This study examined the effect of self-efficacy, goals, and task strategies on goal choice and task performance. Self-efficacy and task strategies were manipulated through training. Ability, past performance and self-efficacy were the major predictors of goal choice. Ability, self-efficacy, goals and task strategies were all related to task performance. Self-efficacy was more strongly related to past performance than to future performance but was still a significant predictor of future performance when past performance was controlled. Self-efficacy ratings for moderate to difficult levels of performance were the...
best predictors of future performance. This finding was "replicated" when two previous goal setting studies, which has found no positive expectancy-performance relationship across goal group, were re-analyzed. Expectancy ratings within goal groups were often positively related to performance, and the ratings within the moderate to high goal groups were more highly related to performance than those within the easy or impossible goal groups. It is suggested that the concept of self-efficacy might provide an integrating mechanism between the goal setting and social learning theory approaches to task performance.
The Effect of Self-Efficacy, Goals and Task Strategies on Task Performance

Edwin A. Locke, Elizabeth Zubritzky, Cynthia Lee
University of Maryland

and

Philip Bobko
Virginia Polytechnic Institute and State University

1 This research was supported by Contract N0004-79-C-0688 from the Office of Naval Research, Organizational Effectiveness Research Program.
Abstract

This study examined the effect of self-efficacy, goals, and task strategies on goal choice and task performance. Self-efficacy and task strategies were manipulated through training. Ability, past performance and self-efficacy were the major predictors of goal choice. Ability, self-efficacy, goals and task strategies were all related to task performance. Self-efficacy was more strongly related to past performance than to future performance but was still a significant predictor of future performance when past performance was controlled. Self-efficacy ratings for moderate to difficult levels of performance were the best predictors of future performance. This finding was "replicated" when two previous goal setting studies, which had found no positive expectancy-performance relationship across goal groups, were re-analyzed. Expectancy ratings within goal groups were often positively related to performance, and the ratings within the moderate to high goal groups were more highly related to performance than those within the easy or impossible goal groups. It is suggested that the concept of self-efficacy might provide an integrating mechanism between the goal setting and social learning theory approaches to task performance.
The effect of goals on task performance has been firmly established in the research literature (Locke, Shaw, Saari & Latham, 1981). However, there has been limited research on how goals combine with other factors to determine performance. There is evidence for an interaction between goals and knowledge of progress with goals plus knowledge leading to better performance than any other combination. Further, there is evidence for an additive effect of money and goals. In addition, participation in setting goals has, in some cases, led to higher goals being set that was the case when goals were assigned (Locke et al., 1981).

Two factors that have not been extensively studied in relation to goal setting are task strategies and self-efficacy. In most goal setting studies, goals lead subjects to direct their actions in line with goal requirements, to expend effort in proportion to goal difficulty and/or to persist in a given task until the goal is reached. One might describe these mechanisms as strategies for goal accomplishment, but they are not task strategies in the sense that they involve different ways of actually performing the task. Terborg's (1976) is one of the few studies to have looked at differences in actual task strategies. He found, for example, that subjects with goals were more likely to write notes in the margins than those without goals when they were learning text material. Bandura and
Simon (1977) found that dieting subjects with goals developed eating strategies and plans to help insure goal attainment. Latham and Baldes (1975) observed that truck drivers with goals developed ideas for minor modifications of their trucks in order to help insure goal attainment.

In these previous studies, the subjects were not assigned or trained in the strategies but developed them spontaneously as a method of facilitating goal achievement. In the present study, we demonstrate that task strategies can effect performance even on a relatively simple task when subjects are trained in different task strategies rather than being allowed to develop them on their own.

Self-efficacy is a key concept in Bandura's social learning theory (Bandura, 1977). Self-efficacy is defined as a judgment of "now well one can execute courses of action required to deal with prospective situations" (Bandura, 1932, p. 122). He argues that it is affected by past performance, by modeling (observing others take similar actions), by persuasion and by autonomic arousal, as well as by cognitive processing independent of or in addition to the above. Bandura (1982) has found that self-efficacy is strongly related to actual (future) task performance—even more strongly than to past performance.

The concept of self-efficacy obviously bears a close resemblance to what is called E I in expectancy theory, the belief that one can attain a certain level of performance.
Previous studies have shown a relationship between expectancy and goal acceptance, but little or no relationship between expectancy and performance when ability and goal level are controlled (Mento, Cartledge, & Locke, 1980). However, as will be seen below, expectancy in goal setting studies has not been measured in the same way that self-efficacy is measured (following Bandura's recommended procedure).

The purpose of the present study was to examine the joint effects of goals, task strategies and self-efficacy on task performance across repeated trials. Training in task strategies was used to establish individual differences in the task strategies actually used and in the degree of self-efficacy experienced.

