A CODE FOR THE SECONDARY ELECTRON ENERGY DISTRIBUTION IN AIR AND SOME APPLICATIONS

NRL RESEARCH LAB
WASHINGTON DC

D. J. Strickland et al.
18 Nov 82

UNCLASSIFIED
NRL-MR-4956
A Code for the Secondary Electron Energy Distribution in Air and Some Applications

D. J. STRICKLAND

Beers Associates
Reston, VA 22090

A. W. ALI

Plasma Physics Division

November 18, 1982

This report was sponsored by Defense Advanced Research Projects Agency (DoD), DARPA Order No. 3718, monitored by NSWC under Contract No. N60921-81-WR-W0190.
Title: A Code for the Secondary Electron Energy Distribution in Air and Some Applications

Abstract: The development and some applications of a secondary electron distribution code (SED) is discussed in detail. An SED code is essential for high energy electron beam deposition in the atmosphere. The code provides the secondary electron flux, the energy flow into various ionizations, excitations and the fractional contributions of the primary and the secondary electrons to these processes. The code predicts a 34 eV per ion pair expenditure and various ion fractions per ion pair which are in good agreement with the accepted values.
CONTENTS

1. INTRODUCTION .. 1
2. APPROACH ... 2
3. SPECIFICATION OF $S(E,t)$... 3
4. ELECTRON IMPACT CROSS SECTIONS 5
5. ENERGY LOSS TO THE PLASMA ELECTRONS 7
6. MATRIX APPROXIMATION TO THE SECONDARY ELECTRON EQUATION .. 7
7. ENERGY CONSERVATION .. 8
8. RESULTS AND DISCUSSION .. 10
9. SUMMARY ... 17
REFERENCES .. 18
A CODE FOR THE SECONDARY ELECTRON ENERGY DISTRIBUTION IN AIR AND SOME APPLICATIONS

1. INTRODUCTION

The interaction of high energy electrons (>1 KeV) with atoms and molecules, the generation of the secondary electrons and their subsequent energy degradation is a subject of great interest in many areas of applied physics. Among these areas are: precipitation of energetic electrons in the upper atmosphere resulting in auroral phenomena, production of laser radiation by high energy-high current electron beams, and electron beam generated discharges.

Various methods have been utilized to address the electron energy deposition problem. These may be classified in different ways depending on one's emphasis. Major classifications are as follows: 1) Transport versus local descriptions, 2) Continuous slowing down approximation (CSDA) versus discrete energy loss description (DEL), and 3) Transport or local energy loss equation versus Monte Carlo approach. There is an extensive literature on this subject as it relates to applications cited above. Here we will just note some of the works representative of past efforts. Green and his colleagues1,2,3 have approached the problem through the continuous slowing down approximation and have applied their calculations to auroral phenomena as well as deposition in other gaseous media. The continuous slowing down approximation has been improved to include discrete energy loss for electrons with energies below 500eV and has been applied to auroral phenomena4,5 as well as other gaseous elements6-8. Monte Carlo9 and Fokker-Planck10 methods have also been utilized to calculate the energy deposition as well as the spatial distribution of primary electrons. The steady state forms of the Boltzmann equation provide another method11,12,13 to calculate the equilibrium distribution of the secondary electrons.

Manuscript approved September 30, 1982.
In this work, we are specifically interested in detailed energy partitioning in air during and following the passage of a high energy electron beam through the air. For this purpose we have developed Code SED which provides a discrete energy loss description for specification of the secondary electron distribution function. The approach is basically that given in reference 11 but limited to local deposition. This code has been coupled to a time dependent air chemistry code 14 (CHAIR-II) which describes the many effects on neutral and ionized species during and following electron beam deposition. In this report, however, we limit our discussions to the secondary electron distribution obtained using code SED.

