NUMERICAL CALCULATION OF THE PROPAGATION OF SPATIAL COHERENCE FROM PARTIALLY COHERENT SOURCES

HARRY DIAMOND LABS ADELPHI MD T H HOPP ET AL. OCT 82

UNCLASSIFIED HDL-TR-1979
Numerical Calculation of the Propagation of Spatial Coherence from Partially Coherent Sources

Harry Theodore H. Hopp
Dennis McGuire

U.S. Army Electronics Research and Development Command
Harry Diamond Laboratories
Adelphi, MD 20783
The findings in this report are not to be construed as an official
Department of the Army position unless so designated by other
authorized documents.

Citation of manufacturers' or trade names does not constitute
an official indorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return
it to the originator.
ABSTRACT

This report considers the numerical calculation of the mutual intensity function of highly coherent laser radiation after reflection from a surface having roughness on the scale of the laser wavelength and at arbitrary distances from the reflector. The mutual intensity function characterizes the second-order spatial coherence properties of the nearly monochromatic reflected field and is of interest for evaluating the potential of coherent detection schemes for optical fuzing systems.
20. ABSTRACT (cont'd)

The illuminated spot on the reflector is assumed to be circular, and a simple model for the mutual intensity function of the reflected field near the spot is used to supply boundary values for integral propagator calculations of the mutual intensity at arbitrary distances. The numerical evaluation of the multiple-integral propagator is made very difficult by the generally rapid oscillations of the integrand over the integration ranges. Methods for overcoming the difficulties are described in this report. Sample calculations are presented, and a listing of a FORTRAN program to perform the integrations is included.
CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION</td>
<td>5</td>
</tr>
<tr>
<td>2. PROBLEM FORMULATION</td>
<td>7</td>
</tr>
<tr>
<td>3. CALCULATION OF INTEGRAL</td>
<td>10</td>
</tr>
<tr>
<td>4. SAMPLE PROBLEM—IDEALIZED GOODMAN SURFACE</td>
<td>38</td>
</tr>
<tr>
<td>5. DISCUSSION</td>
<td>50</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>52</td>
</tr>
<tr>
<td>LITERATURE CITED</td>
<td>53</td>
</tr>
<tr>
<td>APPENDIX A.—FORTRAN PROGRAM TO CALCULATE PROPAGATION OF MUTUAL INTENSITY FUNCTION</td>
<td>55</td>
</tr>
<tr>
<td>DISTRIBUTION</td>
<td>65</td>
</tr>
</tbody>
</table>

FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Geometry of mutual intensity propagation problem</td>
<td>8</td>
</tr>
<tr>
<td>2.</td>
<td>Geometry for calculating $J(P'_1</td>
<td>\Sigma)$</td>
</tr>
<tr>
<td>3.</td>
<td>Geometry for integrating over σ for evaluating $J(P'_1</td>
<td>\sigma)$</td>
</tr>
<tr>
<td>4.</td>
<td>$J(P'_1</td>
<td>\sigma)$ for sample problem</td>
</tr>
<tr>
<td>5.</td>
<td>Intensity versus offset from target axis</td>
<td>23</td>
</tr>
<tr>
<td>6.</td>
<td>Geometry for calculating central contribution</td>
<td>25</td>
</tr>
<tr>
<td>7.</td>
<td>Mutual intensity at Goodman surface</td>
<td>39</td>
</tr>
<tr>
<td>8.</td>
<td>Geometry on observation plane for examining $J_B(P'_1,P'_2)$</td>
<td>44</td>
</tr>
<tr>
<td>9.</td>
<td>Mutual intensity versus observation point separation—fixed point at center</td>
<td>44</td>
</tr>
</tbody>
</table>
FIGURES

10. Mutual intensity versus observation point separation--fixed point 1 cm from center ... 45

11. Mutual intensity versus observation point separation--fixed point 3 cm from center ... 46

12. Mutual intensity versus observation point separation (real part)--fixed point at center ... 49

13. Mutual intensity versus observation point separation (real part)--fixed point 1 cm from center ... 49

14. Mutual intensity versus observation point separation (real part)--fixed point 3 cm from center ... 50
1. INTRODUCTION

This report discusses the numerical evaluation of certain types of multiple integrals that arise in the theoretical description of short-range coherent laser sensing systems. This work was part of an effort at the Harry Diamond Laboratories (HDL) to explore the fusing potential of such sensors, which have promise for significantly increased detection sensitivity compared with conventional direct detection systems and would make Doppler information available to the fuze designer.

A critical problem for the performance evaluation of coherent laser fuzes can be seen from the following basic considerations. When a nearly monochromatic laser beam illuminates a nominally flat target surface at normal incidence, the reflected surfaces of constant phase immediately in front of the target will be nominally planar and replicate the surface roughness features, to the extent that shadowing effects do not complicate the picture. If the roughness features have a scale comparable to the illuminating laser's wavelength—a situation which holds for aircraft skins and the CO₂ laser wavelength—then the variation of phase of the reflected field in a plane immediately in front of the target would be expected to oscillate with amplitude on the order of 2π in a random-looking manner, as the observation point traverses the illuminated region. The reflected field retains the temporal coherence of the transmitter laser, but the spatial coherence is severely degraded. Fortunately, as the reflected wavefront propagates in space toward a receiver system, spatial coherence tends to improve; that is, the spatial coherence within a given receiver aperture increases with the distance between the receiver and the reflector. This improvement is important because coherent detection depends on establishing a phase match in space between the reflected and local oscillator wavefronts in the mixing region at the receiver.
In coherent optical radar applications, the receiver apertures and target-to-receiver distances are such that there is virtually no spatial coherence degradation effect. For fuzing applications, however, target-to-receiver distances are usually relatively small--on the order of 10 m--so that, for practical receiver apertures, spatial coherence degradation effects must be considered. This report describes a computational apparatus for analyzing these effects and presents sample calculations. Many aspects of the computational problem present severe numerical difficulties. Methods of overcoming these difficulties are discussed, and a listing of the FORTRAN source code which carries out the calculations is presented in appendix A.

The problem considered is the numerical calculation of the mutual intensity function of the field reflected from a rough surface at arbitrary distances from the reflector. Specifically, we are interested in the mutual intensity function $J_B(P_1, P_2)$ between two points, P_1 and P_2, on an observation plane--the plane of the receiver aperture--given the mutual intensity function $J_0(P_1, P_2)$ between arbitrary points (P_1, P_2) in the illuminated target region, σ. The mutual intensity function, defined precisely below, has the information needed to determine spatial coherence degradation effects in the receiver, and its propagation from the target region can be formulated in terms of Huygens-Fresnel integral propagators. In addition, the effect of the rough surface can be modeled through the specification of the mutual intensity function boundary values in the illuminated target region.

The mutual intensity function is used to describe the coherence and intensity pattern of light in space. In this sense it is a generalization of the familiar concept of intensity. Formally, the mutual intensity is defined between two points, P_1 and P_2, as the long-time average of the product of the complex analytic signal of the field

\[J_B(P_1, P_2) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |F(P_1, t)|^2 |F(P_2, t)|^2 dt, \]

where $F(P, t)$ is the complex analytic signal of the field at point P at time t.

\[J_0(P_1, P_2) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |f(P_1, t)|^2 |f(P_2, t)|^2 dt, \]

where $f(P, t)$ is the complex analytic signal of the field at point P at time t.

at \(P_1 \) with the complex conjugate of the analytic signal at \(P_2 \), where the analytic signals are evaluated at the same time. A further generalization would be to introduce a time element and define a function being the time average product of the analytic signals at \(P_1 \) and \(P_2 \) when these signals are observed a set time apart. This function is the well-known mutual coherence function of physical optics. (Neither of these functions preserves any polarization information, which would be a further generalization. In this report, however, we will be exclusively concerned with the mutual intensity function.)

We assume that the mutual intensity function is known on some plane in space (the target plane) and that this plane is parallel to the observation plane. In addition, we assume that the mutual intensity function on the target plane is nonzero only over a circular area, \(\sigma \), and within \(\sigma \) the function depends only on the distance between the evaluation points. That is, given any two points, \(P_1 \) and \(P_2 \), on the target plane, the mutual intensity between \(P_1 \) and \(P_2 \) is zero if either \(P_1 \) or \(P_2 \) is outside \(\sigma \); otherwise, \(J_0(P_1,P_2) = J_0(|P_1 - P_2|) \). These assumptions, while somewhat restrictive, still include the important case of a homogeneously rough surface illuminated by a circular beam of coherent light.

2. PROBLEM FORMULATION

We begin with the general equation for the mutual intensity on an observation plane \(B \). Figure 1 shows the geometry being used. We have\(^1\)

\[
J_B(P_1', P_2') = \int_\sigma \int_\sigma J_0(P_1', P_2') A_1 A_2 \frac{e^{ik(s_1 - s_2)}}{s_1 s_2} \, dp_1 dp_2 .
\]

Figure 1. Geometry of mutual intensity propagation problem. (Line 00' is normal to both σ and B.)

In the above, k is the mean wavenumber,* $s_j = |\mathbf{P}_j - \mathbf{P}'_j|$, $i = \sqrt{-1}$, and Λ_j are directionality factors given by

$$\Lambda_j = \frac{i}{\lambda} \cos \xi_j,$$

where ξ_j is the angle between $(\mathbf{P}_j - \mathbf{P}'_j)$ and the normal to σ, and λ is the wavelength. (The integration is limited to σ because we assume $J_0(\mathbf{P}_1, \mathbf{P}_2)$ is zero outside σ.) From figure 1 we have

$$\Lambda_1 \Lambda_2 = \left(\frac{2\pi d}{2\pi}
ight)^2 \frac{1}{s_1 s_2}, \quad (2)$$

*The field is assumed to be nearly monochromatic.
so we obtain

\[J_B(p_1', p_2') = \left(\frac{kD}{2\pi} \right)^2 \int_0^\infty \int_0^\infty J_0(p_1, p_2) \frac{e^{ik(s_1 - s_2)}}{s_1^2 s_2^2} \, dp_1 \, dp_2. \]

(3)

The equations in this form could, in theory, be integrated numerically simply by defining a coordinate system and performing the fourfold nested integration indicated. Typically, however, the wavenumber \(k \) is quite large and, unless one is willing to restrict attention to long-range calculations, the quantity \(k(s_1 - s_2) \) in the exponential create severe efficiency problems. Additionally, \(J_0(p_1, p_2) \) is typically finely structured function, with a scale of about \(10^{-4} \) mm. For even moderate-size target \(\sigma \), this implies excessively large numbers of grid points for straightforward integration.