Since this was an exploratory study no specific hypotheses were formulated, but it was expected that all three of the above variables would affect performance. It was conceivable that self-efficacy might affect performance through its effects on goal choice (by affecting the goal level chosen by the subject) or through its direct effect on performance, or possibly both. The design used enabled us to test these various possibilities.

Method

Subjects. The subjects were 209 undergraduates from an introductory management course. They received extra credit in the course for participation. The subjects were run in
groups. (The N's are less than 209 in some analyses due to missing data).

Task. The task was brainstorming, giving uses for common objects. A different object was used on each trial.

Trials. There were 3 1-minute trials in the experiment: 1. Practice; 2-4. Training; 5. Post Training; 6-8: Experimental.

Conditions. After the practice trial, there were five conditions or manipulations for the three training trials. a) **High Strategy** (N=45). These subjects were trained to use three methods of getting a large number of uses: "walk through", which involved mentally walking through the daily environment looking for uses at or in each place; "similar uses", which involved looking for uses similar to the ones already listed for that object; and "repeated uses", which involved listing uses mentioned on previous trials; b) **Low Strategy** (N = 45). These subjects were told to give only good or high quality ideas and not uses that are "crazy and far out". This was an "anti-brainstorming" condition. c) **Control** (N = 55), or no training. They used the practice trials just to become familiar with the task. d) **High Feedback** (N = 51). These subjects, without knowing it, were given easier objects (based on previously obtained normative data) than the other subjects and 20 sec. of extra time on each training trial (i.e., 80 sec. total). e) **Low Feedback** (N = 12). These subjects were treated the opposite of the high feedback subjects. Without knowing it, they were given
harder objects than the other subjects and 20 sec. less time (i.e., 40 sec.) for each training trail. This condition was dropped after running one group of 12 subjects, because they seemed to become unduly upset over the negative feedback.

Procedure. The task was explained and all subjects were then given a practice trial after which they were asked to fill out a self-efficacy scale. Since the design of this scale may have been crucial to the results, the scale used is shown in Figure 1.

Insert Fig. 1 about here

This same scale was administered after each subsequent trial except the post-training trial. On trial 5, approximately half the subjects from each training condition were assigned a goal of 12 uses (a goal of 12 was chosen because it was difficult but not totally out of reach), while the remaining subjects were asked to set their own quantitative goal. Goal commitment scales were administered both before and after this trial. On trial 6, all subjects were asked to set a quantitative goal of their own choice. On trial 7, subjects could set any type of goal they wished: a specific number, do best, other, no goal etc. Their choice was indicated on a checklist filled out before the trial.

At the end of the experiment all subjects indicated the task strategies they thought it was important to use or found useful on the last three (experimental) trials (each item used a 5-point scale).
Measures. Two self-efficacy measures were developed: 1. **Magnitude:** total number of Yes's (1st column of Fig. 1); and 2. **Strength:** total certainty for performance levels 8, 10, and 12 (uses-2nd column of Fig. 1). In a post hoc analysis of the data, it was found that the certainty ratings for these three goals levels were the best predictors of performance for all three experimental trials. These goal levels were in the moderate to very difficult range (between 4% and 10% of the subjects gave 12 uses or more in the three experimental trials; between 12% and 22% gave 10 uses or more; and between 31% and 54% gave 8 uses or more). The correlation between the above strength measure and total self-efficacy strength (for all performance levels) was .94 for each trial (5, 6, and 7). The conclusions of the study would not have been changed if the total measure (for all performance levels) had been used.

Goal commitment was measured on 5-point scales ranging from "definitely will try (tried) my hardest" to "definitely will (did) not try at all to reach my goal."

The performance measure was the total number of uses given, deleting responses which were not uses (e.g., "break it" for a brick) or which were exact repetitions within the same trial.

RESULTS

Manipulation checks. Significant differences among the experimental groups were found in performance on the post-
training trial, controlling for initial ability ($F = 21.82, p < .001, \text{ d.f.}, 4,196$). The high strategy subjects showed the highest performance, the low strategy subjects the lowest, while the control and feedback groups were in the middle. The feedback manipulation did not affect performance.

There were also significant differences in the self-efficacy of the groups after the last training trial ($F = 10.56, p < .001, \text{ df. } 4, 191$). The results were similar to those for performance except that the high feedback subjects had significantly higher self-efficacy than the low feedback subjects. This can be considered pseudo-efficacy, since it was based on false information and did not translate into performance. Basically, the feedback manipulation was not successful and will not be considered further.

With respect to strategies actually used, as indicated in the post-experimental questions, the high as compared to the low strategy subjects were significantly more likely to say that they: considered it desirable to list large numbers of uses, considered it desirable not to give a wide variety of uses (a possible correlate of "quality"), tried to list uses similar to those already given, tried to think up uses for objects similar to the one listed and tried to repeat previously listed uses. These differences were revealed by one way F tests which included the two strategy groups and the control group ($F'\text{s} = 3.18 \text{ to } 25.24, p'\text{s} < .05, \text{ d.f.'s } 2,124$). In most cases the control group mean was between
that of the two strategy groups, or closer to the low strategy group. A similar test on the feedback groups showed no significant differences.