2. APPROACH

We wish to specify the quantity \(n_e(E,t) \) which is the density of secondary electrons per unit volume per unit energy (\(\text{cm}^{-3}\text{eV}^{-1} \)). Given \(n_e \), we may obtain various production rates of interest given by \(P \):

\[
P(t) = n \int n_e(E,t) v(E) \sigma(E) \, dE \quad \text{cm}^{-3} \cdot \text{sec}^{-1} \quad (1)
\]

where \(n \) is the density of the target species and \(\sigma \) is the electron impact cross section. Most of the contributions to \(P \) comes from below 100 eV and for this reason we restrict ourselves to low energies for which transport effects are unimportant.
The density n_e is specified using

$$\frac{\partial n_e}{\partial t} = S(E,t) - \sum_k n_k \sigma_k (E) v(E) n_e(E,t)$$
$$+ \sum_k n_k \sum_l \sigma_{lk} (E',E) v(E') n_e(E',t) \mathrm{d}E'$$
$$+ n_p(t) \frac{3}{2} L_p(E) v(E) n_e(E,t)$$

where S is the volume production rate in $\text{e/cm}^3\cdot\text{s}\cdot\text{eV}$, n_k is the kth species causing energy loss, the σ's are energy loss cross sections, n_p is the plasma density, and L_p is the loss function for loss to the plasma electrons. The species treated in this equation are N_2 and O_2. The electrons lose but do not gain energy in the description, thus allowing us to obtain n_e one energy at a time starting at the high energy end. The energy dependence of n_e within the integral is specified in a manner similar to that used by Strickland, et al.11

3. **SPECIFICATION OF $S(E,t)$**

The secondary electron volume production rate $S(E,t)$ is given by

$$S(E,t) = j_b(E_b) \sum_k n_k \sigma_k (E_b,E)$$

where j_b is the beam current density in $\text{e} \cdot \text{cm}^{-2} \cdot \text{s}^{-1}$ and $\sigma_k (E_b,E)$ is the differential ionization cross section for species k. We use the expression by Porter, et al.3 for this cross section which is similar to the Moeller15 formula for large momentum transfer values. Figure 1 shows the differential ionization cross section of N_2 from 1 to 1000eV for $E_b = 1 \text{ MeV}$. The Moeller15 cross section is included to compare with the Porter expression at large E_b values where both are in close agreement.
Fig. 1 — Differential ionization cross section for 1 MeV electrons impacting N_2
4. ELECTRON IMPACT CROSS SECTIONS

In the discrete energy loss description, cross sections are required for all important inelastic scatterings. This amounts to approximately ten cross sections per species, most of which apply to the process of excitation. Ionization accounts for the remaining cross sections. For excitation, \(\sigma_{f,k}(E',E) \) may be expressed as

\[
\sigma_{f,k}(E',E) = \sigma_{f,k}(E') \delta(E' - (E + W_k))
\]

where the delta function restricts energy loss to the excitation energy \(W_k \). For ionization, we use the form

\[
\sigma_{i,k}(E',E) = \sigma_{i,k}(E') p(E',E)
\]

where \(\sigma_{i,k}(E') \) is the total ionization cross section in \(\text{cm}^2 \) for ion state \(k \) and \(p \) is a function with normalization

\[
\int_0^{(E' - W_k)/2} p(E',E) \, dE = 1.
\]

The integration is over the secondary electron energy defined to be the lesser of the energies of the two electrons emerging from an ionization event. The form of \(p \) is chosen to be that used by Strickland, et al.\(^\text{11}\).

The individual cross sections will not be presented here. They can be found, however, in a recent compilation by Ali\(^\text{16}\). The total cross section for each species may be seen, however, in Figure 2. The \(\text{N}_2 \) feature peaking at 2.5 eV results from vibrational excitation of the ground state. This single feature is actually composed\(^\text{16}\) of eight cross sections for excitation through vibrational level \(v'' = 8 \). The minimum in the \(\text{N}_2 \) cross section near 6 eV will
Fig. 2 — Total inelastic electron impact cross sections for N_2 and O_2
be seen to have a noticeable effect on the secondary electron distribution near this energy. The distribution takes on large values in this region since electrons find themselves trapped in velocity space for a time due to the small inelastic collision frequency.

5. ENERGY LOSS TO THE PLASMA ELECTRONS

Equation (2) includes an expression for energy loss to the plasma electrons. This term becomes important for low energy secondaries especially when fewer electronic state excitation processes occur with decreasing energy. For L_p, we are using the following expressions from Schunk and Hays:17

\begin{equation}
L_p(E) = \frac{1.3 \times 10^{-13}}{E} \ln \frac{8.2 \times 10^9 \ E^{1.5}}{n_p^2}, \quad E < 20 \text{ ev}
\end{equation}

\begin{equation}
L_p(E) = \frac{1.3 \times 10^{-13}}{E} \ln \frac{5.4 \times 10^{10}}{n_p^2} \quad E > 20 \text{ ev}
\end{equation}

The plasma electron density n_p appears explicitly in the plasma loss term in equation (2) and in L_p above. For our time dependent results, n_p is calculated self-consistently along with n_e. For our steady state results to be presented below, n_p is simply an input parameter to the calculations.

