Appendix A - Literature Survey

DISTRIBUTION STATEMENT A
Approved for public release; Distribution Unlimited

Rock Toe With Tie-Backs Precast Block Paving Board Fence Dikes
A preliminary study of streambank erosion control was conducted with the major emphasis on an extensive literature survey of known streambank protection methods. In conjunction with the survey, preliminary investigations were conducted to identify the mechanisms that contribute to streambank erosion and to evaluate the effectiveness of the most widely used streambank protection methods. The results of the literature survey and the two preliminary investigations are presented herein.
20. ABSTRACT (Continued).

The text of the "Streambank Erosion Control Evaluation and Demonstration Act of 1974" is presented in Appendix A. A list of commercial concerns that market streambank protection products is provided in Appendix B. Appendix C contains a glossary of streambank protection terminology. A detailed bibliography resulting from the literature survey is provided in Appendix D, and a listing of selected bibliographies related to streambank protection are provided in Appendix E.
FINAL REPORT TO CONGRESS

THE STREAMBANK EROSION CONTROL
EVALUATION AND DEMONSTRATION ACT OF 1974
SECTION 32, PUBLIC LAW 93-251

APPENDIX A
LITERATURE SURVEY

Consisting of
LITERATURE SURVEY AND PRELIMINARY EVALUATION OF
STREAMBANK PROTECTION METHODS
AND
SUPPLEMENTARY LITERATURE SURVEY OF
STREAMBANK PROTECTION METHODS

U.S. ARMY CORPS OF ENGINEERS
December 1981
LITERATURE SURVEY AND PRELIMINARY EVALUATION OF STREAMBANK PROTECTION METHODS
LITERATURE SURVEY AND PRELIMINARY EVALUATION OF STREAMBANK-PROTECTION METHODS

by

Hydraulics Laboratory
Mobility and Environmental Systems Laboratory
Soils and Pavements Laboratory
U. S. Army Engineer Waterways Experiment Station
P. O. Box 631, Vicksburg, Miss. 39180

May 1977
Final Report

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Prepared for Office, Chief of Engineers, U. S. Army
Washington, D. C. 20314

Under Work Unit 2, Authorized by Section 32, Water Resources Development Act, 1974
A preliminary study of streambank erosion control was conducted with the major emphasis on an extensive literature survey of known streambank protection methods. In conjunction with the survey, preliminary investigations were conducted to identify the mechanisms that contribute to streambank erosion and to evaluate the effectiveness of the most widely used streambank protection methods. The results of the literature survey and the two preliminary investigations are presented herein.

(Continued)
20. ABSTRACT (Continued).

The text of the "Streambank Erosion Control Evaluation and Demonstration Act of 1974" is presented in Appendix A. A list of commercial concerns that market streambank protection products is provided in Appendix B. Appendix C contains a glossary of streambank protection terminology. A detailed bibliography resulting from the literature survey is provided in Appendix D, and a listing of selected bibliographies related to streambank protection are provided in Appendix E.
THE CONTENTS OF THIS REPORT ARE NOT TO BE USED FOR ADVERTISING, PUBLICATION, OR PROMOTIONAL PURPOSES. CITATION OF TRADE NAMES DOES NOT CONSTITUTE AN OFFICIAL ENDORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL PRODUCTS.
The study reported herein was performed from July 1974 to 15 October 1976 by the U. S. Army Engineer Waterways Experiment Station (WES) for the Office, Chief of Engineers, under Work Unit 02, "Literature Survey and Evaluation of Bank Protection Methods," authorized by Section 32 of the Water Resources Development Act of 1974, Public Law 93-251. Section 32 may be cited as the "Streambank Erosion Control Evaluation and Demonstration Act of 1974."

This study was a multilaboratory effort. It was planned by Mr. N. R. Oswalt, Chief, Spillways and Channels Branch, under the general supervision of Messrs. J. L. Grace, Chief, Structures Division, and H. B. Simmons, Chief, Hydraulics Laboratory. The streambank erosion study and the identification of new methods for streambank protection were the responsibility of Dr. E. B. Perry of the Soil Mechanics Division (SMD) Research Group under the direct supervision of Mr. C. L. McAnear, Chief, SMD, and the general supervision of Mr. J. P. Sale, Chief, Soils and Pavements Laboratory. The literature search and preliminary investigation of the effectiveness of various streambank protection methods were performed by Messrs. M. P. Keown and E. A. Dardeau, Jr., of the Environmental Simulation Branch (ESB) under direct supervision of Mr. J. K. Stoll, Chief, ESB, and under the general supervision of Messrs. B. O. Benn, Chief, Environmental Systems Division, and W. G. Shockley, Chief, Mobility and Environmental Systems Laboratory (MESL). Acknowledgment is made to Mr. J. G. Kennedy, Data Handling Branch, MESL, who contributed significantly to this effort. This report was prepared by Messrs. Keown, Oswalt, Perry, and Dardeau.