The above formulation can be simplified within the assumption presented above. Since \(J_0(p_1, p_2) \) depends only on \(|p_1 - p_2| \), we can approximately decompose it into a constant term (also termed the residual contribution) and a sum of terms corresponding to varying-size circles of constant-value mutual intensity. That is, we can determine appropriate \(w_j \), \(a_j \), and \(n \) such that, for a given error \(\varepsilon \),

\[|J_0(p_1, p_2) - \sum_{j=0}^n w_j \hat{J}_0(|p_1 - p_2|, a_j)| < \varepsilon, \]

(4)

where

\[\hat{J}_0(x, a) = \begin{cases} 1 & x \leq a \\ 0 & x > a \end{cases}. \]

(5)
The residual term is obtained by setting $a_0 = \infty$. (We note that $J_0(p_1, p_2)$ is generally complex, so in general the w_j are complex.) We thus need to consider only the integration

$$\hat{J}_{B}(p_1', p_2') = \left(\frac{kD}{2\pi}\right)^2 \int_{a} \int_{a} \hat{J}_{0}(|p_1 - p_2|, a) \frac{e^{ik(s_1-s_2)}}{s_1^2s_2^2} \, dp_1 dp_2$$

for an arbitrary a. This integration will be considered in the next section.

3. CALCULATION OF INTEGRAL

We are now concerned with the integral

$$J_{B}(p_1', p_2') = \left(\frac{kD}{2\pi}\right)^2 \int_{a} \int_{a} J_{0}(|p_1 - p_2|, r_c) \frac{e^{ik(s_1-s_2)}}{s_1^2s_2^2} \, dp_1 dp_2$$

(8)

(Here we have dropped the circumflex notation for J_0 and J_B used in the last section and used r_c, rather than a, as more expressive of a "cutoff radius"). The behavior of $J_0(|p_1 - p_2|, r_c)$ can be accounted for by changing the limits of integration

$$J_{B}(p_1', p_2') = \left(\frac{kD}{2\pi}\right)^2 \int_{\sigma(p_2)} \int_{\sigma(p_2)} \frac{e^{ik(s_1-s_2)}}{s_1^2s_2^2} \, dp_1 dp_2$$

(8)

where $\sigma(p_2)$ is the intersection of σ with a circle of radius r_c centered on p_2. This integral, in turn, splits naturally into two terms.
(1) a "central contribution" term,

\[
J_1(P_1', P_2') = \left(\frac{KD}{2\pi} \right)^2 \int_{\sigma - \sigma'} \int_{\sigma(P_2')} \frac{e^{i(s_1 - s_2)}}{s_1 s_2} \, dp_1 \, dp_2 ,
\]

where \(\sigma - \sigma' \) is the central portion of \(\sigma \) with radius \(r_0 - r_c \) (where \(r_0 \) is the radius of \(\sigma \)) and

(2) an "edge effect" term,

\[
J_2(P_1', P_2') = \left(\frac{KD}{2\pi} \right)^2 \int_{\sigma} \int_{\sigma(P_2')} \frac{e^{i(s_1 - s_2)}}{s_1 s_2} \, dp_1 \, dp_2 ,
\]

where \(\sigma' \) is the remaining annulus of breadth \(r_c \) on the outside edge of \(\sigma \). The purpose of this partition of the integral is to isolate the first term, where \(\sigma(P_2) \) does not intersect the edge of \(\sigma \) (and is thus a circle), from the second term, where \(\sigma(P_2) \) is guaranteed to intersect the edge of \(\sigma \), and hence is a more complicated case. As we shall see later, realistic problems correspond to \(r_c \ll r_0 \) (except for the residual term), and hence \(\sigma' \) is a relatively small portion of \(\sigma \).

We note that if \(r_c \geq r_0 \) the central contribution does not exist; thus, the only contribution is due to the "edge effect," where \(\sigma' = \sigma \). Additionally, if \(r_c \geq 2r_0 \), the intersection of \(\sigma(P_2) \) with \(\sigma \) is \(\sigma \) itself (since \(P_2 \) is inside \(\sigma \)), so we obtain in this case

\[
J_B(P_1', P_2') = J_2(P_1', P_2') = \left(\frac{KD}{2\pi} \right)^2 \int_{\sigma} \int_{\sigma} \frac{e^{i(s_1 - s_2)}}{s_1 s_2} \, dp_1 \, dp_2 , \quad r_c \geq 2r_0 .
\]
This is the formula for the residual term contribution mentioned in the last section. The integral in this case can be further reduced to the product of two essentially identical integrals as follows.

We have

$$J_B(P'_1,P'_2) = (\frac{kd}{2\pi})^2 \int_0^\infty \int_0^\infty \frac{e^{ik(s_1-s_2)}}{s_1^2 s_2^2} \, dp_1 \, dp_2, \quad r_c \geq 2r_0$$

(12)

$$= (\frac{kd}{2\pi})^2 \left(\int_0^\infty \frac{e^{iks_1}}{s_1^2} \, dp_1 \right) \left(\int_0^\infty \frac{e^{-iks_2}}{s_2^2} \, dp_2 \right).$$

We now define a function,

$$J(P'|\Sigma) = \int_{\Sigma} \frac{e^{iks}}{s^2} \, dp, \quad s = |P - P'|,$$

(13)

for arbitrary observation point P' and arbitrary circle Σ. Figure 2 shows the geometry relevant to the definition of $J(P'|\Sigma)$. We also define the notational convention that a circumflex over a "prime" point denotes the projection of that point onto the target plane. That is, in a coordinate system with the origin at 0 in figure 2, if

$$P' = (x',y',D),$$

then

$$\hat{P}' = (x',y',0).$$
Figure 2. Geometry for calculating $J(P'|\Sigma)$.

In terms of the $J(P'|\Sigma)$ function, we have

$$J_B(P_1', P_2') = \left(\frac{kD}{2\pi}\right)^2 J(P_1'|\sigma) J^*(P_2'|\sigma), \quad r_c \geq 2r_0,$$

(14)

where J^* indicates the complex conjugate of J.

We now consider the numerical evaluation of $J(P'|\sigma)$. We first note that the integrand is constant for all points on any given circle centered at \hat{P}'. This is because s is the slant height of a right circular cone with apex at \hat{P}' and a base with a circumference passing through P. Thus, the most natural way to integrate over σ is to use a polar coordinate system centered at \hat{P}'. We show this coordinate system in figure 3, where we have arbitrarily selected the $\theta = 0$ line (using an $r - \theta$ polar coordinate notation) to pass through the center of σ. In this coordinate system, we have $s = \sqrt{D^2 + r^2}$, and the integral becomes
where \(\theta_0(r) \) is the angle at which the circle of radius \(r \) intersects the boundary of \(\sigma \), and \(r_0 = S - r \), if \(\hat{p}' \) is outside \(\sigma \) (fig. 3(a)), or \(r_0 = 0 \) if \(\hat{p}' \) is inside \(\sigma \) (fig. 3(b)). The value of \(2r \theta_0(r) \) is simply the arc length of the portion of the circle centered at \(\hat{p}' \) of radius \(r \) falling inside \(\sigma \). From simple geometry, assuming that the circles intersect as in figure 3(a), we have

\[
\theta_0 = \cos^{-1} \left(\frac{r^2 + S^2 - r_0^2}{2S} \right). \tag{16}
\]

In figure 3(b), if \(r \leq r_0 - S \), the circles do not intersect, and we have \(\theta_0 = \pi \); otherwise, \(\theta_0 \) is still given as above.
We thus have two cases. If P' falls outside σ, we have

$$J(P'|\sigma) = 2 \int_{S-r_0}^{S+r_0} r \frac{e^{ik\sqrt{D^2+r^2}}}{D^2 + r^2} \cos^{-1}\left(\frac{r^2 + S^2 - r_0^2}{2Sr}\right) dr, \quad S > r_0.$$ \hspace{1cm} (17)

If P' falls inside σ, we have

$$J(P'|\sigma) = 2\pi \int_{0}^{\infty} r \frac{e^{ik\sqrt{D^2+r^2}}}{D^2 + r^2} dr \bigg|_{S-r}^{S+r_0}$$

$$+ 2 \int_{r_0-S}^{S+r_0} r \frac{e^{ik\sqrt{D^2+r^2}}}{D^2 + r^2} \cos^{-1}\left(\frac{r^2 + S^2 - r_0^2}{2Sr}\right) dr, \quad S < r_0.$$ \hspace{1cm} (18)

The first term of the second case ($S < r_0$) can be integrated in closed form in terms of exponential integrals. We are considering the integral

$$I_1 = 2\pi \int_{0}^{\infty} r \frac{e^{ik\sqrt{D^2+r^2}}}{D^2 + r^2} dr.$$ \hspace{1cm} (19)

If we change variables $u = \sqrt{D^2 + r^2}$, we obtain

$$I_1 = 2\pi \int_{D}^{D[1+((r_0-S)/D)^2]} \frac{e^{iku}}{u} du.$$ \hspace{1cm} (20)
The quantity $\sqrt{1 + [(r_0 - S)/D]^2}$ will occur again, so we define

$$\psi = \sqrt{1 + \left(\frac{r + S}{D}\right)^2}.$$ \hfill (21)

We also define

$$\omega = \sqrt{1 + \left(\frac{r + S}{D}\right)^2},$$ \hfill (22)

which will also be used later. We then have, from the definition\(^2\) of the exponential integral $E_1(z)$,

$$I_1 = 2\pi[E_1(-ikD) - E_1(-ik\psi)].$$ \hfill (23)

In terms of cosine and sine integrals, $Ci(x)$ and $Si(x)$, we have, from the identity

$$E_1(-ix) = -Ci(x) - isi(x) + i\frac{\pi}{2},$$ \hfill (24)

the expression

$$I_1 = 2\pi[CI(k\psi) - CI(kD)] + i2\pi[SI(k\psi) - SI(kD)].$$ \hfill (25)

While this expression could be evaluated using any of various methods for calculating the \(S_i \) and \(C_i \) functions, we note that normally \(kD \) is very large (on the order of \(10^6 \)), so special precautions must be taken. One method well suited to evaluating these functions for large arguments is to express \(S_i(x) \) and \(C_i(x) \) in terms of "auxiliary" functions \(f(x) \) and \(g(x) \) as:

\[
S_i(x) = \frac{x}{2} - f(x) \cos(x) - g(x) \sin(x) ,
\]

\[
C_i(x) = f(x) \sin(x) - g(x) \cos(x) ,
\]

and use asymptotic expansions for \(f(x) \) and \(g(x) \) for large arguments.

\[
f(x) \sim \frac{1}{x} \left(1 - \frac{2}{x^2} + \frac{4}{x^4} - \frac{6}{x^6} + \ldots \right),
\]

\[
g(x) \sim \frac{1}{x^2} \left(1 - \frac{3}{x^2} + \frac{5}{x^4} - \frac{7}{x^6} + \ldots \right) .
\]

For realistic values of \(kD \) and \(kD \psi \), these expansions converge extremely rapidly; only three or four terms are needed for most calculations. At long ranges, however, when \(D > r - S \), accuracy may be lost in computing the differences involved in evaluating \(I_1 \). If, in the expressions for \(S_i(x) \) and \(C_i(x) \) in terms of \(f(x) \), \(g(x) \), \(\sin(x) \), and \(\cos(x) \), we express \(\psi \) as \(1 + (\psi - 1) \) in the arguments for \(\sin(x) \) and \(\cos(x) \), we can arrive at the expression

\[
I_1 = 2 \pi e^{i k D (\alpha + i \beta)} ,
\]

where

\[
\alpha = g(kD) + f(kD \psi) \sin [kD(\psi - 1)] - g(kD \psi) \cos [kD(\psi - 1)]
\]

\[
\beta = f(kD) - f(kD \psi) \cos [kD(\psi - 1)] - g(kD \psi) \sin [kD(\psi - 1)] .
\]

\(^2\text{M. Abramowitz and I. A. Stegun, }\)\textit{Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables,} NBS Applied Math Series 55 (1970).
The factor $\psi - 1$ in the trigonometric functions can be computed at long ranges using the approximation

$$\sqrt{1 + x} = 1 + \frac{1}{2} x - \frac{1}{8} x^2 + \frac{1}{16} x^3$$

(30)

to yield

$$\psi - 1 = k \frac{(r - d)^2}{2D^2} \left(1 - \frac{1}{4} \frac{(r - d)^2}{D^2} [1 - \frac{1}{2} \frac{(r - d)^2}{D^2}] \right).$$

(31)

At short ranges, of course, the expression

$$\psi - 1 = \sqrt{1 + \frac{(r - d)^2}{D^2}} - 1$$

(32)

should be used.