6. MATRIX APPROXIMATION TO THE SECONDARY ELECTRON EQUATION

Equation (2) can be written as

\begin{equation}
\frac{3n_{e_i}}{dt} = P_i - l_i
\end{equation}

where P_i and l_i are the volume production and loss rates for species i. In the case of secondary electrons, the index i refers to energy E. To arrive at
Equation (9), approximations must be made to the integral and plasma loss terms in Equation (2). This is done by first specifying an energy grid over the range of interest. The density n_e within the integral is then given a quadratic dependence over a given energy zone following the method of Strickland, et al. This leads to replacement of the integral by a sum of terms of the form

$$\sum L \sum R_{ij} ne_j$$

For the plasma term, one sided, finite differencing is used over the interval (E_i, E_{i-1}) where E_{i-1} is greater than E_i. Equation (2) may then be expressed in the form

$$\frac{3n_{ei}}{3t} = -\left(\sum L \sum R_{ii} + n_p \frac{L_{pi}}{\Delta E_i} v_i \right) n_{ei}$$

$$+ \sum \sum R_{ij} ne_j + n_p \frac{L_{p,i-1}v_{i-1}}{\Delta E_i} n_{e,i-1}$$

$$+ S_i$$

The matrix element R_{ij} is obtained from combinations of terms whose integral parts have the form

$$\int_{E_{j-1}}^{E_j} \int \sigma_{lk} (E',E) v(E') f(E') dE'$$

where $f(E')$ is either $1/n^2E'$, $1/nE'$, or 1.

7. **Energy Conservation**

Two tests have been applied to our solution of Equation (10) in steady state. The first determines how well $n_e(t)$ conserves energy and in the second, we calculate the energy expended to generate an ion pair, ΔW_{ip}. The
accepted value of ΔW_{ip} for air is ~ 35 eV/ion pair. The conservation test determines how well the following equality holds:

$$\sum_{l,k} W_{lk} P_{lk} + n_p \int L_p(E) v n_e(E) \, \mathrm{d}E = \int S(E) E \, \mathrm{d}E$$ \hspace{1cm} (11)$$

The conservation principle states that the rate of energy transferred to the ion and excited states and to the plasma equals the rate of energy going into the secondary electron spectrum. The production terms P_{lk} refer only to production by secondary electrons. We find that the solution $n_e(E)$ leads to less than 10% error in satisfying Eq. (11).

For ΔW_{ip}, we are obtaining a value of between 34 and 36 which agrees well with the accepted value. To calculate ΔW_{ip}, we first determine how much energy is deposited in a unit volume per unit time by passage of the primary electrons through it. The Porter3 cross section is used to give the total primary ionization rate which in turn gives the energy going into potential energy of the ion states. This same cross section gives S, which when multiplied by E and then integrated gives the rest of the beam energy loss by ionization. There is also energy loss to excited states. Based on cross sections in the keV regime, the number of excitation events will be similar to the number of ionization events caused by direct beam electron impact. This provides us with the loss due to excitation once given the average excitation energy threshold.

The other quantity needed to specify ΔW_{ip} is the total number of ion pairs produced by the beam energy loss. The integral of $S(E)$ gives the number produced by direct beam ionization. Equation (2) gives the number of ion pairs by all generations of secondary electrons for each ionization process. Summing over processes and adding the result to the direct beam contribution gives the desired result.
8. RESULTS AND DISCUSSION

The problem being addressed is the incremental energy loss of an electron beam on its passage through some thickness d. We wish to know how the deposited energy is distributed among various ion and excited states. The production rates for these states may be divided into two parts - one produced by direct impact of the beam electrons and the other by impact of secondary electrons. This requires the impact cross sections both at the primary energy and over the energy range important to secondary electron impact processes.

Calculations have been performed for energy deposition in air with primary electron fluxes having energies of 1, 10, 100, and 1000 keV. The easiest part of these calculations is the specification of P_b, the production rates by primary or beam electron impact. P_b is given by

$$P_b^{li} = n_i j_b(E_b) g_{li}(E_b)$$

The production rate produced by secondary electron impact P_s^{li} was given previously by Equation (1). The needed secondary electron flux v_{ne} has been obtained from Equation (2) in its steady state form with the source spectrum given by Equation (3). The time independent results are satisfactory here since our aim is to show how energy becomes partitioned among the various states. For chemistry modeling purposes, however, explicit time dependence is necessary.