COL G. H. Hilt, CE, and COL J. L. Cannon, CE, were the Directors of WES during the study and preparation of the report. Mr. F. R. Brown was Technical Director.
APPENDIX C: GLOSSARY OF STREAMBANK PROTECTION TERMINOLOGY C1
APPENDIX D: LITERATURE SURVEY OF STREAMBANK PROTECTION D1

Single-Component Revetment D2
Mattresses, Matting, and Pavements D44
Bulkheads D87
Soil Stabilization Techniques D95
River Training Structures D117

APPENDIX E: SELECTED BIBLIOGRAPHIES ON STREAMBANK PROTECTION E1
CONVERSION FACTORS, U. S. CUSTOMARY TO METRIC (SI) AND METRIC (SI) TO U. S. CUSTOMARY UNITS OF MEASUREMENT

Units of measurement used in this report can be converted as follows:

<table>
<thead>
<tr>
<th>Multiply</th>
<th>By</th>
<th>To Obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>U. S. Customary to Metric (SI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>inches</td>
<td>2.54</td>
<td>centimetres</td>
</tr>
<tr>
<td>feet</td>
<td>0.3048</td>
<td>metres</td>
</tr>
<tr>
<td>miles (U. S. statute)</td>
<td>1.609344</td>
<td>kilometres</td>
</tr>
<tr>
<td>square feet</td>
<td>0.09290304</td>
<td>square metres</td>
</tr>
<tr>
<td>square yards</td>
<td>0.8361274</td>
<td>square metres</td>
</tr>
<tr>
<td>acres</td>
<td>4046.856</td>
<td>square metres</td>
</tr>
<tr>
<td>cubic yards</td>
<td>0.7645549</td>
<td>cubic metres</td>
</tr>
<tr>
<td>cubic feet per second</td>
<td>0.02831685</td>
<td>cubic metres per second</td>
</tr>
<tr>
<td>feet per second</td>
<td>0.3048</td>
<td>metres per second</td>
</tr>
<tr>
<td>tons (short)</td>
<td>907.1847</td>
<td>kilograms</td>
</tr>
<tr>
<td>pounds (force) per square foot</td>
<td>47.88026</td>
<td>pascals</td>
</tr>
<tr>
<td>degrees (angular)</td>
<td>0.01745329</td>
<td>radians</td>
</tr>
<tr>
<td>Fahrenheit degrees</td>
<td>0.555</td>
<td>Celsius degrees or Kelvins*</td>
</tr>
</tbody>
</table>

Metric (SI) to U. S. Customary		
millimetres	0.03937007	inches
metres	3.280839	feet
centimetres per second	0.3937007	inches per second
metres per second	3.280839	feet per second
tons (metric) per cubic metre	0.8427	tons (short) per cubic yard

* To obtain Celsius (C) readings from Fahrenheit (F) readings, use the following formula: \(C = 0.555(F - 32) \). To obtain Kelvin (K) readings, use: \(K = 0.55(F + 459.67) \).
LITERATURE SURVEY AND PRELIMINARY EVALUATION
OF STREAMBANK PROTECTION METHODS

PART I: INTRODUCTION

1. In a letter dated 14 June 1974, subject, "Streambank Erosion Control Evaluation and Demonstration Act of 1974," the Office, Chief of Engineers (OCE), directed the U. S. Army Engineer Waterways Experiment Station (WES) to conduct a preliminary study of streambank erosion control. The major emphasis of the study was to be an extensive literature survey of known streambank protection methods. In conjunction with the survey, preliminary investigations were to be conducted to identify the mechanisms that contribute to streambank erosion and to evaluate the effectiveness of the most widely used streambank protection methods. The results of the literature survey and the two preliminary investigations are contained in this report.