We now turn attention to the second integral involved in $J(p | \sigma)$ (eq (17) and (18)). This integral, in both cases, can be written

$$I_2 = 2 \int_{|S - \sigma|}^{S + \sigma} r \frac{s^{ik\sqrt{D^2 + r^2}}}{D^2 + r^2} \cos^{-1} \left(\frac{r^2 + s^2 - r^2}{2sr} \right) dr.$$

(33)

This integral must be evaluated numerically, since no closed-form solution is known. This integral, and several others to be encountered later in this report, will be reduced to a canonical form $\int L f(x) e^{ix} dx$ in order to make use of an efficient numerical integration program.
developed at HDL\(^{3}\) for integrals of this form. The above integral can be reduced to canonical form with the substitution \(u = k\sqrt{D^2 + r^2}\), which yields

\[
I_2 = 2 \int_{kD\psi}^{kD\psi} \frac{e^{iu}}{u} \cos^{-1} \left[\frac{u^2 - (kD)^2 + (kS)^2 - (kr_0)^2}{2kS\sqrt{u^2 - (kD)^2}} \right] du. \tag{34}
\]

At long ranges, the above form for \(I_2\) is unsuited for numerical solution. (Because \(\omega - \psi \ll \psi\), the integration interval is very small compared to the midpoint value of the interval, and severe truncation errors will occur when taking differences.) A solution is to develop a long-range approximate form for \(I_2\). This can be done by expanding the radicals in equations (21) and (22), making a suitable change of variables; that is,

\[
kD\psi = kD\sqrt{1 + \left(\frac{\frac{r_g - S}{D}}{D}\right)^2}
\]

\[
= kD \left[1 + \frac{1}{2} \left(\frac{r_g - S}{D}\right)^2 - \frac{1}{8} \left(\frac{r_g - S}{D}\right)^4 + \frac{1}{16} \left(\frac{r_g - S}{D}\right)^6 + \ldots \right]
\]

\[
= kD + \frac{kD}{2D} (r_g - S)^2 \left(1 - \frac{1}{4} \left(\frac{r_g - S}{D}\right)^2 \left[1 - \frac{1}{2} \left(\frac{r_g - S}{D}\right)^2 \right] \right),
\]

\[D \gg |r_g - S|,\]

and

\[kDw = kD \sqrt{1 + \left(\frac{r_g + S}{D} \right)^2} \]

\[= kD + \frac{k}{2D} \left(r_g + S \right)^2 \left(1 - \left[\frac{1}{4} \left(\frac{r_g + S}{D} \right)^2 \right] \left[1 - \frac{1}{2} \left(\frac{r_g + S}{D} \right)^2 \right] \right), \quad (36) \]

\[D \gg r_g + S . \]

Changing variables \(v = u - kD \), we obtain

\[I_2 = 2e^{ikD} \int_{v_L}^{v_H} \frac{e^{iv}}{v + kD} \cos^{-1} \left[\left(\frac{v^2 + 2kDv + (ks)^2 - (kr_g)^2}{2ksv^2 + 2kDv} \right) \right] dv, \quad (37) \]

\[D \gg r_g + S , \]

where

\[v_L = \frac{k(r_g - S)^2}{2D} \left(1 - \frac{1}{4} \left(\frac{r_g - S}{D} \right)^2 \left[1 - \frac{1}{2} \left(\frac{r_g - S}{D} \right)^2 \right] \right) \]

and

\[v_H = \frac{k(r_g + S)^2}{2D} \left(1 - \frac{1}{4} \left(\frac{r_g + S}{D} \right)^2 \left[1 - \frac{1}{2} \left(\frac{r_g + S}{D} \right)^2 \right] \right). \quad (38) \]

To recapitulate, we now have expressed the function \(J(P' | \sigma) \), for arbitrary \(P' \) and circle \(\sigma \), as the sum of two integrals, \(I_1 \) and \(I_2 \). \(I_1 \)
can be evaluated using asymptotic expansions of the exponential integral $E_1(z)$, and I_2 has been expressed in canonical form for numerical evaluation for both the general case and the long-range case.

Having established how to evaluate $J(P' \mid \sigma)$, we can now return to the original problem of calculating $J_B(P_1', P_2')$. We have (eq (8) to (10))

$$J_B(P_1', P_2') = J_1(P_1', P_2') + J_2(P_1', P_2')$$

(39)

which reduces to

$$J_B(P_1', P_2') = J_2(P_1', P_2') = \left(\frac{kD}{2\pi}\right)^2 J(P_1' \mid \sigma) J^*(P_2' \mid \sigma)$$

(40)

for $r_c \geq 2r_0$. So far we have not considered how to evaluate $J_2(P_1', P_2')$ when $r_c < 2r_0$ or how to evaluate $J_1(P_1', P_2')$ at all. Evaluating $J_2(P_1', P_2')$ for $r_c < 2r_0$ will not be considered in this report. As mentioned before, for realistic problems, unless the residual contribution is being considered (in which case $r_c \geq 2r_0$), we always have $r_c \ll r_0$. Since in this case the area of σ' is very small compared to the area of σ, $J_2(P_1', P_2')$, being an integral over σ', makes a negligible contribution to $J_B(P_1', P_2')$. Before proceeding with the investigation of $J_1(P_1', P_2')$, we will illustrate by way of an example the calculations we are now able to perform.

If we consider a target, σ, which is perfectly smooth (i.e., an optically flat mirror), illuminated uniformly by coherent monochromatic
light, the mutual intensity at the target is everywhere a real constant. For simplicity, we will assume this constant to be unity. The mutual intensity at an observation plane parallel to this mirror is precisely \(J_B(p_1',p_1') \) with \(r_c = \infty \) (i.e., the residual contribution). We note that when \(p_1' = p_2' \), we have

\[
J_B(p_1',p_1') = \left(\frac{kD}{2\pi} \right)^2 |J(p_1'|\sigma)|^2 ,
\]

which, from the definition of mutual intensity, is the (real) intensity at \(p_1' \). Further, \(J_B(p_1',p_1') \) can be interpreted as the normalized diffraction pattern from a circular aperture \(\sigma \). Sample calculations were performed for \(J(p_1'|\sigma) \) for \(D = 10 \text{ m} \), \(r_\sigma = 0.05 \text{ m} \), \(\lambda = 10.6 \text{ \mu m} \), and for \(S \) ranging from 0 to 0.1 m. This choice of parameters places \(p_1' \) well into the near-field region of \(\sigma \). Plots of \(J(p_1'|\sigma) \) and of \(J_B(p_1',p_1') \) are shown in figures 4 and 5. (The code used to generate these plots was checked by moving \(p_1' \) to the far-field region of \(\sigma \) to verify the expected Fraunhoeffer diffraction pattern.)

![Figure 4. J(p_1'|\sigma) for sample problem.](image)
Figure 5. Intensity versus offset from target axis.

We now return to the problem of calculating $J_1(P_1', P_2')$. Recall that $J_1(P_1', P_2')$ is given by (eq (9))

$$J_1(P_1', P_2') = (\frac{kD}{2\pi})^2 \int_{\sigma - \sigma'}^{\sigma + \sigma'} \int_{\sigma(P_2)}^{\sigma(P_2)} \frac{e^{ik(s_1 - s_2)}}{s_1 s_2} dP_1 dP_2$$ \hspace{1cm} (42)

which can be written

$$J_1(P_1', P_2') = (\frac{kD}{2\pi})^2 \int_{\sigma - \sigma'}^{\sigma + \sigma'} e^{-iks_2} \left[\int_{\sigma(P_2)}^{\sigma(P_2)} e^{iks_1} dP_1 \right] dP_2$$ \hspace{1cm} (43)

But we note that the function $J(P'|\sigma)$ can be introduced, since $\sigma(P_2)$ is a circle. We have
\[J[\mathcal{P}_1^i|\sigma(\mathcal{P}_2^i)] = \int_{\sigma(\mathcal{P}_2^i)} e^{\frac{iks_1}{s_1^2}} d\mathcal{P}_1^i, \quad (44) \]

so

\[J_1(\mathcal{P}_1^i, \mathcal{P}_2^i) = \left(\frac{kD}{2\pi} \right)^2 \int_{\sigma-\sigma'} J[\mathcal{P}_1^i|\sigma(\mathcal{P}_2^i)] e^{\frac{-iks_2}{s_2^2}} d\mathcal{P}_2^i. \quad (45) \]

From its definition, \(J[\mathcal{P}_1^i|\sigma(\mathcal{P}_2^i)] \) has circular symmetry about \(\mathcal{P}_2^i \). Equivalently, it has circular symmetry about \(\mathcal{P}_1^i \). Since the major work in evaluating the integrand of \(J_1(\mathcal{P}_1^i, \mathcal{P}_2^i) \) is in evaluating \(J[\mathcal{P}_1^i|\sigma(\mathcal{P}_2^i)] \), it is natural to express the integral in polar coordinates about \(\mathcal{P}_1^i \). The geometry involved is shown in figure 6. We define the \(\theta = 0 \) axis as passing through \(\mathcal{P}_1^i \) and \(\mathcal{P}_2^i \). Defining the aperture function

\[u(r, \theta; \sigma) = \begin{cases}
1 & \text{if } (r, \theta) \text{ is inside } \sigma \\
0 & \text{otherwise}
\end{cases} \quad (46) \]

we obtain

\[J(\mathcal{P}_1^i, \mathcal{P}_2^i) = \left(\frac{kD}{2\pi} \right)^2 \int_{R_0}^{R_1}(r_\sigma - r_c) r J[\mathcal{P}_1^i|\sigma(\mathcal{P}_2^i)] \]

\[\left[\int_0^{2\pi} u(r, \theta; \sigma - \sigma') e^{\frac{-iks_2}{s_2^2}} d\theta \right] dr. \quad (47) \]
where R_1, from figure 6, is the distance from \hat{P}_1 to the center of $\sigma - \sigma'$ and r_0 is given by

$$r_0 = \begin{cases} 0 & \text{if } \hat{P}_1 \text{ is inside } \sigma - \sigma' \\ R_1 - (r_\sigma - r_0) & \text{if } \hat{P}_1 \text{ is outside } \sigma - \sigma' \end{cases}.$$ \hspace{1cm} (48)

Also from figure 6, and the law of cosines, we have

$$s^2_2 = \sqrt{d^2 + r^2 + d^2 - 2rd \cos \theta},$$ \hspace{1cm} (49)

where d is the distance between \hat{P}_1 and \hat{P}_2.