Before presenting results from solutions of Equation (2), we wish to note how the energy is distributed in the secondary electron source spectrum. We are thus discussing the behavior of the applied differential ionization cross sections for N_2 and O_2. The purpose for presenting this information is to note how much source energy is not taken into account when Equation (2) is solved over less than the fully allowed secondary electron energy range. This is pertinent to our calculations when the primary energy is above a few
hundred keV since we do not account for secondaries with energies greater than 100 keV. Figure 3 shows the fraction of the initially generated secondary electron energy $f_s(E_s)$ at energies less than E_s for primary energies of 1, 10, 100 and 1000 keV. In each case, the cutoff in f_s comes where E_s is half of the primary energy. This defines the upper limit of E_s. We observe that the high energy tail of the secondary electron source spectrum does contain measurable energy in spite of the fact that the electrons available are insignificant compared to the total number within the spectrum. Figure 4 recasts the information from Figure 3 in terms of the average energy $\langle E_s \rangle$ of the initially produced secondary electrons. At a given energy E_s, $\langle E_s \rangle$ is the average from 0 eV to E_s. The rise in $\langle E_s \rangle$ with increasing energy is somewhat steeper than would be obtained using the Moeller expression for $\sigma(E_b, E_s)$ which varies as E_s^{-2}. This is illustrated in Figure 4 by means of the dashed curve which shows how $\langle E_s \rangle$ varies for $E_b = 1$ MeV assuming the E_s^{-2} dependence. We now proceed to discuss our results but shall refer back to Figures 3 and 4 for those calculations which have not taken into account all available secondary electron energy.

Examples of the calculated flux $v_{n_e}(E)$ are shown in Figure 5 for $E_b = 1$ Mev. For these results, the maximum energy treated was 20 keV. Referring back to Figure 3, we are thus accounting for 60% of the available secondary electron energy based on the use of the Porter et al. ionization cross section. The calculated flux has been divided by the primary flux thus giving the units of $e/eV-e_p$. The spectra shown are for pure N_2 and pure O_2, in each case at standard density. The spectrum for air is similar to that of N_2. The point of calculating the exhibited spectra was to determine the sensitivity of the secondary spectrum to composition changes. This is of interest to us in our chemistry modeling since we do observe compositional changes in the major
Fig. 3 — Fraction of secondary electron source energy, f_s between 0 and E_s for primary energies as shown. f_s is based on the ionization cross section of Porter et al.3.

Fig. 4 — Average initial secondary electron energy $\langle E_s \rangle$ obtained using $\langle E_s \rangle = \langle E_s \rangle_{\text{max}} f_s(E_s)$ where $\langle E_s \rangle_{\text{max}}$ is the average energy over the full range of secondary electron energies. The solid curves were obtained using the ionization cross section of Porter et al.3 while the dashed curve was obtained using the Moeller cross section.
Fig. 5 — Secondary electron fluxes $v_{n_e}(E)$ for pure N_2 and pure O_2 compositions at standard air density. The primary energy is 1 MeV. Secondary electron production has been restricted to less than 20 keV.
constituents for high levels of energy deposition. Based on the results in Figure 5 which apply to the extremes in composition, we can state that compositional changes one might generate in air chemistry modeling will not seriously affect that part of the secondary flux spectrum capable of producing ionization and excitation. It should be noted that the results below ~ 10 eV are sensitive to the amount of plasma present through the derivative term in Equation (2). Furthermore, it is worth noting that the most pronounced difference between the two spectra which occurs at ~ 2.5 eV is caused by differences in vibrational excitation. For N₂, this produces strong energy loss. We shall limit our presentation of secondary flux results to those shown in Figure 5. The shape of the flux in air for other primary energies is similar to that shown for N₂ over the given energy range.