2. Personnel of three technical laboratories at the WES (Hydraulics, Soils and Pavements, and Mobility and Environmental Systems) initiated this work on 15 July 1974. An interim evaluation report on streambank protection was submitted to OCE on 24 September 1974. A table summarizing the causes of erosion and typical bank protection methods as a function of maximum flow rate was included in that report and is included herein for general information (Table 1). After the interim report was submitted, work continued until the literature search was completed on 15 October 1976.
PART II: LITERATURE SURVEY

3. A comprehensive search for literature sources relevant to streambank protection methods was initiated by the WES in August 1974 in response to the requirements of the Streambank Erosion Control Evaluation and Demonstration Act of 1974 (Appendix A). A list of appropriate key words was compiled and used to search the libraries of the following agencies for relevant literature sources:

- a. Technical Information Center, WES, Vicksburg, MS.
- b. Hydraulic Engineering Information Analysis Center, WES, Vicksburg, MS.
- c. Mississippi River Commission, Vicksburg, MS.
- d. U. S. Army Engineer District, Kansas City, MO.
- e. Office, Chief of Engineers, Washington, D. C.
- g. The Engineer School, Fort Belvoir, VA.
- h. Coastal Engineering Research Center, Fort Belvoir, VA.
- i. Water Resources Institute, Washington, D. C.
- j. Department of Transportation, Washington, D. C.
- l. American Forestry Association, Washington, D. C.
- m. Environmental Law Institute, Washington, D. C.
- n. National Geographic Society, Washington, D. C.
- o. Transportation Research Board, Washington, D. C.

4. In addition to the agencies listed in paragraph 3, the following selected government agencies, universities, commercial concerns, and research organizations were contacted to locate relevant literature that had not had widespread circulation, as well as to inquire about the effectiveness and costs of currently used streambank protection methods:

- a. U. S. Army Engineer Divisions, Lower Mississippi Valley, Vicksburg, MS, and Ohio River, Cincinnati, OH.
- b. U. S. Army Engineer Districts, Rock Island, IL; Vicksburg, MS; Kansas City, MO; San Francisco and Sacramento, CA; Baltimore, MD; Pittsburgh, PA; Louisville, KY; and Nashville, TN.

e. U. S. Department of the Interior, National Park Service, Denver, CO; and Bureau of Reclamation, Denver, CO.

f. Louisiana Highway Department, Baton Rouge, LA.

g. Texas Highway Department, Austin, TX.

h. University of California, Water Resources Center, Berkeley, CA.

i. Colorado State University, Engineering Research Center, Fort Collins, CO.

j. University of Iowa, Institute of Hydraulic Research, Iowa City, IA

k. Central Hydraulics Laboratory of France, Maisons-Alfort, France

l. Advance Construction Specialties Company, Memphis, TN.

m. Air Logistics Corp., Pasadena, CA.

n. American Excelsior Co., Sheboygan, WI.

o. ARMCO Steel Corporation, Washington, D. C.

p. Bekaert Gabions, Reno, NV.

r. Bomanite Corp., Palo Alto, CA.

s. Bowie Industries, Bowie, TX.

t. Carthage Mills, Inc., Cincinnati, OH.

v. Conwed Corp., Minneapolis, MN.

w. Construction Techniques, Inc., Cleveland, OH.

x. DuPont, Wilmington, DE.

y. Edward E. Gillen Co., Milwaukee, WI.

z. ERCO Systems, Inc., New Orleans, LA.

aa. Erosion Control, Inc., West Palm Beach, FL.

bb. Finn Equipment Co., Cincinnati, OH.

c. GAF Corp., New York, NY.

d. Grass Growers, Inc., Plainfield, NJ.
Grass Pavers, Ltd., Royal Oak, MI.
Grifflon Company, Inc., Houston, TX.
Gulf States Paper Corp., Tuscaloosa, AL.
Hold-That-River, Inc., Houston, TX.
Hudson Pulp and Paper Corp., Palatka, FL.
Kaiser Aluminum, Oakland, CA.
Koch Brothers, Inc., Kansas City, KS.
Louisiana Industries, Bossier City, LA.
Ludlow Textiles, Dalton, GA.
Maccaserri Gabions, Inc., Williamsport, MD.
Menardi-Southern, Houston, TX.
Monsanto Textiles Co., St. Louis, MO.
Owens-Corning Fiberglass Corp., Toledo, OH.
Phillips Petroleum Co., Bartlesville, OK.
Reinco, Plainfield, NJ.
Spidel Foundations Harbor and Marine Corp., Benton Harbor, MI.
Superior Fiber Mulch, Hunt Valley, MD.
United States Textures Sales Corp., Baton Rouge, LA.
VSL Corp., Los Gatos, CA.
Asphalt Institute, College Park, MD.
Bituminous Coal Research, Inc., Monroeville, PA.
Portland Cement Association, Skokie, IL.