An index called Strategies Used was compiled by summing the responses to the 5 items above (reverse scoring the variety item) for use as an independent variable in subsequent analyses.

Results

Goal Choice. The first set of analyses concerned the determinants of goal choice. This analysis included those subjects in Trial 5 who set their own goals, all subjects in Trial 6, and subjects in Trial 7 who set a quantitative goal. Hierarchical regression analysis was used; the variables were entered in the order shown in Table 1. Strategy training was coded: high strategy = 3, low strategy = 1, all others = 2.

The results shown in Table 1 are quite consistent across the three trials. Ability and post-training performance level (post-training ability) are significantly related to goal level but become progressively less important from trials 5 to 7. Self-efficacy strength is strongly related to goal level chosen on all three trials and self-efficacy magnitude is significantly related in two of the three trials. Strategy training and strategies used, while
significantly correlated with goal level chosen, did not add any additional variance, suggesting that they affect goal level through their effect on self-efficacy.

Performance. An initial analysis was made of the effect of the assigned goal on trial 5 performance and on subsequent performance and on goals set on trials 6 and 7. The results are shown in Figures 2a and 2b.

Subjects assigned a goal of 12 on trial 5 had significantly higher goals than those who set their own goals on trial 5 \((t = 19.28, p < .001, \text{d.f. } 207) \) and performed significantly better \((t = 2.02, p < .05, \text{d.f. } 206) \). This effect carried over to trial 5, in which all subjects set their own goals, for both goals \((t = 4.43, p < .001, \text{d.f. } 206) \) and performance \((t = 1.72, p < .10, \text{d.f. } 207) \) but the effect was considerably weaker. The effect was still present, though weaker still, on trial 7, but stronger with respect to goals \((t = 2.97, p < .01, \text{d.f. } 110) \) than to performance \((t = 1.16, \text{NS}) \).

It was also found that self-efficacy was significantly related to goal commitment for those who set their own goals on trial 5. The correlation of self-efficacy strength with the "before" commitment item was .29 \((p < .01) \) and with the "after" commitment item .30 \((p < .001) \). Commitment was significantly correlated with trial 5 performance for those who set their own goals, \((r = .17, p < .05 \text{ for before}; r = .26, \)
Although commitment did not add any unique variance to the prediction of performance. Commitment was not related to performance for those with assigned goals, nor was self-efficacy related to goal commitment for this group.

Subsequent performance analyses were done using hierarchical regression. Ability, self-efficacy strength, self-efficacy magnitude, goals, strategy training and strategies used were employed as predictors and were entered into the regression in that order. (Post-training performance was not entered since past performance as such is not a cause of future performance and because past performance is also the result of the predictor variables. Post-training performance was included in the path analysis reported below, however.)

The factors affecting performance on trials 5 to 7 are shown in Table 2. For purposes of economy the data for trials 1 and 2 are combined (by using means for the two trials for each variable); the pattern of results was very similar in both trials. All trial 1 subjects were included, half of whom had an assigned goal of 12 uses and half of whom chose their own goals.

Insert Table 2 about here

The results for trials 5 and 6 combined show that all six variables: ability, self-efficacy strength, self-
efficacy magnitude, goal level, strategies used, and strategy training, made significant increments to the multiple R, with ability, self-efficacy strength and goal level showing the strongest contributions.

The results for trial 7, using only those subjects who set quantitative goals, were similar except strategy training did not contribute significantly to the explanation of performance.

The overall correlation matrix for the combined trial 5 and 6 data is shown in Table 3. In an attempt to integrate the findings and Tables 1 through 3 into a coherent framework, a path analysis was conducted using the combined trial 5 and 6 data. The results are shown in Figure 3. This path analysis was deliberately over-simplified in the interests of clarity; thus only path relationships with a p value of .01 or better are shown. In addition, strategies used and self-efficacy magnitude have been omitted. This simplified path analysis shows that ability, post-training ability and strategy training affect self-efficacy strength, which in turn affects goal level, which in turn affects performance. Ability and post-training ability also have direct effects on performance. (Self-efficacy magnitude would also have affected performance directly if it had been included).

Insert Table 3 and Figure 3 about here
In an additional analysis, it was found that there was a low but significant correlation between self-efficacy strength and the tendency to set a specific goal on trial 3. Goal choice was coded 2 for specific or quantitative goal, and 1 for no specific goal. The r with self-efficacy strength was .13, $p < .05$.

Discussion

The most unexpected finding of this study was the very powerful effect of self-efficacy. It was found to affect goal level, task performance, goal commitment (when the goal was self-set), and even the choice to set a specific (quantitative) rather than a non-specific goal. These results give very strong support to Bandura's (1982) claim that self-efficacy is a key causal variable in performance and show that its effects on performance are not only direct but indirect as well.