Before proceeding to discuss how the deposited energy becomes distributed among the various states, we wish to add a few comments to those given in Section 7 on ΔWᵢₚ. Its explicit form is

$$\Delta W_{ip} = \frac{dE/dx}{P_{ion}/j_b}$$ \hspace{1cm} (13)

where dE/dx is the stopping power and P_{ion} is the sum of P_s and P_p. dE/dx here refers to only the deposited energy explicitly treated in Equation (2). Thus, it is less than obtained by the Bethe formula if the maximum secondary electron energy considered is smaller than its maximum allowed value. In that case, we have used the following expression for dE/dx:

$$dE/dx = \sum_i \left[\sum_k W_{ik} \sigma_{ik}(E_b) + \int_0^E E_s \sigma_s(E_s, E_b) dE_s \right]$$ \hspace{1cm} (14)
where \(E \) refers to the largest secondary energy treated, \(n_2 \) applies to \(N_2 \) and \(O_2 \), and \(W_{tk} \) refers to the potential energy of both excited and ion states. We wish to stress that the needed stopping power is the one just discussed since it refers to the actual energy deposition being modeled.

Table 1 gives \(\Delta W_{ip} \) for the four primary energies considered. For the first 3 cases, \(dE/dx \) refers to total energy deposition since the calculations were performed over the full secondary electron energy range. Dissociative ionization as well as direct ionization have been included in \(P_p \) and \(P_s \). We observe some variation in \(\Delta W_{ip} \) but in all cases its value is close to the accepted value of \(\sim 35 \text{ eV/ion pair} \). There are two possible sources of error in the calculated values of \(\Delta W_{ip} \). One is inaccuracies in the calculated flux \(v_{ne}(E) \). The other is in the applied set of cross sections at primary energies needed to specify \(dE/dx \) and \(P_p \). If there are inconsistencies between this set and its counterpart at lower energies used in Equation (2), they will affect the resulting value of \(\Delta W_{ip} \). We do observe some error in the calculated secondary flux based on the applied energy conservation test. The error is not serious, however, since the test generally leads to errors of less than 10%.

We note that at 1 MeV, \(P_p \) and \(P_s \) are comparable whereas Hirsh et al.\(^{18} \), for example, report relatively larger contributions from \(P_s \) in this energy range. They observe \(P_s \) to be \(\sim 2 \) \(P_p \). We would also obtain approximately this result had we allowed for the energy degradation of the high energy secondaries extending up to 500 keV. Both \(P_s \) and \(dE/dx \) would increase accordingly leaving \(\Delta W_{ip} \) unchanged.

We now address the question of what the distribution of energy is among various states of interest. What will be shown is the production rate of various states relative to the total ion production rate \(P_{ion} \). Table 2 gives
Table 1 — Calculated ΔW_{ip} Values and Terms Used to Specify Them

<table>
<thead>
<tr>
<th>E_p(keV)</th>
<th>ΔE (eV/cm)</th>
<th>P_E/J_b</th>
<th>$P_{E'}/J_b$</th>
<th>$\Sigma P_J/J_b$</th>
<th>ΔW_{ip} (eV/ion pair)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.3(5)</td>
<td>2.4(3)</td>
<td>1.2(3)</td>
<td>3.6(3)</td>
<td>36</td>
</tr>
<tr>
<td>10</td>
<td>2.4(4)</td>
<td>3.6(2)</td>
<td>3.4(2)</td>
<td>7.1(2)</td>
<td>34</td>
</tr>
<tr>
<td>100</td>
<td>4.7(3)</td>
<td>5.7(1)</td>
<td>7.2(1)</td>
<td>1.3(2)</td>
<td>36</td>
</tr>
<tr>
<td>1000</td>
<td>1.4(3)</td>
<td>2.3(1)</td>
<td>1.9(1)</td>
<td>4.1(1)</td>
<td>34</td>
</tr>
</tbody>
</table>

Table 2 — Production Given Relative to Total Ionization Production.
The primary energy is 10 keV. Similar values are obtained at the other primary energies considered in this study.