A tabulation of the commercial organizations that market streambank protection products (with their respective addresses and products) is provided in Appendix B. Also in Appendix B are the addresses of the research organizations that direct part of their efforts toward the study of streambank protection.

5. Literature sources were also located by interrogating available computer data banks. Computer bibliographies relevant to streambank protection were obtained from the following information systems (system names in parentheses):

a. North Carolina State University, Water Resources Research Institute, Raleigh, NC (SWRSIC)
6. For the purposes of the literature search, streambank protection methods were broken down into five groups:

a. **Group A** - Placement of single-component revetment
b. **Group B** - Placement of mattresses, matting, and pavement
c. **Group C** - Construction of bulkheads
d. **Group D** - Stabilization of soil
e. **Group E** - Construction of river training structures

Group A includes single components, such as blocks, riprap, sacks, etc., that are used to cover a streambank and are generally not connected with each other or stabilized by wire, grout, cable, or other devices.

Group B includes materials, such as articulated concrete mattresses and pavements, that are unitized and reinforced to increase stability and longevity and are used primarily for protecting large bank surfaces on major river systems. The materials in Groups A and B require support from the bank to remain in place, but bulkheads (Group C) support themselves (sometimes also supporting the bank) and generally serve to physically separate the soil-water interface. Several materials or methods are commonly used to improve the resistivity of soil to stream erosion; these are included in Group D. The methods in Group E do not protect the streambank directly, but deflect stream currents away from
erodible banks. Thirty-eight materials, structures, and techniques (loosely termed "methods" herein) for protecting streambanks were identified during this study. These were categorized into one of the five groups discussed above and are presented in Table 2. Appendix C is a glossary of terms, including those in Table 2.

7. As potentially useful literature sources were located, each was examined for content and, if accepted, placed in an alphabetical listing under one or more of the streambank protection categories listed in Table 2. The resulting bibliography is presented as Appendix D. Also, a selected listing of bibliographies related to streambank protection was assembled and is presented in Appendix E.
PART III: PRELIMINARY INVESTIGATION OF STREAMBANK EROSION

Types of Streambank Erosion

8. There are several types of streambank erosion* that are described by the American Society of Civil Engineers Task Committee on Channel Stabilization Works and others. These types are:

a. Attack at the toe of the underwater slope, leading to bank failure and erosion. The greatest period of bank failure normally occurs in a falling river at the medium stage or lower.

b. Erosion of soil along the bank caused by current action.

c. Sloughing of saturated cohesive banks, i.e. banks incapable of free drainage, due to rapid drawdown.

d. Flow slides (liquefaction) in saturated silty and sandy soil.

e. Erosion of the soil by seepage out of the bank at relatively low channel velocities.

f. Erosion of upper bank, river bottom, or both, due to wave action caused by wind or passing boats.

Mechanics of Streambank Erosion

9. The mechanics of streambank erosion are related to the geometry and hydraulic characteristics of the stream. Figure 1 shows that the highest water velocities and deepest parts of the channel are at the points of bend where the thalweg lies closest to the concave bank. During periods of extreme floods, the highest water velocities lie closest to the convex bank, as shown in Figure 2. Figure 3 shows that the maximum water velocity occurs just below the water surface. The effect of vegetation on the variation of velocity with depth below the water surface is shown in Figure 4. A manual for establishing protective stands of perennial vegetation on soils of low productivity has been published by the U. S. Environmental Protection Agency.

* Natural or man-induced bank recession, channel deepening, or both.
Figure 1. Velocity and turbulence in a river bend (Reference 17)

Figure 2. Location of maximum surface velocity during normal and flood flows (Reference 17)
Figure 3. Variation of velocity and sediment load with depth below water surface (Reference 17)

Figure 4. Influence of vegetation on variation of velocity with depth below water surface (adapted from Reference 19)
Fisk described bank recession as follows (Figure 5):

Scouring in the thalweg destroys the equilibrium between the saturated substratum sand and the mass of river water. If the bank consists of sandy material, sloughing occurs immediately. If the bank consists of clay, sloughing may occur only after considerable scour has taken place.