Figure 6. Geometry for calculating central contribution.
When \(r \leq (r_0 - r_c) - R_1 \), \(u(r, \theta; \sigma - \sigma') = 1 \) for all values of \(\theta \).

This occurs only when \(\hat{P}_1 \) is inside \(\sigma - \sigma' \) (as shown in fig. 6). When \((r_0 - r_c) - R_1 < r \leq R_1 + (r_0 - r_c) \), there is a pair of values \((\theta_0, \theta_1) \) such that \(u(r, \theta; \sigma - \sigma') = 1 \) only when \(\theta_0 \leq \theta \leq \theta_1 \) (also shown in fig. 6). From the diagram we see that there is a \(\theta' \) such that \(\theta_0 = \theta_R - \theta' \) and \(\theta_1 = \theta_R + \theta' \). If \(\hat{P}_1 \) is at \((x_1, y_1, 0)\) and \(\hat{P}_2 \) is at \((x_2, y_2, 0)\), with the origin at the center of \(\sigma \), we have from simple geometry

\[
R_1 = \sqrt{x_1^2 + y_1^2},
\]

\[
R_2 = \sqrt{x_2^2 + y_2^2},
\]

\[
d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2},
\]

\[
\theta_R = \cos^{-1} \left(\frac{d^2 + R_1^2 - R_2^2}{2R_1d} \right),
\]

and

\[
\theta' = \cos^{-1} \left(\frac{r^2 + R_1^2 - (r_0 - r_c)^2}{2rr_1} \right).
\]

When \(\hat{P}_1 \) falls outside \(\sigma - \sigma' \) \((R_1 \geq r_0 - r_c) \) we have
\[J_1(p_1, p_2) = \left(\frac{kD}{2\pi} \right)^2 \int_{R_1-(r_0-r_c)}^{R_1+(r_0-r_c)} rJ[p_1|\sigma(p_2)] \]

\[\left[\int_{\theta_R-\theta'}^{\theta_R+\theta'} \frac{e^{-iks_2}}{s^2} d\theta \right] dr \] (51)

When \(p_1 \) falls inside \(\sigma - \sigma' \) (\(R_1 < r_0 - r_c \)), we have

\[J_1(p_1, p_2) = \left(\frac{kD}{2\pi} \right)^2 \int_0^{(r_0-r_c) - R_1} rJ[p_1|\sigma(p_2)] \]

\[\left[\int_0^{2\pi} \frac{e^{-iks_2}}{s^2} d\theta \right] dr \]

\[+ \left(\frac{kD}{2\pi} \right)^2 \int_{(r_0-r_c) - R_1}^{(r_0-r_c) + R_1} rJ[p_1|\sigma(p_2)] \]

\[\left[\int_{\theta_R-\theta'}^{\theta_R+\theta'} \frac{e^{-iks_2}}{s^2} d\theta \right] dr \] (52)

At this point we have two integrals to evaluate to obtain \(J_1(p_1, p_2) \) and thence \(J_B(p_1, p_2) \), namely, the outer integral of equations (51) and (52), which is an integration in \(r \), and the inner integral in \(\theta \), which has the two forms

\[\int_0^{2\pi} \frac{e^{-iks_2}}{s^2} d\theta = \left[\int_0^{2\pi} \frac{e^{iks_2}}{s^2} d\theta \right]^* \] (53)
and

\[\int_{\theta_R'-\theta'}^{\theta_R+\theta'} \frac{e^{-iks_2}}{s_2^2} \, d\theta = \left[\int_{\theta_R'-\theta'}^{\theta_R+\theta'} \frac{e^{iks_2}}{s_2^2} \, d\theta \right]^* . \] (54)

These forms will be considered next.

In order to reduce the integrals in \(\theta \) to canonical forms, we would like to make the change of variables \(u = ks_2 \). However, since \(s_2 = \sqrt{b^2 + r^2 + d^2 - 2rd \cos \theta} \), we must restrict the range of \(\theta \) (say, to \(0 < \theta < \pi \)) for the change of variables to be valid. Thus, each of the above forms must be modified to meet this condition on the range of integration. Because of the nature of \(\cos \theta \), the first form can be easily changed:

\[\int_0^{2\pi} \frac{e^{-iks_2}}{s_2^2} \, d\theta = 2 \int_0^\pi \frac{e^{-iks_2}}{s_2^2} \, d\theta . \] (55)

This leaves the second form to consider:

\[\int_{\theta_R'-\theta'}^{\theta_R+\theta'} \frac{e^{iks_2}}{s_2^2} \, d\theta . \]
From the equations (50) for θ_R and θ', we have

$$0 \leq \theta_R, \theta' \leq \pi,$$

thus,

$$-\pi \leq \theta_R - \theta' \leq \pi,$$

and

$$0 \leq \theta_R + \theta' \leq 2\pi.$$

We identify four cases:

(1) $\theta_R - \theta' \geq 0$, $\theta_R + \theta' \leq \pi$.

In this case the variable transformation in question has a single-valued inverse on the range of integration.

(2) $\theta_R - \theta' < 0$, $\theta_R + \theta' \leq \pi$.

In this case the integration can be treated as follows:
\[
\int_{\theta_R-\theta'}^{\theta_R+\theta'} \ldots \, d\theta = \int_0^{\theta_R-\theta'} \ldots \, d\theta + \int_0^{\theta_R+\theta'} \ldots \, d\theta \\
= \int_0^{-(\theta_R-\theta')} \ldots \, d\theta + \int_0^{\theta_R+\theta'} \ldots \, d\theta \tag{56}
\]

\[
= 2 \int_0^{\theta'-\theta_R} \ldots \, d\theta + \int_{\theta'-\theta_R}^{\theta'+\theta_R} \ldots \, d\theta .
\]

The last step is taken to avoid integrating over \([0, \theta']\) twice.

(3) \(\theta_R - \theta' \geq 0, \ \theta_R + \theta' > \pi\).

The integration is treated as follows:

\[
\int_{\theta_R}^{\theta_R+\theta'} \ldots \, d\theta = \int_{\theta_R-\theta}^{\theta_R} \ldots \, d\theta + \int_{\theta}^{\theta_R+\theta'} \ldots \, d\theta ,
\]

\[
= \int_{\theta_R-\theta}^{\theta_R} \ldots \, d\theta - \int_{\pi}^{2\pi-(\theta_R+\theta')} \ldots \, d\theta ,
\]

(using the substitution \(\theta + 2\pi - \theta\))

\[
= \int_{\theta_R-\theta}^{\theta_R} \ldots \, d\theta + \int_{2\pi-(\theta_R+\theta')}^{\pi} \ldots \, d\theta ,
\]

(57)
\[
\int_{\theta_R - \theta'}^{\theta_R + \theta'} \ldots \, d\theta + 2 \int_{2\pi - (\theta_R + \theta')}^{\pi} \ldots \, d\theta \quad . \quad (57)
\]

The last step follows from observing that since \(\theta_R \leq \pi \), \(\theta_R - \theta' < 2\pi - (\theta_R + \theta') \).

\((4) \ \theta_R - \theta' < 0, \ \theta_R + \theta' > \pi \)

The integration is treated as follows:

\[
\begin{align*}
\int_{\theta_R - \theta'}^{\theta_R + \theta'} \ldots \, d\theta &= \int_{\theta_R - \theta'}^{0} \ldots \, d\theta + \int_{0}^{\pi} \ldots \, d\theta + \int_{\pi}^{\theta_R + \theta'} \ldots \, d\theta \\
&= \int_{0}^{\theta_R - \theta'} \ldots \, d\theta + \int_{0}^{\pi} \ldots \, d\theta + \int_{\pi}^{2\pi - (\theta_R + \theta')} \ldots \, d\theta \\
&= 2 \int_{0}^{\theta_R - \theta'} \ldots \, d\theta + \int_{\theta_R + \theta'}^{2\pi - (\theta_R + \theta')} \ldots \, d\theta \\
&+ 2 \int_{2\pi - (\theta_R + \theta')}^{\pi} \ldots \, d\theta \quad . \quad (58)
\end{align*}
\]

In the last step, since \(\theta' \leq \pi \), we are assured that \(\theta' - \theta_R < 2\pi - (\theta_R + \theta') \). In all cases, the integral in \(\theta \) can be broken down into a sum of integrals, each of which is over an interval \([\theta_L, \theta_U]\), where
$0 \leq \theta_L \leq \theta_U \leq \pi$ and hence $u = k s_2$ is uniquely invertible on each such interval. We can then perform the change of variable to reduce all these integrals to canonical form. We have

\begin{equation}
 u = k s_2 = k \sqrt{b^2 + r^2 + d^2 - 2rd \cos \theta}, \tag{59}
\end{equation}

yielding

\begin{equation}
 d\theta = \frac{2udu}{k^2 \sqrt{4rd^2 - \left[d^2 + r^2 + d^2 - (u/k)^2\right]^2}}, \tag{60}
\end{equation}

\begin{equation}
 u|_{\theta = \theta_L} = k\sqrt{1 + \left(\frac{r - d}{D}\right)^2 + \frac{2rd}{D^2}(1 - \cos \theta_L)}, \tag{61}
\end{equation}

\begin{equation}
 u|_{\theta = \theta_U} = k\sqrt{1 + \left(\frac{r + d}{D}\right)^2 - \frac{2rd}{D^2}(1 + \cos \theta_U)}. \tag{62}
\end{equation}

If we define the quantities

\begin{equation}
 A = kD\sqrt{1 + \left(\frac{r - d}{D}\right)^2}, \tag{63}
\end{equation}

\begin{equation}
 B = kD\sqrt{1 + \left(\frac{r + d}{D}\right)^2}.
\end{equation}
B = kD\sqrt{1 + \left(\frac{r + d}{D}\right)^2}, \quad (64)

we have

\[d\theta = \frac{2udu}{\sqrt{(u^2 - A^2)(B^2 - u^2)}}, \quad (65) \]

\[u|_{\theta=\theta_L} = \sqrt{A^2 + 2rdk^2(1 - \cos \theta_L)}, \quad (66) \]

\[u|_{\theta=\theta_U} = \sqrt{B^2 - 2rdk^2(1 + \cos \theta_U)}. \quad (67) \]

Finally, we obtain

\[\int_{\theta_L}^{\theta_U} e^{iks} \frac{d\theta}{s^2} = \frac{2k^2}{\sqrt{A^2 + 2rdk^2(1 - \cos \theta_L)}} \int_{\sqrt{B^2 - 2rdk^2(1 + \cos \theta_U)}}^{\sqrt{B^2 - 2rdk^2(1 - \cos \theta_L)}} e^{iu} \frac{du}{u\sqrt{(u^2 - A^2)(B^2 - u^2)}} \quad (68) \]