<table>
<thead>
<tr>
<th>Process</th>
<th>Species</th>
<th>Primary Production</th>
<th>Secondary Production</th>
<th>Total Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_2 + e + N_2^+$</td>
<td>N_2^+</td>
<td>.32</td>
<td>.31</td>
<td>.63</td>
</tr>
<tr>
<td>$N_2 + e + N^+ + N$</td>
<td>N^+</td>
<td>.090</td>
<td>.065</td>
<td>.16</td>
</tr>
<tr>
<td>$N_2 + e + {N + N}$</td>
<td>N</td>
<td>.50</td>
<td>.78</td>
<td>1.3</td>
</tr>
<tr>
<td>$N_2 + e + N_2$</td>
<td>N_2</td>
<td>-</td>
<td>.28</td>
<td>.28</td>
</tr>
<tr>
<td>(B)</td>
<td>N_2</td>
<td>-</td>
<td>.13</td>
<td>.13</td>
</tr>
<tr>
<td>(C)</td>
<td>N_2</td>
<td>-</td>
<td>.059</td>
<td>.059</td>
</tr>
<tr>
<td>$O_2 + e + O_2^+$</td>
<td>O_2^+</td>
<td>.084</td>
<td>.070</td>
<td>.15</td>
</tr>
<tr>
<td>$O_2 + e + O^+ + O$</td>
<td>O^+</td>
<td>.037</td>
<td>.027</td>
<td>.064</td>
</tr>
<tr>
<td>$O_2 + e + {O + O}$</td>
<td>O</td>
<td>.05</td>
<td>.19</td>
<td>.24</td>
</tr>
</tbody>
</table>
this information broken down into direct production by the primary electrons and production by secondary electrons. The results apply to a primary energy of 10 keV. We have generated these results at the other energies as well and obtain similar values. We observe similar contributions to the total production by primaries and secondaries for the dipole allowed transitions producing the given states. For triplets states, such as \(N_2(A^3\Sigma) \), the excitation cross section falls too fast with increasing energy for primary excitation to be important. The total values for ionization and dissociation in Table 2 may be compared with similar ones generated by F. Gilmore, as quoted by Johnston\(^1\)\(^9\), using a continuous slowing down scheme. We observe no serious differences between the two sets of values.

9. **SUMMARY**

We have presented a computational model for solving an integral equation giving the secondary electron distribution function in the local approximation. Energy loss is treated as discrete which has led us to apply a detailed set of electron impact cross sections. Our application of the model has been to energy deposition in air caused by the passage of energetic primary electrons. Results included the spectrum of secondary electrons under steady state conditions, resulting eV/ion pair values, and the distribution of energy among several states. The calculated eV/ion pair values are close to the universally applied value of \(\sim 35 \). The distribution information presented gives one the production of a given state or species by either type of exciting electron-primary or secondary.
REFERENCES

1. A. E. S. Green and C. A. Barth, J. Geophys. Res. 70, 1083 (1965).
2. R. S. Stolarski and A. E. S. Green, J. Geophys. Res. 72, 3967 (1967).
DISTRIBUTION LIST

Chief of Naval Operations
(Attn: Dr. C. F. Sharn (OP0987B))
Washington, D.C. 20350

Air Force Weapons Laboratory
Kirtland Air Force Base
Albuquerque, New Mexico 87117
ATTN: Dr. K. Dreyer
Dr. D. Straw

U.S. Army Ballistics Research Laboratory
Aberdeen Proving Ground, Maryland 21005
ATTN: Dr. D. Eccleshall (DRXBR-BM)

Ballistic Missile Defense Advanced Technology Center
P.O. Box 1500
Huntsville, Alabama 35807
ATTN: Dr. M. Hawie (BMDSATC-1)

B-K Dynamics Inc.
15825 Shady Grove Road
Rockville, Maryland 20850
ATTN: Dr. R. Linz

Lawrence Livermore Laboratory
University of California
Livermore, California 94550
ATTN: Dr. R. J. Briggs
Dr. T. Fessenden
Dr. E. P. Lee
Dr. S. Yu

Mission Research Corporation
735 State Street
Santa Barbara, California 93102
ATTN: Dr. C. Longmire
Dr. N. Carron
Dr. M. Schiebe

National Bureau of Standards
Gaithersburg, Maryland 20760
ATTN: Dr. Mark Wilson
Sandia Laboratories
Albuquerque, NM 87185
ATTN: Dr. Bruce Miller
 Dr. Barbara Epstein
 Dr. John Olsen
 Dr. Don Cook

Beers Associates, Inc.
P. O. Box 2549
Reston, VA 22090
ATTN: Dr. Douglas Strickland

R and D Associates
P.O. Box 9695
Marina del Rey, California 90291
ATTN: Dr. F. Gilmore

Director
Defense Nuclear Agency
Washington, D.C. 20305
ATTN: Dr. C. Fitz (RAAE)
 Dr. P. Lunn (RAAE)

Los Alamos National Laboratory
(Attn: Dr. H. O. Dogliani)
Mail Station 5000
P. O. Box 1663
Los Alamos, NM 87545

Los Alamos National Laboratory
(Attn: Dr. Thomas P. Starke)
Mail Stop 942
P. O. Box 1663
Los Alamos, NM 87545