These results also support Bandura's (1982) finding that past performance is a key determinant of self-efficacy. In fact, self-efficacy is even more highly related to past performance than to future performance. Table 4 shows the correlations of self-efficacy with past and future performance. In each box, the correlation to the left is for past performance and the one on the right is for future performance. Even when past performance is partialled out, however, the correlation with future performance is typically still significant (the partial correlations are shown in
parentheses). It should be noted that such partialing is a very conservative test of the effect of self-efficacy since past performance is also an effect of prior self-efficacy. Clearly self-efficacy and performance are reciprocally related.

Our findings also show that self-efficacy is affected by training in task strategies, a result which replicates a previous finding by Bandura and Schunk (1981).

Further analyses of the performance and goal data showed that self-efficacy strength explained more unique variance in goal level than self-efficacy magnitude, while self-efficacy magnitude explained more unique variance in performance. Statistically, the reason is that while self-efficacy magnitude was correlated lower with the other variables than strength, they were both correlated about equally with performance; strength, however, was more highly correlated with goal level (see Table 3). The authors have no theoretical explanation for this pattern of results. Generally, self-efficacy strength and magnitude were correlated in the high 40's. If the two measures are combined into an overall self-efficacy index, the index explains unique variance in both goal choice and performance.

A puzzling aspect of the present results is the considerable success of self-efficacy in predicting performance in
contrast to the consistent failure of effort-performance expectancy (or E I) to show a positive association with performance in previous goal-setting studies (Locke, 1982; Mento, Cartledge & Locke, 1980). The two concepts are obviously closely related, with the possible difference that self-efficacy implies a general internal attribution (which would include ability) whereas E I implies no particular attribution. However, it is doubtful that this difference could account for the different results.

One difference between this and previous studies is that in previous goal-setting studies subjects rated their expectancy of reaching only the goal they were assigned. Since the assigned goals differed among subjects, the expectancy ratings of different subjects pertained to different goal levels. Typically the overall correlation of expectancy and performance was negative since people with easy goals (and therefore low performance) had high expectancies while those with hard goals (and therefore high performance) had low expectancies. In the present study, in contrast, subjects rated their efficacy with respect to virtually all possible performance levels (see Figure 1). In addition, since goals for the most part were self-set, the range of goal levels across individuals was smaller than, for example, in Locke (1982).

In order to examine the possible biasing effect of combining subjects from all goal levels when computing the
expectancy-performance correlations, the first author re-analyzed data from two previous brainstorming studies (Locke, 1982; Locke et al., Note 2). Subjects were grouped into relatively homogeneous goal groups and the expectancy-performance correlations were computed within each group. The results are shown in Table 5, along with parallel results for self-efficacy strength for different levels of performance in the present study.

Insert Table 5 about here

Observe that the efficacy-performance and expectancy-performance correlations are typically positive and significant, and are strongest for moderate to difficult goal or performance levels. The results for self-efficacy and expectancy are strikingly similar. Thus it appears that both the E I and self-efficacy strength estimates are most valid when they pertain to goals or levels of performance which are neither within the reach of all subjects nor within the reach of none. (All but one of the significant correlations in Table 5 remained significant when ability was controlled.)

It should be noted that there are a number of differences between the self-efficacy measures used here and the typically used expectancy measures. First, in the present study subjects made estimates of efficacy for the whole range of possible performance levels. This fact alone may
have contributed to their validity in that the subjects are making the ratings within a fuller or more comprehensive context. It is worth noting on this point that a recent study by Ilgen, et.al. (1981) found that the most valid type of expectancy (EI) measure was one which listed a variety of levels of performance and asked subjects to indicate the frequency (number of hours out of 100) with which they could attain each of six performance levels working at an average level of effort. This type of scale is somewhat similar to the self-efficacy scale used here. Second, the subject is making two different but related types of ratings, a yes-no rating and a confidence rating. This could contribute to increased reliability and/or validity. Third, confidence ratings may yield different results from probability of success estimates. And fourth, the self-efficacy ratings (and the EI ratings in Ilgen et al, 1981) are made with respect to performance rather than with respect to goal levels. Further research might determine what, if any, effect these difference have on validity.

The present results confirm a long line of previous studies regarding the effect of goal on performance (Locke, 1968; Locke et al, 1981; Locke & Latham, in press). In the present study, both assigned goals and self set goals were related to performance. The present results also replicate a previous study by Locke, Zubritzky, and Cousins (Note 2) which found that goals assigned on one trial affect goals and performance on a subsequent trial. The present study
extended the time span for one additional trial, as compared to the Locke et al study (Note 2) and found, not unexpectedly, that the effects of the initially assigned goal were substantially reduced although not entirely absent after the second post-assignment trial.

