Final Report on Electronics Research
at The University of Texas at Austin

For the period April 1, 1977 through March 31, 1982

JOINT SERVICES ELECTRONICS PROGRAM
Research Contract AFOSR F49620-77-C-0101

Submitted by Edward J. Powers
on Behalf of the Faculty and Staff
of the Electronics Research Center

September 15, 1982

ELECTRONICS RESEARCH CENTER

Bureau of Engineering Research
The University of Texas at Austin
Austin, Texas 78712

Approved for public release; distribution unlimited.
This report summarizes progress on projects carried out at the Electronics Research Center at The University of Texas at Austin and which were supported by the Joint Services Electronics Program. In the area of Information Electronics progress is reported for projects involving (1) nonlinear detection and estimation and (2) electronic multi-dimensional signal processing.

In the Solid State Electronics area recent findings in (1) interface reactions, instabilities and transport and (2) spectroscopic studies of metal/semiconductor and metal/metal oxide interfaces are described.
In the area of Quantum Electronics progress is presented for the following projects: (1) nonlinear wave phenomena, (2) structure and kinetics of excited state molecules, and (3) collective effects in nonlinear optical interactions.

In the Electromagnetics area progress in guided-wave devices for the far infrared-mm device spectrum is summarized.
ABSTRACT

This report summarizes progress on projects carried out at the Electronics Research Center at The University of Texas at Austin and which were supported by the Joint Services Electronics Program. In the area of Information Electronics, progress is reported for projects involving (1) nonlinear detection and estimation and (2) electronic multi-dimensional signal processing.

In the Solid State Electronics area recent findings in (1) interface reactions, instabilities and transport and (2) spectroscopic studies of metal/semiconductor and metal/metal oxide interfaces are described.

In the area of Quantum Electronics progress is presented for the following projects: (1) nonlinear wave phenomena, (2) structure and kinetics of excited state molecules, and (3) collective effects in nonlinear optical interactions.

In the Electromagnetics area progress in guided-wave devices for the far infrared-mm wave spectrum is summarized.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>iii</td>
</tr>
<tr>
<td>Publications, Technical Presentations,</td>
<td>1</td>
</tr>
<tr>
<td>Lectures and Reports.</td>
<td></td>
</tr>
<tr>
<td>I. INFORMATION ELECTRONICS</td>
<td></td>
</tr>
<tr>
<td>Res. Unit IE81-1 Nonlinear Detection and Estimation</td>
<td>145</td>
</tr>
<tr>
<td>Res. Unit IE81-2 Electronic Multi-Dimensional Signal Processing</td>
<td>153</td>
</tr>
<tr>
<td>II. SOLID STATE ELECTRONICS</td>
<td></td>
</tr>
<tr>
<td>Res. Unit SSE81-1 Interface Reactions, Instabilities and Transport</td>
<td>159</td>
</tr>
<tr>
<td>Res. Unit SSE81-2 Spectroscopic Studies of Metal/Semiconductor and Metal/Metal Oxide Interfaces</td>
<td>169</td>
</tr>
<tr>
<td>III. QUANTUM ELECTRONICS</td>
<td></td>
</tr>
<tr>
<td>Res. Unit QE81-1 Nonlinear Wave Phenomena</td>
<td>181</td>
</tr>
<tr>
<td>Res. Unit QE81-2 Structure and Kinetics of Excited State Molecules</td>
<td>191</td>
</tr>
<tr>
<td>Res. Unit QE81-3 Collective Effects in Nonlinear Optical Interactions</td>
<td>203</td>
</tr>
<tr>
<td>IV. ELECTROMAGNETICS</td>
<td></td>
</tr>
<tr>
<td>Res. Unit EM81-1 Guided-Wave Devices for the Far Infrared-mm Wave Spectrum</td>
<td>213</td>
</tr>
<tr>
<td>Research Grants and Contracts</td>
<td></td>
</tr>
<tr>
<td>Federal Funds</td>
<td>223</td>
</tr>
<tr>
<td>Other Than Federal Funds</td>
<td>226</td>
</tr>
</tbody>
</table>
PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES, AND REPORTS

1977 - 1978
PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

JOURNAL ARTICLES

* Funded entirely or in part by the Joint Services Electronics Program.

1

PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

* Y.C. Kim, W.F. Wong, E.J. Powers, and J.R. Roth, "Extension of the Coherence Function to Quadratic Models," accepted for publication in Proc. IEEE.

PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

TECHNICAL PRESENTATIONS AND LECTURES

1977 Conference on Information Sciences and Systems
Johns Hopkins University
Baltimore, Maryland
April 1, 1977

R.J. Marks II, G.L. Wise, D.G. Haldeman, and J.L. Whited, "Some Preliminary Results on Detection in Laplace Noise."

Colloquium on Decision and Control
University of Texas at Austin
April 2, 1977

*B.F. Womack, "Design and Control of Feedback Systems via Sensitivity Theory."

Stanford University
Palo Alto, CA.
April 4, 1977

1977 IEEE International Conference on Plasma Science
Troy, N.Y.
May 23-25, 1977

E.J. Powers, et al., "Fluctuation Induced Particle Transport in the NASA Lewis Bumpy Torus."

*Funded entirely or in part by the Joint Services Electronics Program.
PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

Naval Weapons Center
China Lake, California
May 1977

SWEMC Symposium
Austin, Texas
May 1977

H.L. Marcus, "AES in Material Science."

International Conference on Multiphoton Processes
Rochester, N.Y.
June 6-9, 1977

Naval Research Labs
Washington, D.C.
June 7, 1977

*R.M. Walser, "Interface Reconstructive Effects on the Recrystallization of Ion-Implanted Amorphous Layers."

IEEE Computer Society Conference on Pattern Recognition and Image Processing
Troy, N.Y.
June 6-8, 1977

T.J. Wagner and L.P. Devroye, "Distribution-Free Performance Bounds with the Resubstitution on Error Estimate."

PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

Annual Meeting of the Classification Society
Dartmouth, N.H.
June 7-9, 1977

Third International Congress on Waves & Instabilities in Plasmas
Paris, France
June 27-July 1, 1977

1977 International Communications Conference
June 1977

IEEE MTT Symposium
San Diego, California
June 1977

T. Itoh, "Leaky-wave Antenna and Band-reject Filter for Millimeter-wave Integrated Circuits."

Southwest Electron Spectroscopy Meeting
Texas A&M University
June 1977

H.L. Marcus, "Fracture and Fatigue as Seen by Surface Sensitive Techniques."
PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

Max-Planck Institut fur Plasmaphysik
Garching bei Munchen, F.R. Germany
July 5, 1977

Max-Planck Institut fur Plasmaphysik
Garching bei Munchen, F.R. Germany
July 29, 1977

E.J. Powers, "Analysis and Interpretation of Soft X-ray Fluctuation Data Based on Digital Spectral Analysis."

U.S.-Japan Joint Seminar on the
Glow Discharge and Its
Fundamental Processes
Boulder, Colorado
July 1977

J.W. Keto, "Radiative and Kinetic Processes in Rare-Gas Discharges."

Stanford University Joint
Services Electronics
Program Topical Review
on Semiconductor Integrated
Circuits, Devices & Materials
Palo Alto, California
August 3-4, 1977

*R.M. Walser, "Interphases in Silicon Systems."

NASA Lewis Research Center
Cleveland, Ohio
August 8, 1977

PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

40th Annual Meeting of the
Institute of Mathematical Statistics
Seattle, Washington
August 14-18, 1977

20th Midwest Symposium on Circuits and Systems
August 15-16, 1977

Twentieth Midwest Symposium on Circuits and Systems
Lubbock, Texas
August 16, 1977

R.J. Marks II, G.L. Wise, and D.G. Haldeman, "Further Results on Detection in Laplace Noise."

2nd International Symposium on the Operator Theory of Networks and Systems
August 17-19, 1977

Workshop on "New Directions in Thermodynamics
Aspen Center for Physics
Aspen, Colorado
August 1977

Jack Turner, "Introduction to Chemical Instabilities as Nonequilibrium Phase Transitions and Critical Phenomena."
PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

Bell Telephone Laboratories
Murray Hills, N.J.
August 1977

Keynote Address
Birmingham, U.K.
September 12, 1977

G.J. Lipovski, "Some Remarks on Microcomputers and Microprocessor Systems."

University of Birmingham
Birmingham, U.K.
September 15, 1977

G.J. Lipovski, "A Reconfigurable Varistructure Array Computer."

Great Malvern RAF Research Centre
September 19, 1977

G.J. Lipovski, "A Reconfigurable Varistructure Array Computer."

University of South Wales
Swansea, Wales
September 20, 1977

G.J. Lipovski, "A Reconfigurable Varistructure Array Computer."

G.J. Lipovski, "On Virtual Memories and Micro-networks."

University of Birmingham
Birmingham, U.K.
September 21, 1977

G.J. Lipovski, "CAASM - A Context Addressed Segment Sequential Memory."
PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

Department of Communication
Paris, France
September 23, 1977

G.J. Lipovski, "On Micronetworks and Virtual Memories."

IRIA
Paris, France
September 23, 1977

G.J. Lipovski, "A Reconfigurable Varistructure Array Computer."

15th Annual Allerton Conference on
Communication, Control & Computing
Monticello, Illinois
September 28-30, 1977

*S.I. Marcus, "Optimal Finite Dimensional Recursive Estimators for Discrete-Time Stochastic Nonlinear Systems."

*G.L. Wise and S.I. Marcus, "Stability Results For A Class of Systems with Multiplicative State Noise."

Lectures at National Cash Register, Inc.
Wichita, Kansas
September 1977

PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

EUROMICRO Symposium
Amsterdam, Holland
October 4, 1977

G.J. Lipovski and C. Hoch, "A Varistructured Stack Organization."

Conference on Thin Film Phenomena - Interfaces and Interactions
Atlanta, Georgia
October 9-14, 1977

R.M. Walser and R.W. Bene', "Membrane Effects at Silicon Interfaces."

IEEE International Symposium on Information Theory
Ithaca, N.Y.
October 10-14, 1977

*T.J. Wagner and C.S. Penrod, "Nonparametric Estimation with Local Rules."

U.T.-Austin Colloquium on Decision & Control
Austin, Texas
October 19, 1977

*S.I. Marcus, "Fourier Series and Estimation: An Application to Optical Phase Tracking."

Nineteenth Annual Meeting of the American Physical Society Division of Plasma Physics
Atlanta, Georgia
November 7-11, 1977

PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

Colloquium on Decision and Control
University of Texas at Austin
Austin, Texas
November 16, 1977

G.L. Wise, "Mean Square Continuity and Nonlinearities."

1977 IEEE Conference on Decision and Control
December 7-9, 1977

1977 IEEE Conference on Decision and Control
New Orleans, Louisiana
December 7-9, 1977

*S.I. Marcus, "Fourier Series and Estimation: An Application to Optical Phase Tracking."

*S.I. Marcus, "Optimal and Suboptimal Estimation of Mixed Rotational Observables."

1977 International Symposium on Circuits and Systems
Phoenix, Arizona

H. Chang and J.K. Aggarwal, "Design and Simulation of Two-Dimensional Interpolated Filter Systems."

20th Midwest Symposium on Circuits and Systems
Texas Tech University
Lubbock, Texas

M.T. Manry and J.K. Aggarwal, "Design of Two-Dimensional FIR Filters with Non-Rectangular Arrays."
PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

National Radio Science Meeting
Boulder, Colorado
January 9-13, 1978

5th Annual Conference on the Physics of Compound Semiconductor Interfaces
Los Angeles, California
January 24-26, 1978

Computer Science Department
Indian Inst. of Tech.
Kanpur, India
January 1978

T.K.M. Agerwala, "Microprocessors."

National Radio Science Meeting
Boulder, Colorado
January 1978

Decision and Control Seminar Series
University of Texas at Austin
Austin, Texas
February 1978

T.K.M. Agerwala, "Control Issues in Distributed Systems."

International Solid State Circuit Conference
San Francisco, California
February 1978

T. Itoh, "Millimeter-wave Integrated Circuits."
PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

81st Annual Meeting of
The Texas Academy of Sciences
Texas Tech University
Lubbock, Texas
March 11, 1978

T.K.M. Agerwala, "The Fractional Horse Power Computer."

Probability and Statistics Seminar
Department of Mathematics
University of Texas at Austin
Austin, Texas
March 14, 1978

G.L. Wise, "Nonlinear Transformation of Random Processes."

Southwest Region Spring Meeting
The Society for Computer Simulation
Fort Worth, Texas
March 17, 1978

*B.F. Womack and T.F. Henson, "Modular Digital Simulation of Dynamic Systems."

School of Computer Sciences
McGill University
March 17, 1978

T.J. Wagner, "Recent Results in Nonparametric Discrimination and Density Estimation."

Texas Systems Workshop
Dallas, Texas
March 18, 1978

*S.I. Marcus, "Finite Dimensional Nonlinear Estimation in Continuous and Discrete Time."

IBM Corporation
East Fiskhill, N.Y.
March 21, 1978

R.M. Walser, "Membrane Effects at Silicon Interphases."
PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

Johns Hopkins University
Baltimore, Maryland
March 28, 1978

G.J. Lipovski, "Some Remarks on Multi-Microcomputer Systems - Taxonomy and Synergism."

1978 Conference on Information Sciences and Systems
Johns Hopkins University
Baltimore, Maryland
March 31, 1978

G.L. Wise, "Nonlinearities with Non-Gaussian Inputs."

Workshop on the Science of Design
Sponsored by The Naval Ocean Systems Center
U.T. at San Antonio, Texas
March 1978

T.K.M. Agerwala, "Communication Issues in Distributed Computer Systems."

American Chemical Society
175th National Meeting
Anaheim, California
March 1978

Jack Turner, "From Microphysics to Macrochemistry via Discrete Simulations."

1978 International Conference on Acoustics, Speech & Signal Processing
Tulsa, Oklahoma
April 10-12, 1978

IEEE Computer Society Workshop on Pattern Recognition and Artificial Intelligence
Princeton
April 12-14, 1978

IEEE Computer Society Workshop
on Pattern Recognition and
Artificial Intelligence
(continued)

J. Roach and J.K. Aggarwal, "Computer Tracking
of Three-Dimensional Objects."

IEEE Region V Annual Conference
Tulsa, Oklahoma
April 16-18, 1978

Systems with Nonlinear Uncertain Plants."

Solid State Devices, Inc.
Engineering Group
Los Angeles, California
April 19, 1978

R.W. Bene', "Schottky Barriers on Silicc
Surfaces."

Target Modulated Signature Meeting
U.S. Air Force Avionics Laboratory
Wright Patterson Air Force Base, Ohio
April 20, 1978

*E.J. Powers, "Bispectral Analysis of Radar
Data from Vibrating Targets."

Second American Physical Society Topical
Conference on High Temperature Plasma
Diagnostics
Santa Fe, New Mexico
March 1-3, 1978

E.J. Powers, J.Y. Hong, Y.C. Kim, J.R. Roth
and W.M. Krawczonk, "A Fluctuation-Induced
Transport Diagnostic Based Upon FFT Spectral
Analysis."
1978 IEEE International Conference
on Plasma Science
Monterey, California
May 15-17, 1978

1978 IEEE Minicourse on Modern Plasma Diagnostics
Monterey, California
May 17-19, 1978

E.J. Powers, "Fluctuation Diagnostics Based on Digital Time Series Analysis."

1978 International Symposium on Circuits and Systems
New York
May 17-19, 1978

Topical Meeting on Picosecond Phenomena
Hilton Head, South Carolina
May 25, 1978

IEEE Computer Society Conference on Pattern Recognition & Image Analysis
Chicago, Illinois
June 2, 1978

PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

Mt. Sinai Hospital
Detroit, MI
June 2, 1978

G.J. Lipovski, "Some Remarks on Microcomputers and Applications of Microcomputers."

IBM T.J. Watson Research Laboratory
Yorktown Heights, N.Y.
June 12, 1978

*R.M. Walser, "Recrystallization of Ion-Amorphitized Silicon."

Fifth International Multivariate Analysis Symposium
University of Pittsburgh
June 14, 1978

15th Design Automation Conference
Las Vegas, Nevada
June 1978

IEEE MTT Symposium
Ottawa, Canada
June 1978

The University of California
at Berkeley
June 1978

Sperry Univac
Blue Bell, PA.
July 31, 1978

G.J. Lipovski, "Texas Reconfigurable Array Computer."

Sperry Univac
Roseville, MN
August 15, 1978

G.J. Lipovski, "CASSM - A Context Addressed Segment Sequential Memory."

G.J. Lipovski, "Texas Reconfigurable Array Computer."

Bendix Research Labs
Detroit, MI.
August 21, 1978

G.J. Lipovski, "Texas Reconfigurable Array Computer."

Pinegree Park, CO.
Colorado State University
August 29, 1978

G.J. Lipovski, "On Conditional Moves in Control Processors."

Imperial College
London, England
August 29, 1978

*S.I. Marcus, "Finite Dimensional Nonlinear Estimation in Continuous and Discrete Time."
PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

1977 International Conference on Parallel Processing
Michigan
August 1978

International Conference on The Physics of Semiconductors
Edinburgh, Scotland
September 6, 1978

*R.W. Bene', R.M. Walser and James Hu, "Relationship of Metal-Semiconductor Transition To First Compound Nucleation at the Interface of A Thin Film Transition Metal on a Silicon Substrate."
PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

CONFERENCE PROCEEDINGS

* Funded entirely or in part by the Joint Services Electronics Program.

27

PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

BOOKS, CHAPTERS AND SECTIONS OF BOOKS, EDITING OF BOOKS

*Funded entirely or in part by the Joint Services Electronics Program.

30

PUBLICATIONS, TECHNICAL PRESENTATIONS,
LECTURES, AND REPORTS

1978 - 1979
PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES, AND REPORTS

JOURNAL ARTICLES

* Funded entirely or in part by the Joint Services Electronics Program.

*L. Frommhold, "Recent Developments Concerning Diatom Polarizabilities," a review paper to be published in Advances in Chemical Physics 36, 1979.

PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

*C.F. Hort, Chien-Yu Kuo, and J.W. Keto, "Production of O$(^1S_0)$ in Mixtures of O$_2$ in Argon Excited by an Electron Beam," in preparation.

PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

TECHNICAL PRESENTATIONS AND LECTURES

1978 IEEE International Conference
on Acoustics, Speech, and Signal Processing
Tulsa, Oklahoma
April 10-12, 1978

IEEE Region V Annual Conference
Tulsa, Oklahoma
April 16-18, 1978

Solid State Devices, Inc.
Engineering Group
Los Angeles, California
April 19, 1978

R.W. Bene', "Schottky Barriers on Silicon Surfaces."

Target Modulated Signature Meeting
U.S. Air Force Avionics Laboratory
Wright Patterson Air Force Base, Ohio
April 20, 1978

*E.J. Powers, "Bispectral Analysis of Radar Data from Vibrating Targets."

1978 IEEE International Conference
on Plasma Science
Monterey, California
May 15-17, 1978

*Funded entirely or in part by the Joint Services Electronics Program.
PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

1978 IEEE International Conference on Plasma Science
(continued)

1978 IEEE International Symposium on Circuits and Systems
New York, N.Y.
May 17-19, 1978

1978 IEEE Minicourse on Modern Plasma Diagnostics
Monterey, California
May 17-19, 1978

E.J. Powers, "Fluctuation Diagnostics Based on Digital Time Series Analysis."

Topical Meeting on Picosecond Phenomena
Hilton Head, South Carolina
May 25, 1978

Mt. Sinai Hospital
Detroit, MI
June 2, 1978

G.J. Lipovski, "Some Remarks on Microcomputers and Applications of Microcomputers."
PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

IBM
T.J. Watson Research Laboratory
Yorktown Heights, N.Y.
June 12, 1978

*R.M. Walser, "Recrystallization of Ion-Amorphitized Silicon."

Gordon Conference
Plymouth State College
Plymouth, N.Y.