As in the integration for \(J_2(P_1, P_2) \), when \(D >> r + d \) numerical problems arise because the interval of integration is small compared to the
location of the interval. In the integral, we have two differences of large numbers to consider, namely, \(u - A \) and \(B - u \). If we perform the change of variable \(x + u - A \), we obtain

\[
\int_{\theta_L}^{\theta_U} \frac{e^{iks_2}}{s_2} \, d\theta = 2k^2 e^{iA} \int \frac{\sqrt{B^2 - 2rdk^2(1+\cos \theta_U)} - A}{\sqrt{A^2 + 2rdk^2(1-\cos \theta_L)} - A} \]

(69)

\[
x \frac{e^{ix} \, dx}{(x + A) \sqrt{x(B - A - x)(x + 2A)(x + A + B)}}
\]

Now all the differences between large numbers can be calculated beforehand. We are concerned with the quantities

\[
x_L = \sqrt{A^2 + 2rdk^2(1 - \cos \theta_L)} - A ,
\]

(70)

\[
x_U = \sqrt{B^2 - 2rdk^2(1 + \cos \theta_U)} - A ,
\]

and

\[
B - A .
\]

Substituting for \(A \) and \(B \), and using the expansion
we obtain

\[
x_L = \frac{krd(1 - \cos \theta_L)}{D} \left(1 - \frac{1}{2} \frac{(r - d)^2 + rd(1 - \cos \theta_L)}{d^2} \right) \left[1 - \frac{(r - d)^2 + rd(1 - \cos \theta_L)}{d^2} \right] \\
- \frac{(r - d)^2 \left[(r - d)^2 + 2rd(1 - \cos \theta_L) \right]}{8D^4} .
\]

and

\[
B - A = \frac{2krd}{D} \left[1 - \frac{1}{2} \frac{x^2 + d^2}{D^2} \left(1 - \frac{x^2 + d^2}{D^2} \right) - \frac{(x^2 - d^2)^2}{8D^4} \right] .
\]

The substitution \(x + u - A \) works well unless the entire interval of integration is very close to the singularity at \(B \). This happens when
both $|\cos \theta_U - \cos \theta_L| \ll 1$ and $|1 + \cos \theta_U| \ll 1$. In this case, we are better off using the substitution $y + u - B$. This yields

$$
\int_{\theta_L}^{\theta_U} \frac{e^{iks_2}}{s^2} d\theta = 2k^2 e^{IB} \frac{\sqrt{b^2 - 2rk^2(1 + \cos \theta_U) - B}}{\sqrt{a^2 + 2rk^2(1 - \cos \theta_L) - B}}
$$

(75)

$$
\int e^{iy} dy = \frac{e^{iy}}{(y + B\sqrt{(B - A + y)(-y)(y + B + A)(y + 2B))}}.
$$

We still need to calculate $B - A$, as above, but the expressions for the limits of integration have changed. We now need the values

$$
y_L = \sqrt{a^2 + 2rk^2(1 - \cos \theta_L)} - B
$$

(76)

and

$$
y_U = \sqrt{b^2 - 2rk^2(1 + \cos \theta_U)} - B.
$$

(77)

Using the same expansion for $\sqrt{1 + x}$, we obtain

$$
y_L = \frac{kr(1 + \cos \theta_L)}{D} \left(1 - \frac{1}{2} \frac{(r + d)^2 - rd(1 + \cos \theta_L)}{d^2} \right) \left[1 - \frac{(r + d)^2 - rd(1 + \cos \theta_L)}{d^2} \right] \left(\frac{(r + d)^2(1 + \cos \theta_L)}{2d^4} \right)
$$

(78)

36
and

\[
y_U = - \frac{krd(1 + \cos \theta_U)}{d} \left(1 - \frac{1}{2} \frac{(r + d)^2 - rd(1 + \cos \theta_U)}{d^2} \right)
\]

\[
\times \left[1 - \frac{(r + d)^2 - rd(1 + \cos \theta_U)}{d^2} \right]
\]

\[
- \frac{(r + d)^2((r + d)^2 - 2rd(1 + \cos \theta_U))}{gd^6}
\]

(79)

This second substitution, in turn, works well unless the interval of integration is near the singularity at A. This happens only when \(|\cos \theta_U - \cos \theta_L| \ll 1\) and \(|1 - \cos \theta_L| \ll 1\). Since the interval of integration cannot be entirely located near A and entirely located near B at the same time, one or the other of the above substitutions can be used for any problem. We will use the first substitution, \(x + u = A\), unless \(\cos \theta_L < 0\). In that event we will use the substitution \(y + u = B\), since \(|1 - \cos \theta_L| \ll 1\) cannot hold.

At this point we have specified how to do all the calculations for \(J_1(P_1, P_2)\), except the integral in \(r\). The integrands in this case cannot be expressed in the canonical form \(e^{ixf(x)}\) in any useful way, so another method of integration is needed. As will be shown in the next section, the behavior of the integrand in this integral is quite varied in character, depending strongly on the separation of the observation points \(P_1\) and \(P_2\). Thus, the number of points at which \(x\) will be necessary to evaluate the integrand cannot be predicted well. Rather than using a fixed Gaussian quadrature scheme where all the work done at one
level of approximation is useless at the next level of accuracy, it would be more sensible to use an integration scheme that makes use of all previous work when trying to increase the precision of the integration. One of the best such schemes is an adaptive Gaussian scheme modified to force all points previously used to be included at the next level of precision. Since such a routine has already been developed, we will not elaborate on it here. Rather, we will proceed to describe the results of calculations for a sample problem.

4. SAMPLE PROBLEM--IDEALIZED GOODMAN SURFACE

In the previous section we described how to evaluate the mutual intensity between two points on an observation plane when the mutual intensity of the reflected radiation at the target plane is given by

\[J_0(p_1, p_2) = \begin{cases} 1 & \text{if } |p_1 - p_2| < r_c \text{ and } P_1 \text{ and } P_2 \text{ are inside } \sigma (80) \\ 0 & \text{otherwise} \end{cases} \]

for an arbitrary cutoff radius \(r_c \). The justification for considering such a simple model for \(J_0 \) was briefly mentioned in section 1. Any \(J_0 \) that depends only on the distance between the evaluation points \(P_1 \) and \(P_2 \) can be approximated arbitrarily well by a finite sum of functions of the above form with various \(r_c \)'s; moreover, such a \(J_0 \) dependence is expected when a flat, homogeneously and isotropically

\[^{4} \text{T. N. L. Patterson, The Optimum Addition of Points to Quadrature Formulae, Math. Comp., 22 (1968), 847-856.} \]

\[^{5} \text{T. N. L. Patterson, Algorithm for Automatic Numerical Integration Over a Finite Interval, Algorithm 468 Comm. of the ACM, 16, 11 (November 1973), 694-699.} \]
rough target is illuminated by a coherent light beam. Further justifica-
tion for considering the form of equation (80) is furnished by Good-
man's recent discussion\(^6\) of a simple physical model of \(J_g\) for flat rough
surfaces whose slope distribution is concentrated mainly in a low slope
region.

An example of Goodman's predictions for \(J_g\) is shown by the solid
curve in figure 7, which assumes uniform reflected intensity of unity at
\(a\); also shown, by dotted lines, is a rough approximation to the pre-
dicted \(J_g\)-curve by two functions of the form in equation (80). It is
clear from figure 7 that very good approximations of Goodman-surface
\(J_g\)'s can be obtained by using only a few different values of \(r_c\).

In this section, we apply the results of section 2 to an example,
namely, that of a target whose \(J_g\) corresponds to the Goodman surface of
figure 7. We approximate \(J_g\) by the dotted step function in figure 7 and
calculate \(J_B(P_1', P_2')\) at an observation plane for various \(P_1', P_2'\) pairs.

In its simplest form, Goodman's model describes J_0 in terms of the second-order statistics of the surface height variations. Specifically, we have

$$J_G(P_1, P_2) = \sqrt{I(P_1)I(P_2)} \exp \left(-\sigma_0^2 \left[1 - \rho_h(|P_1 - P_2|) \right] \right). \quad (81)$$

In the above, $J_G(P_1, P_2)$ is the Goodman model J_0 and $I(P)$ is the reflected intensity at point P. In the exponential, σ_0^2 is the surface height variance scaled to the effective wavelength, given by

$$\sigma_0^2 = [k(1 + \cos \beta)]^2 \sigma_h^2, \quad (82)$$

where k is the wave number, β is the angle of illumination relative to the surface normal, and σ_h^2 is the actual variance of the surface height. Finally $\rho_h(x)$ is the normalized surface height autocorrelation function, which, for simplicity, is assumed to be of the form

$$\rho_h(|P_1 - P_2|) = \exp \left(-\frac{|P_1 - P_2|^2}{r_o^2} \right), \quad (83)$$

where r_o is the surface roughness correlation length. The distance r_o is the separation at which the surface height correlation reaches a value of $1/e$. Figure 7 plots a typical $J_G(P_1, P_2)$ versus $|P_1 - P_2|$.

V
The numerical parameter values used to produce figure 7, and which will be used for the sample problem of this section, are as follows:

Wavelength (λ) = 10.6 µm,

Surface height standard deviation (σ_h) = 2 µm, \hspace{1cm} (84)

Angle of illumination (β) = 0,

Surface correlation length (r_0) = 1.06 mm (= 100λ).

These values correspond to a surface that is optically flat over distances on the scale of 100 wavelengths, illuminated perpendicularly by a 10.6-µm laser (e.g., a CO$_2$ laser), and observed at a distance of 10 m. Hills and valleys on the surface average 2 µm of deviation from the mean surface height. These values yield, for the other quantities used in the Goodman model,

$$\sigma^2_\theta = 5.6217,$$ \hspace{1cm} (85)

$$\rho_h(x) = \exp(-889.996 x^2).$$

For our sample problem we take

$$J_o(P_1, P_2) = e^{-\sigma^2_\theta} \tilde{J}_g(|P_1 - P_2|, \omega) + \left(1 - e^{-\sigma^2_\theta}\right) \tilde{J}_g(|P_1 - P_2|, r_0),$$ \hspace{1cm} (86)
where \(r_c \) is chosen as that point separation for which \(J_G = \left(1 + e^{-\sigma_0^2} \right)/2; \) i.e., the separation at which \(J_G \) has fallen halfway from its maximum value of unity to its minimum value \(e^{-\sigma_0^2} \). The desired value of \(r_c \) is readily found as

\[
\frac{r_c}{r_0} = \sqrt{\frac{\ln \left(\frac{\sigma_0^2}{\ln \left(\frac{\sigma_0^2}{\sigma_0^2 + 1} \right)} \right)}},
\]

which for the chosen numerical values of the sample problem gives \(r_c = 3.83445 \times 10^{-4} \text{ m} \). Equation (86) gives the dotted line approximation to \(J_G \) shown in figure 7. To complete the specification of our sample problem, we take

\[
\text{Range (D)} = 10 \text{ m}
\]

\[
\text{Target spot radius} \ (r_o) = 0.05 \text{ m}
\]

(Note that these values are the same as were used for the sample diffraction pattern calculations of the last section.)