The finding—that self-efficacy was related to goal and goal commitment to performance in the self set goal condition (trial 5) but not in the assigned goal condition—were the opposite of what once might expect. The mean goal commitment score was actually slightly higher \((t = 1.39, p < .20, \text{ d.f. 172}) \) among assigned goal subjects than self-set goal subjects. While self set goals are delegated rather than set participatively (jointly), these findings are consistent with the findings of a long series of studies by Latham and his colleagues (summarized in Locke et al, 1981) which found that participation in goal setting typically did not lead to greater goal commitment or performance than assigned goal setting. Perhaps self-set goals are held more flexibly, because they are simply a matter of personal preference, while assigned goals, especially when assigned by an authority figure (professor, supervisor, etc.) are seen as being required by the situation. Notably, the variance in goal acceptance was significantly greater in this study (trial 5) among those with self-set goals than among those with assigned goals \((F = 1.52, p < .05, \text{ d.f. 90, 82}) \).

The finding that training in task strategies can affect
performance even on a simple task extends previous findings (e.g., Terborg, 1976) which found that spontaneously chosen strategies affected performance on a more complex task. In the present study strategy training and strategies used were significantly related but both made significant contributions to task performance. Additional studies of the effects of task strategies are certainly in order.

The path analysis in Figure 3, as a summary and integration of the findings, points the way to the possibility of an integration of goal setting theory with key elements of social learning theory, with self-efficacy as the major integrating mechanism. Bandura and his colleagues have already recognized and verified the important role played by goals in performance (Bandura & Simon, 1977; Bandura & Cervone, Note 1). They have also replicated the finding of an interaction between goal setting and performance feedback with the combination of both having a far more powerful effect on performance than any other combination (Bandura & Cervone, Note 1). Further they have replicated the finding of Locke, Cartledge and Knerr (1970) that dissatisfaction with previous performance motivates the desire to improve on subsequent trials. Self-efficacy appears to play a role in all of these relationships.

If the authors may be permitted a bit of speculation, it seems that the groundwork has now been laid for a relatively successful and well integrated theory of task perfor-
Reference Notes

Note 1. Bandura, A. & Cervone, D., Self-evaluative and self-efficacy mechanisms governing the motivational effects of goal systems. Stanford University, unpublished ms.

References

Terborg, J.R. The motivational components of goal setting.
Table 1
Predictors of Goal Choice

<table>
<thead>
<tr>
<th>Variable</th>
<th>Trial 5 (N = 96) (self set goals) only</th>
<th>Trial 6 (N = 181) only</th>
<th>Trial 7 (N = 112) (quantitative goals only)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r</td>
<td>ΔR²</td>
<td>F inc.</td>
</tr>
<tr>
<td>Ability</td>
<td>.45</td>
<td>.20</td>
<td>23.63**</td>
</tr>
<tr>
<td>Post Training Performance</td>
<td>.60</td>
<td>.20</td>
<td>31.67**</td>
</tr>
<tr>
<td>Self-Efficacy Strength</td>
<td>.57</td>
<td>.14</td>
<td>28.29**</td>
</tr>
<tr>
<td>Self-Efficacy Magnitude</td>
<td>.36</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>Strategy Training</td>
<td>.38</td>
<td>.00</td>
<td>.30</td>
</tr>
<tr>
<td>Strategy Used</td>
<td>.25</td>
<td>.00</td>
<td>.42</td>
</tr>
</tbody>
</table>

** p < .01
Table 2

Predictors of Performance

<table>
<thead>
<tr>
<th></th>
<th>Combined Trials 5 and 6 (N = 181)</th>
<th>Trial 7 (N = 112) (quantitative goals only)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r</td>
<td>ΔR²</td>
</tr>
<tr>
<td>Ability</td>
<td>.47</td>
<td>.22</td>
</tr>
<tr>
<td>Self-Efficacy Strength</td>
<td>.54</td>
<td>.17</td>
</tr>
<tr>
<td>Self-Efficacy Magnitude</td>
<td>.50</td>
<td>.05</td>
</tr>
<tr>
<td>Goal</td>
<td>.57</td>
<td>.07</td>
</tr>
<tr>
<td>Strategies Used</td>
<td>.37</td>
<td>.03</td>
</tr>
<tr>
<td>Strategy Training</td>
<td>.39</td>
<td>.02</td>
</tr>
</tbody>
</table>