M. Fink, "Charge Density Distributions in N2 Determined by Electron Diffraction."

Fifth International Multivariate Analysis Symposium
University of Pittsburgh
June 14, 1978

The University of California
at Berkeley
June 1978

15th Design Automation Conference
Las Vegas, Nevada
June 1978

Association of FALCOM Computer Users
Osaka, Japan
June 1978

R.T. Yeh, "A Perspective View of Software Methodology."
IEEE MTT Symposium
Ottawa, Canada
June 1978

T. Itoh, D. Ratliff and A.S. Hebert,
"Generalized Spectral Domain Method
for Multi-conductor Printed Lines and
Its Application to Tunable Suspended Microstrips."

T. Itoh and C. Chang, "Resonant Characteristics
of Dielectric Resonators for Millimeter-wave
Integrated Circuits."

T. Itoh and A.S. Hebert, "Simulation Study of
Electronically Scannable Antennas and Tunable
Filters Integrated in a Quasi-Planar Dielectric
Waveguide."

National Taiwan University
Taipei, Taiwan
July 1978

R.T. Yeh, "Software Methodology."

Chinese Academy of Sciences
Taipei, Taiwan
July 1978

R.T. Yeh, "Data Base Design Methodology."

University of California
at Berkeley
Berkeley, California
July 1978

R.T. Yeh, "Data Base Design Methodology."

Sperry Univac
Blue Bell, PA.
July 31, 1978

G.J. Lipovski, "Texas Reconfigurable
Array Computer."
IBM Research Laboratory
Yorktown Heights, N.Y.
August 1978

R.T. Yeh, "Software Requirements Engineering."

1978 International Conference
on Parallel Processing
Michigan
August 1978

T.K.M. Agerwala, "Loosely Coupled vs.
Tightly Coupled Processing," Panel Discussion.

T.K.M. Agerwala, "Communication in Parallel
Algorithms for Boolean Matrix Multiplication."

Sperry Univac
Roseville, MN
August 15, 1978

G.J. Lipovski, "CASSM - A Context Addressed
Segment Sequential Memory."

G.J. Lipovski, "Texas Reconfigurable Array
Computer."

Bendix Research Labs
Detroit, MI.
August 21, 1978

G.J. Lipovski, "Texas Reconfigurable Array
Computer."

Colorado State University
Pinetree Park, CO.
August 29, 1978

G.J. Lipovski, "On Conditional Moves in
Control Processors."
PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

International Conference on Analysis
and Optimization of Stochastic Systems
Oxford, England
September 6-8, 1978

*S.I. Marcus, "Finite Dimensional Nonlinear
Estimation in Continuous and Discrete Time."

International Conference on
The Physics of Semiconductors
Edinburgh, Scotland
September 6, 1978

*R.W. Bene', R.M. Walser and James Hu, "Relationship
of Metal-Semiconductor Transition To First
Compound Nucleation at the Interface of A Thin
Film Transition Metal on a Silicon Substrate."

APOS R Workshop in Communication
Theory and Applications
Provincetown, Massachusetts
September 17-20, 1978

T.J. Wagner and L.P. Devroye, "Distribution-Free
Results in Error Estimation."

Millimeter-Wave Workshop
Paris, France
September 1978

T. Itoh, "Application of Grating Structures
in Dielectric Waveguides for Millimeter-wave
Integrated Circuits."

European Microwave Conference
Paris, France
September 1978

T. Itoh, "Application of Inverted Strip
Dielectric Waveguides for Measurement of
Material Properties at Millimeter-Wave
Frequencies."
PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

AGARD/NATO Symposium on
Millimeter-Wave Propagation and Circuits
Munich, West Germany
September 1978

Sixteenth Annual Allerton Conference
on Communication, Control and Computing
Monticello, Illinois
October 4, 1978

1978 Joint Automatic Control Conference
Philadelphia, Pennsylvania
October 18-20, 1978

Dallas Section of IEEE
Antennas and Propagation Society
Dallas, Texas
October 19, 1978

T. Itoh, "Dielectric Waveguide Approach to Millimeter Wave Components and Antennas."

20th Annual Meeting of the
Division of Plasma Physics
American Physical Society
Colorado Springs, Colorado
October 30 - November 3, 1978

PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

20th Annual Meeting of the
Division of Plasma Physics
(continued)

E.J. Powers, J.Y. Hong, Y.C. Kim, J.R. Roth,
and W.M. Krawczonék, "An FFT Fluctuation-
Induced Plasma-Transport Diagnostic."

Colloquium on Decision and Control
University of Texas at Austin
Austin, Texas
November 1, 1978

COMPSAC
Chicago, Illinois
November 16, 1978

G.J. Lipovski, "On Some Parallel Programming
Techniques."

1978 Annual Meeting of the Division
Of Fluid Dynamics
American Physical Society
Los Angeles, California
November 19-21, 1978

E.J. Powers, Y.C. Kim, and R.W. Miksad,
"Digital Bispectral Analysis of Nonlinear
Fluctuation Data."

Symposium on Computer Aided Design
of Digital Electronic Circuits
and Systems
Brussels, Belgium
November 27-29, 1978

S.A. S.legenda, "Simulation of Digital
Systems: Where we are and where we
may be headed."
PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

Annual Meeting of the
Optical Society of America
San Francisco, California
November 1978

"M.F. Becker and Jerome Knopp, "Laser Rear Sampling with Grating Rhombs."

National Institute of Health
Bethesda, Maryland
November 1978

J.S. Turner, "Periodic and Nonperiodic Behavior in Oscillating Chemical Reactions."

Department of Physical Chemistry
University of Leeds
England
November 1978

J.S. Turner, "Periodic and Nonperiodic Oscillations in Nonequilibrium Chemistry."

Centre de Recherche Paul Pascal
Talence, Bordeaux, France
November 1978

J.S. Turner, "Bursts of Oscillation, Multiple Frequencies, and Homogeneous Chemical Chaos in the Belousov-Zhabotinski Reaction."

Pharmakologisches Institut
University of Bern
Bern, Switzerland
November 1978

J.S. Turner, "Complex Oscillatory Behavior in Chemistry and Biology."

Institute of Biochemistry
Odense University
Odense, Denmark
November 1978

J.S. Turner, "Periodic and Nonperiodic Behavior in an Oscillatory Chemical Reaction."
Annual Meeting of the Materials Research Society
Boston, Massachusetts
December 1978

Chemistry Laboratory
H.C. Orsted Institute
University of Copenhagen
Copenhagen, Denmark
December 1978

J.S. Turner, "Periodic and Nonperiodic Behavior in an Oscillating Chemical Reaction."

1979 Midwinter Solid State Research Conference
Laguna Beach, California
January 1979

Symposium on Dissipative Structures and Spatiotemporal Organization in Biomedical Research
University of South Dakota
Sioux Falls, South Dakota
January 1979

1979 IEEE Conference on Decision and Control
San Diego, California
January 10-12, 1979

*S.I. Marcus, "Discrete Time Optimal Nonlinear Estimation."
University of Tennessee
Knoxville, Tennessee
February 13, 1979

Oak Ridge National Laboratory
Oak Ridge, Tennessee
February 14, 1979

E.J. Powers, "A Fluctuation-Induced Transport Diagnostic Based on Digital FFT Spectral Analysis Techniques."

IBM Research Laboratory
San Jose, California
February 1979

R.T. Yeh, "Conceptual Modelling as a Basis for Specifying Complex Systems."

General Motors Research Labs
Warren, Michigan
March 1979

J.S. Turner, "Discrete Event Simulation in Chemical Kinetics."

Electrical Engineering Seminar
Rice University
Houston, Texas
March 20, 1979

G.L. Wise, "Nonlinear Transformation of Random Processes."

1979 Conference on Information Sciences and Systems
Baltimore, Maryland
March 30, 1979

PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

CONFERENCE PROCEEDINGS

*Funded entirely or in part by the Joint Services Electronics Program.
PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

PUBLICATIONS, TECHNICAL PRESENTATIONS,
LECTURES, AND REPORTS

1979 - 1980
PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES, AND REPORTS

JOURNAL ARTICLES

*Funded entirely or in part by the Joint Services Electronics Program.
PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES, AND REPORTS

PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES, AND REPORTS

PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES, AND REPORTS

*J.Y. Hong, Y.C. Kim, and E.J. Powers, "On Modelling the Nonlinear Relationship Between Fluctuations with Nonlinear Transfer Functions," accepted for publication.

*J.W. Keto and Chien-Yu Kuo, "Collisional Quenching of A\textsubscript{3}(3p)^4 4 and A\textsubscript{3}(3p)^4 3d in Electron Beam Excited Argon at High Densities," in preparation.

*L.W. Frommhold, J.W. Keto, and M.H. Proffitt, "The Diatom Polarizability from Collision-Induced Scattering Measurements of the Helium Isotopes, He\textsubscript{3}-He, He\textsubscript{4}-He," in preparation.
PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES, AND REPORTS

TECHNICAL PRESENTATIONS AND LECTURES

1979 IEEE International Conference on Acoustics, Speech and Signal Processing
Washington, D.C.
April 2-4, 1979

*J.K. Aggarwal and H. Chang, "Stabilization of Two-Dimensional Recursive Filters."

Workshop on Computer Analysis of Time-Varying Imagery
Philadelphia, PA.
April 5-6, 1979

J.K. Aggarwal and J. Roach, "On the Ambiguity of Three-Dimensional Analysis of a Moving Object from Its Images."

J.K. Aggarwal, R. Jain and W. Martin, "Segmentation Through the Detection of Changes Due to Motion."

J.K. Aggarwal and W. Martin, "Oclusion in Dynamic Scene Analysis."

Texas Systems Workshop
Dallas, Texas
April 21, 1979

G.L. Wise, "Nonlinear Transformations of Random Processes."

IEEE MTT Symposium
Orlando, Florida
April 29-May 2, 1979

B.S. Song and T. Itoh, "A Distributed Feedback Dielectric Waveguide Oscillator with a Built-in Leaky-Wave Antenna."

C. Chang and T. Itoh, "Spectral Domain Analysis of Dominant and Higher Order Modes in Fin-Lines."

*Funded entirely or in part by the Joint Services Electronics Program.

66
1979 IEEE International Conference
on Plasma Science
Montreal, Quebec, Canada
June 4-6, 1979

Y.C. Kim, E.J. Powers, J.Y. Hong, J.R. Roth, and W.M. Krawczonek, "Fluctuation-Induced Transport in a Bumpy Torus Plasma."

Twenty-Second Midwest Symposium on
Circuits and Systems
Philadelphia, Pennsylvania
June 17-19, 1979

*D.R. Halverson and G.L. Wise, "On Polynomial Nonlinearities for Detection in ϕ-Mixing Noise."

1979 International IEEE/APS Symposium and National Radio Science Meeting
Seattle, Washington
June 18-22, 1979

*E.J. Powers and Y.C. Kim, "Bispectral Study of Nonlinear Wave-Wave Interactions."

IEEE International Symposium on
Information Theory
Grignano, Italy
June 25-29, 1979

IEEE International Symposium on
Information Theory
(continued)

Technical University of Darmstadt
Darmstadt, West Germany
June 26, 1979

T. Itoh, "New Millimeter-Wave Circuit Approach."

Technical University of Aachen
Aachen, West Germany
June 28, 1979

T. Itoh, "Dielectric Waveguide Techniques for Millimeter-Wave Integrated Circuits."

University of Duisburg
Duisburg, West Germany
June 29, 1979

T. Itoh, "Quasi-Optical Techniques for Millimeter-Wave Integrated Circuits."

Euro-Physics Study Conference
on Multiphoton Processes
Benodet, France
June 1979

*M.F. Becker, K.M. Chung, and G.J. Stevens,
"Investigation of Multiphoton Absorption in SF_6 by Third Harmonic Generation."

Joint Automatic Conference of
Institute of Electrical and
Electronic Engineers
Denver, Colorado
June 1979

J.K. Aggarwal and N. Huang, "On Linear Shift-Variant Digital Filters."
PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES, AND REPORTS

Symposium on Machine Processing
of Remotely Sensed Data
Purdue University
June 1979

J.K. Aggarwal and D. Williams, "Computer Recognition of Citrus Infestations."

Swiss Federal Institute of Technology
Zurich, Switzerland
July 3, 1979

Selenia S.P.A.
Rome, Italy
July 11, 1979

T. Itoh, "Dielectric Waveguide Type Millimeter-Wave Components."

IEEE South Central Italy Section
University of Rome
Rome, Italy
July 22, 1979

T. Itoh, "Millimeter Wave Circuits."

Herzberg International Conference
on van der Walls Molecules
Universite Laval
Quebec, Canada
August 1-3, 1979

*L.W. Frommhold and M.H. Proffitt, "Collision-Induced Scattering of Light."

Ninth Conference on Stochastic Processes and their Applications
Evanston, Illinois
August 6-10, 1979

G.L. Wise, "The Non-Bandlimitedness of a Class of Random Processes."
PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES, AND REPORTS

Sagamore Conference VI
Mont Trempland
Quebec, Canada
August 19-25, 1979

M. Fink, "Charge Densities of Free Molecules."

Fourth International Conference
on Ellipsometry
Berkeley, California
August 20-22, 1979

*A.B. Buckman, "Ellipsometric Characterization of the Glassy Lager at Metal/Semiconductor Interfaces."

International Conference on the
Physics of Atomic Collisions
Kyoto, Japan
August 29-September 6, 1979

*L.W. Frommhold and M.H. Proffitt, "Collision-Induced Scattering of Light."

International Conference on
Artificial Intelligence
Tokyo, Japan
August 1979

J.K. Aggarwal, W. Martin, and R. Jain,
"Extraction of Moving Object Images Through Change Detection."

9th European Microwave Conference
Brighton, England
September 17-21, 1979

PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES, AND REPORTS

International Discussion Meeting on
Kinetics of Physico-Chemical Oscillations
Aachen, Germany
September 1979

Jack Turner, "Periodic and Nonperiodic Oscillations in the Belousov-Zhabotinskii Reaction."

Seventeenth Annual Allerton Conference
on Communication, Control, and Computing
Monticello, Illinois
October 10-12, 1979

*D. R. Halverson and G. L. Wise, "On the Performance of a Modified Sign Detector for M-Dependent Data."

G. L. Wise and N. C. Gallagher, "On the Determination of Regression Functions."

Workshop on Printed Circuit
Antenna Technology
Las Cruces, New Mexico
October 17-19, 1979

T. Itoh and W. Menzel, "A High Frequency Analysis for Open Microstrip Structures."

National Radio Science Meeting
Boulder, Colorado
November 5-8, 1979

T. Itoh and D. Zimmerman, "Characteristics of Microstrip Slot Lines."

Twenty-First Annual Meeting of
the Division of Plasma Physics
of The American Physical Society
Boston, Massachusetts
November 12-16, 1979

*E. J. Powers, Y. C. Kim, and J. M. Beall, "Experimental Study of Nonlinear Wave Coupling of Drift Waves."

71
PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES, AND REPORTS

Twenty-First Annual Meeting of the Division of Plasma Physics of The American Physical Society (continued)

T.P. Kochanski, R.D. Bengtson, Y.C. Kim, L. Khadra, and E.J. Powers, "Mirnov Oscillations and Other MHD Fluctuating Phenomena on PRETEXT."

Purdue University
School of Electrical Engineering
West Lafayette, Indiana
November 28, 1979

G.L. Wise, "Noise, Nonlinearities, and Bandlimitedness."

Colloquium
Texas A&M University
College Station, Texas
December 7, 1979

J.W. Keto, "Two Photon Spectroscopy of Xenon."

1979 IEEE Conference on Decision and Control
Ft. Lauderdale, Florida
December 10-12, 1979

K. Hsu and S.I. Marcus, "Decentralized Control of Finite State Markov Decision Processes."

*C.H. Liu and S.I. Marcus, "Estimator Performance for a Class of Nonlinear Estimation Problems."

1979 International Colloquium on Circuits and Systems
Taipei, Taiwan
1979

J.K. Aggarwal, "Dynamic Scene Analysis."
PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES, AND REPORTS

International Conference on Nonlinear Dynamics
New York Academy of Sciences
New York
December 1979

Jack Turner, "Two Paths to Chaos in the Belousov-Zhabotinskii Reaction."

U.S. Air Force Aero Propulsion Laboratory
Wright Patterson Air Force Base
Dayton, Ohio
January 3, 1980

J.W. Keto, "Dissociative Recombination of Electrons and Ions in Electron Beam Excited Argon at High Density."

University of Muenster
Muenster, Germany
January 7, 1980

M.F. Fink, "Images of Atoms and Molecules."

University of Marburg
Germany
January 8, 1980

M.F. Fink, "Images of Atoms and Molecules"

Free University of Berlin
Germany
January 10, 1980

M.F. Fink, "Images of Atoms and Molecules"

University of Kaiserslautern
Germany
January 14, 1980

M.F. Fink, "Images of Atoms and Molecules."

University of Tuebingen
Germany
January 17, 1980

M.F. Fink, "Images of Atoms and Molecules."
Seventh Annual Conference on
Physics of Compound Semiconductor Interfaces
Estes Park, Colorado
January 29-31, 1980

Department of Mathematics Seminar
University of Groningen
Groningen, The Netherlands
February 5, 1980

S.I. Marcus, "Modeling and Analysis of Stochastic Differential Equations."

Workshop on Compound Semiconductors for Microwave Materials and Devices
San Francisco, California
February 11-12, 1980

*B.S. Song and T. Itoh, "Comparative Study of Microstrip and Coplanar Type Planar Gunn Devices."

Laboratoire des Signaux et Systems
Ecole Superieure d' Electricite
Gif Sur-Yvette, France
February 20, 1980

*S.I. Marcus, "Modeling and Approximation of Stochastic Differential Equations Driven by Semimartingales."

Lehigh University Colloquium
Bethlehem, PA.
March 3, 1980

T. Itoh, "Millimeter Wave Integrated Circuits."
PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES, AND REPORTS

8th Austin Symposium on
Molecular Structure
Austin, Texas
March 3-5, 1980

M. Fink and M. Kelley, "Current Electron Diffraction Studies on SF₆."

The American Physical Society
Third Topical Conference on
High Temperature Plasma Diagnostics
Los Angeles, California
March 17-19, 1980

1980 March Meeting of the APS
New York
March 24-28, 1980

M.H. Kelley and M. Fink, "The Importance of Vibrational Anharmonicity in SF₆."

Fourteenth Annual Conference on Information Sciences and Systems
Princeton, New Jersey
March 26-28, 1980

N.C. Gallagher and G.L. Wise, "Passband and Stopband Properties of Median Filters."

*G.L. Wise and H.V. Poor, "Stochastic Convergence Under Nonlinear Transformations on Metric Spaces."
PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES, AND REPORTS

Workshop on Instabilities, Bifurcations, and Fluctuations in Chemical Systems
Austin, Texas
March 1980

Jack Turner, "Bifurcations Leading to Chemical Chaos: Theory and Experiment."

Twelfth Southeastern Symposium on System Theory
Virginia Beach, Virginia
May 19-20, 1980

G.L. Wise, "Recent Results Concerning the Effects of Nonlinearities on Random Inputs."
CONFERENCE PROCEEDINGS

*Funded entirely or in part by the Joint Services Electronics Program.
PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES, AND REPORTS

PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES, AND REPORTS

PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES, AND REPORTS

BOOKS

PUBLICATIONS, TECHNICAL PRESENTATIONS,
LECTURES, AND REPORTS

1980 - 1981
PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

JOURNAL ARTICLES

*Funded entirely or in part by the Joint Services Electronics Program.

PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES, AND REPORTS

PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES, AND REPORTS

PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

L. Frommhold, G. Birnbaum, "Collision-Induced Absorption and the Repulsive Ne-Ar Potential," accepted for publication.

PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

TECHNICAL PRESENTATIONS AND LECTURES

International Conference on Plasma Physics
Nagoya, Japan
April 7-11, 1980

E.J. Powers, Y.C. Kim, J.Y. Hong, J.R. Roth and W.M. Krawczon, "Radially Inward Fluctuation-Induced Transport in a Bumpy-Torus Plasma."

*E.J. Powers, Y.C. Kim and J.M. Beall, "Nonlinear Wave Coupling and Bispectral Analysis."

