IMPLEMENTATION OF A RELIABILITY SHORTHAND ON THE TI-59
HANDHELD CALCULATOR(U) NAVAL POSTGRADUATE SCHOOL
MONTEREY CA H PETERS OCT 82

UNCLASSIFIED

END
only text

3 83

NL
MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1967 A
Implementation of a Reliability Shorthand on the TI-59 Handheld Calculator

by

Hans-Eberhard Peters

October 1982

Thesis Advisor: J.D. Esary
Title: Implementation of a Reliability Shorthand on the TI-59 Handheld Calculator

Author: Hans-Eberhard Peters

Performing Organization Name and Address:
Naval Postgraduate School
Monterey, California 93940

Controlling Office Name and Address:
Naval Postgraduate School
Monterey, California 93940

Report Date: October 1992

Number of Pages: 72

Security Classification: Unclassified

Distribution Statement:
Approved for public release; distribution unlimited.

Supplementary Notes:

Key Words:
TI-59
Handheld Calculator
Programmable Calculator
Reliability Shorthand

Abstract:
It is shown how a reliability shorthand can be implemented on a handheld calculator.

Assuming constant failure rates, basic structures are used to show how the shorthand can be applied. Several examples are worked out that show, how, with component failure rates as input, a handheld calculator can be...
used to compute the reliability of a system.
Two TI-59 programs are provided as a computational aid.
Implementation of a Reliability Shorthand on the TI-59 Handheld Calculator

by

Hans-Eberhard Peters
Major, German Air Force
Dipl.-Betriebsw., Fachhochschule des Heeres I, 1974

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
October, 1982

Author:

Hans-E Peters

Approved by:

James D. Esary, Thesis Advisor

Alvin F. Andrews, Second Reader

Chairman, Department of Operations Research

W. M. Woods, Dean of Information and Policy Sciences
ABSTRACT

It is shown how a reliability shorthand can be implemented on a handheld calculator.

Assuming constant failure rates, basic structures are used to show how the shorthand can be applied. Several examples are worked out that show, how, with component failure rates as input, a handheld calculator can be used to compute the reliability of a system.

Two TI-59 programs are provided as a computational aid.
TABLE OF CONTENTS

I. INTRODUCTION
II. THE CONCEPT OF A RELIABILITY SHORTHAND
 A. BASIC NOTATION
 B. CONVOLUTION OF DISTRIBUTIONS
 C. MIXTURE OF DISTRIBUTIONS
 1. MIX-Notation
 2. Distributive Law
 3. Degeneracy at the Origin
III. APPLYING A RELIABILITY SHORTHAND
 A. SUMS OF EXPONENTIALS WITH WEIGHT ONE
 1. Simple Series System
 2. Simple Parallel System
 3. Standby-System with Dissimilar Components
 B. SUMS OF EXPONENTIALS WITH WEIGHT BETWEEN ZERO AND ONE
 1. Parallel System with Dissimilar Failure Rates
 2. Series System with One Spare
 3. Two-out-of-Three System
IV. IMPLEMENTING THE SHORTHAND ON THE TI-59
V. SUMMARY
LIST OF FIGURES

1. Distributive Property of the MIX-Notation - - - - 14
2. Two-Component Series System - - - - - - - - - - - - 17
3. Two-Component Parallel System - - - - - - - - - - - - 18
4. Standby System - 20
5. Series System with one Spare - - - - - - - - - - - - - 24
6. Two-out-of-Three System - - - - - - - - - - - - - - - - 27
7. Two-out-of-Three System - - - - - - - - - - - - - - - - 27
I. INTRODUCTION

Systems and components can be in either of two states: either they are functioning or they have failed. The ability, that a system stays functioning over a predetermined time interval is called its reliability. It is generally not realistic to assume that a system, say a lightbulb, will fail at a specified time, but rather that T, the time to failure, is a random variable which has a probability distribution that can be specified. The probability distribution for a time to failure is called its life distribution.

In this paper we will solely be concerned with one specific type of life distribution which is especially important in reliability theory and practice, the exponential distribution. It has the property that the remaining life of a used component is independent of its age (the "memoryless" property), i.e. a functioning component is always as good as new, the failure rate is constant. The memoryless property is the basis for a reliability shorthand, one that can be implemented on a handheld calculator.

Depending on the size, structure and life distribution of a system, probability statements about its time to
failure are in general not easily achieved. Forming the sum of independent life lengths (i.e. convolving the corresponding life distributions) requires knowledge of integral calculus and computations can become rather tedious.

In the case of the exponential distribution, though, computations can be simplified by translating the problem into a simple shorthand notation and using this shorthand as input for some computing device.

In this paper we will show how a reliability shorthand can be implemented on a handheld calculator. Basic structures are used to show how the shorthand can be applied. Two TI-59 programs are provided as a computational aid. Formulas for the convolution of up to four exponential random variables can be found in Appendix A. Appendix B contains a user guide to the TI-59 programs.
II. THE CONCEPT OF A RELIABILITY SHORTHAND

A. BASIC NOTATION

The survival function of a life length can be derived from the distribution function.

Let

\[T \text{ : life length} \]
\[F(t) = P(T \leq t) \text{ be the distribution function of} \]

Then

\[\bar{F}(t) = P(T > t) = 1 - F(t) \]

is the survival function of \(T \).

In the case of the exponential distribution, \(\bar{F}(t) = e^{-\lambda t} \), where \(\lambda \) is the failure rate. Translated into shorthand, the life distribution is denoted \(\text{EXP}(\lambda) \).

B. CONVOLUTION OF DISTRIBUTIONS

When independent random lives are summed up, the corresponding life distributions have to be convolved to determine the probability that the sum of the lives will exceed a specified time \(t \).

Let

\[T_1, T_2 \text{ : independent life lengths} \]
\(\overline{F}_1(t), \overline{F}_2(t) \) : the corresponding survival functions

\(f_1(t), f_2(t) \) : the corresponding density functions

\(T = T_1 + T_2 \) : the total life length

Then

\[
\overline{F}(t) = P(T > t) = P(T_1 + T_2 > t) = \overline{F}_1(t) + \int_0^t \overline{F}_2(t-s) f_1(s) ds.
\]

This means that \(T \) will exceed a specified time \(t \) when

- either \(T_1 \) exceeds \(t \)
- or \(T_1 \) is smaller than \(t \), say equal to \(s \), and \(T_2 \) exceeds \(t-s \).

Integration with respect to \(s \) (i.e. summing over all possible values of \(s \)) is called the convolution of \(T_1 \) and \(T_2 \).

When \(T_1 \) and \(T_2 \) are both exponentially distributed with failure rates \(\lambda_1 \) and \(\lambda_2 \), i.e.

\[
\overline{F}_1(t) = e^{-\lambda_1 t}, \\
\overline{F}_2(t) = e^{-\lambda_2 t},
\]

then the survival function of \(T \) is

\[
\overline{F}(t) = e^{-\lambda_1 t} + \int_0^t e^{-\lambda_2 (t-s)} \lambda_1 \lambda_2 e^{-\lambda_1 s} ds.
\]

Translated into shorthand, the survival function is denoted

\[
\text{EXP}(\lambda_1) + \text{EXP}(\lambda_2).
\]
This shorthand notation is heuristically apparent. We can visualize a 1 component / 1 spare system with $\text{Exp}(\lambda_1)$ and $\text{Exp}(\lambda_2)$ lives respectively. From component 1 the system has an $\text{Exp}(\lambda_1)$ life to begin with. When component 1 fails, the system has an extra $\text{Exp}(\lambda_2)$ life.

C. Mixture of Distributions

1. MIX-Notation

In the previous chapter, we formed the sum of independent random lives, which each had weight one, i.e.

$$T = T_1 + T_2.$$

Now consider

$$T = \begin{cases}
T_1 & \text{with probability } p_1 \\
T_2 & \text{with probability } p_2
\end{cases}$$

where $p_1 + p_2 = 1$.

Let D_1 and D_2 be the probability distributions of the random variables T_1 and T_2 respectively. The corresponding survival functions are $F_1(t)$ and $F_2(t)$.

Then

$$F(t) = p_1 F_1(t) + p_2 F_2(t).$$

In shorthand, the mixture of distributions D_1 and D_2 with respect to the mixing probabilities p_1 and p_2 is denoted

$$\text{MIX} [p_1 D_1, p_2 D_2].$$
2. **Distributive Law**

Now let

\[T = T_3 + T' \]

where

\[
T' = \begin{cases}
T_4 \text{ with probability } p \\
T_2 \text{ with probability } 1-p.
\end{cases}
\]

Then

\[
T = \begin{cases}
T_4 \text{ with probability } p \\
T_2 \text{ with probability } 1-p. \\
T_3 + T_4 \text{ with probability } p \\
T_3 + T_2 \text{ with probability } 1-p.
\end{cases}
\]

The distributive law holds due to the fact that the sum of the mixing probabilities for \(T_4 \) and \(T_2 \) is equal to one.

The survival function of \(T \) can be found by convolution:

\[
F(t) = F_3(t) + \int_0^t (pF_4(t-s) + (1-p)F_2(t-s))f_3(s)\, ds.
\]

With \(D_4, D_2, D_3 \) being the probability distributions for \(T_4, T_2, T_3 \), the distributive law can be applied to the shorthand notation:

\[
D_3 \overset{\text{MIX}}{\rightarrow} [pD_4, (1-p)D_2] = \text{MIX} [p(D_4 + D_2), (1-p)(D_2 + D_3)].
\]
Graphically this can be represented as follows:

\[D_3 + (1-p) D_2 = p D_4 + (1-p) D_2 + D_3 \]

Figure 1: Distributive Property of the MIX-Notation

3. Degeneracy at the Origin

Let

\[P(T=0) = 1. \]

Then the distribution of \(T \) is degenerate at zero.