** p < .01
Table 3

Correlation Matrix for Trials 5 and 6 Combined (N = 181)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ability</td>
<td>-</td>
<td>.42</td>
<td>.34</td>
<td>.28</td>
<td>.25</td>
<td>.17</td>
<td>.08</td>
<td>.4</td>
</tr>
<tr>
<td>Post Training</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.4</td>
</tr>
<tr>
<td>Performance</td>
<td></td>
<td>.44</td>
<td>.37</td>
<td>.40</td>
<td>.37</td>
<td>.55</td>
<td></td>
<td>.6</td>
</tr>
<tr>
<td>Self-Efficacy Strength</td>
<td></td>
<td>.47</td>
<td>.53</td>
<td>.29</td>
<td></td>
<td>.37</td>
<td>.5</td>
<td></td>
</tr>
<tr>
<td>Self-Efficacy Magnitude</td>
<td></td>
<td>.39</td>
<td>.20</td>
<td>.19</td>
<td></td>
<td></td>
<td>.5</td>
<td></td>
</tr>
<tr>
<td>Goal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.19</td>
<td>.5</td>
</tr>
<tr>
<td>Strategies Used</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.38</td>
<td>.5</td>
</tr>
<tr>
<td>Strategy Training</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[r > .15, p < .05 \]
\[r > .19, p < .01 \]
Table 4
Relation of Self-Efficacy to Prior & Subsequent Performance

<table>
<thead>
<tr>
<th>Last Training Trial</th>
<th>Experimental Trial 5</th>
<th>Experimental Trial 6</th>
<th>Experimental Trial 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post Training SES</td>
<td>.56**</td>
<td>.40** (.06a)</td>
<td></td>
</tr>
<tr>
<td>Post Training SEM</td>
<td>.46**</td>
<td>.39** (.13*)</td>
<td></td>
</tr>
<tr>
<td>Post Trial 5 SES</td>
<td>.58**</td>
<td>.49** (.20**)</td>
<td></td>
</tr>
<tr>
<td>Post Trial 5 SEM</td>
<td>.61**</td>
<td>.46** (.11b)</td>
<td></td>
</tr>
<tr>
<td>Post Trial 6 SES</td>
<td>.63**</td>
<td>.53** (.19**)</td>
<td></td>
</tr>
<tr>
<td>Post Trial 6 SEM</td>
<td>.58**</td>
<td>.48** (.16*)</td>
<td></td>
</tr>
</tbody>
</table>

a r's in parentheses are both prior performance partialed out

b p = .055
*p < .05
**p < .01
Table 5
Relation of Self-Efficacy to Performance as a Function of Goal Difficulty

<table>
<thead>
<tr>
<th>Present Study</th>
<th>Objective probability of attaining</th>
<th>r with performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self Efficacy for</td>
<td></td>
<td>Trial 5</td>
</tr>
<tr>
<td>2 + 4 + 6 uses</td>
<td>.87</td>
<td>.30**</td>
</tr>
<tr>
<td>8 + 10 + 12 uses</td>
<td>.16</td>
<td>.40**</td>
</tr>
<tr>
<td>14 + 16 uses</td>
<td>.002</td>
<td>.19**</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Locke, 1982</th>
<th>Objective probability of attaining</th>
<th>r with performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expectancy for</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goals of 2 & 4 uses</td>
<td>1.00</td>
<td>.00</td>
</tr>
<tr>
<td>Goals of 6, 8 & 10 uses</td>
<td>.14</td>
<td>.49**</td>
</tr>
<tr>
<td>Goals of 12 to 28 uses</td>
<td>0</td>
<td>.17*</td>
</tr>
</tbody>
</table>

* p < .05
** p < .01
<table>
<thead>
<tr>
<th>Expectancy for</th>
<th>Objective probability of attaining</th>
<th>r with performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goals of 2 & 5 uses</td>
<td>.92</td>
<td>-.16</td>
</tr>
<tr>
<td>Goals of 8 & 11 uses</td>
<td>.16</td>
<td>.41**</td>
</tr>
<tr>
<td>Goals of 14, 20 & 26 uses</td>
<td>0</td>
<td>.35**</td>
</tr>
</tbody>
</table>

Table 5 cont.
Figure 1

Self-Efficacy Scale

<table>
<thead>
<tr>
<th>Can Do</th>
<th>Certainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>I can list 2 uses in 1 minute.</td>
<td></td>
</tr>
<tr>
<td>I can list 4 uses in 1 minute.</td>
<td></td>
</tr>
<tr>
<td>I can list 6 uses in 1 minute.</td>
<td></td>
</tr>
<tr>
<td>I can list 8 uses in 1 minute.</td>
<td></td>
</tr>
<tr>
<td>I can list 10 uses in 1 minute.</td>
<td></td>
</tr>
<tr>
<td>I can list 12 uses in 1 minute.</td>
<td></td>
</tr>
<tr>
<td>I can list 14 uses in 1 minute.</td>
<td></td>
</tr>
<tr>
<td>I can list 16 uses in 1 minute.</td>
<td></td>
</tr>
</tbody>
</table>

Column A
(Y=yes; N=no)

Column B
(0 to 100%)
Figure 2
Effect of Assigned Goal on Subsequent Goals and Performance