Oklahoma State University
Stillwater, Oklahoma
April 8, 1980

J.M. White, "Photoassisted Reactions at the Gas-Solid Interface."

Phillips Petroleum Co.
Bartlesville, Oklahoma
April 9, 1980

J.M. White, "Photoassisted Reactions at the Gas-Solid Interface."

New Mexico AVS Symposium
Santa Fe, New Mexico
May 6-8, 1980

R.L. Hance, P.D. Schulze, H.-I. Lee and J.M. White, "Chemisorption of Nitric Oxide on Rhenium Studies by XPS."

J.M. White, "Photoassisted Catalysis Using TiO₂ Substrates."

*Funded entirely or in part by the Joint Services Electronics Program.
PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

1980 IEEE International Conference
on Plasma Science
Madison, Wisconsin
May 19-20, 1980

*E.J. Powers, Y.C. Kim and J.M. Beall,
"Bispectral Study of Drift Wave Turbulence."

Twelfth Southeastern Symposium
on System Theory
Virginia Beach, Virginia
May 19-20, 1980

G.L. Wise, "Recent Results Concerning
the Effects of Nonlinearities on Random
Inputs."

IEEE Mini-course on Modern
Plasma Diagnostics
Madison, Wisconsin
May 21-23, 1980

*E.J. Powers and Y.C. Kim,
"Digital Time Series Analysis
of Plasma Fluctuation Data."

Pattern Recognition in Practice
Conference
Amsterdam, Holland
May 21-23, 1980

J.K. Aggarwal and W. Martin, "The
Implications of Occlusion on Motion
Analysis in Dynamic Scenes."

1980 IEEE International Microwave Symposium
Washington, D.C.

T. Itoh and B. Adelseck, "Trapped
Image Guide for Millimeter-wave Circuits."
PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

1980 IEEE International "Microwave Symposium
Washington, D.C.
May 28-30, 1980
(continued)

L.P. Schmidt, T. Itoh and H. Hofmann,
"Characteristics of Unilateral Fin-line Structures with Arbitrarily Located Slots."

K. Araki, B.S. Song and T. Itoh,
"Non-reciprocal Effects in an Open Dielectric Waveguide with Grating Structures."

Laboratory for Information and Decision Systems,
Massachusetts Institute of Technology
Cambridge, Massachusetts
June 2, 1980

*S. I. Marcus, "Some Examples of Lie Algebras and Nonlinear Estimation."

1980 IEEE AP-S/URSI Meeting
Quebec, Canada
June 2-6, 1980

K. Araki, T. Itoh and Y. Naito,
"Hankel Transform Domain Analysis of Open Circular Microstrip Radiating Structures."
PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

VI International Conference on Vacuum Ultraviolet Radiation Physics University of Virginia Charlottesville, Virginia June 2-6, 1980

J.L. Erskine, "Surface States and the Photoelectron Spin Polarization of Ni(100)."

Southwest Electron Spectroscopy Users Group Meeting Rice University Houston, Texas June 6, 1980

Tamkang Chair Lectures Tamkang College Tamsui, Taipei, Taiwan June 16-18, 1980

J.M. White, "Kinetic Studies of CO Oxidation Over Transition Metals."

J.M. White, "The Surface Chemistry of Ruthenium."

National Taiwan University Taipei, Taiwan June 17, 1980

PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

U.S. Army Missile Research
and Development Command
Redstone Arsenal, Alabama
June 17, 1980

*E.J. Powers, "Applications of Digital Bispectral Analysis to Nonlinear Wave Fluctuation Data."

Tsing Hua University
Taiwan
June 19, 1980

*J.M. White, "The Surface Chemistry of Ruthenium."

NATO Advanced Study Institute
on Stochastic Systems
June 20, 1980

M. Hazewinkel and S.I. Marcus,
"On Lie Algebras and Nonlinear Estimation."

Optical Society of America Topical Meeting on Picosecond Phenomena
Falmouth, Massachusetts
June 20, 1980

NATO Advanced Study Institute
on Stochastic Systems
Les Arcs, France
June 25, 1980
June 26, 1980 (Two lectures)

S.I. Marcus, "An Introduction to Nonlinear Filtering."
PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

National Cheng Kung University
Taiwan
June 27, 1980

NATO Advanced Study Institute
on Digital Image Processing and Analysis
Bonas, France
June 1980

J.K. Aggarwal and W. Martin, "Tracking of Curvilinear Figures."

J.K. Aggarwal, "Motion and Image Analysis."

The 7th International Congress in Catalysis
Tokyo, Japan
July 1, 1980

J.M. White, "Photoassisted Catalysis Using Platinized Titania."

Gordon Conference on Electron Charge Densities
Plymouth, New Hampshire
July 1-4, 1980

M. Fink, "Electron Charge Densities in Small Molecules Derived From Electron Diffraction Results."

NATO Advanced Study Institute on Stochastic Systems
Les Arcs, France
July 3, 1980

*S.I. Marcus, "Modeling and Approximation of Stochastic Differential Equations Driven by Semimartingales."
PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

Research Institute for Catalysis
Sapporo, Japan
July 7, 1980

*J.M. White, "Chemisorption on Ru(001)."

Twenty-Third Midwest Symposium
on Circuits and Systems
Toledo, Ohio
August 4-5, 1980

*D.R. Halverson and G.L. Wise,
"Some Results on Asymptotic Memoryless Detection in Strong Mixing Noise."

Joint Automatic Control Conference
San Francisco, California
August 14, 1980

XVth International Congress of Theoretical and Applied Mechanics
Toronto, Canada
August 17-23, 1980

R.W. Miksad, F.L. Jones, Y.C. Kim, F.J. Powers and L. Khadra,
"Experiments on Spectral Broadening During Transition to Turbulence."

Hughes Aircraft Company
Project Meeting
Torrance, California
August 21, 1980

T. Itoh, "Millimeter Wave Research at the University of Texas."
PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

International URSI
Electromagnetic Symposium
Munich, W. Germany
August 26-29, 1980

National ACS Meeting
Las Vegas, Nevada
August 27, 1980

J.M. White, "Transient Low Pressure Studies of Catalytic Carbon Monoxide Oxidation."

Huntsville Sections Control Systems Society Meeting
Huntsville, Texas
September 24, 1980

J.L. Speyer, "Linear-Quadratic-Gaussian (LQG); Past, Present, Future."

AEI Limited Seminar
Lincoln, England
October 3, 1980

T. Itoh, "Dielectric Millimeter-Wave Circuits."

5th International Symposium on Infrared and Millimeter Wave
Würzburg, W. Germany
October 6-10, 1980

I. Awai and T. Itoh, "Multilayered Open Dielectric Waveguide with a Gyrotropic Layer."
EXPOCHEM 80
Houston, Texas
October 8, 1980

*J.M. White, "Electron Spectroscopy as a Tool for Studying Chemisorption and Catalytic Reactions on Ru(001)."

Eighteenth Annual Allerton Conference on Communication, Control, and Computing
Monticello, Illinois
October 8-10, 1980

*D.R. Halverson and G.L. Wise, "On the Performance of a Modified Sign Detector for Strong Mixing Noise."

J.A. Bucklew and G.L. Wise, "A Note on Multidimensional Asymptotic Quantization Theory."

Workshop on Modern Millimeter Wave Systems
Estes Park, Colorado
October 22-24, 1980

*T. Itoh, "Millimeter Waveguiding Structures."

Optical Society of America Annual Meeting
Chicago, Illinois
October 1980

PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

22nd Annual Meeting of the Division of Plasma Physics
San Diego, California
November 10-14, 1980

T. Kochanski, R.D. Bengtson, G. Kochanski, Y.C. Kim, L. Khadra and E.J. Powers,
"Observation of Mirnov Type Oscillations on PRETEXT with Magnetic and Photon Detectors."

Y.C. Kim, L. Khadra, E.J. Powers, T.P. Kochanski and R.D. Bengtson,
"Spectral Characteristics of MHD Fluctuations on PRETEXT."

33rd Annual Meeting of the Division of Fluid Dynamics
Ithaca, New York
November 23, 1980

R.W. Miksad, F.L. Jones, Y.C. Kim, E.J. Powers and L. Khadra,
"Experiments on Wave-Wave Interactions During Transition to Turbulence."
PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

University of Miami
Miami, Florida
November 24, 1980

Materials Research Society Annual Meeting
Boston, Massachusetts
November 1980

University of Southern California
EE Seminar
Los Angeles, California
December 3, 1980

*T. Itoh, "Microwave and Millimeter-wave Research at University of Texas."

Colloquium—Presented to the Physics Department
Texas A&M University
College Station, Texas
December 7, 1980

J.W. Keto, "Two Photon Spectroscopy of Xenon."

5th International Conference
on Pattern Recognition
Miami Beach, Florida
December 1980

J.K. Aggarwal and J. Webb, "Observing Jointed Objects."
PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

19th IEEE Conference on Decision and Control
Albuquerque, New Mexico
December 10, 1980

*J.K. Aggarwal and Nian-Chyi Huang,
"Time-Varying Digital Signal Processing."

5th International Conference on Pattern Recognition
Miami Beach, Florida
December 1980

J.K. Aggarwal, W. Martin and S. Yalamanchili,
"Image Differencing for Moving Object Extraction in Dynamic Scenes."

Physical Electronics Industries
Eden Prairie, Minnesota
February 4, 1981

J.M. White, "XPS Studies of the Oxidation of Cerium."

Arizona State University
Tempe, Arizona
February 10, 1981
(condensed matter seminars)

*J.L. Erskine, "Magnetic Dead Layers and the Surface Electronic Structure of Nickel."

University of Arizona
Tucson, Arizona
February 13, 1981
(condensed matter seminars)

*J.L. Erskine, "Magnetic Dead Layers and the Surface Electronic Structure of Nickel."
PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

Colloquium-Presented to the Physics Department
Texas A&M University
College Station, Texas
February 13, 1981

L. Frommhold, "Intermolecular Spectroscopy."

International Solid State Circuit Conference
Panel Session
New York, New York
February 18-20, 1981

*T. Itoh, "Distributed Millimeter-wave Components."

Dept. of Electrical Engineering and
Computer Science Seminar
Polytechnic Institute of New York
Brooklyn, New York
February 20, 1981

*T. Itoh, "Microwave and Millimeter-wave Research at University of Texas."

University of Missouri
St. Louis, Missouri
February 29, 1981

J.A. Schreifel, S.-K. Shi, and J.M. White,
"Temperature Dependence of Electron
Beam Damage During the Titration of Adsorbed
Oxygen with Hydrogen on a Ru(001) Surface."

Cornell University
Surface Physics/Condensed Matter Seminar
Ithaca, New York
March 6, 1981

*J.L. Erskine, "Surface Magnetic Properties
of Magnetic Metals."
PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

Seminar-Texas A&M University
March 6, 1981

Dr. J. Kimble, "Stability and Instability in Optical Bistability."

Free University Berlin-Colloquium
Berlin, Germany
March 17, 1981

Dr. M. Fink, "Electron Scattering From H₂ and He."

1981 Conference on Information Sciences and Systems
Baltimore, Maryland
March 25-27, 1981

Dr. S.I. Marcus, "Modeling of Nonlinear Systems Driven by Semimartingales With Applications to Nonlinear Filtering."

American Cyanamid Co.
Stanford, Connecticut
March 30, 1981

Bor-Her Chen and J.M. White, "Photoassisted Water Decomposition by Pt-TiO₂."
IEEE International Conference
on Acoustics, Speech, and Signal Processing
Atlanta, Georgia
March 30-April 1, 1981

*J.K. Aggarwal and Nian-Chyi Huang,
"Spectral Modifications Using Linear
Shift-Varying Digital Filters."

*Hyokang Chang and J.K. Aggarwal,
"Implementation of Two-Dimensional
Semicausal Recursive Digital Filters."

ACS National Meeting
Atlanta, Georgia
April 2-3, 1981

J.M. White, S. Sato and S.-M. Fang,
"Photoassisted Reactions Involving
Modified Titanium Dioxide Surfaces."

W.M. Daniel, Y.C. Kim, H. Peebles,
and J.M. White, "Adsorption of
N₂O and O₂ on Ag/Rh(100)."

B.E. Koel and J.M. White, "X-ray
Excited Auger Electron Spectroscopy
of Ethylene and Acetylene on Ni(100)."

J.A. Schreifles, S.-K. Shi and J.M. White,
"Temperature Dependence of Electron Beam
Damage During the Titration of Adsorbed
Oxygen with Hydrogen on a Ru(001) Surface."

Rice University
Houston, Texas
April 14, 1981

*S.I. Marcus, "Nonlinear Filtering: Pathwise
Solution, Finite Dimensional Filters,
and Approximations."
PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

Lawrence Berkeley Laboratory
Berkeley, California
April 21, 1981

J.M. White, "Coadsorption of CO/H$_2$ and CO/H$_2$O on Group VIII Metals."

New Mexico AVS Symposium
Albuquerque, New Mexico
April 29, 1981

B.E. Koel, D.E. Peebles, J.A. Schreifels and J.M. White, "Coadsorption of CO and H$_2$ on Ni(100) and Ru(001)."

W.M. Daniel, Y.C. Kim, H.C. Peebles and J.M. White, "Adsorption of Ag, O$_2$ and N$_2$O on Ag/Rh(100)."

IEEE International Conference on Circuits and Systems
Chicago, Illinois
April 1981

Nian-Chyi Huang, Sunghan Park and J.K. Aggarwal, "One Dimensional Linear Time-Varying Digital Filtering Using Two-Dimensional Techniques."

Nian-Chyi Huang and J.K. Aggarwal, "Synthesis of Recursive Linear Shift-Variant Digital Filters."

EXXON
Linden, New Jersey
May 20, 1981

J.M. White, "Photoassisted Reactions."

The University of Marburg-Colloquium
Marburg, Germany
May 22, 1981

M. Fink, "Potentials and Limitations of High Precision Scattering Data."
XXth General Assembly of URSI
Washington, D.C.
August 10-19, 1981

J.M. Beall, Y.C. Kim and E.J. Powers,
"Experimental Estimation of Spectral Densities of Plasma Wave Turbulence."

T. Itoh, "Planar Dielectric Waveguides and Other Surface-Wave Structures."
PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

CONFERENCE PROCEEDINGS

*Funded entirely or in part by the Joint Services Electronics Program

PUBLICATIONS, TECHNICAL PRESENTATION, LECTURES AND REPORTS

PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES, AND REPORTS

1981 - 1982
PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

JOURNAL ARTICLES

*Funded entirely or in part by the Joint Services Electronics Program.

PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

*J.K. Aggarwal and N.C. Huang, "Frequency-Domain Considerations of LSV Digital Filters," IEEE Transactions on Circuits

PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

J. Krainak, F. Machell, S. Marcus and J. Speyer, "The Dynamic Linear Exponential Gaussian Team Problem," accepted for
publication in the IEEE Transactions on Automatic Control, (1982).

PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

*Chien-Yu Kuo and J.W. Keto, "Dissociative Recombination of Electrons in Electron Beam Excited Argon and High Densities, in press.

TECHNICAL PRESENTATIONS

IEEE International Conference on
Circuits and Systems
Chicago, Illinois
April 1981

Nian-Chyi Huang, Sunghan Park and J.K. Aggarwal, "One Dimensional Linear Time-Varying Digital Filtering Using Two-Dimensional Techniques."

Nian-Chyi Huang and J.K. Aggarwal, "Synthesis of Recursive Linear Shift-Variant Digital Filters."

ACS National Meeting
Atlanta, Georgia
April 2-3, 1981

J.M. White, S. Sato and S.-M. Fang, "Photoassisted Reactions Involving Modified Titanium Dioxide Surfaces."

W.M. Daniel, Y.C. Kim, H. Peebles, and J.M. White, "Adsorption of N₂O and O₂ on Ag/Rh(100)."

B.E. Koel and J.M. White, "X-Ray Excited Auger Electron Spectroscopy of Ethylene and Acetylene on Ni(100)."

"Funded entirely or in part by the Joint Services Electronics Program."
PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

Physics Department
University of Bielefeld
Bielefeld, Fed. Republic of Germany
April 11, 1981

L. Frommhold, "Collision-Induced Spectroscopy."

Deutsche Gesellschaft für Schwerionenforschung
G.M.B.H.
Garmstadt, Fed. Republic of Germany
April 13, 1981

L. Frommhold, "Collision-Induced Spectroscopy."

Rice University
Houston, Texas
April 14, 1981

*S.I. Marcus, "Nonlinear Filtering: Pathwise Solution, Finite Dimensional Filters, and Approximations."

IEEE Antennas and Propagation Society
Dallas Section
April 16, 1981

T. Itoh, "Antenna Research at University of Texas."

Lawrence Berkeley Laboratory
Berkeley, California
April 21, 1981

J.M. White, "Coadsorption of CO/H₂ and CO/H₂O on Group VIII Metals."

Physics Colloquium
North Texas State University
Denton, Texas
April 24, 1981

R.M. Walser, "Heterogeneous Nucleation of Pulsed Laser Damage in Crystalline Silicon."
PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

New Mexico AVS Symposium
Albuquerque, New Mexico
April 29, 1981

B.E. Koel, D.E. Peebles, J.A. Schreifels and J.M. White, "Coadsorption of CO and H₂ on Ni(100) and Ru(001)."

W.M. Daniel, Y.C. Kim, H.C. Peebles, and J.M. White, "Adsorption of Ag, O₂ and N₂O on Ag/Rh (100)."

Solid State Physics Seminar
University of Texas at Austin
May 7, 1981

*R.M. Walser, "Picosecond Laser Damage of Crystal Silicon."

1981 IEEE International Conference
on Plasma Science
Santa Fe, New Mexico
May 18-20, 1981

EXXON
Linden, New Jersey
May 20, 1981

J.M. White, "Photoassisted Reactions."

ONR Conference
Renssalaer Polytechnic Institute
Troy, N.Y.
May 21, 1981

J.M. White, "Photoassisted Reactions."
PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

The University of Marburg-Colloquium
Marburg, Germany
May 22, 1981

M. Fink, "Potentials and Limitations of High Precision Scattering Data."

Massachusetts Institute of Technology
Cambridge, MA.
May 28, 1981

*S.I. Marcus, "Nonlinear Filtering: Pathwise Solution, Finite Dimensional Filters and Approximations."

IEEE International Microwave Symposium
Los Angeles, California
June 15-19, 1981

P. Yen, J.A. Paul and T. Itoh, "Millimeter Wave Planar Slot Antennas with Dielectric Feeds."

T. Itoh, "Open Guided Wave Structures for Millimeter-Wave Circuits."

*Y. Shih, J. Rivera and T. Itoh, "Millimeter Wave Planar Slot Antennas with Dielectric Feeds."

1981 National Radio Science Meeting
Los Angeles, California
June 16-19, 1981

*J.Y. Hong, Y.C. Kim and E.J. Powers, "Modelling of Nonlinear Scatterers with Nonlinear Radar Cross Sections."

D.C. Chang and T. Itoh, "Guiding Mechanisms on Open, Planar Structures."
PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

1981 National Radio Science Meeting
(continued)

J. Rivera and T. Itoh, "Suspended and Inverted Microstrips for Millimeter-Wave Applications."

ACS N.W. Regional Meeting
Bozeman, Montana
June 19, 1981

J.M. White, "Coadsorbed CO and \(\text{H}_2 \) on Ni(100)."

Joint ASME/ASCE Bioengineering, Fluids Engineering and Applied Mechanics Conference
Boulder, Colorado
June 22-24, 1981

Workshop/Conference on Heterogeneous Catalysis
SUNY
Albany, N.Y.
June 30, 1981

J.M. White, "Photoassisted Reactions on Doped Metal Oxide Particles."

Electrical Engineering Seminar
University of California-Irvine
Irvine, California
July 2, 1981

* T. Itoh, "Open Guided Wave Structures for Millimeter-Wave Circuits."

Dow
Freeport, Texas
July 21, 1981

J.M. White, "Photoassisted Reactions."
PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

Hughes Aircraft Company
Electron Dynamics Division
Project Meeting
Torrance, California
July 23, 1981

*T. Itoh, "Distributed Nonreciprocal Structures."