In shorthand notation, such a distribution is called the ZERO-distribution.

Now let \(T = T_4 + T_0 \)

where \(T_4 \) and \(T_0 \) have probability distributions \(D_4 \) and ZERO and survival functions \(F_4(t) \) and \(F_0(t) \) respectively.

Then

\[
\bar{F}(t) = \bar{F}_4(t) + \int_0^t \bar{F}_0(t-s) f_4(s) \, ds \\
= \bar{F}_4(t).
\]
The ZERO-distribution doesn’t add anything to another distribution, so for instance

\[D_4 \ast \text{ZERO} = D_4 \]

\[D_2 \ast \text{MIX}[pD_4, (1-p)\text{ZERO}] = \text{MIX}[p(D_4 + D_2), (1-p)D_2]. \]
III. APPLYING A RELIABILITY SHORTHAND

After this brief survey over the concept of a reliability shorthand we will now show how the shorthand can be applied. To do so we will use basic structures. Part A of this chapter will give examples whose representation in shorthand requires only basic notation described in Chapter II, Parts A and B, whereas Part B of this chapter will give examples whose representation in shorthand makes use of the MIX-notation and the ZERO-distribution.

A. SUMS OF EXPONENTIALS WITH WEIGHT ONE

1. Simple Series System

A series system is a system which is functioning, when all its components are functioning. A two-component series system can be graphically represented as shown in Fig. 2.

Let

\[T : \text{life of the system} \]
\[T_i : \text{life of component } i \]
\[T_2 : \text{life of component } 2 \]
\[F_i(t) = \text{survival function of component } i \]
\[= e^{-λ_i t} \]
Figure 2: Two-Component Series System

\[F_2(t) = \text{survival function of component 2} \]

\[= e^{-\lambda_2 t} . \]

Then

\[T = \min(T_1, T_2) \]

\[\bar{F}(t) = \text{survival function of the system} \]

\[= P(T_1 > t, T_2 > t) \]

Assuming independence of the two components

\[\bar{F}(t) = P(T_1 > t) P(T_2 > t) \]

\[= \bar{F}_1(t) \bar{F}_2(t) \]

\[= e^{-\lambda_1 t} e^{-\lambda_2 t} \]

\[= e^{-(\lambda_1 + \lambda_2) t} . \]

The shorthand notation for this system is

\[\text{EXP} (\lambda_1 + \lambda_2) . \]
This is intuitively apparent, as the system has an exponential survival function with failure rate $\lambda_1 + \lambda_2$.

2. Simple Parallel System

A parallel system is a system which is functioning, when at least one of its components is functioning. A two-component parallel system can be graphically represented as follows:

![Diagram of a two-component parallel system]

Figure 3: Two-Component Parallel System

Let

$T_1 \sim \text{EXP}(\lambda), T_2 \sim \text{EXP}(\lambda)$.

Then

$T = \max(T_1, T_2)$

$\bar{F}(t) = P(\max(T_1, T_2) > t)$

$= 1 - P(\max(T_1, T_2) \leq t)$

$= 1 - P(T_1 \leq t, T_2 \leq t)$
Assuming independence of the two components,

\[\bar{F}(t) = 1 - P(T_1 \leq t) P(T_2 \leq t) \]
\[= 1 - P_1(t) P_2(t) \]
\[= 1 - (1-e^{-\lambda t})(1-e^{-\lambda t}) \]
\[= 1 - (1-2e^{-\lambda t} + e^{-2\lambda t}) \]
\[= 2e^{-\lambda t} - e^{-2\lambda t}. \]

The shorthand notation for the system is

\[\text{EXP}(2\lambda) + \text{EXP}(\lambda). \]

This follows intuition as the system has an \(\text{EXP}(2\lambda) \) life to begin with and when one component fails it has an extra \(\text{EXP}(\lambda) \) life due to the memoryless property of the exponential distribution.

3. **Standby-System with Dissimilar Components**

Suppose a system consists of two components, one active and one spare. The active component stays in service until it fails and then immediately is replaced by the spare.

Let the time to failure of the two components be

\(T_1 \sim \text{EXP}(\lambda_1) \) and \(T_2 \sim \text{EXP}(\lambda_2) \) respectively.

Then the system time to failure is

\[T = T_1 + T_2 \]

and the survival function of the system is

\[\bar{F}(t) = P(T > t) \]
Figure 4: Standby System

\[
F_4(t) = \bar{F}_4(t) + \int_0^t \bar{F}_2(t-s) f_4(s) \, ds \\
= e^{-\lambda_4 t} + \int_0^t e^{-\lambda_2(t-s)} \lambda_1 e^{-\lambda_4 s} \, ds \\
= \frac{\lambda_4}{\lambda_4 - \lambda_2} e^{-\lambda_4 t} - \frac{\lambda_2}{\lambda_4 - \lambda_2} e^{-\lambda_4 t}
\]

The shorthand notation for the system's survival function should be obvious. The system has an EXP(\(\lambda_4\)) life from the active component and an additional EXP(\(\lambda_2\)) life from the spare. So the shorthand notation is

\[\text{EXP}(\lambda_4) + \text{EXP}(\lambda_2)\]
B. Sums of Exponentials with Weight Between Zero and One

The examples given in the previous chapter only involved exponential lives with weight one. Now we will look at some structures, whose survival function has a shorthand notation which includes the MIX-notation and/or the ZERO-distribution.

1. Parallel System with Dissimilar Failure Rates

The notion of a parallel system has been introduced in Chapter III.A.2. We now look at the case where

\[T_1 \sim \text{Exp}(\lambda_1) \text{ and } T_2 \sim \text{Exp}(\lambda_2). \]

Then

\[T = \max(T_1, T_2) \]

\[\bar{F}(t) = P(\max(T_1, T_2) > t) \]

\[= 1 - P(\max(T_1, T_2) \leq t) \]

\[= 1 - P(T_1 \leq t, T_2 \leq t) \]

Assuming independence of the two components

\[\bar{F}(t) = 1 - P(T_1 \leq t) P(T_2 \leq t) \]

\[= 1 - F_1(t) F_2(t) \]

\[= 1 - (1 - e^{-\lambda_1 t})(1 - e^{-\lambda_2 t}) \]

\[= 1 - (1 - e^{-\lambda_1 t} - e^{-\lambda_2 t} + e^{-\lambda_1 t} + e^{-\lambda_2 t} - e^{-\lambda_1 t} - e^{-\lambda_2 t}) \]

\[= e^{-\lambda_1 t} + e^{-\lambda_2 t} - e^{-(\lambda_1 + \lambda_2) t}. \]
To find the shorthand notation of the system consider all the ways which lead to the survival of the system:

- either both components survive
- or component 1 fails and component 2 survives
- or component 2 fails and component 1 survives.

If one component fails and one survives, in \(\frac{\lambda_2}{\lambda_1 + \lambda_2} \) fraction of the cases the survivor will be component 1 and in \(\frac{\lambda_1}{\lambda_1 + \lambda_2} \) fraction of the cases it will be component 2.

This can graphically be represented as

\[
\frac{\lambda_2}{\lambda_1 + \lambda_2} \quad \exp(\lambda_1) \quad \frac{\lambda_1}{\lambda_1 + \lambda_2} \quad \exp(\lambda_2)
\]

\[
\exp(\lambda_1 + \lambda_2) + \frac{\lambda_2}{\lambda_1 + \lambda_2} \quad \exp(\lambda_1) \quad \frac{\lambda_1}{\lambda_1 + \lambda_2} \quad \exp(\lambda_2)
\]

Making use of the MIX-notation the shorthand notation then is

\[
\exp(\lambda_1 + \lambda_2) + \text{MIX}[\frac{\lambda_2}{\lambda_1 + \lambda_2} \exp(\lambda_1), \frac{\lambda_1}{\lambda_1 + \lambda_2} \exp(\lambda_2)]
\]

and using the distributive property it becomes

\[
\text{MIX}[\frac{\lambda_2}{\lambda_1 + \lambda_2}(\exp(\lambda_1) + \exp(\lambda_2 + \lambda_2)) + \frac{\lambda_1}{\lambda_1 + \lambda_2}(\exp(\lambda_2) + \exp(\lambda_1 + \lambda_2))].
\]
As a check to see that this shorthand notation represents the survival function of the system, we derive the survival function from the shorthand notation:

\[
\overline{F}(t) = \frac{\lambda_1}{\lambda_1 + \lambda_2} \left(e^{-\lambda_1 t} + \int_0^t e^{-(\lambda_1 + \lambda_2)(t-s)} \lambda_2 e^{-\lambda_2 s} ds \right) \\
+ \frac{\lambda_2}{\lambda_1 + \lambda_2} \left(e^{-\lambda_2 t} + \int_0^t e^{-(\lambda_1 + \lambda_2)(t-s)} \lambda_1 e^{-\lambda_1 s} ds \right) \\
= e^{-\lambda_1 t} + e^{-\lambda_2 t} - e^{-(\lambda_1 + \lambda_2)t}.
\]

This verifies that the shorthand notation indeed represents the system's survival function.

2. **Series System with One Spare**

Let us now look at a two-component series system, whose components have dissimilar failure rates with one component having a spare:

Component 1 has the constant failure rate \(\lambda_1 \), and component 2 and the spare have the constant failure rate \(\lambda_2 \).

The spare can only replace component 2.