(a) Subjects with assigned goal of 12 on Trial 5

(b) Subjects who set own goals on Trial 5

Trial

Goal Level

Performance
Figure 3

Simplified Path Analysis\(^a\)
(Trials 5 & 6 Combined)

```
(0.08)  Ability  \rightarrow  0.23 (0.34)  \rightarrow  0.17 (0.47)
                  | \         | \         |
                  (.42)   \         \         |
Post-training Ability  \rightarrow  0.21 (0.44)  \rightarrow  Self-Efficacy Strength  \rightarrow  Goal  \rightarrow  Performance
                  | \         | \         |
                  (.55)   \         \         |
Strategy Training  \rightarrow  0.23 (0.37)  \rightarrow  \         \         |
```

\(^a\) Numbers outside parentheses are standardized path coefficients (p's < .01); numbers in parentheses are simple r's.
LIST 1
MANDATORY

Defense Technical Information Center
ATTN: DTIC DDA-2
Selection and Preliminary Cataloging Section
Cameron Station
Alexandria, VA 22314

Library of Congress
Science and Technology Division
Washington, DC 20540

Office of Naval Research
Code 4420E
800 N. Quincy Street
Arlington, VA 22217

Naval Research Laboratory
Code 2627
Washington, DC 20375

Office of Naval Research
Director, Technology Programs
Code 200
800 N. Quincy Street
Arlington, VA 22217

Office of Naval Research
Code 440
800 N. Quincy Street
Arlington, VA 22217

Office of Naval Research
Code 442PT
800 N. Quincy Street
Arlington, VA 22217

Office of Naval Research
Code 442EP
800 N. Quincy Street
Arlington, VA 22217
LIST 2
ONR FIELD

ONR Western Regional Office
1030 E. Green Street
Pasadena, CA 91106

Psychologist
ONR Western Regional Office
1030 E. Green Street
Pasadena, CA 91106

ONR Regional Office
536 S. Clark Street
Chicago, IL 60605

Psychologist
ONR Regional Office
536 S. Clark Street
Chicago, IL 60605

Psychologist
ONR Eastern Regional Office
495 Summer Street
Boston, MA 02210

ONR Eastern/Central Regional Office
495 Summer Street
Boston, MA 02210
LIST 3
OPNAV

Deputy Chief of Naval Operations
(Manpower, Personnel, and Training)
Head, Research, Development, and
Studies Branch (Op-119)
1812 Arlington Annex
Washington, DC 20350

Director
Civilian Personnel Division (OP-14)
Department of the Navy
1803 Arlington Annex
Washington, DC 20350

Deputy Chief of Naval Operations
(Manpower, Personnel, and Training)
Director, Human Resource Management
Plans and Policy Branch (Op-150)
Department of the Navy
Washington, DC 20350

Deputy Chief of Naval Operations
(Manpower, Personnel, and Training)
Director, Human Resource Management
Plans and Policy Branch (Op-150)
Department of the Navy
Washington, DC 20350

Chief of Naval Operations
Head, Manpower, Personnel, Training
and Reserves Team (Op-964D)
The Pentagon, 4A478
Washington, DC 20350

Chief of Naval Operations
Assistant, Personnel Logistics
Planning (Op-987H)
The Pentagon, 5D772
Washington, DC 20350
LIST 4
NAVMAT & NPRDC

NAVMAT

Program Administrator for Manpower, Personnel, and Training
MAT-0722 (A. Rubenstein)
800 N. Quincy Street
Arlington, VA 22217

Naval Material Command
Management Training Center
NAVMAT 09M32
Jefferson Plaza, Bldg #2, Rm 150
1421 Jefferson Davis Highway
Arlington, VA 20360

Naval Material Command
MAT-00K & MAT-00KB (1 copy each)
(J. W. Tweeddale)
OASN(SNL)
Crystal Plaza #5
Room 236
Washington, DC 20360

Naval Material Command
MAT-03
(J. E. Colvard)
Crystal Plaza #5
Room 236
Washington, DC 20360

NPRDC

Commanding Officer
(3 copies)
Naval Personnel R&D Center
San Diego, CA 92152

Naval Personnel R&D Center
Dr. Robert Penn (1 copy)
Dr. Ed Aiken (1 copy)
San Diego, CA 92152

Navy Personnel R&D Center
Washington Liaison Office
Building 200, 2N
Washington Navy Yard
Washington, DC 20374
LIST 6
NAVAL ACADEMY AND NAVAL POSTGRADUATE SCHOOL

Naval Postgraduate School
ATTN: Dr. Richard S. Elster
Department of Administrative Sciences
Monterey, CA 93940

Naval Postgraduate School
ATTN: Professor John Senger
Operations Research and
Administrative Science
Monterey, CA 93940

Superintendent
Naval Postgraduate School
Code 1424
Monterey, CA 93940

Naval Postgraduate School
ATTN: Dr. James Arima
Code 54-Aa
Monterey, CA 93940

Naval Postgraduate School
ATTN: Dr. Richard A. McGonigal
Code 54
Monterey, CA 93940

U.S. Naval Academy
ATTN: CDR J. M. McGrath
Department of Leadership and Law
Annapolis, MD 21402