Seventh International Joint Conference on Artificial Intelligence
Vancouver, Canada
August 1981

J.K. Aggarwal and Jon Webb, "Structure from Motion of Rigid and Jointed Objects."

URSI General Assembly
Washington, D.C.
August 1981

*T. Itoh, "Planar Dielectric Waveguides and Other Surface-Wave Structures."

IEEE Pattern Recognition Image Processing Conference
Dallas, Texas
August 1981

J.K. Aggarwal and Sudhakar Yalamanchili, "Motion and Image Differencing."
J.K. Aggarwal and W.N. Martin, "Occluding Contours in Dynamic Scenes."

Advanced Flight Control Symposium
Air Force Academy
Colorado
August 4, 1981

J.L. Speyer, "Linear-Quadratic-Gaussian Synthesis with Application to the Longitudinal Decoupler Motion of an Aircraft."
XXth General Assembly of URSI
Washington, D.C.
August 10-19, 1981

J.M. Beall, Y.C. Kim and E.J. Powers,
"Experimental Estimation of Spectral
Densities of Plasma Wave Turbulence."

NASA/DoD Meeting on
Near Millimeter Waves
and Their Applications
Goddard Space Flight Center
Greenbelt, MD.
August 11-13, 1981

*T. Itoh, "Distributed Concepts in Milli-
meter-Wave Circuits."

11th European Microwave Conference
Amsterdam, The Netherlands
September 7-10, 1981

K. Araki, N. Camilleri and T. Itoh,
"Dielectric Waveguide with a Ferrite
Layer and Periodic Metal Strips."

International Symposium on
Offshore Engineering
Rio de Janeiro, Brazil
September 14-19, 1981

R.W. Miksad, E.J. Powers, Y.C. Kim, F.L.
Jones, R.S. Solis and F.J. Fischer,
"Applications of Digital Time Series
Techniques to Determine Nonlinear Drift
Forces."

Department of Chemistry
University of Arizona
Tucson, Arizona
September 17, 1981

J.M. White, "Photoassisted Reactions on
Transition Metal Doped Semiconducting
Oxides."

J.M. White, "Coadsorption of H₂ and CO on Ni, Rh and Ru Single Crystalline Surfaces."

J.M. White, "Photoassisted Reactions Over Transition Metal Doped Titania."

*A.B. Buckman, "Polarization-Selective Lateral Waveguiding in Layered Dielectric Structures."

PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

7th North American Catalysis Society Meeting
Boston, MA.
October 13, 1981

Y. Kim, B.E. Koel, H.C. Peebles, D.E. Peebles and J.M. White, "Interaction of H_2 and CO on Ni(100) and Rh(100)."

1981 Annual Meeting of the Optical Society of America
Orlando, Florida
October 26-30, 1981

*H.J. Kimble and D.E. Grant, "Observations of Optical Bistability in an Atomic Beam Apparatus."

Society of Photooptical Instrumentation Engineers Conference on Integrated Optics and Millimeter and Microwave Integrated Circuits
Huntsville, AL.
November 1981

*A.B. Buckman, "Mode Selection with a Three-Layer Dielectric Waveguide."

Army Research Office Workshop on Short Millimeter Wave Nonreciprocal Materials and Devices
Research Triangle Park, N.C.
November 9-10, 1981

*T. Itoh, "Distributed Nonreciprocal Structures."

IEEE Antennas and Propagation Society Atlanta Chapter
Atlanta, Georgia
November 10, 1981

*T. Itoh, "Dielectric Waveguide Techniques for mm-Wave Circuits."
PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

Atomic and Molecular Physics Seminar
University of Texas at Austin
November 10, 1981

*H.J. Kimble, "Nonlinear Absorption and Dispersion with Atomic Beams."

Georgia Institute of Technology
Engineering Experiment Station
Atlanta, Georgia
November 11, 1981

*T. Itoh, "Dielectric Waveguide Techniques."

Texas A&M University
Physics Department
College Station, Texas
November 13, 1981

L. Frommhold, "New Results of Collision-Induced Spectroscopy."

Winter Annual Meeting of the
American Society of Mechanical Engineers
Washington, D.C.
November 15-20, 1981

SPIE Symposium on Integrated Optics
and Microwave Integrated Circuits
Huntsville, Alabama
November 16-19, 1981

*T. Itoh, "Recent Advances in Dielectric Millimeter-Wave Integrated Circuits."

13th Laser Damage Symposium
Boulder, Colorado
November 17-18, 1981

*R.M. Walser, M.F. Becker and D.Y. Sheng, "Laser Damage of Crystalline Silicon by Multiple 1.06μm Picosecond Pulses."
PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

Texas A&M University
College Station, Texas
November 19, 1981

J.M. White, "Coadsorption of H_2 and CO on Transition Metals."

Vanderbilt University Electrical Engineering Seminar
Nashville, Tennessee
November 20, 1981

*T. Itoh, "Millimeter-Wave Integrated Circuits."

34th Meeting of the American Physical Society
Division of Fluid Dynamics
Monterey, California
November 22-24, 1981

R.W. Miksad, F.L. Jones and E.J. Powers, "Experiments on the Role of Phase Modulation During Transition to Turbulence."

1981 Biannual Meeting of the Division of Electron and Atomic Physics of APS
December 3-5, 1981

S.N. Ketkar and M. Fink, "High Energy Electron Scattering from Helium."

*J. Kimble, M. Fink and I. Hertel, "Optical Pumping of the Hyperfine Levels of Na and Li with High Laser Intensities."

B.R. Miller, J. Fink and L.S. Bartel, "Intra Molecular Multiple Scattering in Medium Energy Electron Diffraction."

R.J. Mawhorter and M. Fink, "An Experimental Determination of the Vibrationally-Averaged Temperature-Dependent Structures of CO$_2$ and SO$_2$."

134
PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

6th International Conference on
Infrared and Millimeter Waves
Miami Beach, Florida
December 6-11, 1981

*T. Itoh and J. Rivera, "A Comparative
Study of Millimeter-Wave Transmission
Lines."

W.O. Milligan Symposium
Houston, Texas
December 15, 1981

J.M. White, "Recent Advances in Surface
Chemistry."

IEEE Conference on Decision and Control
San Diego, California
December 16-18, 1981

*S.I. Marcus, "An Introduction to Nonlinear
Filtering and Functional Integration."

*J.W. Grizzle, S.I. Marcus and K. Hsu,
"Decentralized Control of a Multiaccess
Broadcast Network."

*D.L. Ocone, J.S. Baras and S.I. Marcus,
"Filtering and Smoothing Equations for
The Filtering Problem of Benes."

Reuniones de Invierno
Cocoyoc, Mexico
January 12-13, 1982

J.M. White, "Photoassisted Reactions at
the Gas-Solid Interface," and "Coadsorp-
tion of CO/H₂ on Transition Metals."

Los Alamos National Lab
Los Alamos, N.M.
January 20, 1982

J.M. White, "Photoassisted Reactions at
the Gas-Solid Interface."
PUBLICATIONS, TECHNICAL PRESENTATIONS, LECTURES AND REPORTS

Applied Physics Seminar
Stanford University
Stanford, California
January 25, 1982

*M.F. Becker, "Picosecond Laser Damage Mechanisms at Semiconductor Surfaces."

SPIE Conference on Picosecond Lasers and Applications
Los Angeles, California
January 26-27, 1982

IFIP Working Conference on Accent Advances in Filtering and Optimization
Cocoyoc, Mexico
February 1-6, 1982

Texas A&M University-Colloquium
College Station, Texas
February 9, 1982

M. Fink, "Molecular Force Constants and Electron Diffraction."

Electrical Engineering Seminar
UCLA
Los Angeles, California
February 24, 1982

*T. Itoh, "Microwave Research at The University of Texas at Austin."

Sandia National Lab
Albuquerque, N.M.
March 2, 1982

J.M. White, "Chemisorption on Cu/Ru and Ag/Rh."
Workshop on Irreversible Processes in Quantum Mechanics and Quantum Optics
San Antonio, Texas
March 15-18, 1982

"H.J. Kimble, "Observation of Optical Bistability with Two-Level Atoms."
CONFERENCE PROCEEDINGS

*Funded entirely or in part by the Joint Services Electronics Program.

I. INFORMATION ELECTRONICS
Research Unit IE81-1 NONLINEAR DETECTION AND ESTIMATION

Principal Investigators: Professor S.I. Marcus (471-1265)
 Professor J.L. Speyer (471-1356)

Graduate Students: Jessy Grizzle, Chao-Huan Liu and John White

A. OBJECTIVES AND PROGRESS: This research unit is concerned with several aspects of the statistical properties of nonlinear systems. Specifically, the design and analysis of optimal and suboptimal nonlinear estimators, the modeling of nonlinear systems driven by general noise processes, and the problem of detecting and identifying failure modes in fault tolerant systems have been investigated.

1. Nonlinear Estimation:
 The area of nonlinear state estimation is concerned with the extraction of information about the state of a stochastic system from nonlinear noisy measurements. The state estimate is generated by passing the measurements through a nonlinear system. Optimal state estimators have been derived for very general classes of nonlinear systems, but these are in general infinite dimensional. That is, it is usually not possible to recursively generate the optimal minimum variance estimate (the conditional mean) of the system state given the past observations. The basic objective here is the design, analysis, and implementation of high-performance optimal and suboptimal estimators which operate recursively in real time. There are few known cases aside from the linear (Kalman) filtering problem in which the conditional mean (the minimum variance estimate) of the system state given the past observations can be computed recursively in real time with a filter of fixed finite dimension. However, in [1] we have proved that for certain classes of discrete-time and continuous-time systems, described either by a finite Volterra series or by certain types of state-affine realizations, the minimum variance estimator is recursive and of fixed finite dimension. This was accomplished by relating these problems to the homogeneous chaos of Wiener and to orthogonal expansions of Gaussian processes.

Benes [2] has recently given an explicit solution for the conditional density for a class of nonlinear filtering problems with nonlinear state equations and linear observations. In [3] we have extended his results and our results of [1] in the following way. In [1] we found finite dimensional filters for the conditional moments for problems in-
volving linear systems feeding forward into nonlinear systems; in [3], we have studied problems in which systems of Benes type feed forward into nonlinear systems of the type considered in [1]. We have derived recursive filtering equations for the conditional moments of Benes problem and used these to derive new finite dimensional optimal filters for the class of nonlinear systems described above.

In a Lie algebraic approach to nonlinear filtering, we have studied the (Zakai) stochastic partial differential equation for an unnormalized conditional density $p(t,x)$ of the state x_t given the past observations $\{z_s, 0 \leq s \leq t\}$:

$$d\rho(t,x) = L_0 \rho(t,x)dt + L_1 \rho(t,x)dz_t$$

where L_0 and L_1 are certain differential operators. The major idea of the approach is that, if L is the lie algebra generated by $L_0 - \frac{1}{2} L_1^2$ and L_1, and if a recursive finite dimensional estimator for some statistic of the state exists, then there should be a Lie algebra homomorphism from L to the Lie algebra F of the finite dimensional filter. F is a Lie algebra of vector fields on a finite dimensional manifold, so the representability of L or quotients of L by vector fields on a finite dimensional manifold is closely related to the existence of finite dimensional recursive filters.

The structure and representability properties of L are analyzed for several interesting classes of problems in [4]. It is shown that, for certain nonlinear filtering problems, L is given by the Weyl algebra $W = \mathbb{R}[x_1, \ldots, x_n]$, $\frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n}$ of all polynomial differential operators.

These problems include the cubic sensor problem (linear system with cubic observations) and some examples of mixed linear-bilinear type. It is proved that neither W nor any quotient of W can be realized with C^2 or analytic vector fields on a finite dimensional manifold, thus suggesting that for these problems, no statistic of the conditional density can be computed with a finite dimensional recursive filter. This work, together with some results of Sussmann, implies that for some problems (including the cubic sensor), no nontrivial statistics can be computed recursively with finite dimensional
filters; this is the first such result in the literature.
For another class of problems, it is shown that L is a certain

In [5], we have studied the modeling and approxi-

The work of [5] is used in conjunction with Lie

The negative results of [4] are interesting, but

The typical system considered is of the form

147
dx_t = ax_t dt + dw_t
\[(2) \]
\[dz^\varepsilon_t = [x_t + \varepsilon(x_t)^k] dt + dv_t, \quad k \geq 1 \]

-- i.e., it is a "weak polynomial sensor" problem. We have first expanded the unnormalized conditional density \(\rho(t,x) \) satisfying (1) powers of \(\varepsilon \)
\[\rho^\varepsilon(t,x) = \rho_0(t,x) + \varepsilon \rho_1(t,x) + \varepsilon^2 \rho_2(t,x) + \ldots \]
and have for the first time showed that
\[\rho^\varepsilon(t,x) - \sum_{i=0}^{n} \varepsilon^i \rho_i(t,x) \]
is actually \(O(\varepsilon^{n+1}) \) in a suitable norm; i.e., (3) is a true asymptotic expansion. In addition, we have shown similar results for the normalized conditional density and conditional mean.

Even if (3) is an asymptotic expansion, it is not of much use in nonlinear estimation unless each term in (3) can be computed with a finite dimensional recursive filter. This is shown in [8] by Lie algebraic techniques. By substituting the expansion (3) into (1) and truncating after \(n \) terms, we obtain a set of coupled stochastic partial differential equations; however, each equation is coupled only to lower order, not higher order equations. In addition, the Lie algebra of these equations up to order \(n \) is solvable and finite dimensional; hence the equations can be solved by the Wei-Norman method. This method results in a recursive finite dimensional filter for a set of sufficient statistics, from which the expansions of the conditional density and conditional mean can be computed by a memoryless operation.

The research in this area is continuing and has been complemented by Grant AFOSR-79-0025 from the Air Force Office of Scientific Research and Grant ECS-8022033 from the National Science Foundation.

2. Fault Detection and Identification:
An essential aspect in the design of fault tolerant digital flight control systems is the design of fault detection systems. Design considerations are concerned with
the trade-off between the cost of hardware redundancy and the complexity and robustness of the software for analytic redundancy. In analytic redundancy dissimilar instruments are combined through analytic relations to achieve redundancy. Since these relations contain system parameters, additional uncertainty may be introduced beyond that present in the sensors. The processing of the outputs of these relations to produce adequate fault detection and isolation performances may require complex decision and estimation software. In [12], we have developed a particular decision rule which seems simple to implement on flight computers, yet sensitive enough to produce adequate performance. This decision rule, based upon the results of Shiryayev [9] and suggested to us by Deyst [10], has application to fault detection for both similar instruments and dissimilar instruments through analytic redundancy.

Given a sequence of independent measurements, the Shiryayev sequential probability ratio test (SSPRT) will detect a disruption (or fault) in the data sequence in minimum time with certain conditions. This (SPRT) differs from the Wald SPRT since there is no need to mechanize a "trigger" [12]. In fact, the SSPRT can be reduced to the Wald SPRT when the probability of change in state (the transition probability) is made zero. One objective is to investigate the robustness of the SSPRT in that we require that it be a continuous fault monitor. Attention is given to its response time in detecting a fault and to the frequency of false alarms.

The likelihood ratio of the SSPRT is derived explicitly in [12]. We assume that the measurements are independent and of known probability densities (the fault bias is known), and the transition probability, the a priori probability and the threshold values are given. For a scalar data sequence and two hypotheses (the measurement sequences are governed by either of two probability laws), a scalar linear difference equation with state dependent noise is propagated. The multiplicative noise term is composed of the ratio of the probability laws, which is a function of the present measurement. A dynamic programming analysis shows the optimality of the SSPRT. In [9], Shiryayev shows that a cost function composed of the probability of false alarm summed with the cost of average delay of detecting the occurrence of the disruption is directly related to the optimal stopping problem with a given threshold. In [12], the threshold for the likelihood ratio has been chosen as a given ratio of the probability that the fault has occurred in the data sequence to the probability that it has not. This threshold
can be related to the cost of false alarms by the dynamic programming analysis.

Although the Wald SPRT used in [11] requires the uncertainty in the data sequence to be Gaussian, the probabilistic description can be quite general for the SSPRT. This generality is used to advantage in our results for the case where the sign of the bias is unknown. Since the Wald SPRT depends explicitly on the sign of the bias, two Wald SPRT's are propagated in [11]. However, the absolute value of the data sequence, which is non-Gaussian, even if the original data sequence is Gaussian, can be processed in the SSPRT. The resulting SSPRT is not increased in complexity. On the contrary, whereas an exponential function of the data had to be calculated, a cosh function of the data is calculated at each sample point. The cosh function, being an even function, can be calculated numerically more efficiently.

To gain insight into the performance of this test, two problems are chosen in [12]. Since the sequential tests are more efficient in detecting a fault than fixed interval schemes such as sliding window averages and consistency tests, the SSPRT is used in direct redundancy tests between two like instruments. Here, two rate gyros are modeled and the SSPRT is applied. Performance is compared with the standard tests with regard to detection time and false alarm rate. Furthermore, the mechanization of the SSPRT with regard to processing time and computational complexity is compared with that of standard tests.

The second experiment is to form a parity relation among various instruments. The particular test chosen is the translational kinematic redundancy test described in [11]. One objective is to show how the SSPRT can be used to detect accelerometer or rate gyro failures without a redundancy trigger, i.e., only one instrument is necessary. This circumstance occurs when the instruments are very expensive. This test was chosen since some results are already reported in [11].

In [11], an open loop dynamic comparison test is developed. In this test, the measured acceleration is integrated and compared with the difference between the initial measured velocity and the present measured velocity. The effect of this test is to improve the signal-to-noise ratio since the design bias is increasing with time and the dominant noise variance associated with the measured velocity, although large, remains fixed. However, since no trigger is available for the SSPRT, this open loop dynamic comparison cannot be used. Rather, the data sequence for the SSPRT is
obtained by integrating the measured acceleration over a number of sample times and comparing this velocity with the difference between the measured velocity at the end and the beginning of this interval. In this way, the signal-to-noise ratio is improved at the expense of a reduced data sequence. To improve performance, we suggest using two tests, in which one test will rapidly detect hard over faults, while the other will be adjusted to detect more subtle faults. In the experiments of [12], the data sequence is constructed as described above, using the sensor models for the translational kinematics given in (11). However, the given variance associated with the angle-of-attach meter was reduced by an order of magnitude. These variances were kept artificially high in [11] so as not to produce false alarms near the beginning of the test. Since we process information at a slower rate, more realistic variances are used. In our study a design bias of .2 g's is used. For an ensemble average of 30 runs, the average detection time was 4.2 sec. using an integration interval of ten times the sample time of .0625 sec. This is compared with 2.2 sec. (one run) of [11] to detect a failure after the trigger was tripped. This study shows the trade-offs between integration intervals and bias levels with regard to detection times and false alarm frequency. Furthermore, increasing the integration interval has the effect of reducing the influence of wind shear on the detection process when the correlation times are small enough.

The research in this area is continuing and is complemented by a grant from General Dynamics, Fort Worth Division.

B. REFERENCES

A. PROGRESS: The basic objective of the research unit is to develop efficient techniques for processing multi-dimensional signals and the analysis, synthesis and implementation of linear time-varying (LTV) digital filters. Linear time-varying digital filters are important in processing signals where frequency content changes significantly with time. The use of LTV digital filters to process nonstationary sequences has received considerable attention in many applications such as geophysics, communication systems, speech analysis and synthesis [1]. Our research has been directed toward the development of new techniques to synthesize and implement LTV digital filters.

We have investigated the interrelationships among three characterizations of LTV digital filters; the impulse response, the generalized transfer function and the time-varying difference equation [1]. Specifically, we have proven that an impulse response is realizable as a recursive time-varying difference equation if and only if it is expressed as a degenerate sequence. In the frequency domain, the short-time spectrum is a useful measure of the frequency content of nonstationary sequences. In [2], [3], we have proposed an efficient technique to determine the generalized frequency function of an LTV digital filter from the short-time Fourier transform of an input sequence. The technique allows spectral modification to vary with the changing frequency content of a desired sequence and the resultant bandwidth of LTV digital filter to be much narrower than that of a linear time-invariant (LTI) digital filter.