Let

- \(\overline{F}_1(t) \) : the survival function of component 1
- \(\overline{F}_2(t) \) : the survival function of the standby system component 2 with its spare.
The survival function for a standby system was derived in Chapter II.B. Therefore

\[
F_2(t) = e^{-\lambda_2 t} + \int_0^t e^{-\lambda_2 (t-s)} \lambda_2 e^{-\lambda_2 s} \, ds
\]

\[
= e^{-\lambda_2 t} + \lambda_2 e^{-\lambda_2 t} \int_0^t \lambda_2 e^{s} \, ds
\]

\[
= (1 + \lambda_2 t) e^{-\lambda_2 t}.
\]

Now \(F_4(t) = e^{-\lambda_4 t} \)

Then \(F(t) = F_4(t) F_2(t) \)

\[
= (1 + \lambda_2 t) e^{-(\lambda_4 + \lambda_2) t}.
\]

To translate the survival function into shorthand notation, let us consider the ways in which the system can survive:

- either both components survive
- or component 2 fails and its spare survives.
If one component fails, in \(\frac{\lambda_2}{\lambda_1 + \lambda_2} \) fraction of the time it will be component 1, which means that the system will not survive; in \(\frac{\lambda_1}{\lambda_1 + \lambda_2} \) fraction of the time the failing component will be component 2.

This can graphically be represented as

\[
\frac{\lambda_1}{\lambda_1 + \lambda_2} \quad \text{ZERO} \\
\frac{\lambda_2}{\lambda_1 + \lambda_2} \quad \text{EXP}(\lambda_1 + \lambda_2)
\]

Using the MIX-notation the survival function then is

\[
\text{EXP}(\lambda_1 + \lambda_2) + \text{MIX} \left[\frac{\lambda_1}{\lambda_1 + \lambda_2} \text{ZERO}, \frac{\lambda_2}{\lambda_1 + \lambda_2} \text{EXP}(\lambda_1 + \lambda_2) \right]
\]

\[
= \text{MIX} \left[\frac{\lambda_1}{\lambda_1 + \lambda_2} (\text{ZERO} + \text{EXP}(\lambda_1 + \lambda_2)), \frac{\lambda_2}{\lambda_1 + \lambda_2} \text{EXP}(\lambda_1 + \lambda_2) \right]
\]

\[
= \text{MIX} \left[\frac{\lambda_1}{\lambda_1 + \lambda_2} \text{EXP}(\lambda_1 + \lambda_2)), \frac{\lambda_2}{\lambda_1 + \lambda_2} \text{EXP}(\lambda_1 + \lambda_2) \right].
\]

To prove, that the shorthand notation does represent the survival function, we derive the latter from the shorthand:

\[
\bar{F}(t) = \frac{\lambda_1}{\lambda_1 + \lambda_2} e^{-(\lambda_1+\lambda_2)t} + \frac{\lambda_2}{\lambda_1 + \lambda_2} \left(e^{-(\lambda_1+\lambda_2)t} + \right)
\]

25
This is the previously found result and this verifies, that the shorthand notation does represent the system's survival function.

3. **Two-out-of-Three System**

As a last example in this chapter, we will look at a Two-out-of-Three system.

Consider a three component system, whose components have constant failure rates λ_1, λ_2, and λ_3 respectively. The system is functioning, as long as two out of three components are functioning (see Fig. 6).

In other words, the system is functioning as long as there is a path through the system.

Alternatively, the system can be visualized as a parallel-series system (compare Fig. 7).

The survival function of the system is

$$
F(t) = P(T_1 \geq t \land T_2 \geq t) + P(T_1 \geq t \land T_3 \geq t) \\
+ P(T_2 \geq t \land T_3 \geq t) \\
- P((T_1 \geq t \land T_2 \geq t) \land (T_1 \geq t \land T_3 \geq t)) \\
- P((T_1 \geq t \land T_2 \geq t) \land (T_2 \geq t \land T_3 \geq t)) \\
- P((T_1 \geq t \land T_3 \geq t) \land (T_2 \geq t \land T_3 \geq t))
$$
Figure 6: Two-out-of-Three System

\[P((T_1 > t \land T_2 > t) \land (T_4 > t \land T_5 > t)) \]

Figure 7: Two-out-of-Three System

\[P(T_2 > t \land T_3 > t). \]
Thus

\[\bar{F}(t) = P(T_1 > t \land T_2 > t) + P(T_1 > t \land T_3 > t) + P(T_2 > t \land T_3 > t) - 3P(T_1 > t \land T_2 > t \land T_3 > t) + P(T_4 > t \land T_2 > t \land T_3 > t) \]

Therefore, and assuming independence of the components,

\[\bar{F}(t) = P(T_1 > t) P(T_2 > t) + P(T_1 > t) P(T_3 > t) + P(T_2 > t) P(T_3 > t) - 3P(T_1 > t) P(T_2 > t) P(T_3 > t) + P(T_4 > t) P(T_2 > t) P(T_3 > t) \]

\[= e^{-(\lambda_1 + \lambda_2)t} + e^{-(\lambda_1 + \lambda_3)t} + e^{-(\lambda_2 + \lambda_3)t} - 2e^{-(\lambda_1 + \lambda_2 + \lambda_3)t} \]

Now let us consider all the possible ways, in which the system can survive:

- either all components survive

- or component 1 fails and component 2 and 3 survive

- or component 2 fails and component 1 and 3 survive
- or component 3 fails and component 1 and 2 survive.

If a component fails and the other two survive, in \(\frac{\lambda_i}{\lambda_1 + \lambda_2 + \lambda_3} \) fraction of the time it will be component \(i = 1, 2, 3 \).

This can graphically be represented as

\[
\frac{\lambda_1}{\lambda_1 + \lambda_2 + \lambda_3} \quad \text{EXP}(\lambda_1 + \lambda_3) \\
\frac{\lambda_2}{\lambda_1 + \lambda_2 + \lambda_3} \quad \text{EXP}(\lambda_1 + \lambda_2) \\
\frac{\lambda_3}{\lambda_1 + \lambda_2 + \lambda_3} \quad \text{EXP}(\lambda_1 + \lambda_2 + \lambda_3)
\]

The shorthand notation then is

\[
\text{EXP}(\lambda_1 + \lambda_2 + \lambda_3) + \text{MIX}[\frac{\lambda_1}{\lambda_1 + \lambda_2 + \lambda_3} \text{EXP}(\lambda_1 + \lambda_3) , \frac{\lambda_2}{\lambda_1 + \lambda_2 + \lambda_3} \text{EXP}(\lambda_1 + \lambda_2) , \frac{\lambda_3}{\lambda_1 + \lambda_2 + \lambda_3} \text{EXP}(\lambda_1 + \lambda_2 + \lambda_3)],
\]

\[
= \text{MIX}[\frac{\lambda_1}{\lambda_1 + \lambda_2 + \lambda_3} (\text{EXP}(\lambda_1 + \lambda_3) + \text{EXP}(\lambda_1 + \lambda_2 + \lambda_3)) , \frac{\lambda_2}{\lambda_1 + \lambda_2 + \lambda_3} (\text{EXP}(\lambda_1 + \lambda_2) + \text{EXP}(\lambda_1 + \lambda_2 + \lambda_3)) , \frac{\lambda_3}{\lambda_1 + \lambda_2 + \lambda_3} (\text{EXP}(\lambda_1 + \lambda_2 + \lambda_3))].
\]
Again, as a check that the shorthand notation represents the survival function, let us derive the survival function from the shorthand notation:

\[
P(t) = \frac{\lambda_1}{\lambda_1 + \lambda_2 + \lambda_3} \left[e^{-(\lambda_1+\lambda_2)t} + \int_0^t e^{-(\lambda_1+\lambda_2+\lambda_3)(t-s)}(\lambda_2+\lambda_3)e^{-(\lambda_1+\lambda_2)s} \, ds \right]
\]

\[
+ \frac{\lambda_2}{\lambda_1 + \lambda_2 + \lambda_3} \left[e^{-(\lambda_1+\lambda_3)t} + \int_0^t e^{-(\lambda_1+\lambda_2+\lambda_3)(t-s)}(\lambda_1+\lambda_3)e^{-(\lambda_1+\lambda_3)s} \, ds \right]
\]

\[
+ \frac{\lambda_3}{\lambda_1 + \lambda_2 + \lambda_3} \left[e^{-(\lambda_1+\lambda_2)t} + \int_0^t e^{-(\lambda_1+\lambda_2+\lambda_3)(t-s)}(\lambda_1+\lambda_2)e^{-(\lambda_1+\lambda_2)s} \, ds \right]
\]

\[
= e^{-(\lambda_1+\lambda_2)t} + e^{-(\lambda_1+\lambda_3)t} + e^{-(\lambda_1+\lambda_2)t} - e^{-(\lambda_1+\lambda_2+\lambda_3)t}
\]

The result again proves that the shorthand notation indeed represents the survival function of the system.
IV. IMPLEMENTING THE SHORTHAND ON THE TI-59

The concept of a reliability shorthand is introduced in the course "Reliability and Weapons System Effectiveness Measurements", GA 4302, at the Naval Postgraduate School, Monterey. Most students taking the course are in the Operations Research (OR) curriculum.

The choice of the TI-59 as the computing device, on which the shorthand was to be implemented, was based on the fact that each student in the OR-Curriculum is issued a TI-59 for use in basic probability and statistics courses. Thus, almost every student at the Naval Postgraduate School, who is introduced to the shorthand, is familiar with the TI-59 and has access to such a calculator.

A program, that uses the shorthand notation, times to failure and failure rates as input, should

- calculate the survival probability of basic structures / small systems and
- require moderate computation time.

To achieve these requirements it was decided to incorporate all solutions for the convolution of up to four exponential random variables in the program. The formulas that were used are given in Appendix A.
Two programs are provided in this paper.

Program 1 can be used when all rates are dissimilar or all are the same. It uses the formulas on pages 37 and 38 only.

Program 2 can be used for the general case. It makes use of all the formulas given in Appendix A. The program includes a sorting routine that determines the applicable formula from the entered failure rates.

A user guide to the two programs is provided in Appendix B.
V. SUMMARY

There is a reliability shorthand that denotes the survival function of a system, assuming that the failure rates of all components are constant.

