there is no significant change.

c. For flows less than 400,000 cfs there was a significant 3-4 foot rise in stage for 5-7 years after dike construction, then a continuing decline right up to present time.

These increases in stage are understandable since the construction of these dike fields causes a constriction in flow as well as a rougher channel bottom at low stages. The decreasing trend that begins around 1976 for extreme low flows should be noted. This trend is seen in other downstream gages; but has not shown up to the Hickman gage, some 50 miles upstream.

18. The channel has shown a noticeable improvement in depth throughout the study reach. In years preceeding the construction of the pile dikes at Ruddles Point and Stewart Towhead, the channel depths through the bendway were not adequate for navigation and dredging was necessary. After the pile dike
construction, depths improved as much as 10-15 feet. In 1967, the conversion of these dikes to stone dikes and further revetment have improved the depth of the channel as much as 10 feet and have held the desired alignment. The last two dikes of the Stewart Towhead dike field, in conjunction with the Below Cherokee Dikes, have improved the depths of the crossing from Mile 868-866, but there is still some deposition between Mile 866 and Mile 865 which may be caused by the sharp curvature of the channel at the entrance to this bendway. From Mile 865 through the remainder of the study reach, channel depths have improved significantly and channel alignment has held as designed. The significance of this well stabilized reach, from a channel depth standpoint, can be seen by the fact that no dredging has been done in this reach since dike construction, with the exception of one year, at the above mentioned location in the vicinity of mile 866.

19. Pre-dike construction and post-dike construction sections taken at locations immediately upstream and downstream of the dike fields show that there is no appreciable affect in widths, depths, or alignment outside of the dike fields. Improved widths and depths begin appearing at a section taken at Dike 1A of Ruddles Point Dikes. This trend continues through the dike field with increased channel areas and with deposition in the dike fields. Around Mile 870 the channel takes a little more abrupt turn and causes some deposition as shown by sections at Mile 870.1 and Mile 869.3. At times of extreme low flow this could be a small problem area. Beginning at the section taken at Mile 866.4 one can see the affect of the Below Cherokee Dikes in moving the channel to the right which will allow a smoother curve back to the left. The remaining sections show a slightly improved channel area, and a much improved channel alignment.
20. A close analysis of Plates 31-37 indicates that the majority of dikes show a continuing, scouring affect on the channel for up to 8 years after construction. A somewhat balanced state seems to have taken place after this period of time. Except for the section at Mile 874.2, affects from the dikes start showing immediately after construction, and continue gradually until this balanced state is reached. No significant changes occur at Section 874.2 for the first five years after construction, but a balanced state is still reached after approximately eight years. The success of this well stabilized reach is further demonstrated by realizing that these sections have experienced three high water years after apparent stabilization and have maintained their improved shape as evidenced by the 1978 sections.

Conclusions

21. The investigation has indicated certain trends concerning the effectiveness of dike systems, which are as follows:

 a. The effect of dike systems on the water surface is negligible at stages over midbank \((Q=400,000 \text{ cfs})\). At lower flows a four to five foot rise in stage occurred over a period of five years, then a steady decline has taken place. This decline is seen at other stations downstream and would lead one to believe the effects of the dike system have diminished and other controls have taken over.

 b. Although the overall effect of the dike systems on the Thalweg profile is one of significant beneficial depths, it can be seen that at locations where a smooth transition is not maintained a deposition problem may occur. This may result in the need for dredging at low flows.

 c. This reach indicates that the effects of dike systems on channel geometry are negligible immediately upstream or downstream of the dikes.
However channel areas opposite the dike fields have more than doubled at some sections for extreme low flow conditions. In most cases there is degradation in the channel and aggradation in the dike fields. Dikes have been successful in improving the channel, as well as the alignment.

d. A dike field not immediately preceded by another dike field may take an extended period of time before changes are seen, with affects still being seen for some seven or eight years after construction. Dike fields following within a mile or two of another dike field begin showing changes right away and affects seem to slow significantly after three or four years.
HIGHEST Recorder Discharge:

- 122,592 cfs

LOWEST Recorder Discharge:

- 0.000 cfs

Legend:

- Q = 100,000 cfs
- 0 = 0 cfs
- 200,000 cfs
- 400,000 cfs
- 600,000 cfs
- 800,000 cfs
- 1,000,000 cfs

Stage:

- 0 ft
- 5 ft
- 10 ft
- 15 ft
- 20 ft
- 25 ft
- 30 ft
- 35 ft
- 40 ft
MILE 868.0

INSIDE THE STEWART TOWNHEAD DIKE FIELD

PLATE 10

<table>
<thead>
<tr>
<th>YEAR</th>
<th>AREA (0 LWRP)</th>
<th>AREA (-10 LWRP)</th>
<th>W.P.</th>
<th>W.P.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1979</td>
<td>37,203</td>
<td>20,703</td>
<td>1700</td>
<td>1606</td>
</tr>
<tr>
<td>1982</td>
<td>46,185</td>
<td>20,812</td>
<td>3326</td>
<td>1979</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>YEAR</th>
<th>HYD. RAD.</th>
<th>HYD. RAD.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1979</td>
<td>21.89</td>
<td>12.89</td>
</tr>
<tr>
<td>1982</td>
<td>13.88</td>
<td>10.52</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>YEAR</th>
<th>CONVEY.</th>
<th>CONVEY.</th>
<th>VOLUME</th>
<th>VOLUME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1979</td>
<td>21,652,572</td>
<td>8,462,486</td>
<td>137,502,288</td>
<td>76,518,288</td>
</tr>
<tr>
<td>1982</td>
<td>9,919,963</td>
<td>3,714,679</td>
<td>170,699,760</td>
<td>76,921,152</td>
</tr>
</tbody>
</table>

(DIST.-FT.)
MILE 867.2

JUST DOWNSTREAM OF STEWART TOWNHEAD DIKEFIELD &
UPSTREAM OF BELOW CHEROKEE DIKEFIELD

<table>
<thead>
<tr>
<th></th>
<th>1962</th>
<th>1978</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0 LWRP)</td>
<td>(0 LWRP)</td>
<td></td>
</tr>
<tr>
<td>AREA</td>
<td>45,216</td>
<td>53,010</td>
</tr>
<tr>
<td>W.P.</td>
<td>3305</td>
<td>3224</td>
</tr>
<tr>
<td>HYD. RAD.</td>
<td>13.68</td>
<td>16.44</td>
</tr>
<tr>
<td>CONVEY.</td>
<td>19,232,840</td>
<td>12,746,106</td>
</tr>
<tr>
<td>VOLUME</td>
<td>190,992,384</td>
<td>223,914,240</td>
</tr>
</tbody>
</table>

(-10 LWRP) (-10 LWRP)

<table>
<thead>
<tr>
<th></th>
<th>1962</th>
<th>1978</th>
</tr>
</thead>
<tbody>
<tr>
<td>AREA</td>
<td>20,546</td>
<td>30,701</td>
</tr>
<tr>
<td>W.P.</td>
<td>1978</td>
<td>1938</td>
</tr>
<tr>
<td>HYD. RAD.</td>
<td>10.41</td>
<td>15.84</td>
</tr>
<tr>
<td>CONVEY.</td>
<td>7,283,263</td>
<td>7,199,743</td>
</tr>
<tr>
<td>VOLUME</td>
<td>86,786,304</td>
<td>129,681,024</td>
</tr>
</tbody>
</table>

PLATE 20
MILE 864.5

JUST DOWNSTREAM OF BELOW CHEROKEE DIKEFIELD

1959

<table>
<thead>
<tr>
<th>AREA</th>
<th>(O LWRP)</th>
<th>1970</th>
<th>(O LWRP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W.P.</td>
<td>3201</td>
<td>2636</td>
<td></td>
</tr>
<tr>
<td>HYD. RAD.</td>
<td>10.74</td>
<td>18.91</td>
<td></td>
</tr>
<tr>
<td>CONVEY.</td>
<td>9,758,696</td>
<td>19,130,613</td>
<td></td>
</tr>
<tr>
<td>VOLUME</td>
<td>108,909,504</td>
<td>223,659,480</td>
<td></td>
</tr>
</tbody>
</table>

(-10 LWRP)

<table>
<thead>
<tr>
<th>AREA</th>
<th>(O LWRP)</th>
<th>1970</th>
<th>(O LWRP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W.P.</td>
<td>1003</td>
<td>1700</td>
<td></td>
</tr>
<tr>
<td>HYD. RAD.</td>
<td>16.63</td>
<td>17.58</td>
<td></td>
</tr>
<tr>
<td>CONVEY.</td>
<td>6,337,937</td>
<td>10,928,555</td>
<td></td>
</tr>
<tr>
<td>VOLUME</td>
<td>52,845,408</td>
<td>94,666,176</td>
<td></td>
</tr>
</tbody>
</table>

PLATE 24
END

FILMED