Professor Carson K. Eoyang
Naval Postgraduate School, Code 54EG
Department of Administration Sciences
Monterey, CA 93940

Superintendent
ATTN: Director of Research
Naval Academy, U.S.
Annapolis, MD 21402
LIST 12

HEADQUARTERS, FORSCOM
ATTN: AFPR-HR
Ft. McPherson, GA 30330

ARMY RESEARCH INSTITUTE
FIELD UNIT - LEAVENWORTH
P.O. BOX 3122
FORT LEAVENWORTH, KS 66027

TECHNICAL DIRECTOR
ARMY RESEARCH INSTITUTE
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333

DIRECTOR
SYSTEMS RESEARCH LABORATORY
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333

DIRECTOR
ARMY RESEARCH INSTITUTE
TRAINING RESEARCH LABORATORY
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333

DR. T. O. Jacobs
CODE PERI-IM
ARMY RESEARCH INSTITUTE
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333

COL Howard Prince
HEAD, DEPARTMENT OF BEHAVIOR
SCIENCE AND LEADERSHIP
U.S. MILITARY ACADEMY, NEW YORK 10996
LIST 15
CURRENT CONTRACTORS

Dr. Richard D. Arvey
University of Houston
Department of Psychology
Houston, TX 77004

Bruce J. Bueno De Mesquita
University of Rochester
Dept of Political Science
Rochester, NY 14627

Dr. Stuart W. Cook
Institute of Behavioral Science #6
University of Colorado
Box 482
Boulder, CO 80309

Dr. L. L. Cummings
Kellogg Graduate School of Management
Northwestern University
Nathaniel Leverone Hall
Evanston, IL 60201

Dr. Henry Emurian
The Johns Hopkins University
School of Medicine
Department of Psychiatry and
Behavioral Science
Baltimore, MD 21205

Dr. John P. French, Jr.
University of Michigan
Institute for Social Research
P.O. Box 1248
Ann Arbor, MI 48106

Dr. Paul S. Goodman
Graduate School of Industrial
Administration
Carnegie-Mellon University
Pittsburgh, PA 15213
LIST 15 (Continued)

Dr. J. Richard Hackman
School of Organization
and Management
Box 1A, Yale University
New Haven, CT 06520

Dr. Lawrence R. James
School of Psychology
Georgia Institute of Technology
Atlanta, GA 30332

Allan P. Jones
University of Houston
4800 Calhoun
Houston, TX 77004

Dr. Frank J. Landy
The Pennsylvania State University
Department of Psychology
417 Bruce V. Moore Building
University Park, PA 16802

Dr. Bibb Latane
The Ohio State University
Department of Psychology
404 B West 17th Street
Columbus, OH 43210

Dr. Edward E. Lawler
University of Southern California
Graduate School of Business Administration
Los Angeles, CA 90007

Dr. Edwin A. Locke
College of Business and Management
University of Maryland
College Park, MD 20742

Dr. Fred Luthans
Regents Professor of Management
University of Nebraska - Lincoln
Lincoln, NE 68588
LIST 15 (Continued)

Dr. R. R. Mackie
Human Factors Research
A Division of Canyon Research
5775 Dawson Street
Goleta, CA 93017

H. Ned Seelye
International Resource Development Inc.
P.O. Box 721
La Grange, IL 60525

Dr. William H. Nobley
College of Business Administration
Texas A&M University
College Station, TX 77843

Dr. Thomas M. Ostrom
The Ohio State University
Department of Psychology
116E Stadium
404C West 17th Avenue
Columbus, OH 43210

Dr. William G. Ouchi
University of California, Los Angeles
Graduate School of Management
Los Angeles, CA 90024

Dr. Irwin G. Sarason
University of Washington
Department of Psychology, NI-25
Seattle, WA 98195

Dr. Benjamin Schneider
Department of Psychology
Michigan State University
East Lansing, MI 48824

Dr. Edgar H. Schein
Massachusetts Institute of Technology
Sloan School of Management
Cambridge, MA 02139
LIST 15 (Continued)

Dr. N. Wallace Sinaiko
Program Director, Manpower Research
and Advisory Services
Smithsonian Institution
801 N. Pitt Street, Suite 120
Alexandria, VA 22314

Dr. Richard M. Steers
Graduate School of Management
University of Oregon
Eugene, OR 97403

Dr. Siegfried Streufert
The Pennsylvania State University
Department of Behavioral Science
Hilton S. Hershey Medical Center
Hershey, PA 17033

Dr. James R. Terborg
University of Oregon
West Campus
Department of Management
Eugene, OR 97403

Dr. Harry C. Triandis
Department of Psychology
University of Illinois
Champaign, IL 61820

Dr. Howard M. Weiss
Purdue University
Department of Psychological Sciences
West Lafayette, IN 47907

Dr. Philip G. Zimbardo
Stanford University
Department of Psychology
Stanford, CA 94305