Motivated by the above property of the impulse response of a time-varying difference equation, we have developed two synthesis techniques which approximate a given impulse response by a degenerate sequence [4], [5]. Both techniques use a least squares error criterion to minimize the difference between the given and the approximated impulse responses. The first technique is formulated as an approximation of an arbitrary function of two integer variables by sums of separable functions. The filter synthesized by this technique is optimal for the given criterion. However, the implementation of the resultant filters needs to store a
large number of filter coefficients. In order to circumvent this difficulty, the degenerate impulse response is represented in terms of simple functions with unknown parameters. These unknown parameters are determined by a nonlinear optimization method which minimizes the distance function. This second technique is more efficient in implementation but may yield suboptimal filters. In addition, several recursive structures for implementing degenerate impulse responses have been investigated.

In [6], we have developed a new technique to implement a one-dimensional (1-D) LTV digital filter with a two-dimensional (2-D) linear time-invariant (LTI) recursive digital filter. By appropriately mapping 1-D input/output sequences into 2-D sequences, 1-D LTV digital filtering may be carried out by a 2-D LTI convolution. In doing so, synthesis techniques developed in LTI digital filters have been applied. The use of this technique has eliminated certain difficulties encountered in implementing LTV digital filters such as the storage of a large number of filter coefficients and the updating of LTV recursive filter coefficients at each sampling instant, but at the expense of more computation time.

A conventional time-domain technique to characterize an optimal filter is based on the least mean squares (LMS) error criterion. In general, it requires a large amount of computation time to obtain the impulse response. We have compared the filter performance and the computation requirements of the time- and frequency-domain techniques based on the mean-squared difference between the actual and desired output sequences when a nonstationary input sequence contains Gaussian noise [7]. Our result demonstrates that the frequency-domain technique is efficient but yields suboptimal filters.

As it has been reported earlier, significant progress has been made in the stabilization and synthesis of 2-D semicausal recursive filters. However, the use of semicausal filters requires a large amount of extra grid points to process a 2-D image. In [8], we presented a method to reduce the size of the output frame. This is done by augmenting the input image with the state-control signal; this prohibits propagation of the state vector beyond the prescribed frame. Our implementation technique provides a desirable means to get an output image without computing the states outside the prescribed rectangular.

We plan to continue the present research efforts on problems associated with the synthesis and implementation of LTV digital filters and multi-dimensional signal processing.
In one of our current research programs, we are pursuing methods to realize a generalized transfer function as an LTV recursive difference equation. The synthesis of LTV digital filters has been difficult due to the absence of a correspondence between the coefficients in a time-varying difference equation and the generalized transfer function. With this observation, we propose to develop synthesis techniques which minimize the mean squared error between the impulse responses of a given generalized transfer function and the synthesized LTV recursive difference equation. The determination of filter coefficients in this technique may require large storage and computation time, especially in the case of filtering an input sequence with long duration. Therefore, it is desirable to consider an approximate technique which may yield locally optimal filters which are more efficient in computation. In another project, we are considering the efficient synthesis and implementation of multi-dimensional filters.

B. REFERENCES

II. SOLID STATE ELECTRONICS
A. RESEARCH OBJECTIVES: The overall objective of this research is to expand on our understanding of fundamental processes at the interfaces of electronic structures. The interface structures of interest are contacts and barriers whose stability determines the overall lifetime and reliability of electronic devices and circuits. The fundamental information gained in these studies is also expected to be potentially useful for synthesizing new and improved electronic devices and materials.

In our previous research we have shown that electronic instabilities may drive the solid phase surface chemical modifications that alter the properties of electronic interface structures. Many surface chemical kinetic paths are available for relieving the instabilities, but the actual path selected may depend upon a large number of experimental parameters and selective chemical kinetic paths cannot generally be predicted. At present our work is being concentrated on (1) understanding the fundamental, and possibly universal origin of the electronic instabilities and (2) experimentally exploring their relaxation in specific important electronic systems.

In the past year our research has been focused on two general problem areas. The first area concerns the general problem of understanding the reaction paths selected by silicon interfaces at low reaction temperatures, i.e., below eutectic and melting points in the equivalent bulk systems. We are particularly interested in the reaction paths for transition metal-silicon interfaces. Progress in several related studies of these systems are reported in the next section. In the past year we have concentrated on measurements of excess $\frac{1}{f}$ noise in Co-Si films through the first nucleation regime as well as a determination of the reaction path in Cr-Si and Ti-Si systems.

The second area of concentration is the study
of laser-induced surface instabilities in solids which has the specific objective of investigating the physics of non-equilibrium nucleation phenomena in solids. In the past year we have been studying the laser damage of crystalline silicon by intense, multiple, large beam area pulses from the perspective of non-equilibrium phase transitions. To do so we developed new experimental techniques for demonstrating that the iso-intensity damage transformation kinetics in the vicinity of the damage threshold intensity exhibited the features of a classical nucleation and growth. Although the statistical nature of the damaging interaction of light and matter had previously been observed for large area, single pulse damage of transparent media, ours was the first reported study of the evolution of damage by multiple pulses of variable, but near threshold intensities. The results of this work will be described more fully in the next section.

B. PROGRESS:
Research on First Silicide Reaction Paths

We have prepared and measured many Co-Si samples both "as sputtered" and after gentle annealing at 200°C. In particular, we have monitored resistance and the excess noise characteristics. Although our initial measurements have indicated significant scatter in the data vs. sputter deposition time, significant trends have been noted as indicated in Figures 1 and 2. In Figure 1, we have plotted the magnitude of the noise vs. the sample resistance. (Note that in these films the semiconductor-metal and noncrystalline-crystalline transitions have been shown to occur at about 10^4 Ω. [1]. In Figure 2, we plot the frequency exponent β (noise power α) vs. film resistance. We see that both plots indicate anomalous $\frac{1}{f}$ noise as the films approach and go through the first nucleation regime. In terms of models of Ngai, et al [2] and Hill, et al [3] these results indicate significant systematics in the metastable coherent state correlation parameter m (or n).

Both the Cr-Si and Ti-Si thin film systems have been investigated by TED, and resistance in the regime leading to nucleation: critical thicknesses and annealing temperatures for silicide formation have been established in both systems. In the Ti-Si system it was found that a non-equilibrium compound phase was formed prior to TiSi$_2$ nucleation. However, the transmission electron diffraction results indicate that this phase (labeled "TiSi" by previous
researchers) is not the TiSi phase in the equilibrium phase diagram. This finding is significant for the systematics of the overall selection rule for first nucleation. In addition, the Ti-Si system is important as an end phase region in work recently started on the ternary systems Ti-Ni-Si and Ti-Co-Si. Initial measurements on these ultrathin film systems indicate we may significantly affect the final product formed by thickness and order of sequential deposits of the two transition metals on Si substrates. These findings may be quite important in the refractory metal silicide interconnect and gate areas for VLSI technology as well as give new insights into the first nucleation sequence in the solid state regime.

Studies of Picosecond Laser Damage In Crystalline Silicon

In this research we have conducted detailed experimental studies of picosecond laser induced damage as a non-equilibrium phase transition and proposed a new damage mechanism. This model which includes energy transfer by resonant surface plasmons on small electron density droplets is corroborated by our existing experimental data. New experimental data has been taken which demonstrates the nucleation and growth aspects of the laser damage process [4,5].

The motivation for this work has its origin in several facts. First, the picosecond time domain results in several simplifications due to the elimination of transport during the pulse duration. Near band-gap excitation at 1.06\(\mu\)m limits the heating of the sample by fast phonon decay of hot electrons. Silicon, a covalent material, was chosen for the absence of polar optical coupling mechanisms and the absence of an electron collision time sufficiently short to allow avalanche ionization. Finally, experience gained in the excitation of VO\(_2\) through a non-equilibrium phase transition in the first such study [6] led to a conceptual framework for these types of experiments.

We have performed an experimental demonstration of the heterogeneous nature of the nucleation and growth of laser damage in crystalline silicon. The samples of single crystal silicon were prepared from low resistivity <100> and <111> wafers with high resistivity 1.5 or 2.5\(\mu\)m epitaxial layers. To obtain the very thin samples used in some experiments, the wafers were masked and electrochemically etched, exposing about 0.5cm\(^2\) of epitaxial membrane [7].

The damage nucleation and growth was studied by monitoring the transmission of the irradiated region at 633nm while multiple pulse damage was initiated at a prf of 5Hz. The laser pulses were supplied by a passively mode-
locked 1.06μm Nd:YAG laser. Single pulses were selected with an average FWHM duration of 38psec.

The sample transmission could then be related to a percent of the spot area transformed to the final state of damage. The results of this measurement showed an incubation period, a sigmoidal shape and have been fit to the Avrami equation for the behavior of nucleation and growth. These results strongly suggested that this damage process is a heterogeneously nucleated first order phase transformation process. This in turn suggested that a morphological study of the nucleation process would be beneficial.

A systematic study of the morphology of laser damage of silicon has been conducted. The multiple pulse damage threshold represents the point of closest approach to the phase transition where the morphology of nucleation may be studied. This method avoids the catastrophic damage characteristic of single pulse damage which would tend to destroy evidence of its early formation stages.

An automatic translation stage was constructed for the sample which would count laser pulses and give a sequence of irradiations at increasing powers of two pulses.

A high resolution SEM study showed the development of the coherent damage morphology with increasing numbers of pulses. The nucleation of the damage appears first as oval pits with their long axis orthogonal to the optical field. Subsequently and simultaneously formed pits are regularly spaced along single rows. Parallel rows of pits finally form into grating structure. Clearly the first phase of the damage process self-consistently selects pit formation at a specified distance from another pit, orthogonal to the optical field. The second phase of damage is the formation of regular spaced rows of pits (grooves). The grooves are spaced by the free space wavelength, suggesting that they are formed by the constructive interference of a scattered surface wave and the incident wave. This second process is consistent with the damage observed to propagate from pre-existing linear structures such as scratches oriented normal to the optical field.

All of the damage we observed in these experiments was at the front surface. Even the optically thin 1.5μm thick films damaged first at the front surface. Near threshold, only front surface damage was observed. Since our silicon samples were extremely thin compared to the absorption length, this observation indicates that the damage could not have been initiated by the optical electric field, which by simple Fresnel arguments, is a maximum on the exit.
Silicon, with a band gap of 1.1 eV at 300K, has a linear absorption constant of only 10 cm$^{-1}$ for 1.06\,\mu m laser pulses. At intensities approaching the multi-pulse damage threshold, our experimentally measured transmission data indicates the presence of an additional two photon absorption. Assuming that an indirect two photon process dominates, we obtained a two photon absorption constant $B = 52$ cm/GW by fitting the data.

Using this absorption process for 38 psec 1.06\,\mu m pulses at an intensity of 1 GW/cm2 only 10^{18} to 10^{19} charge pairs are produced per cm3. In addition, the computed temperature rise during the pulse is less than one degree K. Although free carrier absorption was omitted from these calculations, it is not expected to increase the refractive index or temperature jump significantly.

These extrapolated values of ΔT and Δn are much too small to initiate catastrophic damage which is, of course, the basic scientific enigma found in nearly all studies of laser damage in nearly-transparent media. Note that electronic avalanche ionization is not a highly probable process at the high excitation frequency of the Nd:YAG laser and, is ruled out by our observation of entrance face damage in thin samples.

To circumvent these difficulties we have proposed a new laser damage mechanism suggested by the morphological studies of the early damage nucleation regime [8,9]. This work suggests that, despite the apparent absence of avalancheing, locally high absorption in some highly excited, small, charge density "embryos" is the precursor to damage. Furthermore, the consistent observation of coherently interfering "embryos" indicates that these are of intrinsic origin and not due to the presence of highly absorbing extrinsic heterogeneities.

We are led to suggest that an electronic spinodal separation occurs near the threshold when the average excited charge density approaches $\sim 10^{19}$/cm3. Inside the spinodal the electron and hole excitations are subject to spontaneous clustering under the influence of some unknown driving force.

The proposed damage mechanism involves the resonant absorption of incident photons by the collective electronic oscillations (surface plasmons) of embryo regions having near-critical radii and excited charge density approaching that of the liquid. This model is consistent with
the evidence of cooperative interaction between damage sites. The direction and separation of the sites are those expected of a coherent radiative interaction between resonant surface plasmons on adjacent sites just prior to liquid phase nucleation.

While normally incident light will not couple to the planar surface plasmons of a solid, it will couple efficiently to any charge density droplets that form. The coupling will be resonant for a droplet size and charge density such that \(\omega_{sp} = \omega_0 \). Damage will nucleate at the lowest intensity for which coherent radiative coupling occurs between the resonant surface plasmons of two or more droplets.

A small, compared to lambda, spherical charge droplet will support a number of surface plasmon modes. Our calculations show that the lowest mode will be resonant in energy with the laser photons at a density of \(n = 2 \times 10^{12} \text{ cm}^{-3} \). From the classical theory of radiating dipoles, we have computed the in phase and quadrature components of the radiated field in a direction orthogonal to the optical field. The minimum spacing for which the radiative fields will constructively interfere is at a separation of \(1.2 \lambda_{Si} \) or about 375nm. (A value of 3.4 was used for the refractive index of silicon). This interaction distance compares favorably with the 350-380nm values obtained from our SEM experiments.

The proposed mechanism should result in a large increase in the laser energy deposited micro-heterogeneously at the surface near the damage threshold. It is not clear, however, how the material will relax such an intense, fast, local electronic excitation. As discussed in the following section we are continuing our research in this area in an attempt to resolve this question and to further assess the validity of our laser damage model.

C. FOLLOW UP STATEMENT: Both the excess noise measurements and the ultra thin film ternary work are being continued. The excess noise is being measured on similar systems as in the past in an effort to determine the source of some of the scatter in the measurements and to reduce it. The measurements will probably be extended to the Ni-Si system to begin to determine the generality of the observed systematics. Also, we will begin the comparison of our measurements to recent models of excess noise to determine their applicability with a view toward modifying and extending these models.

The Ti-Co-Si and Ti-Ni-Si ternary ultra thin film work is being continued predominantly in the area of increasing the number of measurement combinations in terms of...
different thicknesses and annealing conditions. In the next year we will be making a significant effort at determining the systematics of reactions in ternary systems. This will probably primarily be involved with modelling the constituent supply problem which is midway between the two extremes of preselection and kinetic selection as is observed in binary thin film systems.

We are continuing our studies of laser induced damage in crystalline silicon and have begun to do similar exploratory studies of various other semiconductors (including amorphous silicon) and metals.

Since completing our initial multiple pulse damage studies on crystalline silicon we have acquired a microcomputer controlled system for monitoring and recording the intensity of each picosecond pulse. This system will greatly enhance our ability to explore the intrinsic statistics of the laser damage physics while minimizing the role of the statistical fluctuations of the laser.

We have also recently discovered that the large beam single shot threshold intensity of silicon samples is more sensitive to surface preparation conditions than previously believed. This is encouraging for the model of the laser damage statistics that we are developing which predicts a considerably larger difference in the single and multiple pulse threshold intensities than those observed previously.

In the past year we have also made some initial measurements of the intensity variation of exo-emission currents from the surface of a material in the vicinity of the laser damage threshold. Initial experiments with silicon indicate that the energetic processes responsible for exo-emission near the single and multiple pulse thresholds are very different. We will continue these exo-emission experiments and correlate the results with the morphological development of damage in order to further clarify the nature of the critical energy transfer processes leading to damage.

Finally, we expect to extend these studies to other semiconductors and to some metals. Our first experimental observations indicate that the multiple pulse damage morphologies produced by picosecond YAG pulses on GaAs and some metals (nickel and aluminum) are surprisingly similar to those observed in silicon. It is not clear, however, that a model like that developed for silicon will apply to these other materials.

D. REFERENCES

\[
\frac{\delta_y(f)}{\nu_2} = \alpha f^{-\beta}
\]

![Graph showing relative noise power vs. resistance with data points for annealed and unannealed samples.](image)

Figure 1. Relative Noise Power vs. Resistance
Figure 2. Frequency Exponent vs. Resistance
1. **OBJECTIVES:**

The scientific objective of this research unit is to investigate atomic and molecular level properties associated with selected solid surfaces and solid state interfaces. The work is divided into three related subareas: 1) metal/semiconductor interfaces, 2) metal and semiconductor interface/adsorbate systems, 3) metal/metal and metal/metal oxide systems.

Research on metal/semiconductor interfaces is focused on understanding the electronic structure and composition of silicide structures which form when metal atoms deposited on a semiconductor surface react to form an interface. Particular emphasis is being directed towards understanding the initial stages of interface formation. This work utilizes Auger electron spectroscopy (AES), to characterize near surface composition, low energy electron diffraction (LEED) to determine geometrical structure, angle resolved photoelectron emission spectroscopy (ARPS) to study electronic properties of the constituent atoms, and x-ray photoelectron spectroscopy (XPS) to study the chemical state of silicon and the deposited metal. Additional effort is being directed towards developing a nondestructive means of probing the electronic structure in practical interfaces. This work will utilize optical reflectance to obtain the multilayer dielectric constant associated with a practical interface. The dielectric constant when correlated with results of other experimental techniques such as AES and channeling, should give a reasonably good picture of the electronic structure and composition of practical metal/semiconductor interfaces. Depth-profiling with AES and XPS analysis of these systems will also be employed.

Research on surface/adsorbate systems is primarily oriented towards supporting our work on metal/semiconductor interfaces and on metal/metal oxide interfaces. In preparing any solid state interface, impurity atoms and molecules are incorporated from the background of atomic and molecular species in the vacuum chamber. These impurities can chemisorb at surfaces where interfaces are being formed and can influence the growth kinetics, electronic properties, and
crystal structure of the interface. Our research includes investigations of the structure and composition of selected adsorbates on semiconductor, metal and metal oxide surfaces with emphasis on materials used in interface systems being investigated under metal/semiconductor and metal/metal oxide headings. Several state-of-the-art experimental techniques are available to accomplish this work. These include the capability to obtain the vibrational spectra of atoms and molecules at surfaces using high resolution electron energy loss spectroscopy (EELS). These capabilities provide an opportunity to obtain detailed structural information related to species adsorbed at solid surfaces.

Research on metal/metal oxide interfaces is focused on the development of depth profiling and analysis methods of studying the top most atomic layers that form when a clean metal is exposed to oxygen. This work will utilize electron spectroscopy, particularly XPS, to obtain substrate core level intensities. Of great interest are satellite intensities of core levels which reflect changes in the metal/metal oxide interactions.

In a related materials area, the fundamental problem of how one metal binds to another is being studied. The techniques include LEED, AES and flash desorption spectroscopy (FDS). From these measurements metal-metal binding energies, ordered metal overlayer structures and electronic structures of metal-metal overlayer systems are being investigated. Such information is crucial in understanding alloying and segregation. From FDS, quantitative values for the heat of desorption can be measured as a function of coverage. LEED provides data on the development of ordered overlayers and AES, when analyzed in detail, provides local chemical bonding information in addition to atomic composition.

B. PROGRESS: We have made significant progress in several subareas indicated in section A which summarizes our objectives. This section outlines scientific progress in these subareas and describes additional efforts to improve the instrumentation required for our research.

1. Metal Semiconductor Interfaces

Our proposed work on transition metal silicide interface formation utilizes Auger electron spectroscopy (AES), low energy electron diffraction (LEED), ultraviolet photoelectron emission spectroscopy, (UPS) and optical reflectance. One spectrometer being used for this work is now complete, and a second spectrometer which will be used at the synchro-
tron radiation center in Stoughton, Wisconsin is nearing completion. Work on the reflectance spectrometer has been discontinued temporarily due to space limitation.

a. Bulk Silicide Electronic Structure

We have successfully conducted the first detailed experimental study of the bulk electronic structure of an ordered silicide [1]. Structural and electronic properties of epitaxial NiSi$_2$ crystals were investigated using LEED, Auger spectroscopy and angle resolved photoelectron emission. Our NiSi$_2$ samples were prepared in situ by vacuum evaporating Ni onto Si crystal surfaces. Excellent epitaxial crystals can be formed on Si(111) and Si(100) surfaces as verified by our own LEED studies and by ion channeling [2].