![Figure 5. Bank recession through slumping (Reference 21)](image)

10. Until the use of revetments in modern times, clay plugs (channel fill deposits of highly plastic clays formed by filling of oxbow lakes produced by cutoffs of meander loops) were the major restrictive influence on river activity and have been instrumental in determining the history of the Mississippi River. According to Kesel et al., bank stability is decreased by rapid fluctuations of the river level, mainly at high-water periods; these high-water periods or rapid fluctuations cause increased pore-water pressure and thus increase the weight and decrease the effective shear strength of the bank material. It has been estimated that the lower bank protection represents about 75 percent of the area to be protected and about 90 percent of the total cost of protection.

11. Krinitzsky and others have postulated the influences of the geology of riverbank soils on the mechanics of streambank erosion along the lower Mississippi River. Data for the studies were taken from revetted sites for which periodic hydrographic surveys and soil property data obtained in connection with foundation investigations were available. The revetments are believed to cause the thalweg to deepen to a
greater extent than it would if the banks were not revetted. However, since there are few bends along the lower Mississippi River that are not revetted, the processes evaluated were considered applicable to present conditions.

12. Figure 6 shows the alluvial fill in the vicinity of a study area. Erosion of soil in the scour pool was found to steepen the riverbank slope near its toe, which precipitated a limited shear or flow failure. Such failure might be limited to subaqueous failure, or it might trigger other failures in the bank, resulting in an upper bank failure. A direct relation was found between the magnitude of seasonal scour in the thalweg pool and the sizes of the subaqueous bank failures. The type of soil in the bank had an important modifying influence on subaqueous bank failure, and shear failure in the upper bank occurred when the shearing stresses in the bank material
exceeded the available shear strength of the soil.

13. Flow failures were initiated in layers of saturated, low-relative-density sands in the substratum portion of the riverbank. These sand layers liquefy when strain or vibration produces excess pore pressures that reduce the effective stress and, consequently, the shear strength to zero. Flow failures are recognized by the bowl-shaped indentations that occur in the bank or by the comparatively narrow neck through which the sediment is discharged. During flood periods, flow slides frequently occur on the convex bank near the point at which the thread of maximum surface velocity impinges upon the riverbank (Figure 2). Empirical criteria have been developed at the WES to assess the susceptibility of riverbanks to flow failure.25,28

14. Figure 7a shows the general process of bank erosion in the alluvial valley of the lower Mississippi River.25 Bank failures in the deltaic clays (Figure 7b) were found to result from the deepening of the thalweg pool and the accompanying oversteepening of the underwater slopes of the river bendways, thereby leading to a shear bank failure, which usually involved the full height of the bank.26,27 The influence of geology of riverbank soils on the mechanics of bank failure in the alluvial valley of the lower Mississippi River is shown in Figure 8.25

Physical Characteristics of Stable Channels

15. Seepage investigations in the Mississippi and Arkansas River Valleys have resulted in a correlation between field permeability and grain size, as shown in Figure 9.29 The bottom velocities for initiation of bed-load movement as a function of grain size are shown in Figure 10.30

16. Field observations and laboratory studies have shown that the depths of cross sections increase with the resistances of riverbanks to erosion.4,31 The failure to recognize the need for a large width-depth ratio in sands has been recognized as a mistake, since channel widths increase until stability is achieved.32 Schunn33-35 conducted an
a. Alluvial valley

b. Deltic clays

Figure 7. General process of bank erosion in the lower Mississippi River (References 25 and 27)
Figure 8. Influence of geology of riverbank soils on the mechanics of bank failure in the alluvial valley of the lower Mississippi River (Reference 25)
Figure 9. Field permeability versus grain size in the Mississippi and Arkansas River Valleys (Reference 29)
investigation of ephemeral streams (i.e. streams in which flow is directly related to storm runoff and is not continuous for periods greater than 24 hr) that transported only small (less than 20 percent) quantities of coarse gravel. In this investigation Schumn developed a relation (Figure 11) for width-depth ratio versus percent silt-clay (material smaller than 0.074 mm*) in the banks and channel as a criterion for

![Figure 11](image_url)

Figure 11. Width-depth ratio versus percent silt-clay in banks and channels as a stability criterion for ephemeral streams (Reference 33)

* A table of factors for converting metric (SI) units of measurement to U. S. customary units and U. S. customary to metric (SI) is presented on page 5.
degrading or aggrading. Stream gradient shows an inverse relation to percent silt-clay in banks and channels (Figure 12). He classified alluvial river channels transporting less than 20 percent coarse gravel as stable, eroding, or depositing based on channel stability and the predominant mode of sediment transport as shown in Table 3.