This shorthand can be implemented on the TI-59 handheld calculator. With failure rates, time to failure and shorthand as input the TI-59 calculates the survival probability of the system.

Knowledge of calculus is not necessary to use this method, whereas the standard procedure, finding the survival probability by convolution, requires knowledge of integral calculus.

The choice of the TI-59 as the computing device for the implementation of the shorthand, though, implied limitations; the number of failure rates is limited due to the limited storage capacity of the TI-59, and computing times are comparatively long. The TI-59 can therefore only be used for smaller systems, preferably for the solution of classroom problems.

For the solution of larger problems, the shorthand should be implemented on a state-of-the-art personal
computer using a general algorithm for the convolution of
any number of exponential random variables.
APPENDIX A

CONVOLUTION FORMULAS

Appendix A contains formulas for the convolution of up to four exponential random variables.

For the two special cases, when all random variables have the same failure rate and all have different failure rates, general formulas for the convolution of any number of exponential random variables are given.

These formulas are used in the two TI-59 programs provided in Appendix B.
System:

Shorthand: \(\text{EXP}(\lambda) \)

Survival Function: \(F(t) = e^{-\lambda t} \)

Description:

A single active component with constant failure rate \(\lambda \).
System:

\[
\text{Survival Function: } F(t) = \frac{(\lambda t)^0}{0!} + \frac{(\lambda t)^1}{1!} + \cdots + \frac{(\lambda t)^{n-1}}{(n-1)!} e^{-\lambda t}
\]

\[
= \sum_{i=1}^{n} \frac{(\lambda t)^{i-1}}{(i-1)!} \frac{-\lambda t}{e}
\]

Description:

A single active component with constant failure rate is supported by \(n-1 \) identical spares.
System:

\[\text{Shorthand: } \exp(\lambda_1) + \exp(\lambda_2) + \ldots + \exp(\lambda_n) \]

Survival Function: \(\bar{F}(t) = \sum_{i=1}^{n} \left(\prod_{d \neq i} \frac{-\lambda_d}{\lambda_d - \lambda_i} \right) \frac{\lambda_i}{e^{\lambda_i t}} \)

Description:

A single active component with constant failure rate is supported by \(n-1 \) spares. The active component and the spares have all constant, but dissimilar failure rates.
System:

\[A_1 \]

\[S_2 \]

\[S_2 \]

Shorthand: \(\exp(\lambda_4) + \exp(\lambda_2) + \exp(\lambda_2) \)

Survival Function: \(\overline{F}(t) = A e^{-\lambda_4 t} + (B + C e^{-\lambda_2 t}) \)

where \(A = \frac{\lambda_2^2}{(\lambda_2 - \lambda_4)^2} \)
\(B = 1 - A \)
\(C = \frac{\lambda_4 \lambda_2}{\lambda_4 - \lambda_2} \)

Description:

A single active component with constant failure rate \(\lambda_4 \)
is supported by two spares with identical constant failure rate \(\lambda_2 \).
System:

\[
\begin{array}{c}
\text{A}_1 \\
\downarrow \\
\text{S}_2 \\
\downarrow \\
\text{S}_2 \\
\downarrow \\
\text{S}_2
\end{array}
\]

Shorthand: \(\exp(\lambda_1) + \exp(\lambda_2) + \exp(\lambda_2) + \exp(\lambda_2) \)

Survival Function: \(\bar{F}(t) = A e^{-\lambda_1 t} + (B + Ct + Dt^2) e^{-\lambda_2 t} \)

where \(A = \frac{\lambda_2^3}{(\lambda_2 - \lambda_1)^3} \)

\(B = 1 - A \)

\(C = \lambda_2 - \frac{\lambda_2^3}{(\lambda_1 - \lambda_2)^2} \)

\(D = \frac{\lambda_1 \lambda_2^2}{2 (\lambda_1 - \lambda_2)} \)

Description:

A single active component with constant failure rate \(\lambda_1 \)
is supported by three spares with identical constant failure rate \(\lambda_2 \).
System:

![Diagram of system with components and failure rates](image)

Shorthand: $\exp(\lambda_1) + \exp(\lambda_1) + \exp(\lambda_2) + \exp(\lambda_2)$

Survival Function: $F(t) = (A + Bt)e^{-\lambda_1 t} + (C + D^2)e^{-\lambda_2 t}$

where $A = \frac{\lambda_2^3 - 3 \lambda_2^2 \lambda_1}{(\lambda_2 - \lambda_1)^3}$

$B = \frac{\lambda_1 \lambda_2}{(\lambda_2 - \lambda_1)^2}$

$C = 1 - A$

$D = \frac{\lambda_2^2}{(\lambda_1 - \lambda_2)^2}$

Description:

A single active component with constant failure rate λ_1 is supported by one identical spare and two spares with dissimilar, constant failure rate λ_2.
System:

\[\lambda_1 \]

Shorthand: \(\exp(\lambda_1) + \exp(\lambda_2) + \exp(\lambda_3) + \exp(\lambda_4) \)

Survival Function: \(\bar{F}(t) = A e^{-\lambda_1 t} + B e^{-\lambda_2 t} + (C + D t) e^{-\lambda_1 t} \)

where

\[A = \frac{\lambda_2 \lambda_3^2}{(\lambda_2 - \lambda_4)(\lambda_3 - \lambda_4)^2} \]

\[B = \frac{\lambda_1 \lambda_3^2}{(\lambda_1 - \lambda_2)(\lambda_3 - \lambda_2)^2} \]

\[C = \frac{\lambda_1 \lambda_2}{(\lambda_1 - \lambda_3)(\lambda_2 - \lambda_3)} + \frac{\lambda_1 \lambda_2 \lambda_3}{(\lambda_1 - \lambda_3)(\lambda_2 - \lambda_3)^2} - \frac{\lambda_1}{(\lambda_2 - \lambda_3)^2} \]

\[D = \frac{\lambda_1 \lambda_2 \lambda_3}{(\lambda_1 - \lambda_3)(\lambda_2 - \lambda_3)} \]

Description:

A single active component with constant failure rate \(\lambda_1 \) has three spares. One spare has constant failure rate \(\lambda_2 \), two spares are identical with constant failure rate \(\lambda_3 \).
APPENDIX B

USER GUIDE TO TI-59 PROGRAMS

Appendix B contains a user guide to two TI-59 programs, which use reliability shorthand and failure rates as input to compute the survival probability of a system.

PROGRAM 1 is designed for the two special cases where the reliability shorthand is of the form

\[\text{EXP}(\lambda) + \text{EXP}(\lambda) + \ldots + \text{EXP}(\lambda) \]

or

\[\text{EXP}(\lambda_1) + \text{EXP}(\lambda_2) + \ldots + \text{EXP}(\lambda_n) \]

In the first case the number of terms is not limited, whereas in the second case the number of terms is limited to 40 due to limited storage capacity of the TI-59. In this case the number of terms can be increased to 70 by entering 9 in the display and pressing 2nd Op 1 7.

PROGRAM 2 is designed to solve problems of the kind, that were introduced in Chapter III.8. Due to limited memory of the TI-59 the number of exponential terms under one weight in shorthand notation is limited to four.
All results will be printed, if the TI-59 is connected
to a TI PC-100A or TI PC-100C printer.
PROGRAM 1 : Procedure

1. Use any library module. Read in program 1 (side 1 of the magnetic card)
2. Press 2nd C' to initialize.
3. Enter n, the number of exponential terms to be convolved, in the display and press A.
4. Enter time t and press B.
5. Enter λ_i and press C. When all failure rates are the same, enter λ only once.
6. a) To find the survival probability of the system, when all failure rates are the same, press 2nd A'.
 b) To find the survival probability of the system, when all failure rates are dissimilar, press 2nd B'.

 .
PROGRAM 1: Sample Problems

1. Find the survival probability of a parallel system
 (compare Chapter III.A.2)

a) \(\lambda = 0.3 \), \(t = 7 \), \(n = 2 \)

b) Shorthand notation:

\[\text{EXP}(0.6) + \text{EXP}(0.3) \]

Enter Comment Press Display

- \(\text{Initialize} \) \(\lambda' \) 0
- 2 \(n \) A 0
- 7 \(t \) B 7
- 0.6 \(2 \lambda \) C 0.3
- 0.3 \(\lambda \) C 0.3
- \(\bar{F}(t) \) B' \(0.2299172797 \)

Calculation takes 13 seconds
2. Find the survival probability of a standby-system with dissimilar components (compare Chapter III.A.3).

a) \(\lambda_1 = .4 \), \(\lambda_2 = .5 \), \(t = 6 \), \(n = 2 \)

b) Shorthand notation:

\[
\text{EXP(.4)} + \text{EXP(.5)}
\]

c) Enter Comment Press Display

<table>
<thead>
<tr>
<th>Initialize</th>
<th>(r)</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(n)</td>
<td>A</td>
</tr>
<tr>
<td>6</td>
<td>(t)</td>
<td>B</td>
</tr>
<tr>
<td>.4</td>
<td>(\lambda_1)</td>
<td>C</td>
</tr>
<tr>
<td>.5</td>
<td>(\lambda_2)</td>
<td>C</td>
</tr>
<tr>
<td>(\overline{F}(t))</td>
<td>B'</td>
<td>.254441493</td>
</tr>
</tbody>
</table>

calculation takes 13 seconds
3. Find the survival probability of a standby-system with one active component and four similar spares.

a) \(\lambda = .3 \), \(t = 7 \), \(n = 5 \)

b) Shorthand notation:

\[\exp(.3) + \exp(.3) + \exp(.3) + \exp(.3) + \exp(.3) \]

c) Enter Comment Press Display

<table>
<thead>
<tr>
<th>Enter</th>
<th>Comment</th>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialize</td>
<td>(c')</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>(n)</td>
<td>(A)</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>(t)</td>
<td>(B)</td>
<td>7</td>
</tr>
<tr>
<td>.3</td>
<td>(\lambda)</td>
<td>(C)</td>
<td>.3</td>
</tr>
</tbody>
</table>

\[\overline{F}(t) = A' = .9378738848 \]

calculation takes 9 seconds
PROGRAM 2 : Procedure

CASE I : To find the convolution of up to four exponential random variables.