Normal emission UPS spectra from (111) and (100) NiSi$_2$ surfaces yielded band dispersions and critical point binding energies along Γ-L and Γ-X directions of the bulk Brillouin zone. Our experimental results are in good agreement with recent self consistent energy band calculations [3]. Our LEED, Auger and workfunction results suggest that (100) and (111) NiSi$_2$ crystals grown epitaxially terminate in a silicon layer and nickel layer, respectively.

b. Initial Stage of Silicide Interface Growth

Preliminary results have been obtained for initial growth of silicides at silicon surfaces [4]. We have studied the evolution of the nickel d-band structure and surface work function changes as a function of the thickness of nickel deposited onto silicon surfaces. These studies have been made for several surface reaction temperatures. Our results suggest that the room temperature interface depth is less than 10Å for nickel evaporated onto silicon. Our results also indicate that it is relatively easy to distinguish between the three stoichiometries (Ni$_2$Si, NiSi and NiSi$_2$) which can form when nickel is reacted with silicon to form an interface.

c. New Instrumentation

We are continuing to upgrade our research capabilities by improving existing equipment and constructing new instruments. Our split beam reflectometer remains in the development stage. We currently lack adequate floor space to put this spectrometer into operation, and also will require some minor instrumentation (a sputter gun for cleaning samples) before the instrument will be useful for research. Our major instrumentation effort this year has been to con-
struct a new angle resolving photoelectron spectrometer [5] which will be used at the synchrotron radiation center in Stoughton, Wisconsin. This new spectrometer will introduce several unique new capabilities to our laboratory which will benefit our JSEP sponsored work.

2. Surface Adsorbate System

Our high resolution electron energy loss spectrometer (EELS) is now operational with LEED and Auger spectroscopy capability. Research using this instrument is being sponsored by AFOSR. We have recently obtained some important new results regarding the oxidation of Al(111) using EELS [6]. We have shown that the initial stage of oxidation of Al (111) is characterized by a mixed phase consisting of both surface and subsurface atomic oxygen. The surface phase is unstable and converts to subsurface oxygen at room temperature. No evidence of molecular oxygen was observed in our experiments contrary to other work. Our EELS study also illustrates a new application of the technique: the study of underlayer structures, and in addition shows that the "dipole" scattering mechanism applies to subsurface dipoles at metal surfaces.

3. Non Reactive Metal/Silicon Interfaces

In separate experiments, we are constructing in the Chemistry Department an instrument for investigating the behavior of submonolayer to multilayer amounts of Ag on Si (111). The instrument is designed for LEED, AES and TPD measurements and employs a thermal evaporation source for controlled Ag deposition. This system is an important part of our overall silicide program because silicides of Ag do not form readily, if at all. This provides a good benchmark system for studying chemisorbed metal atom overlayers without surface compound formation. At this time, the system is completed with the exception of an external gas handling system and minor modifications of the crystal mount to provide better TPD spectra.

4. Metal/Metal Oxide and Metal/Metal Systems

As part of our program on the behavior of oxide layers on metals, we have just completed a study of electron beam damage due to oxygen ion desorption, on oxidized ruthenium surfaces [7].

The reaction is characterized by three kinetic regions when Ru(001) is exposed to 100 L of O₂ at 865K and then titrated with H₂ at this or lower temperatures. The first region is a long induction period, the second a rapid reaction region and the third a slow reaction region. The
first two of these are sensitive to electron beam effects, i.e., the 3-5 kV and 5-20 μA beam used for Auger analysis. In particular, the induction time is dramatically shortened (by as much as a factor of 10) when Auger analysis with a focused e-beam is used. We use x-ray photoelectron spectroscopy as a standard which eliminates e-beam damage. This effect is temperature sensitive and disappears as the analysis temperature increases from 500 to 895 K. We attribute this temperature dependence largely to diffusion of oxygen atoms on the surface into the region where the electron beam is depleting them. This is supported by measurements in the absence of H₂ where a lateral concentration gradient is estimated by moving the sample after a lengthy period of e-beam bombardment. The "spot size" is larger for the higher temperatures. These results are indicative of the care which must be taken when electron spectroscopic methods are used to study kinetic phenomena involving surface oxides. We have made excellent progress in studies of the Ag/Rh(100) system [8]. The adsorption of Ag on Rh(100) at 300 K is characterized by uniform growth of the first monolayer. The desorption is characterized by two distinct peaks. The lower temperature state shows zero order kinetics and a desorption energy of 67 kcal mole⁻¹ while the high temperature state shows first order behavior. The activation energy is slightly coverage dependent. Our data do not allow a unique description but a pre-exponential factor of 8.9 x 10⁻¹¹ sec⁻¹ and an activation energy of 63.2 ± 1.5 kcal mole⁻¹ is quite satisfactory. AES analysis can be used to establish the Ag coverage over the first monolayer. The initial dissociative sticking coefficient for O₂ is 0.8 at 530 and 680 K on clean Rh(100) while that for N₂O drops from 0.48 to 0.21 over this same interval. The saturation 0(KVV) signal from O₂ is twice that observed for N₂O. The LEED patterns at saturation are c(2x2) and p(2x2) for O₂ and N₂O, respectively. Simple site blocking models adequately describe the influence of Ag on O₂ and N₂O chemisorption.

C. CURRENT RESEARCH PROGRAM

(i) Metal Semiconductor Interfaces

The Schottky barrier formed at a metal/semiconductor interface is one of the most important building blocks of modern semiconductor technology. The simplest ap-
proximation for a Schottky barrier is based on an abrupt interface between a pure semiconductor crystal and an epitaxial metal layer. However, a practical understanding of Schottky barriers must be based on the actual structure of the metal-semiconductor region [9-14], and in practical devices, the growth mechanisms must be understood in order to tailor parameters for particular applications. Research under this sub-unit heading (Metal Semiconductor Interfaces) is directed toward obtaining a detailed understanding of the structure, electronic properties and growth kinetics associated with metal semiconductor interfaces.

Our success in studying bulk NiSi₂ crystals formed epitaxially on Si substrates and our preliminary results on very thin nickel silicide layers indicates that there is a very good possibility for studying truly thin practical Schottky barriers. Our next objective will be to conduct a comprehensive investigation of the initial stage of compound formation at nickel-silicon interfaces. We will be interested in studying the stoichiometry, crystal structure and electronic structure of very thin nickel films deposited onto Si(111) and Si(100) crystal faces as a function of temperature from about 40 K up to 800°C where NiSi₂ forms. We have already shown that ordered silicides form on these surfaces when relatively thick (up to 1000 Å) nickel layers are reacted, and we expect to be able to grow very thin ordered structures perhaps with several stoichiometries by suitable annealing processes.

The high degree of reactivity associated with silicide formation and the tendency of stoichiometric compounds to form suggests that at low coverages, one might expect "two-dimensional" features to appear in angle resolved photoelectron emission spectra. These features would characterize the electronic structure of a very thin (one or two unit cells thick) silicide. The formation of a thin silicide ordered layer should be observable using LEED. A specific current objective of our work is therefore to look for ordered silicide formation at very low coverages (1 to 10 Å). In this coverage range electron spectroscopy (UPS, AES, XPS and LEED) will be used to characterize electronic structures including binding energy and dispersion of electronic levels and to study structural changes as a function of initial substrate temperature and overlayer thickness prior to annealing. These experiments should lead to a better understanding of the initial growth of a silicide interface and should also help to provide additional insight into the poss-
ible existence of amorphous layers at silicon-silicide interfaces.

Experimental techniques based on electron spectroscopy are limited to applications involving only the top 10-20 Å because of the escape depth for electrons. Therefore very little is known about the structure and electronic properties of practical metal/silicon interfaces. Recent backscattering channeling studies have illustrated the utility of these methods to characterize the structure of thicker interfaces [15]. These techniques are able to probe for non-registered atoms and have been used to study the structure and stoichiometry of semiconductor interfaces. To establish a comprehensive model of a practical interface, some electronic structure information is desirable to correlate with the structural information available from channeling.

We are planning to obtain information related to the electronic structure using optical reflectance techniques. Optical penetration depths are hundreds of angstroms, and the electronic structure is related to the dielectric constant which can be obtained from optical data. There is strong evidence that the silicide interface tends to be uniform except for perhaps 10-20 Å at the metal/silicide or semiconductor/silicide junction. Dielectric models of a practical interface will not be too complicated. For example, it should be possible to obtain dielectric constants for a three layer system consisting of a top layer of NiSi₂, a thin region which is possibly glassy, and a Si substrate [2]. There is evidence based on UPS and AES that stoichiometry variations occur within 10 to 20 Å of PdSi interfaces [16]. Similar variations are likely to be observed in NiSi₂ interfaces. We will attempt to correlate the interface models obtained from optical spectroscopy (dielectric constant as a function of depth) with our own studies based on electron spectroscopy, in particular AES depth profile results. Our overall objective will be to determine if optical spectroscopy can provide a nondestructive means of probing interface dielectric properties.

(ii) Surface Adsorbate Systems

Our EELS study of underlayer oxygen formation on Al(111)⁶ opens a new area of application for EELS spectroscopy. Our current efforts are centered on attempts to obtain a more quantitative account of our Al(111)/O data. We observe three peaks in the EELS spectra for oxygen on Al whereas only two are expected based on the known structure...
of the system. To understand the origin of the third peak (which is small in comparison to the major peaks corresponding to surface and subsurface oxygen) we are modelling the oxygen and subsurface oxygen sites based on a 13 layer aluminum slab with Leonard-Jones force constants. This calculational procedure should permit us to model linewidths produced by mode coupling and peak positions. We hope to obtain a semiquantitative picture of the origin of the three peaks and their widths.

(iii) Non Reactive Metal/Silicon Interfaces

As mentioned earlier, no silver silicide is easily formed. However, diffusion of Ag into Si (or vice versa) has been reported at elevated temperatures (400°C) [17]. Furthermore, Au is reported by the same authors to form a silicide but only for overlayer thicknesses in excess of 15 Å. Our preliminary results disagree in the case of Ag-Si where we find no evidence for penetration on the basis of TPD data. This point must be pursued further by doing careful annealing experiments and modelling the AES and TPD results. In any case, it is agreed that room temperature deposition of Ag gives epitaxial Ag overlayers and no silicide. We plan to study the 2-D electronic structure of these thin layers using ARUPS. The case of Au is also very interesting since it appears that thin surface silicides could be formed or avoided simply by changing slightly the conditions of Au deposition and annealing. Such a system is attractive as a bridge between the very reactive systems like Ni-Si and the non-reactive systems like Ag-Si.

(iv) Metal/Metal Oxide and Metal/Metal Systems

The detailed description and understanding of interfaces between metals and metal oxides is an important materials problem in the sense that the growth and extent of such interfaces and layers have a marked effect on electronic properties. Our goal in this portion of the subunit is two-fold: (1) to develop techniques for quantitative surface analysis and depth profiling that are less destructive and capable of higher near-surface resolution than the standard sputtering/electron spectroscopic methods and (2) to make detailed measurements of the growth kinetics, the atomic and electronic structure using the techniques of in situ controlled submonolayer metal deposition, flash desorption, XPS, LEED, and AES, we intend to investigate such systems as Al/Pt/O₂ and Ag/Rh/N₂0. Our interest in the Al/Pt systems stems from our experience with oxygen on these two metals. Aluminum forms
very stable oxides, while Pt does not. It does, however, form surface oxygen compounds under conditions where bulk oxides are unstable. We propose to examine in detail sub-monolayer to multilayer amounts of Al deposited on single crystal and polycrystalline Pt followed by exposure to either N$_2$O or O$_2$. From these measurements a reasonably detailed picture will emerge of what structures are formed and at what rates. In addition the electronic structure and the stability of various atomic structures can be evaluated in detail. As noted in our Progress section similar work is underway on Ag/Rh.

Depth profiling methods can also be used to analyze the growth of metal-silicides such as Ni, Pd, and Pt. This work will be pursued in parallel with the work described in section (1). The significance of the silicides in solid state devices makes this an important addition to our proposed work.

D. REFERENCES

4. Yu-Jeng Chang and J.L. Erskine to be presented at the 42nd Conference on Physical Electronics, Atlanta, (June 14-16, 1982).

III. QUANTUM ELECTRONICS
A. PROGRESS: This research unit is concerned with analytical and experimental studies of nonlinear wave interactions in physical systems. The work may be subdivided into two areas: (1) the development of digital time series analysis techniques useful in analyzing and interpreting fluctuation data generated by nonlinear wave interactions in various media, and (2) nonlinear optics in the infrared spectral region in molecular gases.

1. Nonlinear Wave Interactions: The objective of this work is to develop digital time series analysis techniques that enable one to properly analyze and accurately interpret experimental fluctuation data associated with nonlinear and/or nonstationary wave phenomena in a variety of media. One of the principal characteristics of any nonlinear system is the introduction of new frequency components, e.g., harmonics and intermodulation products. The "efficiency" with which these new spectral components are generated is given by an interaction or coupling coefficient. In the case of nonlinear systems where one can define an "input" and "output", the "efficiency" with which the new spectral components are generated is described by nonlinear transfer functions. For quadratically nonlinear interactions, the coupling coefficients or transfer functions are two-dimensional functions of frequency. For cubic interactions, the corresponding coupling coefficients or transfer functions are three-dimensional functions of frequency. This clearly suggests that higher-order (i.e., multi-dimensional functions of frequency) spectral densities must be utilized to appropriately analyze and interpret fluctuation data associated with nonlinear physical systems. For a quadratically and cubically nonlinear system, the bispectrum $B(\omega_1, \omega_2)$ and the trispectrum $T(\omega_1, \omega_2, \omega_3)$ are the appropriate spectral densities, respectively. During the past year our research efforts have focused on the following topics summarized in subsequent paragraphs.

a. Nonlinear System Modelling in the Frequency Domain: The objective of this continuing effort is to investigate the practical aspects of modelling in the frequency domain the linear and nonlinear relationship between two phys-
A. PROGRESS: This research unit is concerned with analytical and experimental studies of nonlinear wave interactions in physical systems. The work may be subdivided into two areas: (1) the development of digital time series analysis techniques useful in analyzing and interpreting fluctuation data generated by nonlinear wave interactions in various media, and (2) nonlinear optics in the infrared spectral region in molecular gases.

1. Introduction: The objective of this work is to develop digital time series analysis techniques that enable one to properly analyze and accurately interpret experimental fluctuation data associated with nonlinear and/or nonstationary wave phenomena in a variety of media. One of the principal characteristics of any nonlinear system is the introduction of new frequency components, e.g., harmonics and intermodulation products. The "efficiency" with which these new spectral components are generated is given by an interaction or coupling coefficient. In the case of nonlinear systems where one can define an "input" and "output", the "efficiency" with which the new spectral components are generated is described by nonlinear transfer functions. For quadratically nonlinear interactions, the coupling coefficients or transfer functions are two-dimensional functions of frequency. For cubic interactions, the corresponding coupling coefficients or transfer functions are three-dimensional functions of frequency. This clearly suggests that higher-order (i.e., multi-dimensional) functions of frequency spectral densities must be utilized to appropriately analyze and interpret fluctuation data associated with nonlinear physical systems. For a quadratically nonlinear system, the bispectrum $B(\omega_1, \omega_2)$ and the trispectrum $T(\omega_1, \omega_2, \omega_3)$ are the appropriate spectral densities, respectively. During the past year our research efforts have focused on the following topics summarized in subsequent paragraphs.

a. Nonlinear System Modelling in the Frequency Domain: The objective of this continuing effort is to investigate the practical aspects of modelling in the frequency domain the linear and nonlinear relationship between two phys-
higher-order cross spectra (e.g., the cross-bispectrum, cross-trispectrum, etc).

We are currently applying this knowledge to the following three areas of technical importance: (1) electromagnetic wave scattering from nonlinear targets, (2) sea wave-induced nonlinear drift forces on moored-vessel systems, and (3) determination of aerodynamic transfer functions throughout the flight envelope. The "nonlinear" electromagnetic scattering work is being carried out under JSEP sponsorship, while the latter two projects are sponsored by other agencies. For this reason we briefly review the scattering applications.

A number of man-made objects, which are to be detected by radar, exhibit nonlinear effects which result in new frequency components (e.g., intermodulation products, harmonics, and "degenerate" frequencies) appearing in the backscattered field. In a recent paper [3] we presented a conceptual model which allows one to systematically characterize nonlinear scatterers in terms of a hierarchy of linear, quadratic, cubic, etc. radar cross sections. The concept of "nonlinear" cross sections allows one to generalize the radar equation for a nonlinear target. This "nonlinear radar equation" may be regarded as a generalization of the harmonic radar equation [4]. In Ref. 3 it was pointed out that the various nonlinear radar cross sections can, in principle, be computed, in terms of higher order spectral density functions, from the transmitted and scattered signals. Our most recent efforts, based on numerical simulation, have been concerned with the practicality of applying these concepts to nonlinear scatterers. Our preliminary results were described at a National Radio Science Meeting [5] and our most recent results are tentatively scheduled to be presented at the RADAR-82 Conference in London [6]. Specifically, both of these papers deal with the practical details surrounding the digital implementation of higher order spectral analysis required to analyze backscattered data from nonlinear targets. The results of a computer simulation of scattering from a target containing both linear and cubic features supports the validity of the approach described in Ref. [3]. Of particular interest is the result that the cubic nature of a target may be detected and investigated by appropriately processing the return at the fundamental frequency, rather than at the third harmonic. For a target containing both linear and cubic features, the return at the fundamental frequency will consist of two parts. The first is due to the linear nature of the target, the second due to the cubically generated degen-
erate component at \(\omega_0 \) (i.e., the \(\omega_0 \) component in the expansion of \(\cos \omega_0 t \)). We have demonstrated how digital cross-trispectral analysis may be used to isolate the degenerate signal at \(\omega_0 \) from the linear return, even though both components are at the same frequency. Finally, results describing the relative insensitivity of the approach to low signal-to-noise ratio has been demonstrated. This relative insensitivity is primarily due to the fact that the approach rests upon a novel method (based on the properties of the cross-trispectrum) to detect phase coherence, rather than on the absolute amplitude of the signals of interest.

b. Experimental Determination of Quadratic Coupling Coefficients: Previously, we have reported on attempts to identify [7] and quantify [8,9] using digital bispectral analysis, the presence of wave-wave interactions in a fluctuation spectrum. These earlier results obtained under JSEP sponsorship are now being utilized in an NSF sponsored study of the role of nonlinear wave-wave interactions in the evolution of turbulence in fluids [10-12]. The transition to turbulence is characterized by the appearance of new spectral components and the continual redistribution of energy among existing and new spectral components. In those cases where a three-wave coupling model is appropriate we have shown that such spectral energy transfers may be estimated using digital bispectral analysis techniques to determine coupling coefficients and power transfer functions [10-11].

c. Experimental Determination of the Joint Power Spectrum \(P(k,\omega) \): Although this work does not involve nonlinear phenomena per se, it does involve one of the fundamental diagnostic problems involving the physical interpretation of fluctuation phenomena. In order to more completely describe a space-time fluctuation, one needs to estimate the joint wavenumber-frequency power spectrum \(P(k,\omega) \) which characterizes the spatial and temporal properties of the fluctuation. We have finished developing a digital method for estimating the joint power spectrum, which requires measurements at only two spatial points for a one dimensional fluctuation. The work will appear in Journal of Applied Physics [13]. The key idea is to determine the fluctuation power in the joint intervals \((k, k+\Delta k)\) and \((\omega, \omega + \Delta \omega)\), where \(k \) and \(\omega \) denote the wavenumber and frequency, respectively. Specifically, we introduce the concept of the local wavenumber and frequency spectral density, which can be estimated using spatially fixed, point data sources ("fixed probe pairs");
and describe the relationship of this spectral density to the conventional wavenumber and frequency spectral density and the cross power spectral density. The local wavenumber and frequency spectral density is shown to be equivalent to the conventional wavenumber and frequency spectral density when the fluctuation is stationary and homogeneous and consists of a superposition of wave packets; such a fluctuation is the basic model used in many turbulence theories. A digital method for estimating the local wavenumber spectrum has been developed and applied to the study of drift wave turbulence in an rf-excited discharge. The statistical dispersion relation and wavenumber spectral width, computed from the local wavenumber and frequency spectrum of the drift wave turbulence, are compared with the conventional spectral moments computed using the correlation method of Iwama and Tsukishima; good agreement is found over a wide range of frequency. A frequency integrated wavenumber spectrum is computed; both frequency and wavenumber spectral indices are found independently. The local wavenumber and frequency spectrum is a completely new approach to the use of fixed probe data, and we believe it can greatly extend the quantity of information available from fixed probes, which are the principal tools in many, if not most, fluctuation experiments. It should be emphasized that the technique will be equally useful in studies of space-time fluctuation phenomena in solids, liquids, and gases. We are currently investigating the feasibility of utilizing these techniques to study the space-time characteristics of 1/f noise in thin metal film resistor arrays.

d. Three-Wave Nonlinear Optical Interactions in Dispersive Media: This work was also completed and published recently in IEEE Journal of Quantum Electronics [14]. We treated in detail the situations corresponding to the presence and the absence of dispersion in the medium. For each of these situations, both the degenerate and nondegenerate cases were considered. For all of the situations considered, we have chosen to work within the framework of a realistic and specific numerical example of an OPA, consisting of a LiNbO$_3$ crystal illuminated by a pulsed pump of amplitude FWHM = 30 ps, $\lambda = 1.064\mu$m, having a peak intensity of 10^{14}W/m2.