17. If a large amount of fine sediment is present in the flow, it may deposit on the banks and in the channel and thereby decrease the erodibility of the material. Conversely, fine sediment may increase both the viscosity and specific weight of the fluid and the tractive force (force per unit area exerted by the flow of the river past the
banks and channel), thus enhancing the instability of the channel.

18. Brice developed a relation between bank erodibility as a function of sinuosity index (ratio of channel length to length of meander-belt axis) and channel width for the Calamus River in Nebraska (Figure 13). Differences in bank erodibility were mainly determined by vegetal growth along the banks.

![Figure 13. Bank erodibility as a function of sinuosity index and channel width for the Calamus River, Nebraska (Reference 37)](image)

19. Wall conducted a study to determine the influence of soil gradation on channel stability in the Savannah River. In studies of both trouble-free and troublesome areas, no correlation was found between channel stability and soil gradation.

20. Goss conducted a study of nine unstable and six stable reaches of the Washita River in Oklahoma to determine the relation between physical and mineralogical properties and streambank erodibility. The clay mineralogy and bulk density were very similar for all samples. The sand grains from the stable areas were less rounded than those from the unstable areas and were usually coated with clay or organic matter. The sand grains from the unstable areas were relatively clean. DeCoursey and Hunt conducted a study of stable test reaches from 75 streams in and adjacent to Oklahoma. The bank and bed material properties were related to the channel characteristics through a statistical analysis and using regime and tractive force theories of channel design.

21. Flaxman conducted an investigation along 12 channels in six
western states to determine channel stability in cohesive soils. Field measurements were made in channels relatively free of vegetation to determine the tractive power, which is the product of the channel slope, hydraulic radius, specific weight of water, and average velocity. The observed distinction between eroding and stable channels was recognized as being a subjective determination, with only qualitative results possible. Undisturbed samples of nearly saturated cohesive soils were taken from the test channels to determine unconfined compressive strengths. Figure 14 shows the relation developed between channel stability as a function of tractive power and unconfined compressive strength.

Figure 14. Channel stability as a function of tractive power and unconfined compressive strength (Reference 42)
Methods of Studying Streambank Stability

22. Historically, methods used to study channel stabilization problems have been as follows:29,43-45
 a. Using movable-bed hydraulic models.
 b. Constructing regulating works in the river in increments, using the river itself as a model.

Although movable-bed models with erodible banks have been used to reproduce sections of banks where active caving is present in the prototype stream, the use of erodible banks is usually not considered practical because of the variations in the erodibility, shear strength characteristics, and groundwater conditions of the materials forming the banks of the natural stream. Also, reproducing the conditions in the model is difficult even if sufficient prototype data are available.1,29,31,46 Using the river itself as a model can be useful if the increments constructed earlier are used to determine the reconstruction required to correct shortcomings in the earlier structures and to guide in designing subsequent improved structures. However, the trial-and-error field construction method often entails great expense, long delay, and limited success.29

23. Fukuoka and Yamamura47 conducted full-scale model tests on instrumented embankments on the Yodo River in Japan. The test embankments were not subjected to river flow, but rather to artificial rainfall and static water level rise until shear failure occurred.

24. Based on observations of canal performances, allowable mean velocities have been estimated for canals in various soil types. Table 4 presents values of nonscour velocities as a function of soil density and canal depth for both noncohesive and cohesive soils.48

25. Research conducted by the Bureau of Reclamation49 has resulted in correlations between tractive force and soil properties. Figure 15 shows the permissible tractive force versus particle diameter for cohesionless soils.49 The relation between permissible tractive force and void ratio for cohesive soils is shown in Figure 16. A study49 of undisturbed soil samples from test reaches of canals revealed the
CURVE A, FOR AVERAGE PARTICLE SIZE, WITH HIGH CONTENT OF FINE SEDIMENT IN THE WATER, FOR FINE BED MATERIAL; CURVE B, FOR AVERAGE PARTICLE SIZE, WITH LOW CONTENT OF FINE SEDIMENT IN THE WATER, FOR FINE BED MATERIAL; CURVE C, FOR AVERAGE PARTICLE SIZE, WITH CLEAR WATER, FINE BED MATERIAL; CURVE D, FOR SIZE OF PARTICLE SUCH THAT 25 PERCENT OF PARTICLES ARE LARGER, WITH COARSE BED MATERIAL.