The contribution to \(J_B(p_1, p_2) \) from the first term of equation (86) is

\[
e^{-\sigma_0^2} \left(\frac{kD}{2\pi} \right)^2 J(p_1 | \sigma) J^*(p_2 | \sigma)
\]
(compare with eq (4) and (40)). We call this part of J_B the residual contribution since it arises from the low dotted plateau in figure 7, which represents the residual phase correlation in the reflected field at σ in the limit of large point separation. The residual phase correlation is physically related to the specular component of reflection from the target. Figure 4 plots the modulus and phase of $J(P'|\sigma)$ appropriate to our sample problem. The contribution of the second term in equation (86) (which corresponds to the high phase correlation shown by J_G for small point separations) to $J_B(P'_1,P'_2)$ is more difficult to represent since it depends not only on the separation of P'_1 and P'_2, but also on their location within the shadow of σ. (We will denote by $\hat{\sigma}$ the shadow of σ on the observation plane.) We note that $J_B(P'_1,P'_2)$ is invariant to rotation about the center of $\hat{\sigma}$ since the problem is circularly symmetric. We also note that $J_B(P'_1,P'_2)$ is invariant to reflection through the center of $\hat{\sigma}$. Thus, one convenient way of examining $J_B(P'_1,P'_2)$ is to fix one of the points (say, P'_1) at some distance from the center of $\hat{\sigma}$ and move the other point (P'_2) away from P'_1 at various angles from the radius. The geometry of this layout is shown in figure 8.

Figures 9 to 11 show the results of calculations for the sample problem for three positions of the fixed point, P'_1. Figure 9 shows what happens when P'_1 is at the center of $\hat{\sigma}$ ($R_1 = 0$) and P'_2 is moved away from P'_1. (Since this case is circularly symmetric about P'_1, there is no need to plot what happens at different angles from a radius.) As can be seen, the sharp step function character of the approximated mutual intensity at the target plane (fig. 7) has been spread out substantially, although it is still apparent that the mutual intensity between P'_1 and P'_2 is stronger when the two points are close together.
Figure 8. Geometry on observation plane for examining $J_B(p_1', p_2')$.

Figure 9. Mutual intensity versus observation point separation--fixed point at center.
Figure 1c. Mutual intensity versus observation point separation—fixed point 1 cm from center.
Figure 11. Mutual intensity versus observation point separation—fixed point 3 cm from center.
Figures 10 and 11 show the results when \(R_1 = 1 \) cm and \(R_1 = 3 \) cm, respectively. For each of these cases, \(P'_2 \) was moved away from \(P'_1 \) at five angles, as indicated, from the radius passing through \(P'_1 \). As can be seen from the figures, the mutual intensity magnitude as a function of \(d \) (fig. 8) does not vary significantly for the various values of \(\theta \), nor for the three positions of \(P'_1 \). The mutual intensity phase, however, does show significant variation from case to case. In all cases, the phase exhibits very sharp jumps as \(d \) increases. However, the variation of the phase as a function of \(\theta \) is noticeably more pronounced for \(R_1 = 3 \) cm (fig. 11) than for \(R_1 = 1 \) cm (fig. 10). Of course, the phase does not vary at all as a function of angle for \(R_1 = 0 \), since there is circular symmetry.

The characteristics of the mutual intensity can be described in general terms as follows. To a first approximation, the magnitude of the mutual intensity between two points within \(\hat{\theta} \) varies with \(d \) in the manner shown in figure 9, regardless of where the two points lie within \(\hat{\theta} \). The phase of the mutual intensity varies with \(d \) qualitatively, like the case when \(P'_1 \) is at the center of \(\hat{\theta} \). However, the phase is modulated by some perturbation function of \(\theta \) for nonzero values of \(R_1 \). This perturbation becomes more strongly a function of \(\theta \) as \(P'_1 \) is placed farther out. The specific nature of this perturbation is difficult to ascertain, however, from the calculations shown here.

The real part of \(J_B \) is of the most direct interest for optical heterodyne receiver analysis, which is the goal of the computational apparatus being discussed in this report. The major components of an optical heterodyne receiver are a photodetector/narrow-band amplifier combination and a local oscillator. The local oscillator is a highly coherent optical source that illuminates the photodetector at relatively high power levels, whose frequency is slightly shifted relative to that
of the received (target reflected) radiation. McGuire7 has discussed the dependence of the average power output of such a receiver on the mutual intensity functions of the target-reflected radiation and the local oscillator field on the photodetector's active surface. He has found that the dependence is through only the real part of the product of the two mutual intensity functions. Since the mutual intensity function of the local oscillator is real and constant over the photodetector surface for normal-incidence, uniform-intensity plane-wave local oscillator beams, it follows that the heterodyne power depends on only the real part of J_B in such cases (assuming the photodetector lies in our observation plane).

Figures 12 to 14 show plots of the real part of $J_B(P_1^1, P_2^1)$ for the cases we have calculated. Despite the apparently discontinuous character of the phase of the mutual intensity as a function of d, the real part shows fairly regular behavior. In these figures, though, it is apparent that the dependence of phase on θ becomes much stronger as R_1 is increased. The dependence of phase on θ manifests itself as the spreading of the real part of the mutual intensity for the various values of θ plotted. Figure 14 shows the maximum spreading observed. It is interesting to notice that in figure 14 the behavior for $\theta = 0$ closely matches the behavior for $\theta = \pi$; similarly, the behavior for $\theta = \pi/4$ matches that for $\theta = 3\pi/4$. It thus might be a good first approximation to characterize the real part of the mutual intensity as follows. At $R_1 = 0$, the real part is a function of d as shown in figure 12 and has circular symmetry about P_2^1. As R_1 increases, the real part remains similar in appearance, but the symmetry about P_2^1 becomes elliptical, with the major axis of the ellipse of symmetry perpendicular to the radius through P_2^1. The eccentricity of the ellipse increases with R_1.

Figure 12. Mutual intensity versus observation point separation (real part)—fixed point at center.

Figure 13. Mutual intensity versus observation point separation (real part)—fixed point 1 cm from center.
5. DISCUSSION

It is not the purpose of this report to quantitatively describe the mutual intensity function, but rather to describe how this function can be calculated. We have demonstrated that these calculations can be carried out within the limits set at the beginning of this report. However, as was stated earlier, these calculations are only a first step. The final objective is to examine the utility of optical heterodyne systems in laser fuzing systems. To this end, two areas of continued research are outlined.

The first area concerns a problem that should be considered in any future work, which is that a laser fuzing system generally contains a lens system in the receiver to collect and focus the received field onto a photodetector. The mutual intensity propagation equation considered in this report describes free-space propagation of light; it does not cope with propagation through lenses. Centered collecting optics can be
dealt with by calculating the mutual intensity at the entrance pupil, mapping the entrance pupil response to the exit pupil using principles of ray optics, and then propagating the mutual intensity at the exit pupil onto the observation plane (photodetector). The last step is quite problematic, however, because the mutual intensity at the exit pupil (the "target plane" for the second propagation calculation) is not necessarily dependent solely on $|P_1 - P_2|$. At present, we have not investigated how this should be handled.

A related problem occurs in considering the power output from a photodetector in a heterodyne system. In this case, an expression involving the mutual intensity at the observation (detector) plane must be integrated over the detector surface. Again the function to be integrated would probably not be a function of $|P_1 - P_2|$ alone. The integrand, however, is somewhat simpler, since no propagation, and hence no path length differences, are involved.

Both of the above calculations would be simplified considerably if the mutual intensity at the observation plane could be decomposed into a sum of appropriate radially dependent functions. Lens systems could then be dealt with using the techniques of this report. (However, edge effects, which we have not considered, may be too prominent in this case to be ignored.) Also, calculating detector power output would be reduced to calculating a sum of integrals, each of which is in essence a convolution of a radially dependent function with the detector surface. The first proposed area of future research is to investigate how, or if, mutual intensity functions calculated using the techniques of this report can be thus decomposed.

The second area of continued research is to develop a taxonomy and a catalog of responses to step-function mutual intensities. This would
allow a parametric characterization of the mutual intensity at an observation plane in terms of the cutoff radius r_c of $J_0(|P_1 - P_2|, r_c)$ and geometrical parameters. Such a catalog would be the first step toward achieving a better understanding of the near-field behavior of the mutual intensity function, which is an essential feature for the heterodyne system analysis because of the relatively short detection ranges involved in fusing. If this information were to be developed, many expensive intermediate calculations could be avoided.

ACKNOWLEDGEMENT

Arthur Hausner was invaluable to this investigation. His expertise in numerical analysis helped us find solutions to several numerical difficulties. In particular, it was he who suggested the change of variables in some of the integrals to avoid taking differences of large numbers. Without his help, many of the calculations would have been extremely difficult to perform.
LITERATURE CITED

APPENDIX A.--FORTRAN PROGRAM TO CALCULATE PROPAGATION OF MUTUAL INTENSITY FUNCTION
APPENDIX A

PROGRAM RAYS

PURPOSE

THIS PROGRAM CALCULATES THE MUTUAL INTENSITY BETWEEN TWO
POINTS, ONE BEING FIXED AND THE OTHER MOVING AWAY ALONG
SELECTED RAYS AT VARIOUS ANGLES FROM THE RADIUS.

USAGE

THIS PROGRAM REQUIRES A SET OF CONTROL CARDS ON LOGICAL UNIT
5 TO DIRECT THE CALCULATIONS. THESE CARDS ARE AS FOLLOWS:

<table>
<thead>
<tr>
<th>CARD #</th>
<th>CONTENTS</th>
<th>FORMAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NPROB</td>
<td>I3</td>
</tr>
<tr>
<td>2</td>
<td>RANGE</td>
<td>D15.7</td>
</tr>
<tr>
<td>3</td>
<td>WAVE</td>
<td>D15.7</td>
</tr>
<tr>
<td>4</td>
<td>KSIGMA</td>
<td>D15.7</td>
</tr>
<tr>
<td>5</td>
<td>NCORR</td>
<td>D15.7</td>
</tr>
<tr>
<td>6</td>
<td>SIGMA2</td>
<td>D15.7</td>
</tr>
<tr>
<td>7</td>
<td>NPOSN</td>
<td>I3</td>
</tr>
<tr>
<td>8</td>
<td>RI</td>
<td>D15.7</td>
</tr>
<tr>
<td>9</td>
<td>ERR</td>
<td>D15.7</td>
</tr>
<tr>
<td>10</td>
<td>ICD</td>
<td>14</td>
</tr>
<tr>
<td>11</td>
<td>THSTEP</td>
<td>D15.7</td>
</tr>
<tr>
<td>12</td>
<td>THSTRT</td>
<td>D15.7</td>
</tr>
<tr>
<td>13</td>
<td>NTHSTP</td>
<td>14</td>
</tr>
<tr>
<td>14</td>
<td>DSTEP</td>
<td>D15.7</td>
</tr>
<tr>
<td>15</td>
<td>DSTART</td>
<td>D15.7</td>
</tr>
<tr>
<td>16</td>
<td>NTHSTEP</td>
<td>14</td>
</tr>
</tbody>
</table>

IN THE ABOVE, THE SEQUENCE OF CARDS AFTER CARD 1 IS REPEATED
NPROB TIMES (NPROB IS THE NUMBER OF PROBLEMS). AFTER EACH
OCURRENCE OF CARD 4 (ONCE IN EACH PROBLEM SET), CARDS 5
THROUGH 7 ARE REPEATED NPOSN TIMES (NPOSN IS THE NUMBER OF
SETS OF POSITIONS FOR OBSERVATION POINTS).