We enumerate below the major results of this study. The most important and novel result is that the presence of dispersion leads to the formation of a substructure in the parametrically amplified signal when pump depletion is permitted. In a LiNbO$_3$ crystal of length 3 cm with
an initial pump intensity of 10^{14} W/m2, very narrow ~1.6 ps, and intense $I_\text{p} \approx 0.81 I_\text{po}$ pulses appear in the substructure.

Experimentally, such a substructure with ultrashort components has been reported by Kryukov et al. The nonlinear medium in their experiment was LiI0$_3$ in the form of two 2 cm long crystals. With $L_{\text{NL}} = 0.66$ cm and $I_\text{po} = 10^{14}$ W/m2, the length necessary for the substructure formation to commence is $L_s \approx 1.0$ cm and for distinct subpulses to be observed, $L_s \approx 2.0$ cm. These values are within the range of the experiment mentioned above.

Analytical study of the nondispersive degenerate case indicated that a two-pulsed substructure is formed. This substructure commences when pump regeneration begins and the pulses result from a depletion of the signal pulse. Depletion continues with the signal vanishing and the pump becoming completely regenerated asymptotically. In the presence of dispersion, as noted previously, a multipulse substructure arises. In addition, the process exhibits a periodic transfer of energy between the pump and the signal, in marked contrast with the nondispersive case. The period diminishes with increasing propagation distance in the nonlinear crystal and with increasing values of the dispersion coefficient.

The nondispersive nondegenerate situation also exhibits such a substructure. However, in contrast to the degenerate case, the number of subpulses continues to increase. A similar effect is observed for the dispersive case. Oscillatory energy transfer between the pump wave and the other two waves is observed. This result is known for the nondispersive case. However, the interesting feature of the nondegenerate case is that the behavior of the energy transfer is almost the same for both the dispersive and the nondispersive cases. This is to be contrasted with the behavior in the degenerate regime. Analysis of the dispersive cases shows that the dispersive effects are separable to an extent and that the evolution of the solution is basically controlled by the nonlinear interaction terms.

Work on *Nonlinear Wave Interactions* will continue with emphasis on scattering from nonlinear targets, utilization of $P(k,\omega)$ spectral densities to investigate the space-time statistics of 1/f noise. Related work involving the measurements of aerodynamic transfer functions and studies of nonlinear wave interactions in the transition to turbulence are supported by the USAF Armament Technology Laboratory.
and the National Science Foundation, respectively.

2. Nonlinear Optics: The objective of the continuing research in nonlinear optics is to study new types of resonant optical nonlinearities in molecules at infrared wavelengths. This research employs optical third harmonic generation (THG), multi-photon absorption and degenerate four wave mixing (DFWM) to measure the nonlinear properties of two classes of molecules; those with a single two-photon resonance and those that are at least approximately triply resonant. When this technique is used with a step-tunable CO$_2$ laser, the spectral dependence of the nonlinear susceptibility, its magnitude, and the influence of limiting processes can be measured. The work this year focuses upon degenerate four wave mixing in triply resonant SF$_6$, and the conclusion of the study of THG in CD$_4$. Both cases emphasize narrow and strong resonant processes.

A series of THG experiments have been performed on CD$_4$ at room temperature and at 193K, exciting with the P(8) through P(16) lines in the 9 micron band of a CO$_2$ TEA laser. The room temperature results have been published [15] while a complete publication is still being prepared. We measured the THG dependence on gas pressure and fundamental laser power for each of the indicated laser lines. Due to fundamental absorption at about J=20 on the tail of the absorption band, the maximum THG signal occurred at 300 Torr pressure. At lower pressures, a factor of three enhancement in THG was observed compared to CO.

The first results suggest double benefits to be gained by cooling the gas. First, the high J absorption of the fundamental should decrease dramatically; the second the Raman spectrum in the vicinity of the two-photon resonance should simplify. The result should be higher ultimate conversion efficiency in the first case, and a more easily interpreted THG spectrum, with possibly higher conversion, in the second case.

Experimental data confirms these predictions. The absorption did fall below the measurement limit, and the THG efficiency did increase by a factor of 3-4 depending on laser frequency. Modeling of this data is still underway and a publication is being prepared.

An experimental study of degenerate four-wave mixing (DFWM) in SF$_6$ gas was also undertaken. DFWM and the accompanying losses were studied for the P(8) through P(28)
CO$_2$ laser lines in the 10 micron band. Parameters were gas pressure, buffer gas mix, and pump wave intensity.

The main objective of the work was to model and to verify experimentally the cause of the sudden drop in conjugate reflection efficiency for increasing gas pressures. Both increased absorption of the pump beams and the pressure broadening of the resonances were suspected.

Most of the experimental results were obtained with an experimental configuration with a retro-reflected pump wave. The backward travelling pump is attenuated by two passes through the gas cell. A symmetric configuration with identical pump waves was also used and showed qualitatively similar behavior to the retro-pump configuration. All modeling was done for the retro-pump case.

Experiments with N$_2$ as a buffer gas showed only a small, slow variation in conjugate reflectivity and absorption as a function of pressure. Thus, pressure changes in the resonance lines was eliminated from the model.

The final model which gave a good fit to the drop in conjugate reflectivity versus pressure, considered spatially dependent saturated absorption of the pump waves. The saturated absorption of the gas was first measured using conventional techniques. The intensity of the pump waves at any point in the saturable absorber can be determined. By an integration over the interaction length, the conjugate wave amplitude and reflectivity was then obtained. Pump wave depletion is included. Peak conjugate wave reflectivities of up to 27% were measured.

During the course of this work, a similar study was published by workers at Hughes Research Labs [16] which duplicated much of our work, particularly the variation of the conjugate reflectivity with laser frequency. Our model for the effects saturated pump wave absorption and pump wave depletion remains as a unique result of this project.

Research on new nonlinear optical processes and materials will continue. Emphasis will shift from gas phase molecules to solid state materials, chiefly semiconductors with near band-gap infrared laser excitation. The nonlinear processes in these materials, particularly multiphoton absorption, contribute both to the optical damage and to the melting and annealing of these materials. Our research will pursue an understanding of these high energy laser-material interaction processes.
B. REFERENCES

A. RESEARCH OBJECTIVES
The experiments done in our research unit emphasize structural and dynamical studies of molecular systems using non-linear interactions with electromagnetic radiation for detection and/or for state-selective excitation. The scientific objectives are (1) additional knowledge of the basic process of non-linear interaction of matter with light, (2) development of non-linear techniques as dynamical probes, (3) structural studies of excited states of molecules and ions previously unavailable for study, and (4) studies of energy transfer processes in both collisional and collision-free environments. These objectives will be pursued under three research efforts: non-linear scattering of electromagnetic radiation, inelastic and superelastic scattering of electrons from excited states produced selectively by laser excitation, and dynamical studies of excited molecules produced by multiphoton excitation.

B. PROGRESS:
1. Electron scattering from excited molecules. In the study of atoms and molecules by electron scattering, three main processes yield detailed information about the target. Inelastic scattering involves a transfer of a portion of the energy of the incident electron to the target, elastic scattering involves a change in direction of the incident electron without a change in energy, and superelastic scattering involves a transfer of energy from the target (if it is in an excited state) to the scattered electron. In addition, total scattering (inelastic plus elastic) can yield a great deal of information, when used in conjunction with the proper theory. The measurement of these four types of scattering is useful in several energy ranges: low energy, involving 1-1000 eV electrons, medium energy with 1-10 keV electrons, and high energy with electrons of energy 30-50 keV. Each energy range has its own area of contribution to knowledge about the molecule or atom in question.

The differential cross sections for electron scattering at high incident energies can be considered to be

191
the Fourier transform of the orientationally averaged electrostatic molecular potential function of the target gas. In our latest studies we have concentrated on the anharmonic force constants in the potentials of SF$_6$, CO$_2$ and SO$_2$. We have shown that the molecular force constants of the latter two derived from spectroscopic data are compatible with our results while the SF$_6$ potential is still quite inaccurate [1,2,3]. This work was initiated with JSEP support and is now funded by the NSF.

Inelastic scattering at all energies has been known to be a valuable tool in understanding the excited electronic states of atoms and molecules for many years. Pioneering work by Geiger [4] at high energies and Lassettre [5] at low energies has shown the value of this technique. In the past fifteen years much work has been done in this field, and new techniques have been developed to the point where significant contributions can be made to the understanding of the electronic states of atoms and molecules.

A relatively unexplored field is the counterpart to inelastic scattering; superelastic scattering. Although the electron beam apparatus is exactly the same as that used for inelastic scattering, the necessity of a laser as the excitation source and the extra technological problems of a three beam (electron, gas, and laser) crossed-beam experiment make superelastic scattering a much more difficult process to measure. However, a good deal more information stands to be gained from it. Just as inelastic scattering can determine the selection rules of the transitions from the ground state by observing the angular dependence of the intensities, superelastic scattering can determine the transitions from the excited state. This gives direct information about the excited state. One can, for example, observe the transfer of energy from one excited state multiple to another via L-S coupling at a Fermi resonance. Also, since the laser is a very monochromatic light source, the high resolving power of optical spectroscopy is realized in the excitation of a specific molecular state. This helps to overcome the resolution limits of ordinary inelastic scattering.

The feasibility of superelastic scattering having been established in experiments using Na, Ba, and O$_2$ [6,7,8], we have started our investigation of superelastic scattering with the molecules NO$_2$ and I$_2$.

Significant progress has been made on two fronts. We have shown that our newly designed low energy electron gun is capable of producing intense (10 micro amp) electron beams.
as low as 100eV. However, the true novelty lies in the fact that the energy distribution in the electron beam is dominated by a Maxwell distribution determined by the temperature of the emitting tungsten filament. The common anomalous energy spread (often referred to as the BOERSCH effect) has been avoided by the careful design of the electron optics. The lenses were adjusted so that no beam cross-overs with high electron densities were produced and thus only the theoretical minimum of additional energy spread has to be tolerated. This achievement is particularly important to our proposed experiment since the electron beam has to be monochromized in order to resolve the vibrational states of the molecules. This means only a slice of the energy distribution function can be used. Thus the intensity of the selected electron beam will be reduced at the same rate as the original beam energy distribution widens.

The experimental results were confirmed with a computer program which calculated the electron trajectory including all aberrations and the effects of the beam's space charge. This program was kindly provided to us by Dr. Hermannsfeld at SLAC [9]. The experimental and theoretical results have been published in Ref. [10]. We are confident that this study is a significant step forward in the technology of LEED (low energy electron diffraction).

The second area where we made important progress is our laser facility. Preliminary studies in optical pumping efforts showed that the spectral density of a simple linear dye laser is far too small to saturate even the few molecules which are in the suitable vibrational-rotational states to participate in the excitation. During the last few months the dye laser was modified by adding a Michelson interferometer. The resulting light is a single mode (about 50 MHz width) and intensities up to 800mW can be reached. The pumping efficiency is further enhanced by the use of a multipass cell with a common focal point [11] by a factor of 30.

2. Collision-induced light scattering of the rare gas like diatoms was investigated [12,13]. For the first time, polarized collision-induced scattering was observed of the argon, krypton and xenon diatoms, and models of the trace of the diatom polarizability tensors obtained [13,14]. At the same time, the most accurate empirical anisotropy functions for all rare gas pairs are obtained and compared with the ab initio computations where these were available [12]. Particularly the state-of-the-art configuration interactions (C.I.) calculations could be critically compared with the
new measurements [15,16]. A long-standing uncertainty concerning the argon diatom light scattering cross section could be finally resolved [17], which is significant as essentially all measurements of collision-induced scattering intensities can now conveniently and accurately be referenced to argon. Collision-induced absorption profiles were also computed for several rare-gas mixtures, based on the ab initio induced dipole moments available [18]. Whereas in HeAr and ArKr mixtures the agreement of the experiments with the fundamental theory is very good, typically better than 10%, for the NeAr mixture a stark disagreement is observed, which must be due to inaccuracies of the semi-empirical interaction potentials used to calculate the line shapes. A refined repulsive NeAr potential is obtained [19]. As an aside, the photon-assisted recombination of hydrogen atoms could be investigated for the first time, using the computer codes developed previously for this program [20].

Finally, the computer codes used for the evaluation of collision-induced scattering [21] (CIS) could be modified to also account for collision-induced absorption (CIA). Collision-induced absorption was first observed by Kiss and Welsh [22]. We use as input the ab initio collision-induced dipole moments obtained by Byers Brown and coworkers [23,24] to compute from the adiabatic, wave mechanical theory spectral profiles for direct comparison with the measurements [25]. Whereas in most cases a most satisfactory agreement is observed, for neon-argon mixtures a substantial inconsistency was seen, but not yet understood. More work is required to shed light on this serious inconsistency, which seems to affect all mixtures with neon [18].

3. Energy transfer reactions are being studied at large pressures following selective excitation of atoms and molecules by two-photon laser excitation. Traditional studies of the excitation transfer have emphasized studies of the microscopic behavior of energy transfer in two-body collisions at low pressures. At liquid densities, reactions are usually limited by transport of the reactants; and microscopic interactions at short ranges are relatively unimportant. In high pressure gases one might observe the effects of transport and the alteration of microscopic reactions by three-body collisions (termolecular reactions).

Previous studies of energy transfer in rare gases have been conducted using electron impact excitation [26,27,28,29] as a means of depositing energy. This method suffers from a lack of selectivity. Some other excitation mechanisms that have been used are discharge combined with
single-photon excitation [30,31] and single-photon excitation [32]. The discharge method is restricted to pressures below 20 Torr.

The use of two photon absorption as a means of selective excitation [33] offers several advantages over the other excitation techniques. This method can be very selective if narrow band lasers are used. Indeed, Doppler-free spectroscopy can be conducted to reveal very fine detail in the absorption profile. Many states can be accessed via two photon absorption since transitions of \(\Delta J = 0, \pm 1, \pm 2 \) are allowed. There is no limit on the pressure range for the sample—even liquid and solid phases can be studied.

The use of state selective excitation in the measurement of energy transfer rates results in simplification of the data analysis and minimal computer modelling. The fluorescence from the excited state and states produced by collisions is used to monitor the transfer rates. Branching fractions and energy disposal are determined by measuring the ratio of the integrated intensities of each of the fluorescent states to that of the excited state. We will measure transfer rates with a tunable, modelocked c.w. dye laser. Because of the high spectral intensity of this laser (1.56 x 10^10 photons/pulse-A at 5 x 10^6 pulses/sec) the number of excited states produced by two-photon absorptions should be nearly equal to the number produced by resonant absorption of synchrotron radiation (3 x 10^3 ph/pulse/A). Because of the high repetition frequency of this laser our single photon correlation technique remains an accurate method for studying the time dependence of the fluorescence and decay times as short as 20 psec should be measurable.

Initial experiments have begun with studies of collision processes of the 6p manifold of xenon following two-photon laser excitation. These experiments use a dye laser pumped by a nitrogen laser. This laser has been used with a 20 GHz linewidth to study linebroadening of the 2p_5, 2p_6, and 2p_9 for large wavelength ranges at pressures from 10 Torr to 10,000 Torr [34]. With the use of this high power laser (> 100 watts of ultraviolet radiation in a 5 nanosecond pulse) a large flux of photons reaches the photodetector. The flux produced is large enough that the response time of the photomultiplier makes single photon counting techniques impossible, but small enough to make usual analogue techniques impractical.

We have developed a detection scheme based on
digitizing the charge at the photodetector for the first 100 nsec following excitation. This charge is divided by the mean charge for a single photon event and added to individual photons counted at later times. This enables the detection of up to 900 photons per laser pulse. This signal is limited by the linearity of the photomultiplier. We have found the precision of this detection system to be limited by Poisson statistics for signals from 10^2 to 900 photons per laser pulse. Our noise levels are limited by scattered light to levels of 5×10^{-3} photons per laser pulse.

We have measured fluorescence spectra near 828 nm produced by excitation of $2p_5$ at various pressures. Similarly, we have observed fluorescence of $2p_6$ near 823 nm and $2p_9$ at 905 nm. At low pressures, energy disposal is primarily via photoemission and some radiationless quenching by ground state atoms. At higher pressures, mixing within the manifold starts to populate several other states in the same manifold. A comparison of the integrated fluorescence intensities from all populated states enables us to determine the degree of mixing and other deactivation processes. Excitation spectra were also obtained by scanning the laser while monitoring a single fluorescence line. We now have a significant number of excitation spectra of $2p_5$, $2p_6$, and $2p_9$ for pressures from 1000 to 10,000 Torr. These continuum spectra are shifted to the red which suggest they result from either the population of bound excimers dissociating to the above atomic levels or they are transitions from the repulsive part of the lower dimer levels to less repulsive excimer surfaces. These results were recently reported at the DEAP meeting [35] and a Ph.D. dissertation [36].

We have also observed dipole-quadrupole two-photon transitions to $5p^55d[7/2]_3$. This transition is $3 \frac{1}{2}$ orders of magnitude less probable than the dipole-dipole transitions to $2p_5$, $2p_6$ or $2p_9$. In Fig. 1, we show a broad scan indicating the observed transitions. As well in Fig. 1 we observe a weak continuum between $2p_5$ ($6p[1/2]_0$) and $2p_6 (6p[3/2]_2)$. This feature is near the $5p^55d[7/2]_0$ state which is forbidden even in dipole-quadrupole approximation. At intermediate internuclear separations, however, this state crosses repulsive curves from $2p_6$ and $2p_8$: hence we would expect larger two-photon transition rates at smaller inter-

196
internuclear separations near crossings. This model is supported by the observations that larger rates for production of $2p_8$ by collisions are observed when the pump laser is tuned near the crossing than when it is tuned at either $2p_5$ or $2p_6$.

Precision excitation spectra in the wings of $2p_5$, $2p_6$ and $2p_9$ have been measured for several pressures. These spectra will enable determination of potential surfaces for excimer states with two photon allowed configurations. We have also obtained high resolution (750 MHz) spectra of the line shapes in both the line core and wings at pressures up to 760 Torr. These spectra have sufficient precision to test recent unified line shape theories when applied to our experiments [37].

We have continued with efforts toward using the synchronously pumped dye laser for time dependent studies. We have mode locked the u.v. lines of the argon ion laser and succeeded in obtaining picosecond pulses from Stilben 3 dye. To date we have obtained 6 mW average power at 440 nm pulse widths on the order of 20 psec and a repetition rate of 6 MHz. The doubled power from this laser is currently insufficient for the two-photon experiment. We are now trying to increase the pump power available in the u.v. from our ion laser by using an all-lines mode locker, and we have reduced the dye laser cavity loss by using birefringent filters rather than a wedge for tuning. Tests are now in progress.