Figure 15. Permissible unit tractive force versus particle diameter for channel beds in cohesionless soils (Reference 49)
relation between critical tractive force (i.e. tractive force at the instant erosion noticeably began) obtained from laboratory tests and the plasticity characteristics of the samples (Figure 17). Figure 18 shows the relation between plasticity and erosion characteristics of cohesive soils. The use of the tractive force principle in cohesive soils has been limited by the lack of knowledge concerning the influence of various parameters on erodibility. 50-52

26. Schroeder classified 121 natural and artificial channels in Nebraska and Iowa according to stability and percent density of vegetative cover. Tractive forces for each test reach were computed using the mean annual peak discharge. Figures 19 and 20 show the curves obtained for limiting bed and bank tractive forces, respectively, versus plasticity index and mean grain size for the ephemeral streams studied.

27. Schumm's relation of width-depth ratio versus percent silt-clay in banks and channels as a stability criterion for ephemeral streams is given in Figure 11. Flaxman's relation for channel
Figure 17. Critical tractive force obtained from laboratory tests and plasticity characteristics of samples (Reference 49)

Figure 18. Relationship between plasticity and erosion characteristics (Reference 49)
Figure 19. Limiting channel bed tractive force for ephemeral streams (References 53 and 54)

Figure 20. Limiting channel bank tractive force for ephemeral streams (References 53 and 54)
stability as a function of tractive power and unconfined compressive strength is given in Figure 14.

28. Strand55 used field observations of and data collected from four noneroding test sections of a tributary of the Middle Loup River in central Nebraska to evaluate four criteria used in the design of stable channels in cohesive soils. According to Schumm's relation33 for width-depth ratio versus percent silt-clay in banks and channel, the test sections are of the type tending to aggrade as shown in Figure 21.55 Figures 22 and 23 (Reference 55) show that the test sections studied plot within Schroeder's54 recommended limit for 100 percent vegetative cover. The banks on the test sections were generally well covered with vegetation. Strand55 noted that other channel studies have disproved portions of the curves shown in Figures 22 and 23. Figure 24 (Reference 55), using Flaxman's relation42 for tractive power versus unconfined compressive strength, shows that the test sections would be stable for the mean annual flood peak discharge.

Soil Mechanics Aspects of Streambank Stability

29. Although the general types of alluvial deposits are limited in number, there are so many variations in the conditions of deposition and subsequent erosion within the individual types that it is questionable whether two localities could be found in which any appreciable amounts of sediments are exactly similar in character.22,56 The variation in depositional environment, coupled with the long reaches usually involved in streambank stability, makes it impractical to conduct detailed soil and groundwater investigations that would otherwise be justified for the foundation design of structures such as locks or dams. Therefore, to determine which areas require more detailed investigations because of unfavorable soil and groundwater conditions, it is imperative to utilize any existing geologic and soils data on the soils in the area of interest and to supplement this information with limited subsurface exploration and laboratory testing.29

30. The erosive characteristics of cohesionless soils, which are
Figure 21. Evaluation of channel stability of Middle Loup River, Nebraska, using Schum's relation for width-depth ratio versus percent silt-clay (Reference 55)
Figure 22. Evaluation of channel bed stability of Middle Loup River, Nebraska, using Schroeder's relation for bed tractive force versus plasticity index (Reference 55)

Figure 23. Evaluation of channel bank stability of Middle Loup River, Nebraska, using Schroeder's relation for bank tractive force versus plasticity index (Reference 55)
Figure 24. Evaluation of channel stability of Middle Loup River, Nebraska, using Flaxman's relation for tractive power versus unconfined compressive strength (Reference 55)
controlled by gravitational forces, and the basic parameters affecting
the erosion of cohesionless soils (particle size, grain shape, gradation,
moisture content, and relative density) are fairly well understood.57
However, the development of a quantitative procedure for streambank
stability analysis has been stymied, in part, by a lack of understanding
of the erosive characteristics of cohesive soils, which are controlled
by physical and electrical surface phenomena.52,53,55-61 However, an
understanding of the erosive process in cohesive soils has advanced
considerably during the past decade.51 The basic parameters affecting
the erosion of cohesive soils are soil pore-water concentration (type
and amount of cations), composition of soil (percentages of sand, silt,
and clay), type and amount of clay mineral, moisture content, dry unit
weight, soil pH, eroding fluid composition (type and amount of cations),
eroding fluid pH, and temperature of eroding fluid. Both the flume
erosion test53,62-67 and the rotating cylinder apparatus51,53,58-62 have
been used to determine the rate of erosion versus applied shear stress
for cohesive soils. Flume erosion tests have recently been conducted to
determine the critical shear stress on remolded samples of bed material
in connection with a study to determine whether armoring was required
when groins were placed in the Rhine River.68