1. Use any library module.
 Re-Partition (enter 2 in the display, press 2nd Op 17).
 Read in all four sides of the magnetic card.

2. Press 2nd C' to initialize.

3. Enter n, the number of exponential terms to be convolved, in the display and press A.

4. Enter time t and press B.

5. Enter λ_j and press C (n entries).

 REMARK: Failure rates, which appear only once in the expression, have to be entered before failure rates, that appear several times.

6. To find the survival probability of the system press E.
PROGRAM 2, CASE I: Sample Problems

(1) Shorthand notation

\[\exp(h_1) + \exp(h_2) + \exp(h_3) \]

Sample values: \(h_1 = .3, h_2 = .4, t = 7 \)

Procedure:

<table>
<thead>
<tr>
<th>Enter</th>
<th>Comment</th>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialize</td>
<td>(c')</td>
<td>(0)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>n</td>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>t</td>
<td>B</td>
<td>7</td>
</tr>
<tr>
<td>.3</td>
<td>(h_1)</td>
<td>c</td>
<td>.3</td>
</tr>
<tr>
<td>.4</td>
<td>(h_2)</td>
<td>c</td>
<td>.4</td>
</tr>
<tr>
<td>.4</td>
<td>(h_2)</td>
<td>c</td>
<td>.4</td>
</tr>
<tr>
<td>(F(t))</td>
<td>E</td>
<td>.5363473866</td>
<td></td>
</tr>
</tbody>
</table>

calculation takes 14 seconds
(2) Shorthand notation

\[\exp(\lambda_1) + \exp(\lambda_2) + \exp(\lambda_3) + \exp(\lambda_4) \]

Sample values: \(\lambda_1 = .2, \lambda_2 = .4, t = 3 \)

Procedure:

<table>
<thead>
<tr>
<th>Enter</th>
<th>Comment</th>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>A</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>t</td>
<td>B</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>.2</td>
<td>(\lambda_1)</td>
<td>C</td>
<td>.2</td>
</tr>
<tr>
<td>.4</td>
<td>(\lambda_2)</td>
<td>C</td>
<td>.4</td>
</tr>
<tr>
<td>.4</td>
<td>(\lambda_3)</td>
<td>C</td>
<td>.4</td>
</tr>
<tr>
<td>.4</td>
<td>(\lambda_4)</td>
<td>C</td>
<td>.4</td>
</tr>
</tbody>
</table>
| \(\bar{F}(t) \) | E | \(\exp(0.9809746099) \)

Calculation takes 20 seconds
(3) **Shorthand notation**

\[\exp(\lambda_4) + \exp(\lambda_1) + \exp(\lambda_2) + \exp(\lambda_3) \]

Sample values: \(\lambda_4 = .4 \), \(\lambda_2 = .3 \), \(t = 5 \)

Procedure:

<table>
<thead>
<tr>
<th>Enter</th>
<th>Comment</th>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialize</td>
<td>(\tau)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>(n)</td>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>(t)</td>
<td>B</td>
<td>5</td>
</tr>
<tr>
<td>.4</td>
<td>(\lambda_4)</td>
<td>C</td>
<td>.4</td>
</tr>
<tr>
<td>.4</td>
<td>(\lambda_4)</td>
<td>C</td>
<td>.4</td>
</tr>
<tr>
<td>.3</td>
<td>(\lambda_2)</td>
<td>C</td>
<td>.3</td>
</tr>
<tr>
<td>.3</td>
<td>(\lambda_2)</td>
<td>C</td>
<td>.3</td>
</tr>
<tr>
<td>(\bar{F}(t))</td>
<td>E</td>
<td>(.9029040721)</td>
<td></td>
</tr>
</tbody>
</table>

calculation takes 20 seconds
(4) Shorthand notation

\[\exp(\lambda_4) + \exp(\lambda_2) + \exp(\lambda_3) + \exp(\lambda_3) \]

Sample values: \(\lambda_1 = .1 \), \(\lambda_2 = .3 \), \(\lambda_3 = .5 \),

\(t = 10 \)

Procedure:

<table>
<thead>
<tr>
<th>Enter</th>
<th>Comment</th>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialize</td>
<td>(c')</td>
<td>(0)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(n)</td>
<td>(A)</td>
<td>(0)</td>
</tr>
<tr>
<td>10</td>
<td>(t)</td>
<td>(B)</td>
<td>(10)</td>
</tr>
<tr>
<td>.1</td>
<td>(\lambda_1)</td>
<td>(\gamma)</td>
<td>(.1)</td>
</tr>
<tr>
<td>.3</td>
<td>(\lambda_2)</td>
<td>(\gamma)</td>
<td>(.3)</td>
</tr>
<tr>
<td>.5</td>
<td>(\lambda_3)</td>
<td>(\gamma)</td>
<td>(.5)</td>
</tr>
<tr>
<td>.5</td>
<td>(\lambda_3)</td>
<td>(\gamma)</td>
<td>(.5)</td>
</tr>
<tr>
<td>(F(t))</td>
<td>(E)</td>
<td>(.7312684703)</td>
<td></td>
</tr>
</tbody>
</table>

calculation takes 25 seconds
PROGRAM 2: Procedure

CASE II: to solve problems of the kind, that were introduced in Chapter III.B.

1. Derive the system's shorthand notation. Find either the
 - graphical representation or
 - the MIX-notation.

2. Use any library module.

 Re-Partition (enter 2 in the display, press 2nd Op 17).
 Read in all four sides of the magnetic card.

3. Press 2nd C' to initialize.

4. Enter time t and press B.

5. Repeat the following steps for each path of the graphical representation, i.e. for each convolution in the MIX-notation.

 a) Enter n, the number of exponential terms to be convolved, in the display and press A.

 b) Enter \(\lambda_i \) and press C.

 REMARK: Failure rates, which appear only once in the expression, have to be entered before failure rates, that appear several times.

 c) Enter \(p_i \), the weight in the ith path, and press D.

 d) To find the part of the system's survival probability, that is contributed by the ith path, press E.
6. To find the survival probability of the system

press 2nd E'.
PROGRAM 2, CASE II : Sample Problems

1. Find the survival probability of a parallel system with dissimilar failure rates (compare Chapter III.B.1).
 a) $\lambda_1 = .1 , \lambda_2 = .2 , \tau = 2$
 b) Shorthand notation

 \[
 F(t) = \text{MIX}(\frac{.2}{.3})(\text{EXP}(.1) + \text{EXP}(.3), \frac{.1}{.3})(\text{EXP}(.2) + \text{EXP}(.3)).
 \]
Procedure:

<table>
<thead>
<tr>
<th>Enter</th>
<th>Comment</th>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialize</td>
<td>c'</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>t</td>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>n_1</td>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>.1</td>
<td>λ_1</td>
<td>C</td>
<td>.1</td>
</tr>
<tr>
<td>.3</td>
<td>λ_1 + λ_2</td>
<td>C</td>
<td>.3</td>
</tr>
<tr>
<td>(.2/.3)</td>
<td>p_1</td>
<td>D</td>
<td>.6666666667</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E</td>
<td>.635793541</td>
</tr>
<tr>
<td>2</td>
<td>n_2</td>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>.2</td>
<td>λ_2</td>
<td>C</td>
<td>.2</td>
</tr>
<tr>
<td>.3</td>
<td>λ_1 + λ_2</td>
<td>C</td>
<td>.3</td>
</tr>
<tr>
<td>(.1/.3)</td>
<td>p_2</td>
<td>D</td>
<td>.3333333333</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E</td>
<td>.30445622</td>
</tr>
<tr>
<td>F(t)</td>
<td>E'</td>
<td>.940239163</td>
<td></td>
</tr>
</tbody>
</table>

57
2. Find the survival probability of a series system with one spare as introduced in Chapter III.B.2.

a) \(\lambda_1 = 0.3 \), \(\lambda_2 = 0.5 \), \(t = 7 \)

b) Shorthand notation

\[
\bar{F}(t) = \text{MIX}[\text{EXP}(0.8), \text{EXP}(0.8) + \text{EXP}(0.8)]
\]
c)

Procedure:

<table>
<thead>
<tr>
<th>Enter</th>
<th>Comment</th>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialize</td>
<td>Z'</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>t</td>
<td>B</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>n₁</td>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>.8</td>
<td>λ₁ + λ₂</td>
<td>C</td>
<td>.8</td>
</tr>
<tr>
<td>(.3/.8)</td>
<td>p₄</td>
<td>D</td>
<td>.375</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E</td>
<td>.0013866989</td>
</tr>
<tr>
<td>2</td>
<td>n₂</td>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>.8</td>
<td>λ₁ + λ₂</td>
<td>C</td>
<td>.8</td>
</tr>
<tr>
<td>.8</td>
<td>λ₁ + λ₂</td>
<td>C</td>
<td>.8</td>
</tr>
<tr>
<td>(.5/.8)</td>
<td>p₂</td>
<td>D</td>
<td>.625</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E</td>
<td>.0152536878</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>.0166403867</td>
<td></td>
</tr>
</tbody>
</table>

F(t) | E' | .0166403867 |
3. Find the survival probability of a Two-out-of-Three System as introduced in Chapter III.B.3.

a) \(\lambda_1 = 0.2, \lambda_2 = 0.4, \lambda_3 = 0.5, \tau = 9 \)

b) Shorthand notation

\[
\bar{F}(t) = \text{MIX}\left[\begin{array}{c}
(0.2/1.1) (\exp(0.9) + \exp(1.1)), \\
(0.4/1.1) (\exp(0.7) + \exp(1.1)), \\
(0.5/1.1) (\exp(0.6) + \exp(1.1)) \end{array} \right].
\]
c) Procedure:

<table>
<thead>
<tr>
<th>Enter</th>
<th>Comment</th>
<th>Press</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialize</td>
<td>C'</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>t</td>
<td>B</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>n_4</td>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>1,1</td>
<td>(\lambda_4 + \lambda_2 + \lambda_3)</td>
<td>C</td>
<td>1,1</td>
</tr>
<tr>
<td>.9</td>
<td>(\lambda_2 + \lambda_3)</td>
<td>C</td>
<td>.9</td>
</tr>
<tr>
<td>(.2/1.1)</td>
<td>p_4</td>
<td>D</td>
<td>.1818181818</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E</td>
<td>.0002624871</td>
</tr>
<tr>
<td>2</td>
<td>n_2</td>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>1,1</td>
<td>(\lambda_4 + \lambda_2 + \lambda_3)</td>
<td>C</td>
<td>1,1</td>
</tr>
<tr>
<td>.7</td>
<td>(\lambda_4 + \lambda_3)</td>
<td>C</td>
<td>.7</td>
</tr>
<tr>
<td>(.4/1.1)</td>
<td>p_2</td>
<td>D</td>
<td>.3636363636</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E</td>
<td>.0018043754</td>
</tr>
<tr>
<td>2</td>
<td>n_3</td>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>1,1</td>
<td>(\lambda_4 + \lambda_2 + \lambda_3)</td>
<td>C</td>
<td>1,1</td>
</tr>
<tr>
<td>.6</td>
<td>(\lambda_4 + \lambda_2)</td>
<td>C</td>
<td>.6</td>
</tr>
<tr>
<td>(.5/1.1)</td>
<td>p_3</td>
<td>D</td>
<td>.4545454545</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E</td>
<td>.0044892129</td>
</tr>
<tr>
<td>(\bar{F}(t))</td>
<td>E'</td>
<td>.0065560755</td>
<td></td>
</tr>
</tbody>
</table>
PROGRAM 1

006 52 P/S
007 16 LBL
008 16 A
009 25 CP
010 25 CLR
011 47 CMS
012 81 RST
013 76 LBL
014 43 RCL
015 43 RCL
016 43 RCL
017 43 RCL
018 43 RCL
019 43 RCL
020 43 RCL
021 43 RCL
022 43 RCL
023 43 RCL
024 43 RCL
025 43 RCL
026 43 RCL
027 43 RCL
028 43 RCL
029 43 RCL
030 43 RCL
031 43 RCL
032 43 RCL
033 43 RCL
034 43 RCL
035 43 RCL
036 43 RCL
037 43 RCL
038 43 RCL
039 43 RCL
040 43 RCL
041 43 RCL
042 43 RCL
043 43 RCL
044 43 RCL
045 43 RCL
046 43 RCL
047 43 RCL
048 43 RCL
049 43 RCL
050 43 RCL
051 43 RCL
052 43 RCL
053 43 RCL
054 43 RCL
055 43 RCL
056 43 RCL
057 43 RCL
058 43 RCL
059 43 RCL
060 43 RCL
061 43 RCL
062 43 RCL
063 43 RCL
064 43 RCL
065 43 RCL
066 43 RCL
067 43 RCL
068 43 RCL
069 43 RCL
070 43 RCL
071 43 RCL
072 43 RCL
073 43 RCL
074 43 RCL
075 43 RCL
076 43 RCL
077 43 RCL
078 43 RCL
079 43 RCL
080 43 RCL
081 43 RCL
082 43 RCL
083 43 RCL
084 43 RCL
085 43 RCL
086 43 RCL
087 43 RCL
088 43 RCL
089 43 RCL
090 43 RCL
091 43 RCL
092 43 RCL
093 43 RCL
094 43 RCL
095 43 RCL
096 43 RCL
097 43 RCL
098 43 RCL
099 43 RCL
100 43 RCL
101 43 RCL
102 43 RCL
103 43 RCL
104 43 RCL
105 43 RCL
106 43 RCL
107 43 RCL
108 43 RCL
109 43 RCL
110 43 RCL
111 43 RCL
112 43 RCL
113 43 RCL
114 43 RCL
115 43 RCL
116 43 RCL
117 43 RCL
118 43 RCL
119 43 RCL
120 43 RCL
121 43 RCL
122 43 RCL
123 43 RCL
124 43 RCL
125 43 RCL
126 43 RCL
127 43 RCL
128 43 RCL
129 43 RCL
130 43 RCL
131 43 RCL
132 43 RCL
133 43 RCL
134 43 RCL
135 43 RCL
136 43 RCL
137 43 RCL
138 43 RCL
139 43 RCL
140 43 RCL
141 43 RCL
142 43 RCL
143 43 RCL
144 43 RCL
145 43 RCL
146 43 RCL
147 43 RCL
148 43 RCL
149 43 RCL
150 43 RCL
151 43 RCL
152 43 RCL
153 43 RCL
154 43 RCL
155 43 RCL
156 43 RCL
157 43 RCL
158 43 RCL
159 43 RCL
160 43 RCL
161 43 RCL
162 43 RCL
163 43 RCL
164 43 RCL
165 43 RCL
166 43 RCL
167 43 RCL
168 43 RCL
169 43 RCL
170 43 RCL
171 43 RCL
172 43 RCL
173 43 RCL
174 43 RCL
175 43 RCL
176 43 RCL
177 43 RCL
178 43 RCL
179 43 RCL
180 43 RCL
181 43 RCL
182 43 RCL
183 43 RCL
184 43 RCL
185 43 RCL
186 43 RCL
187 43 RCL
188 43 RCL
189 43 RCL
190 43 RCL
191 43 RCL
192 43 RCL
193 43 RCL
194 43 RCL
195 43 RCL
196 43 RCL
197 43 RCL
198 43 RCL
199 43 RCL
200 43 RCL
201 43 RCL
202 43 RCL
203 43 RCL
204 43 RCL
205 43 RCL
206 43 RCL
207 43 RCL
208 43 RCL
209 43 RCL
210 43 RCL
211 43 RCL
212 43 RCL
213 43 RCL
214 43 RCL
215 43 RCL
216 43 RCL
217 43 RCL
218 43 RCL
219 43 RCL
220 43 RCL
221 43 RCL
222 43 RCL
223 43 RCL
224 43 RCL
225 43 RCL

62
<table>
<thead>
<tr>
<th>Program 1 continued</th>
<th>Label Addresses</th>
</tr>
</thead>
<tbody>
<tr>
<td>120 26 PGM</td>
<td>160 36 PGM</td>
</tr>
<tr>
<td>121 73 RC*</td>
<td>161 73 RC*</td>
</tr>
<tr>
<td>122 08 08</td>
<td>162 08 08</td>
</tr>
<tr>
<td>123 32 KIT</td>
<td>163 94 +/-</td>
</tr>
<tr>
<td>124 73 RC+</td>
<td>164 65 x</td>
</tr>
<tr>
<td>125 06 06</td>
<td>165 43 PCL</td>
</tr>
<tr>
<td>126 22 INV</td>
<td>166 01</td>
</tr>
<tr>
<td>127 09 EQ</td>
<td>167 95 =</td>
</tr>
<tr>
<td>128 10 TRN</td>
<td>168 33 INV</td>
</tr>
<tr>
<td>129 99 OP</td>
<td>169 33 LNK</td>
</tr>
<tr>
<td>130 11 26</td>
<td>170 90 x</td>
</tr>
<tr>
<td>131 61 GTO</td>
<td>171 43 PCL</td>
</tr>
<tr>
<td>132 08 SIN</td>
<td>172 16 16</td>
</tr>
<tr>
<td>133 76 LBL</td>
<td>173 95 =</td>
</tr>
<tr>
<td>134 00 TAN</td>
<td>174 44 SUM</td>
</tr>
<tr>
<td>135 49 FRD</td>
<td>175 16 18</td>
</tr>
<tr>
<td>136 16 16</td>
<td>176 43 PCL</td>
</tr>
<tr>
<td>137 43 -</td>
<td>177 00</td>
</tr>
<tr>
<td>138 32 RC+</td>
<td>178 33 KIT</td>
</tr>
<tr>
<td>139 08 08</td>
<td>179 33 PCL</td>
</tr>
<tr>
<td>140 99 =</td>
<td>180 33 08</td>
</tr>
<tr>
<td>141 14 44 X</td>
<td>181 33 -</td>
</tr>
<tr>
<td>142 41 44 PRD</td>
<td>182 33 1</td>
</tr>
<tr>
<td>143 41 16</td>
<td>183 53 9</td>
</tr>
<tr>
<td>144 33 RCL</td>
<td>184 33 =</td>
</tr>
<tr>
<td>145 00 00</td>
<td>185 63 EQ</td>
</tr>
<tr>
<td>146 32 KIT</td>
<td>186 33 P/R</td>
</tr>
<tr>
<td>147 43 RCL</td>
<td>187 33 DF</td>
</tr>
<tr>
<td>148 16 06</td>
<td>188 33 33</td>
</tr>
<tr>
<td>149 15 -</td>
<td>189 33 GTD</td>
</tr>
<tr>
<td>150 11 1</td>
<td>190 33 COS</td>
</tr>
<tr>
<td>151 95 9</td>
<td>191 33 LBL</td>
</tr>
<tr>
<td>152 97 GE</td>
<td>192 33 P/R</td>
</tr>
<tr>
<td>153 86 36 PGM</td>
<td>193 33 SBR</td>
</tr>
<tr>
<td>154 99 DP</td>
<td>194 33 CMS</td>
</tr>
<tr>
<td>155 26 36</td>
<td>195 33 PRT</td>
</tr>
<tr>
<td>156 08 GTO</td>
<td>196 33 R/S</td>
</tr>
<tr>
<td>157 36 SIN</td>
<td>197 44</td>
</tr>
<tr>
<td>158 46 LBL</td>
<td>198 47 CMS</td>
</tr>
<tr>
<td>159 00 16</td>
<td>199 47 RTH</td>
</tr>
<tr>
<td>160 01</td>
<td>200 47 18</td>
</tr>
</tbody>
</table>
PROGRAM 2