THE PROGRAM PERFORMS THE CALCULATION OF MUTUAL INTENSITY FOR
EACH PROBLEM AND EACH POINT PAIR AS INDICATED BY THE CONTROL
CARDS ABOVE. THE POSITION OF THE OBSERVATION POINTS ARE
DETERMINED BY THE CONTENTS OF CARDS 5-7 AS FOLLOWS. RI IS THE
DISTANCE OF THE FIXED POINT FROM THE CENTER OF THE TARGET SIGMA.
(ERR AND ICD ARE EXPLAINED BELOW.) THE SECOND POINT IS MOVED
AWAY FROM THE FIRST ALONG LINES AT VARIOUS ANGLES FROM THE RADIUS
PASSING THROUGH THE FIXED POINT. THERE ARE NTHSTP OF THESE
LINES, AT ANGLES THSTRT, THSTRT+THSTEP, THSTRT+2*THSTEP, ETC.
ALONG EACH LINE, THE SECOND POINT IS LOCATED AT VARIOUS SEPA-
RATIONS FROM THE FIXED POINT. THERE ARE NTHSTEP POSITIONS FOR
THE SECOND POINT, AT SEPARATIONS OF DSTART, DSTART+DSTEP, DSTART+2*DSTEP, ETC. FROM THE FIXED POINT.

THE VARIABLES ERR AND ICD ARE, RESPECTIVELY, THE REQUESTED
MAXIMUM RELATIVE ERROR OF THE NUMERICAL CALCULATIONS AND A
CODE REQUESTING THE CALCULATIONS DESIRED. IF ICD=1, ONLY
THE RESIDUAL CONTRIBUTION TO THE MUTUAL INTENSITY IS CALCUL-
ATED, OTHERWISE THE FULL MUTUAL INTENSITY BETWEEN EACH PAIR
OF OBSERVATION POINTS IS OBTAINED (WITHOUT, HOWEVER, THE EDGE
EFFECTS INCLUDED).

THE REMAINING VARIABLES ABOVE ARE AS FOLLOWS:
RANGE - THE OBSERVATION DISTANCE FROM THE TARGET.

57
APPENDIX A

C WAVE - THE WAVELENGTH OF THE ILLUMINATING LIGHT.
C RSIGMA - THE RADIUS OF THE TARGET.
C RCORR - THE PERFECT CORRELATION RADIUS.
C SIGMA2 - THE VARIANCE OF THE SURFACE HEIGHT ROUGHNESS,
 SCALLED TO THE WAVELENGTH.
C ALL OF THESE QUANTITIES ARE INPUT IN METERS, EXCEPT SIGMA2,
 WHICH IS DIMENSIONLESS.

NOTES

THIS PROGRAM WAS WRITTEN TO USE A VARIATION OF THE ROUTINE
IFEX OF THE NDL PAGLOAD LIBRARY IN WHICH THE NAME FOPX
IS ASSUMED FOR THE SUBROUTINE WHICH COMPUTES THE INTEGRAND
FOR IFEX. THIS WAS DONE FOR THE SAKE OF RUNTIME EFFICIENCY.

IN ESTIMATING CPU TIME FOR THIS PROGRAM WHEN THE FULL MUTUAL
INTENSITY IS BEING CALCULATED, ALLOW 60 CPU SECONDS FOR EACH
POINT PAIR WHEN RUNNING ON THE 370/168 AFTER BEING COMPILED
WITH THE FORTRAN R-EXTENDED COMPILER WITH OPTIMIZATION LEVEL 2.

C IMPLICIT REAL*8 (A-H,O-Z)
C COMPLEX*16 JBJRES
C REAL*8 JBMAG,JRPH
C COMMON /EVCM/RANGEWAVEKtERR/PROBLM/ESIGMAtRCORRSIGMA2
C COMMON /PARM/DM !,THRTA
C DATA PI/3.141592653589793238462643D0/
C CALL PGMASK

C READ NUMBER OF PROBLEMS AND LOOP FOR EACH PROBLEM.
C READ (5,5000) NPROB
5000 FORMAT (I3)
DO 30 NP=1,NPROB
C BEGIN PROCESSING - READ PROBLEM PARAMETERS
C READ (5,5010) RANGEWAVE,RSICMA,RCORR,SIGMA2
5010 FORMAT (3D15.7)
 WAVE=2.0*PI/WAVE
 WAVEK=2.0*PI/WAVE
 WRITE (6,6000) RSIGMA,PANGR,RCORR,SIGMA2,WAVE
6000 FORMAT (* TARGET RADIUS=' ,2PP8.6,' CM, TARGET DISTANCE=' ,OPFS.0/
 ' CM, TARGET DISTANCE=' ,2PP8.6,' CM, SURFACE HEIGHT VARIANCE=' ,1*
 ' WAVELENGTH=' ,6PP6.2,' MICRONS*)
C READ NUMBER OF POSITION PARAMETER SETS; LOOP FOR EACH ONE.
C READ (5,5000) NPOSW
DO 30 NPOS=1,NPOSW
WEAD (5,5020) R1,ERR,I,CD,TSTEP,TSTRT,MTSTEP,TDSTEP,NDSTRT,NDSTEP
5020 FORMAT (2D15.7,14)
 R1=DABS(R1)
C COMPUTE ANGLE OF RAY FROM RADIUS - NORMALIZE TO BE BETWEEN (0,PI).
C DO 30 NTH=1,MTSTEP
 THETA=PI*(TSTRT+TSTEP*DFLOAT(NTH-1))
10 IF (THETA.GE.0.00.AND.THETA.LE.PI) GO TO 20
 IF (THETA.LT.0.00) THETA=THETA+PI
 IF (THETA.GT.PI) THETA=THETA-PI
 GO TO 10

58
APPENDIX A

C STEP OUT ALONG EACH RAY — CALCULATE GEOMETRY

C

DO 30 ND=1,NDSTEP
D=DSTART*NDSTEP*DFLOAT(ND-1)
X2=R1*DMDCOS(THETA)
Y2=D*DSIN(X2+Y2+Y2)
WRITE (6,6010) R1,X2,Y2,D

6010 FORMAT ('OBSERVATION POINTS LOCATED AT ('*,2PF6.3,*, 0.0), ('*,
* F6.3,*,*,F6.3,*) CM.; SEPARATION =',F6.3,* CM. ')

C CALL GETANS TO OBTAIN RESIDUAL AND, IF DESIRED, TOTAL RESPONSE.
C IF ICD=1, ONLY THE RESIDUAL IS COMPUTED, AND THE TOTAL IS SET
TO THIS VALUE; OTHERWISE, THE TOTAL RESPONSE INCLUDES THE SHORT
C RANGE CORRELATION CONTRIBUTION.
C
C CALL GETANS(R1,R2,JRES,JBI,ICD,ICHECK)
C
C COMPUTE MAGNITUDE AND PHASE OF TOTAL RESPONSE AND PRINT ANSWER.
C
JBMAG=CDABS(JB)
JBP=0.0
IF (JBMAG.GT.0.0D0) JBPH=DATAN2(DIMAG(JB),DREAL(JB))/PI
WRITE (6,6020) JRES,JBI,JBMAG,JBP

6020 FORMAT ('JRES=('*,1P5.8,*,',D15.8,*,*,D15.8,*,*
,'), MAG=(',D15.8,*,*,D15.8,*,*,D15.8,*,*
,'), PHASE=(',D15.8,*,*,D15.8,*,*,D15.8,*,*
*,')
IF (ICHECK.LT.0) WRITE (6,6030) ICEECK

6030 FORMAT ('X***ICHECK =',I3,* ***)

30 CONTINUE
STOP
END

SUBROUTINE GETANS(R1,R2,JRES,JBI,ICD,ICHECK)
C PURPOSE
C
C THIS SUBROUTINE COMPUTES THE MUTUAL INTENSITY BETWEEN TWO
C DATA POINTS, NEGLCCTING EDGE EFFECTS. IF ICD=1, ONLY THE RESIDUAL
C CONTRIBUTION IS CALCULATED AND JB IS SET EQUAL TO JRES.
C
IMPLICIT REAL*8 (A-H,O-Z)
COMPLEX*16 EVJJB,JRES,OSUBAC,INTOND
EXTERNAL INTOND
COMMON /EVCW/RANGE,WAVEK,ERR/PROBLM/RSIGMA,RCORR,SIGMA2
DATA PI/3.141692653589793238462643D0/
 PES=DEXP(-SIGMA2)
RMAX=R1+RSIGMA-RCORR
SCALE=(WAVEK*RANGE/(2.0D0*PI))**2

C CALCULATE SCALED RESIDUAL CORRELATION CONTRIBUTION
C
JRES=RES*EVJ(R1,RSIGMA)*RCORR*OSUBAC(0.0D0,MAX,ERR,NPTS,
* ICHECK,RELERR,INTOND)
JBI=JRES
C
IF REQUESTED, INCLUDE THE CONTRIBUTION FROM SHORT RANGE
C CORRELATION, EXCLUDING EDGE EFFECTS.
C
IF (ICD.NE.1) JBI=JRES+(1.0D0-RES)*OSUBAC(0.0D0,MAX,ERR,NPTS,
* ICHECK,RELERR,INTOND)
JBI=SCALE*JBI
JRES=SCALE*JRES
RETURN
END
APPENDIX A

COMPLEX FUNCTION INTGND*16(RADIUS)

PURPOSE

THIS FUNCTION EVALUATES THE INTEGRAND OF THE OUTERMOST INTEGRAL

FOR COMPUTING THE SHORT RANGE CORRELATION CONTRIBUTION TO THE

MUTUAL INTENSITY FUNCTION.

IMPLICIT REAL*(A-M,O-Z)

COMPLEX*16 EVJ,EVTW

COMMON /PROBLM/RSIGMA,RCOMR/EVO4/RANGE,WAVE

COMMON /PARL/Dq 21,THETAR

DATA PI/3.1415926535897932384626433800/

EVALUATE FIRST FACTOR OF INTEGRAND - RESIDUAL FROM A

SMALL CIRCLE.

INTGND=RADIUS*EVJ(RADIUS,RCORR)

EVALUATE SECOND FACTOR OF INTEGRAND - AN INTEGRAL IN THETA

IF (RADIUS.GT.RSIGMA-RCORR*R1) GO TO 10

TEST FOR DEGENERATE CASE

THETAI=PI

IF (D.EQ.0.DO) GO TO 50

INTEGRAL IN THETA IS OVER A FULL CIRCLE - INTEGRAND IS TWICE

THE INTEGRAL FROM 0 TO PI IN THETA, TIMES THE FIRST FACTOR.