C. FOLLOW-UP:

1. One major barrier has to be overcome before the scattering experiment can be tried again. When the molecules exit the beam-forming nozzle, they are at room temperature with the accompanying Boltzmann distribution for the occupation of the rotational and vibrational states. Due to the relative high density of states, the number of molecules in our scattering target occupying a particular state is very small. Since we estimate that we need to excite about 5% of the molecules we plan to cool the gas target using the adiabatic cooling which occurs in supersonic nozzles. NO$_2$ has been cooled successfully in this way before with the internal temperatures dropping to 80 K for the vibrations and 100 K for the rotations. Unfortunately, this molecule tends to form dimers and nothing is currently known about the dimer concentration in these supersonic jets. Therefore, we are presently engaged in rebuilding our vacuum system to handle a supersonic jet assembly and are installing our quadrupole mass...
spectrometer to cope with these questions.

2. Summarizing, it is seen that our work concerning CIS of the monatomic gases has come to its conclusion. Two major review articles describe our efforts in this field [12,18]. The related CIA study [18] of rare gas mixtures provided an interesting extension of our goals and is also considered complete at this time. Currently, our new measurements concerning simple molecular gases are being evaluated and will be compared with the fundamental theory, while preparations are being made to measure certain non-linear properties of collisional pairs of atoms and molecules.

3. We propose to continue studying energy transfer and quenching of xenon excited atoms and excimers. Some effort will be directed to the analysis of the excimer spectra we are now obtaining in pure xenon gases. New experiments will study excitation transfer in other rare gas buffers. Particularly interesting is the possibility of studying "forbidden" excitation transfer from xenon atoms and excimers to krypton. Two reactions are possible

\[
\begin{align*}
\text{Xe}(5p^56p) + \text{Kr}(4p^6) & \rightarrow \text{Xe}(5p^56s) + \text{Kr}(4p^6) \\
\text{Xe}(5p^56p) + \text{Kr}(4p^6) & \rightarrow \text{Xe}(5p^6) + \text{Kr}(4p^55s)
\end{align*}
\]

The first reaction should have a small cross section because a large electronic energy must be transferred to translational motion of the Kr atom. The second reaction is "forbidden" because a quadrupole term in the scattering potential is required to deactivate the xenon atom.

We have completed construction of a new sample chamber and optical elements for two-photon excitation studies of liquid and solid xenon. Experiments on this chamber will also begin in the coming contract year. Line broadening of xenon excimers will also be studied at low pressures and temperatures; where bound-bound transitions may be observed.

We are also constructing a new chamber where mixed gases can be flowed while maintaining high pressures. Flowing of the gas will remove dissociation products produced when studying energy transfer to molecular dopants. These dopants will allow the measurement of energy disposal in vibrational and rotational levels of product states.

D. REFERENCES

37. Keilkopf, Rev. Mod. Phys., to be published.

A. OBJECTIVES AND PROGRESS: The objective of this research unit is to investigate certain collective aspects of the nonlinear interaction of gas-phase atoms with resonant electromagnetic radiation. Particular emphasis is placed upon the study of "simple" systems, that is to say physical systems that are on the one hand experimentally realizable and which are on the other hand amenable to detailed microscopic analysis. For such systems one can hope to address the question of the contribution of microscopic quantum fluctuations to macroscopic phenomena.

Following this general guideline we have devoted our principal effort over the past year to a study of the cooperative nature of resonance fluorescence in optical bistability with "two-level" atoms. Interest in the field of optical bistability arises from a number of distinct points of view [1,2]. First of all, from the point of view of fundamental studies of the interaction of radiation and matter, theoretical investigations of optical bistability have served to extend our understanding from single-atom resonance fluorescence to a case in which collective atomic fluorescence can play a dominant role in determining a system's evolution. In the general context of the study of the fluctuation and relaxation processes for nonlinear systems driven far from thermal equilibrium, optical bistability has received attention due in part to the close resemblance between the hysteresis cycles of optical bistability and of ordinary first-order phase transitions [3,4]. Finally there is the potential that bistable devices might serve as building blocks for optical signal processing systems, as for example in an optical communications network.

Of the numerous schemes for achieving bistable switching (including electronic feedback, reflection at a nonlinear interface, and self-focusing), the subject of our research is the bistability that results from the coupling of an optical nonlinearity to the repeated reflections inside a Fabry-Perot or ring resonator. As previously mentioned, the source of the optical nonlinearity for our experiments is chosen with an eye toward a system of the greatest conceptual simplicity. By undertaking experiments involving "two-level"
atoms, we are making an investigation of optical bistability free from certain "complicating" features such as inhomogeneous broadening, optical pumping, or other nonradiative relaxation mechanisms. The theoretical descriptions for such a system of two-level atoms are numerous [5-10] and predict a wide range of phenomena which are of relevance to each of the areas listed above. However in spite of the rather advanced state of development of the theory almost no experimental information is available for a bistable system comprised of homogeneously broadened, two-level atoms inside an optical resonator [11,12]. The intent of our research is to address experimentally several questions that until now have been treated only theoretically for bistability in the "simple" arrangement of two-level atoms inside an optical resonator.

Our JSEP research is divided into three sequential phases. At present we are pursuing an investigation of the deterministic, steady-state regime in optical bistability. The bistable system consists of a well-collimated atomic beam passing through a high finesse optical resonator. The atomic beam is optically prepumped to produce "two-level" atoms [13,14] and is optically dense (\(\alpha^2\ell^1\)). The characteristics of the output versus input intensity to the resonator are recorded for various densities of the atomic beam and for resonant and nonresonant atomic and cavity detunings. A comparison of these results to current theoretical predictions is being made to assess the importance of transverse effects, of standing-wave effects, and of small instabilities in laser frequency or cavity length.

The second phase of our work is to be directed toward measurements of the fluorescent spectrum in optical bistability. Such measurements will provide a step beyond the deterministic understanding of optical bistability and will begin to address the question of the stochastic nature of the switching process. As the recent work of Carmichael [15] and of Lugiato [16] demonstrates, so far as the fluorescent field is concerned, the dynamics of single-atom resonance fluorescence are reproduced with cooperative corrections entering only to order 1/\(N\) (\(N = \) number of atoms inside the resonator). Our preliminary experiments will be directed along the lines of earlier work in single-atom resonance fluorescence [17,18] to confirm the prediction of Carmichael and of Lugiato [15,16]. Subsequent experiments will explore the behavior of the spectral density of the fluorescence from the atoms inside the optical cavity in the region of critical density for bistability. In this domain of large differential gain the linearization procedures used in all theoretical
analyses of the spectral density in optical bistability are of questionable validity [19], and one might expect substantial departures from the single-atom theory. It is in this region of critical C (with $C =$ cooperativity parameter of Bonifacio and Lugiato [7]) that any aspects of cooperativity in optical bistability should be apparent.

The third phase of the research program will study the instabilities in optical bistability that lead to self-pulsing (continuous light in, pulsed or chopped light out). This is an area of intense current activity since states that were once thought to be stable against perturbation are now predicted to be unstable. A number of different physical mechanisms can be responsible for these instabilities, including those discussed by McCall [20], Ikeda [21], and Lugiato [5]. It is our intent to investigate experimentally the self-pulsing instability treated by Lugiato and coworkers [5]. We should note that the physical origin of this self-pulsing appears to be quite distinct from that responsible for the period-doubling bifurcations predicted by Ikeda [21]. As shown by Carmichael et al. [22] the Lugiato and Ikeda instabilities arise in distinct limits from a common characteristic equation, with the limiting process for one type of instability seeming to exclude the other. Our experiments will be directed toward a mapping of the domain over which self-pulsing occurs and an analysis of the temporal and spectral features of the self-pulsing.

For our investigation of optical bistability as outlined above we have developed an apparatus consisting of the following three essential elements: (1) a well-collimated, optically thick atomic beam to serve as a nonlinear medium (2) a frequency stabilized, tunable dye laser for resonant excitation, and (3) an actively stabilized confocal resonator through which the atomic beam passes. Our initial investigations of optical bistability have been directed toward a study of the variation of the hysteresis curve of transmitted intensity versus incident intensity as a function of atomic density for near zero laser and cavity detunings. For the atomic beam densities available from our apparatus and for an empty cavity finesse of 300, we are able to explore a large range of atomic cooperativity [7]. In absorptive bistability this range allows us to record the development of the input-output characteristics from well below to well above the critical value for bistability. Figure (1) is the result of recent measurements that we have reported [23,24] which shows such a development, beginning with the onset of bistability and leading to a point of fully developed hysteresis.
To our knowledge these data represent the first observation of the evolution of the steady-state hysteresis cycle in absorptive optical bistability and as such are the most significant achievement of our program over the past year. A preliminary comparison of our data with theoretical treatments that incorporate transverse effects [25,26] is shown by the full curve in Figure 1. This comparison indicates reasonable agreement between the predicted and observed values of critical C, but reveals a discrepancy between calculated and measured switching intensities with the measured intensities roughly 80% higher than expected. The source of this discrepancy is not understood and is the subject of further investigation.

The experimental problems remaining in our study of the deterministic regime in optical bistability relate to the long and short term stability of the optical resonator used in these experiments. A mechanical instability in the length of the resonator of about one part in 10^7 limits the sweep-to-sweep reproducibility of our data. In an effort to improve the short-term stability of the cavity, a new optical resonator has been fabricated in our machine shop. Preliminary work indicates that this new cavity should provide a factor of 20 improvement in passive short-term stability. For further improvement of the short-term stability and for absolute control of the length of the cavity over long times, a servo loop is to be employed to lock the transmission function of the cavity to an external reference laser. The reference laser is a Mark-Tech Model 5800 Lamb-dip stabilized He-Ne laser. Not yet implemented is a scheme for providing tunability of the reference laser frequency with an acousto-optical modulator to explore the dependence of bistability on the cavity detuning θ. By tuning the reference laser frequency, the stabilized length of the bistable resonator will be varied relative to a given length l_0, with l_0 equal to a length for a transmission maximum for the empty cavity at the atomic resonance frequency.

Other experimental problems associated with our measurements are those of laser intensity and frequency stability and of maintaining a two-level atom at high intracavity intensities. With regard to laser frequency stability, we have initiated a project to reduce the linewidth of our dye laser from 250KHz rms to a value closer to 10KHz through the use of an intracavity electrooptic modulator. As well an intensity stabilization unit utilizing an electrooptic modulator external to the laser cavity is to be used to reduce the intensity fluctuations of the dye laser to an rms level.

206
below .5%. With regard to the question of maintaining a two level system at high intracavity intensities, we note the conclusions of Citron et al. [14] who found that small magnetic field inhomogeneities and slight deviations from a state of precise circular polarization can cause the two-level scheme to break down at high field strengths. Our preliminary investigation of this problem is encouraging and is the subject of a recent report [29].

From our preliminary observations in our atomic beam apparatus, we propose to extend the work to make a systematic investigation of the steady-state parameter dependences in optical bistability. Initially for absorptive bistability (zero detuning between laser and atomic resonance frequencies) and subsequently for dispersive bistability, the values of the turning points of the hysteresis curve for both incident and transmitted intensity will be recorded as functions of C. In the interpretation of our results we will attempt to address each of the three following issues: the validity of the mean-field model for our system [7], the role of standing-wave effects in optical bistability [30], and the influence of transverse effects in producing either changes in the hysteresis curve or alterations of the actual spatial structure of the transmitted beam [25,26]. Given the appropriate theoretical context in which to frame our measurements, we will next turn our attention to certain dynamical processes in optical bistability, as previously discussed.

Although still in an early stage this work on optical bistability has yielded significant results (Figure 1 is the first such measurement of its kind). With the support of the Joint Services Electronics Program I certainly plan to continue this investigation to explore the analogy between nonequilibrium phase transitions and optical bistability, to study the time-dependent dynamics in optical bistability, and hopefully to address the question of the role of intrinsic quantum fluctuations in optical bistability. As the research program grows, outside funding is being sought for various aspects of the project. A proposal is currently under review at the National Science Foundation relating to work that has been started under the auspices of JSEP.

B. REFERENCES

27. See the article by P. Meystre in reference 1 above.

Figure 1. Incident laser intensity required to switch the bistable system (resonant cavity plus atomic beams) versus atomic cooperativity C. The region of the plot with two points in Y indicated for each value of C corresponds to the regime of bistable operation with two distinct switching points - one value of intensity causes a switch up and another a switch down. The data are normalized such that $Y=10^4$ corresponds to a cw power of 1.6×10^{-3} Watts incident upon the bistable resonator. The full curve is the theoretical result from reference 26.
IV. ELECTROMAGNETICS
A. SCIENTIFIC OBJECTIVES: This work has as its overall objective the identification, analysis and, finally, the prototype demonstration of useful semiconductor waveguide devices for production and control of radiation in the frequency range from ten to a few hundred gigahertz. This part of the spectrum is uniquely suited to a number of DoD needs, but its exploitation will require a mix of designs, some using concepts first developed in integrated optics, and others adapting microwave techniques. This research will focus on use of the Gunn and IMPATT mechanisms for radiation sources and on use of carrier injection and the field effect for electronic active guided wave devices such as modulators, active filters and beam deflectors. For the most part, the device concepts to be studied are compatible with planar waveguide integrated circuit technology.

B. PROGRESS:
(a) Gain Devices

The work performed in the previous period has resulted in description and characteristics of the gain mechanism in a distributed Gunn device made of a subcritically doped GaAs layer [1]. In accordance with the theory, we designed a coplanar type gain device. Double exposure masks have been developed and several devices fabricated at Hughes Aircraft Company. To date, two different substrate materials have been used. Both have an epitaxial layer of about 3 μm grown on a semi-insulating substrate. Their doping levels are $n \approx 2 \times 10^{14}$ /cm3 and 8×10^{14} /cm3. Using an identical mask, coplanar devices have been made. The coplanar center strip is 7 μm wide, the strip-to-outer ground gap is 5 μm and the device length is about 5000 μm. Experimental results of the transfer characteristics are plotted in Fig. 1. Fig. 1(a) is for the $n \approx 2 \times 10^{14}$ /cm3 device and (b) for $n \approx 8 \times 10^{14}$ /cm3. It is clear from Fig. 1(a) that a gain mechanism arises from applying a bias. That is, the insertion loss decreases as compared to no loss bias case. Fig. 1(b) even shows a peak around 11 GHz. Such a peak in gain has been predicted.
by the theory in [1]. Unfortunately, both devices did not exhibit net device gain. The reason for this may be due to series resistance in the center electrode or to loss contribution from non-active portion of the device.

(b) Control Devices

(b.1) Schottky coplanar waveguide

It is known experimentally that there exist slow waves in a coplanar or microstrip transmission line created on a lossy semi-conductor substrate if one of the electrodes is Schottky contacted. The size of the depletion layer beneath the Schottky contact can be controlled by a DC bias, resulting in electronic control of the slow wave factor (phase delay).

Two analytical algorithms to analyze the wave phenomena in such coplanar structures have been developed independently. Accuracy of these algorithms have been studied by solving the MIS (metal-insulator-semiconductor) coplanar which also exhibits slow wave phenomena identical to the one in the Schottky structure. Numerical results by both methods agree well with each other and with the experimental data reported in [2], as seen in Fig. 2. In the mode matching analysis, the structure was assumed to be enclosed in a shield box to facilitate numerical processing. On the other hand, a structure with infinite dimensions has been handled by the spectral domain technique [3]. The increasing discrepancy between two methods at lower frequencies is caused by the presence and absence of this assumed shield box. Since we gained confidence in accuracy of the algorithms, we are applying them for Schottky structures. Two publications on this subject are under preparation.

(b.2) Coupled Mode Theory Analysis

It is convenient to develop a generalized coupled mode theory for open waveguide structures containing anisotropic, inhomogeneous media. The theory was developed for the purpose of analyzing a control device consisting of semiconductor and gyrotropic materials. The method has been applied for a proposed coupled structure made of dielectric and ferrite materials. The structure can be used as a distributed nonreciprocal device for extremely high millimeter-wave frequency application [4].

(b.3) Polarization and Mode Control

In earlier analytical work [5] we developed the concept of a three-layer dielectric waveguide polarizing structure. The device is all dielectric, all isotropic and promises to greatly relax the constraints of extinction ratio...
vs. insertion loss tradeoff which limit the usefulness of other polarizing structures. At optical frequencies, extinction ratios approaching 10^4 are predicted, with insertion losses that might be as low as 0.1 dB. In the 60-300 GHz range, losses will be determined by material properties, but very high extinction ratios are still possible. Recently we have developed physical insight into the operation of this three-layer waveguide, and have extended the concept to selection from among modes of the same polarization [6]. The physical mechanism of operation is a perturbation of the overlap of the field profile with the refractive index profile, which will either raise or lower the local propagation constant along the waveguide axis, depending on the mode. In general, any mode can be selected if control of refractive index and thickness during fabrication is sufficiently precise.

(c) Miscellaneous
(c.l) Directive Excitation of an Image Guide
The active devices studied under (A) will eventually be coupled to a planar waveguide. One method developed here is to use a Yagi-Uda array concept in which several parasitic elements are added to one active element so that the generated energy is directed into a specified direction. This concept was tested with a standard microwave generator and an image guide. Slot elements were created on the ground plane of the image guide. Measured results showed more than 10 dB improvement in the directivity [7].

(c.2) Comparison of Waveguides
Various waveguides for millimeter-wave application have been compared with respect to frequency characteristics, ease of accommodating devices, etc. This study is relevant to the projects under (A) and (B) when actual implementation of the devices is eventually contemplated [8].

C. FUTURE DIRECTIONS:
(1) It is planned to use GaAs materials with different doping levels for gain devices. We will also investigate the effect of electrode thickness as well as that of geometries other than coplanar in which the field is more concentrated in the active region. Examples of possible geometries include the film structure and the rib structure. The metallorganic chemical vapor deposition system will be improved by incorporating a palladium-purified H$_2$ source and in-situ glow-discharge substrate precleaning. This should allow the growth of uniform single crystal GaAs films large enough to use in prototype devices.
We will extend the analysis by the algorithms developed for Schottky contact coplanar lines to various depletion region sizes and geometrical dimensions. We plan to compare the results with some data provided by Hughes Aircraft Company.

We will apply the transverse resonance technique for layered waveguide structures which include anisotropic or inhomogeneous media. This technique can facilitate finding an optimum structure.

We plan to construct and test 60 GHz prototypes of the three-layer dielectric waveguide polarizer and mode selector, and to verify our theoretical predictions of extinction ratio and insertion loss.

D. REFERENCES

Fig. 1 Transfer characteristics of distributed Gunn devices
(a) \(n = 2 \times 10^{14} \text{ cm}^{-3} \), (b) \(n = 8 \times 10^{14} \text{ cm}^{-3} \)
Fig. 2 Slow wave factor λ_0/λ_g of an MIS coplanar waveguide.
RESEARCH GRANTS AND CONTRACTS
RESEARCH GRANTS

FEDERAL FUNDS

National Science Foundation, CHE 80-05107, "Chemisorption and Catalysis on Well Characterized Metal Surfaces," Professor J.M. White, Principal Investigator, June 1, 1980 - November 1, 1981.
RESEARCH GRANTS

National Science Foundation, DMR 7923629, "Experimental Studies of Intrinsic Surface Electronics Properties," Professor J.L. Erskine, Principal Investigator, July 1, 1982 - June 30, 1983.

RESEARCH GRANTS

RESEARCH GRANTS

OTHER THAN FEDERAL FUNDS

Motorola, Inc. and Bell Telephone Laboratories, Inc., Equipment Grant to create semiconductor device fabrication facility, Professor A.B. Buckman, Principal Investigator, 1980 - 1982.

University of Texas Equipment Grant to create Kimble Lab, Professor H.J. Kimble, Principal Investigator, November 16, 1979 - August 31, 1981.

University of Texas Matching Funds from the Research Corporation Grant, Professor H.J. Kimble, Principal Investigator, June 12, 1980 - June 11, 1981.

University of Texas Equipment Grant to create Kimble Lab and expenses, Professor H.J. Kimble, Principal Investigator, September 1, 1979 - August 31, 1981.

University of Texas Research Instrumentation Grant, Professor R.M. Walser, Principal Investigator, January 18, 1982 - August 1, 1982.

RESEARCH GRANTS