<table>
<thead>
<tr>
<th>Line</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>66</td>
<td>STF</td>
</tr>
<tr>
<td>001</td>
<td>.00</td>
<td>00</td>
</tr>
<tr>
<td>002</td>
<td>.61</td>
<td>GTO</td>
</tr>
<tr>
<td>003</td>
<td>15</td>
<td>E</td>
</tr>
<tr>
<td>004</td>
<td>76</td>
<td>LBL</td>
</tr>
<tr>
<td>005</td>
<td>08</td>
<td>CP</td>
</tr>
<tr>
<td>006</td>
<td>28</td>
<td>LBL</td>
</tr>
<tr>
<td>007</td>
<td>47</td>
<td>CMS</td>
</tr>
<tr>
<td>008</td>
<td>.91</td>
<td>R/S</td>
</tr>
<tr>
<td>009</td>
<td>76</td>
<td>LBL</td>
</tr>
<tr>
<td>010</td>
<td>11</td>
<td>R</td>
</tr>
<tr>
<td>011</td>
<td>42</td>
<td>STD</td>
</tr>
<tr>
<td>012</td>
<td>.00</td>
<td>00</td>
</tr>
<tr>
<td>013</td>
<td>15</td>
<td>-</td>
</tr>
<tr>
<td>014</td>
<td>.00</td>
<td>1</td>
</tr>
<tr>
<td>015</td>
<td>42</td>
<td>STD</td>
</tr>
<tr>
<td>016</td>
<td>.00</td>
<td>09</td>
</tr>
<tr>
<td>017</td>
<td>29</td>
<td>CP</td>
</tr>
<tr>
<td>018</td>
<td>01</td>
<td>1</td>
</tr>
<tr>
<td>019</td>
<td>00</td>
<td>0</td>
</tr>
<tr>
<td>020</td>
<td>42</td>
<td>STD</td>
</tr>
<tr>
<td>021</td>
<td>00</td>
<td>08</td>
</tr>
<tr>
<td>022</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>023</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>024</td>
<td>00</td>
<td>0</td>
</tr>
<tr>
<td>025</td>
<td>42</td>
<td>STD</td>
</tr>
<tr>
<td>026</td>
<td>00</td>
<td>17</td>
</tr>
<tr>
<td>027</td>
<td>00</td>
<td>0</td>
</tr>
<tr>
<td>028</td>
<td>42</td>
<td>STD</td>
</tr>
<tr>
<td>029</td>
<td>00</td>
<td>18</td>
</tr>
<tr>
<td>030</td>
<td>41</td>
<td>R/S</td>
</tr>
<tr>
<td>031</td>
<td>76</td>
<td>LBL</td>
</tr>
<tr>
<td>032</td>
<td>12</td>
<td>B</td>
</tr>
<tr>
<td>033</td>
<td>42</td>
<td>STD</td>
</tr>
<tr>
<td>034</td>
<td>01</td>
<td>01</td>
</tr>
<tr>
<td>035</td>
<td>31</td>
<td>R/S</td>
</tr>
<tr>
<td>036</td>
<td>76</td>
<td>LBL</td>
</tr>
<tr>
<td>037</td>
<td>13</td>
<td>C</td>
</tr>
<tr>
<td>038</td>
<td>.00</td>
<td>08</td>
</tr>
<tr>
<td>039</td>
<td>.00</td>
<td>00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Line</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>040</td>
<td>69</td>
<td>DP</td>
</tr>
<tr>
<td>041</td>
<td>22</td>
<td>28</td>
</tr>
<tr>
<td>042</td>
<td>91</td>
<td>R/S</td>
</tr>
<tr>
<td>043</td>
<td>76</td>
<td>LBL</td>
</tr>
<tr>
<td>044</td>
<td>14</td>
<td>D</td>
</tr>
<tr>
<td>045</td>
<td>43</td>
<td>PD</td>
</tr>
<tr>
<td>046</td>
<td>17</td>
<td>CP</td>
</tr>
<tr>
<td>047</td>
<td>76</td>
<td>LBL</td>
</tr>
<tr>
<td>048</td>
<td>16</td>
<td>A</td>
</tr>
<tr>
<td>049</td>
<td>44</td>
<td>RCL</td>
</tr>
<tr>
<td>050</td>
<td>43</td>
<td>RCL</td>
</tr>
<tr>
<td>051</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>052</td>
<td>44</td>
<td>RCL</td>
</tr>
<tr>
<td>053</td>
<td>43</td>
<td>RCL</td>
</tr>
<tr>
<td>054</td>
<td>01</td>
<td>01</td>
</tr>
<tr>
<td>055</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>056</td>
<td>40</td>
<td>STD</td>
</tr>
<tr>
<td>057</td>
<td>09</td>
<td>02</td>
</tr>
<tr>
<td>058</td>
<td>00</td>
<td>0</td>
</tr>
<tr>
<td>059</td>
<td>01</td>
<td>1</td>
</tr>
<tr>
<td>060</td>
<td>42</td>
<td>STD</td>
</tr>
<tr>
<td>061</td>
<td>04</td>
<td>04</td>
</tr>
<tr>
<td>062</td>
<td>42</td>
<td>STD</td>
</tr>
<tr>
<td>063</td>
<td>05</td>
<td>05</td>
</tr>
<tr>
<td>064</td>
<td>42</td>
<td>STD</td>
</tr>
<tr>
<td>065</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>066</td>
<td>06</td>
<td>LBL</td>
</tr>
<tr>
<td>067</td>
<td>06</td>
<td>LBL</td>
</tr>
<tr>
<td>068</td>
<td>00</td>
<td>CP</td>
</tr>
<tr>
<td>069</td>
<td>00</td>
<td>RCL</td>
</tr>
<tr>
<td>070</td>
<td>00</td>
<td>R/S</td>
</tr>
<tr>
<td>071</td>
<td>01</td>
<td>EQ</td>
</tr>
<tr>
<td>072</td>
<td>03</td>
<td>CP</td>
</tr>
<tr>
<td>073</td>
<td>06</td>
<td>STD</td>
</tr>
<tr>
<td>074</td>
<td>02</td>
<td>02</td>
</tr>
<tr>
<td>075</td>
<td>05</td>
<td>YX</td>
</tr>
<tr>
<td>076</td>
<td>05</td>
<td>RCL</td>
</tr>
<tr>
<td>077</td>
<td>05</td>
<td>05</td>
</tr>
<tr>
<td>078</td>
<td>06</td>
<td>RCL</td>
</tr>
<tr>
<td>079</td>
<td>08</td>
<td>RCL</td>
</tr>
</tbody>
</table>

64
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>121</td>
<td>76</td>
<td>LBL</td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>36</td>
<td>SIN</td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>26</td>
<td>CP</td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>73</td>
<td>RCL</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>06</td>
<td>O6</td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>40</td>
<td>EQ</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>98</td>
<td>PGM</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>30</td>
<td>RCL</td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>08</td>
<td>O8</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>30</td>
<td>X:Y</td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>73</td>
<td>RCL</td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>06</td>
<td>O6</td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>22</td>
<td>INV</td>
<td></td>
</tr>
<tr>
<td>134</td>
<td>93</td>
<td>EQ</td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>30</td>
<td>TAN</td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>56</td>
<td>DP</td>
<td></td>
</tr>
<tr>
<td>137</td>
<td>88</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>138</td>
<td>61</td>
<td>GTO</td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>33</td>
<td>SIN</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>76</td>
<td>LBL</td>
<td></td>
</tr>
<tr>
<td>141</td>
<td>30</td>
<td>TAN</td>
<td></td>
</tr>
<tr>
<td>142</td>
<td>43</td>
<td>PRD</td>
<td></td>
</tr>
<tr>
<td>143</td>
<td>16</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>144</td>
<td>56</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>73</td>
<td>RCL</td>
<td></td>
</tr>
<tr>
<td>146</td>
<td>06</td>
<td>O8</td>
<td></td>
</tr>
<tr>
<td>147</td>
<td>98</td>
<td>+/D</td>
<td></td>
</tr>
<tr>
<td>148</td>
<td>49</td>
<td>P:R</td>
<td></td>
</tr>
<tr>
<td>149</td>
<td>42</td>
<td>RCL</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>00</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>151</td>
<td>16</td>
<td>RCL</td>
<td></td>
</tr>
<tr>
<td>152</td>
<td>00</td>
<td>00</td>
<td></td>
</tr>
<tr>
<td>153</td>
<td>32</td>
<td>X:Y</td>
<td></td>
</tr>
<tr>
<td>154</td>
<td>43</td>
<td>RCL</td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>06</td>
<td>06</td>
<td></td>
</tr>
<tr>
<td>156</td>
<td>56</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>157</td>
<td>98</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>158</td>
<td>47</td>
<td>GE</td>
<td></td>
</tr>
</tbody>
</table>