INTGND=INTGND*2.DO*EVTW(RADIUS,1.DO,-1.DO)

RETURN

INTEGRAL IN THETA IS OVER LESS THAN A FULL CIRCLE - SELECT

THE RIGHT BREAKUP OF THIS INTEGRAL AND COMPUTE INTEGRAND

AS THE PRODUCT OF THIS INTEGRAL WITH THE FIRST FACTOR.

FIRST, FIND THE ENDPOINTS OF THE INTEGRATION IN THETA. THE

ENDPOINTS ARE THETAR-THETAI AND THETAR+THETAI.

CASE 1 - 0 <= THETAR-THETAI <= THETAR+THETAI <= PI

INTGND=INTGND*EVTW(RADIUS,XB,XA)

RETURN

CASE 2 - THETAR-THETAI < 0 <= THETAR+THETAI <= PI

INTGND=INTGND*2.DO*EVTW(RADIUS,XB,XA)+EVTW(RADIUS,XB,XA))

RETURN

CASE 3 - 0 <= THETAR-THETAI <= PI < THETAR+THETAI
APPENDIX A

30 INTGND=INTGND*(EVTH(RADIUS,XB,XA)+2.D0*EVTH(RADIUS,XA,-1.D0))
 RETURN

C CASE 4 - THETAR-THETA1 < 0 < PI < THETAR+THETA1
C
40 INTGND=INTGND*(2.D0*EVTH(RADIUS,1.D0,XB)+
 * EVTH(RADIUS,XB,XA)+2.D0*EVTH(RADIUS,XA,-1.D0))
 RETURN

C DEGENERATE CASE - INTEGRAL IN THETA CAN BE COMPUTED DIRECTLY
C
50 INTGND=INTGND*2.D0*THETA1*CDEGEXP(DCMPLX(0.D0,-WAVEK*
 * DSQRT(RANGE**2+RADIUS**2))/(RANGE**2+RADIUS**2))
 RETURN
END

COMPLEX FUNCTION EVJ*16(RqRADIUS)
C PURPOSE
C THIS SUBROUTINE CALCULATES THE MUTUAL INTENSITY FUNCTION FOR
C POINTS SEPARATED BY A DISTANCE *R* FROM A TARGET OF RADIUS
C *RADIUS*.
C
C IMPLICIT REAL*8 (A-H,O-Z)
C COMPLEX*16 DZ
C COMMON/EVCM/RANGE,WAVEK,ERR/EVJCM/RADOFPSET
C COMMON/CONTRL/ISWTCH
C LOGICAL LONG
C DATA P1/3. 141592653589793238462643D0/
C
C =\sum_{n=0}^{\infty} \frac{(-1)^n}{2^n n!} \left(\frac{s}{2}\right)^{2n} \left(\frac{s}{s+1}\right)^n

C CALCULATE CONTRIBUTION FROM INSIDE TARGET CYLINDER (IF ANY).
C
D=(0.D0,0.D0)
IF (R.LT.RADIUS) D=2.D0*PI*Z*DCMPLX(
 * G(WAVEK*RANGE)+F(SKD)*DSIN(A)-G(SKD)*DCOS(A),
 * F(WAVEK*RANGE)-F(SKD)*DCOS(A)-G(SKD)*DSIN(A))

C CALCULATE REMAINDER OF CONTRIBUTIONS
C
B=((RADIUS+2)/RANGE)**2
IF (LONG) B=WAVEK*RANGE*(1.D0-B/(1.D0-B/2.D0))/4.D0)
IF (NOT.LONG) B=WAVEK*RANGE*(DSQRT(1.D0+B)-1.D0)
ISWTC=1
IER=1
CALL IPRIX(ISREAL,ISIMAG,A,B,1000000,1.D0*ERR,0,0,IER)
IF (IER.EQ.2) GO TO 10
EVJ=D*2.D0*Z*DCMPLX(ISREAL,ISIMAG)
RETURN

10 WRITE (6,6010) RqRADIUS,A
6010 FORMAT ('IPRIX DID NOT CONVERGE - CALLED FROM EVJ.')/
APPENDIX A

* VARIABLES ARE: R=*,1PD13.6,*+, RADIUS=*,D13.6, *
+ A=*,D13.6/+ PROGRAM STOPPED*
STOP
END

COMPLEX FUNCTION EVTH16(OFFSET,COS0,COS1)

PURPOSE

THIS SUBROUTINE COMPUTES THE MUTUAL INTENSITY DUE TO SHORT
RANGE CORRELATION FROM A TARGET, WITH ONE OBSERVATION POINT
SEPARATED BY "D" FROM THE OTHER ONE.

IMPLICIT REAL*8 (A-H,O-Z)
LOGICAL LONG
COMMON /KVCW/RANGE,WAVEK,BR/ECVWCM/A,B,BLESSA
COMMON /CTRL/*SWITCH/PARM/D
LONG=(D-OFFSET)/RANGE)**2+LT1+D-3
A=WAVEK*DSQRT(RANGE**2+(D-OFFSET)**2)
B=WAVEK*DSQRT(RANGE**2+(D+OFFSET)**2)
BLESSA=B-A
IF (LONG) BLESSA=
* 2.DO*WAVEK*DSQRT(RANGE**2+OFFSET**2+D**2)**2*
* (1.DO-(OFFSET**2+D**2)**2/RANGE**2)/(2.DO*RANGE**2)**2*
* (OFFSET**2+D**2)**2/(8.DO*RANGE**4))/RANGE

TEST IF NEAR TOP OF INTERVAL (A,B)
IF (COS0.1T0.0.DO) GO TO 30

NEAR BOTTOM END - TEST IF LONG RANGE APPROXIMATION SHOULD BE USED.
IF (LONG) GO TO 10

USE SHORT RANGE EQUATIONS.

X0=WAVEK*DSQRT(RANGE**2+D**2+OFFSET**2-2.DO*OFFSET*COS0)-A
X1=WAVEK*DSQRT(RANGE**2+D**2+OFFSET**2-2.DO*OFFSET*COS1)-A
GO TO 20

USE LONG RANGE EQUATIONS WITH INTERVAL NOT NEAR TOP END OF (A,B)

X0=OFFSET*(1.DO-COS0)
X1=OFFSET*(1.DO-COS1)
X=(OFFSET)**2
X0=WAVEK*X0*(1.DO-(X0*X0)*(1.DO-(X0*X0)/RANGE**2)/(2.DO*RANGE**2)-
* X*(X2.DO*X0)/(8.DO*RANGE**4))/RANGE
X1=WAVEK*X1*(1.DO-(X1*X1)*(1.DO-(X1*X1)/RANGE**2)/(2.DO*RANGE**2)-
* X*(X2.DO*X1)/(8.DO*RANGE**4))/RANGE
20 X0=DMIN1(BLESSA,DMAX1(X0,G.DO))
X1=DMAX1(X0,DMIN1(X1,BLESSA))
ISWITCH=2
IER=1
CALL IPLEX(ANSR,ANS1,X0,X1,100000,1.DO*EPS,0,0,IER)
IF (IER.EQ.2) GO TO 60
EVTH=2.DO*WAVEK**2*DMPLEX(ANSR,-ANS1)*CDEXP(DMPLEX(0.DO,-A))
RETURN

NEAR TOP END - TEST IF LONG RANGE APPROXIMATION SHOULD BE USED.
IF (LONG) GO TO 40

X0=WAVEK*DSQRT(RANGE**2+D**2+OFFSET**2-2.DO*OFFSET*COS0)-B
X1=WAVEK*DSQRT(RANGE**2+D**2+OFFSET**2-2.DO*OFFSET*COS1)-B
APPENDIX A

GO TO 50

C USE LONG RANGE EQUATIONS WITH INTERVAL NEAR TOP END OF (A,B)

C

40 X0=D*OFFSET*(1.0+CO80)
 XI=D*OFFSET*(1.0+OS81)
 X=(D*OFFSET)**2
 X0=WAVEK*X0*(1.0-(X+X0)/(RANGE**2))/(2.0*RANGE**2)-
 X*(X+2.0*X0)/(8.0*RANGE**4))/RANGE
 XI=WAVEK*X1*(1.0-(X+X1)/(RANGE**2))/(2.0*RANGE**2)-
 X*(X+2.0*X1)/(8.0*RANGE**4))/RANGE

50 X0=DMAXI(-BLESSA,DMINI(X0,0.0))
 XI=DMINI(0.0,DMAXI(XI,-BLESSA))
 ISWTC=3
 IER=1
 CALL IFEX(ANGR,ANSI,X0,X1,1.0.E000,0.0,EFF) GO TO 60
 EVTH=2.0*D*WAVEK**2*DCMPH(ANER,-ANSI)*DCMPH(0.0,-A)
 RETURN

60 PRINT *,OFFSET,COSO,COSI,A,B,BLESSA,ISWTC,X0,X1
 STOP
END

SUBROUTINE FOEX(X,Y)
IMPLICIT REAL*8(A-N,0-Z)
COMMON /EVCM/RANGE,WAVEK/EVCM/R,S
COMMON /EVTHCM/AGB#BLESSA/CONTRL/ISWTC
COMMON /CMSPLT/AO
IOPT=0 GO TO 10,20,30,ISWTC
STOP 1

C INTEGRAND FOR E1,7

C

10 Y=X/WAVEK
 Y=(TYY2.0*WAVEK**2*DSQRT(Y**2.0*RANGE**2))
 IF (DABS(Y).GT.1.0) Y=DSIGN(1.0,Y)
 Y=DARCCOS(Y)/(X*WAVEK*RANGE)
 GO TO 40

C INTEGRAND FOR EVTH

C

20 Y=1.0/(X*A)*DSQRT(X*(BLESSA-X)*(X+A+B)*(X+2.0*A))
 GO TO 40

C INTEGRAND FOR EVTH - TOP OF (A,B)

C

30 Y=1.0/(X+B)*DSQRT(-X*(X+BLESSA)*(X+A+B)*(X+2.0*B))

40 IF (IOPT.EQ.1) Y=Y*(1.0+D*COS(X-A0))
 IF (IOPT.EQ.2) Y=Y*(1.0+D*SIN(X-A0))
 IF (IOPT.EQ.3) Y=Y*D*COS(X)
 IF (IOPT.EQ.4) Y=Y*D*SIN(X)
 RETURN
ENTRY PCOS1A(X,Y)
IOPT=1
GO TO (10,20,30,ISWTC
STOP 1
ENTRY PSIN1A(X,Y)
IOPT=2
GO TO (10,20,30,ISWTC
STOP 1
APPENDIX A

ENTRY FCONX(X,Y)
IOPT=3
GO TO (10,20,30),ISWTCN
STOP 1
ENTRY PSINX(X,Y)
IOPT=4
GO TO (10,20,30),ISWTCN
STOP 1
END