160 | 36 | PGM | |
161 | 69 | DP | |
162 | 36 | 26 | |
163 | 61 | GTO | |
164 | 33 | SIN | |
165 | 76 | LBL | |
166 | 56 | PGM | |
167 | 73 | RCL | |
168 | 08 | O8 | |
169 | 63 | +/D | |
170 | 65 | X | |
171 | 43 | RCL | |
172 | 01 | 01 | |
173 | 95 | = | |
174 | 28 | INV | |
175 | 03 | LNH | |
176 | 65 | X | |
177 | 43 | RCL | |
178 | 16 | 16 | |
179 | 53 | = | |
180 | 44 | SUM | |
181 | 18 | 18 | |
182 | 93 | RCL | |
183 | 00 | 00 | |
184 | 98 | X:Y | |
185 | 43 | RCL | |
186 | 56 | 08 | |
187 | 56 | - | |
188 | 06 | 9 | |
189 | 64 | EQ | |
190 | 64 | P:R | |
191 | 61 | GTO | |
192 | 64 | DP | |
193 | 56 | LBL | |
194 | 76 | P:R | |
195 | 16 | 01 | |
196 | 47 | CMS | |
197 | 56 | GE | |
198 | 47 | CMS | |
199 | 56 | GE | |
200 | 91 | R:Z | |
201 | 76 | LBL | |
202 | 47 | CMS | |
203 | 43 | RCL | |
204 | 18 | 18 | |
205 | 56 | X | |
206 | 43 | RCL | |
207 | 17 | 7 | |
208 | 95 | = | |
209 | 95 | PRT | |
210 | 44 | SUM | |
211 | 19 | 19 | |
212 | 92 | RTN | |
213 | 76 | LBL | |
214 | 22 | INV | |
215 | 43 | RCL | |
216 | 11 | 11 | |
217 | 33 | X | |
218 | 53 | X | |
219 | 85 | | |
220 | 53 | RCL | |
221 | 11 | 11 | |
222 | 75 | = | |
223 | 43 | RCL | |
224 | 10 | 10 | |
225 | 64 | | |
226 | 54 | X | |
227 | 26 | STD | |
228 | 34 | D | |
229 | 95 | = | |
230 | 85 | | |
231 | 85 | | |
232 | 43 | RCL | |
233 | 10 | 10 | |
234 | 54 | +/D | |
235 | 54 | +/D | |
<table>
<thead>
<tr>
<th>Line</th>
<th>Instruction</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>240</td>
<td>23 LNX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>241</td>
<td></td>
<td>16</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>242</td>
<td>42 STD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>243</td>
<td>18 18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>244</td>
<td>43 RCL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>245</td>
<td>07 07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>246</td>
<td>+/−</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>247</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>248</td>
<td>46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>249</td>
<td>RCL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>× 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>251</td>
<td>RCL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>252</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>253</td>
<td>× 11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>254</td>
<td>RCL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>255</td>
<td>× 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>256</td>
<td>RCL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>257</td>
<td>× 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>258</td>
<td>RCL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>259</td>
<td>× 11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>260</td>
<td>RCL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>261</td>
<td>× 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>262</td>
<td>RCL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>263</td>
<td>× 11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>264</td>
<td>RCL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>265</td>
<td>× 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>266</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>267</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>268</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>269</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>270</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

66
PROGRAM 2 continued

A n -5-2; 5 4 -7n -:4 .
A c4 7-r

CLUSION.

-
<table>
<thead>
<tr>
<th>720</th>
<th>17</th>
<th>B'</th>
<th>760</th>
<th>43</th>
<th>RCL</th>
<th>005</th>
<th>18</th>
<th>C'</th>
</tr>
</thead>
<tbody>
<tr>
<td>721</td>
<td>76</td>
<td>LBL</td>
<td>761</td>
<td>13</td>
<td>13</td>
<td>011</td>
<td>11</td>
<td>A</td>
</tr>
<tr>
<td>722</td>
<td>50</td>
<td>IXI</td>
<td>762</td>
<td>22</td>
<td>INV</td>
<td>032</td>
<td>12</td>
<td>B</td>
</tr>
<tr>
<td>723</td>
<td>43</td>
<td>RCL</td>
<td>763</td>
<td>67</td>
<td>EQ</td>
<td>037</td>
<td>13</td>
<td>C</td>
</tr>
<tr>
<td>724</td>
<td>10</td>
<td>10</td>
<td>764</td>
<td>59</td>
<td>INT</td>
<td>044</td>
<td>14</td>
<td>D</td>
</tr>
<tr>
<td>725</td>
<td>23</td>
<td>INV</td>
<td>765</td>
<td>04</td>
<td>4</td>
<td>049</td>
<td>16</td>
<td>A'</td>
</tr>
<tr>
<td>726</td>
<td>66</td>
<td>STF</td>
<td>766</td>
<td>44</td>
<td>SUM</td>
<td>067</td>
<td>28</td>
<td>LG</td>
</tr>
<tr>
<td>727</td>
<td>40</td>
<td>IND</td>
<td>767</td>
<td>07</td>
<td>07</td>
<td>095</td>
<td>29</td>
<td>CP</td>
</tr>
<tr>
<td>728</td>
<td>00</td>
<td>00</td>
<td>768</td>
<td>76</td>
<td>LBL</td>
<td>107</td>
<td>17</td>
<td>B'</td>
</tr>
<tr>
<td>729</td>
<td>28</td>
<td>INV</td>
<td>769</td>
<td>59</td>
<td>INT</td>
<td>113</td>
<td>39</td>
<td>COS</td>
</tr>
<tr>
<td>730</td>
<td>66</td>
<td>EQ</td>
<td>770</td>
<td>86</td>
<td>STF</td>
<td>122</td>
<td>38</td>
<td>SIN</td>
</tr>
<tr>
<td>731</td>
<td>57</td>
<td>ENG</td>
<td>771</td>
<td>40</td>
<td>IND</td>
<td>141</td>
<td>30</td>
<td>TAN</td>
</tr>
<tr>
<td>732</td>
<td>01</td>
<td>1</td>
<td>772</td>
<td>07</td>
<td>07</td>
<td>148</td>
<td>36</td>
<td>PGM</td>
</tr>
<tr>
<td>733</td>
<td>42</td>
<td>STD</td>
<td>773</td>
<td>87</td>
<td>IFF</td>
<td>197</td>
<td>37</td>
<td>F.R</td>
</tr>
<tr>
<td>734</td>
<td>07</td>
<td>07</td>
<td>774</td>
<td>00</td>
<td>00</td>
<td>202</td>
<td>47</td>
<td>CMS</td>
</tr>
<tr>
<td>735</td>
<td>76</td>
<td>LBL</td>
<td>775</td>
<td>17</td>
<td>B'</td>
<td>214</td>
<td>22</td>
<td>INV</td>
</tr>
<tr>
<td>736</td>
<td>57</td>
<td>ENG</td>
<td>776</td>
<td>87</td>
<td>IFF</td>
<td>295</td>
<td>23</td>
<td>LNX</td>
</tr>
<tr>
<td>737</td>
<td>43</td>
<td>RCL</td>
<td>777</td>
<td>03</td>
<td>03</td>
<td>385</td>
<td>24</td>
<td>CE</td>
</tr>
<tr>
<td>738</td>
<td>12</td>
<td>12</td>
<td>778</td>
<td>16</td>
<td>A'</td>
<td>494</td>
<td>25</td>
<td>CLR</td>
</tr>
<tr>
<td>739</td>
<td>10</td>
<td>10</td>
<td>779</td>
<td>87</td>
<td>IFF</td>
<td>664</td>
<td>10</td>
<td>E'</td>
</tr>
<tr>
<td>740</td>
<td>00</td>
<td>00</td>
<td>780</td>
<td>04</td>
<td>04</td>
<td>671</td>
<td>15</td>
<td>E</td>
</tr>
<tr>
<td>741</td>
<td>58</td>
<td>FIX</td>
<td>781</td>
<td>25</td>
<td>CLR</td>
<td>677</td>
<td>60</td>
<td>DEG</td>
</tr>
<tr>
<td>742</td>
<td>02</td>
<td>2</td>
<td>782</td>
<td>87</td>
<td>IFF</td>
<td>700</td>
<td>43</td>
<td>ENC</td>
</tr>
<tr>
<td>743</td>
<td>07</td>
<td>07</td>
<td>783</td>
<td>05</td>
<td>05</td>
<td>708</td>
<td>49</td>
<td>PRD</td>
</tr>
<tr>
<td>744</td>
<td>66</td>
<td>STF</td>
<td>784</td>
<td>24</td>
<td>CE</td>
<td>720</td>
<td>50</td>
<td>I XI</td>
</tr>
<tr>
<td>745</td>
<td>04</td>
<td>04</td>
<td>785</td>
<td>87</td>
<td>IFF</td>
<td>784</td>
<td>57</td>
<td>ENG</td>
</tr>
<tr>
<td>746</td>
<td>07</td>
<td>07</td>
<td>786</td>
<td>06</td>
<td>06</td>
<td>784</td>
<td>58</td>
<td>FIX</td>
</tr>
<tr>
<td>747</td>
<td>03</td>
<td>03</td>
<td>787</td>
<td>23</td>
<td>LNX</td>
<td>784</td>
<td>59</td>
<td>INT</td>
</tr>
<tr>
<td>748</td>
<td>07</td>
<td>07</td>
<td>788</td>
<td>91</td>
<td>R/S</td>
<td>784</td>
<td>60</td>
<td>INT</td>
</tr>
</tbody>
</table>

70
BIBLIOGRAPHY

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center
 Cameron Station
 Alexandria, Virginia 22314
 2

2. Library, Code 0142
 Naval Postgraduate School
 Monterey, California 93940
 2

3. Department Chairman, Code 55
 Department of Operations Research
 Naval Postgraduate School
 Monterey, California 93940
 1

4. Professor J.D. Esary, Code 55E
 Department of Operations Research
 Naval Postgraduate School
 Monterey, California 93940
 1

5. Professor A.F. Andrus, Code 55As
 Department of Operations Research
 Naval Postgraduate School
 Monterey, California 93940
 1

6. Captain Eckhard Bartens, Code 55
 Department of Operations Research
 Naval Postgraduate School
 Monterey, California 93940
 1

7. Hans-Eberhard Peters
 Bahnhofstr. 19
 6345 Eschenburg 4
 West Germany
 1