31. Figure 25 shows a quantitative procedure for streambank
stability analysis. Such a procedure could be utilized to determine
bank recession with time for a selected stream. This information could
then be used in planning and designing streambank protection for the
stream.69,70
1. Obtain undisturbed soil samples
2. Determine erosion rate versus hydraulic shear stress (τ)
3. Determine strength properties for slope stability analysis
4. Plot channel profile at selected time intervals (see b)
5. Compute slope stability for normal water level and rapid drawdown (see c)

Figure 25. Procedure for streambank stability analysis
32. Effective protection of streambanks along the navigable waterways of the United States is an integral part of the Corps of Engineers responsibility to maintain navigation channels, protect property, and improve water quality. A variety of experiments have been conducted to determine the most effective and economical bank protection "methods" (paragraph 6) for various areas; however, no specific guidelines have resulted that can be used to assist the engineer in developing design specifications for a particular bank protection problem. What has developed is the use of a group of methods that has found subjective favor in the engineering community. The most widely used of these are:

a. Stone riprap.
b. Concrete pavement.
c. Articulated concrete mattresses.
d. Transverse dikes.
e. Fences.
f. Asphalt mix.
g. Jacks.
h. Vegetation.
i. Gabions.
j. Erosion-control matting.
k. Bulkheads.

The use and effectiveness of each of these are discussed in the following paragraphs using information derived from the references listed in Appendix D. In addition, several other methods are discussed that are not used on a widespread basis.

Stone Riprap

33. Riprap consists of rock courses placed along the bank to be protected (Figure 26). Prior to placement, the bank is usually graded if the slope is irregular. A bed of gravel or porous filter material is
then placed over the graded bank to allow seepage but prevent erosion of the bank material. Where stones of sufficient size are available, riprap is usually the first choice among the bank protection methods considered because of the following general advantages:

a. A riprap blanket is flexible and is neither impaired nor weakened by slight movement of the bank resulting from settlement or other minor adjustments.

b. Local damage or loss is easily repaired by the placement of more rock.

c. Construction is not complicated and no special equipment or construction practices are necessary.

d. Appearance is natural, hence acceptable in recreational areas.

e. If riprap is exposed to fresh water, vegetation will often grow through the rocks adding structural value to the bank material and restoring natural roughness.

f. Riprap is recoverable and may be stockpiled for future use.

34. The effectiveness of a riprap blanket is evaluated in terms of the stability of the blanket under the influence of excessive hydraulic flow conditions, the ability of the bedding material to prevent the erosion of the natural bank material through the riprap, and resistance to undercutting and raveling at the ends of the blanket. Meeting the design objectives necessary to guarantee effective bank protection requires (a) determination of the shape, size, and weight of the stones in the riprap blanket that will be stable under excessive hydraulic flow conditions; (b) well-graded bedding material or filter cloth that will prevent erosion of the bank material through the blanket; (c) optimum blanket and bed thickness; and (d) proper termination of the riprap blanket.

35. Several empirical relations have been developed, using Airy's law, to determine the minimum stone size and weight that will be stable for the maximum hydraulic flow that will occur along the bank to be protected. When the size and weight are determined, the values are usually interpreted as a median value, i.e., 50 percent of the stones used in the blanket must have diameters greater than the computed median
diameter, and no more than 50 percent of the stone can weigh less than the computed median weight. No analytical method has been developed to determine the optimum stone shape; the selection of the stone shape is usually a compromise between subjective experience and what is available. Elongated stones are generally rejected in favor of "block-type" stones because they fit together better. Sharp edges are preferred over rounded edges for increased stability. In general, no stones should be used with length-to-width ratios greater than 3 and no more than 25 percent of the stones should have a length-to-width ratio greater than 2.5.

36. Both quarry-run and graded stone are used for riprap placement. Large stones are usually eliminated by the contractor; these stones should be removed from the blanket or broken up because accelerated water flow around a large stone can cause scour as well as removal of small stones adjacent to the large one. Poor gradation may also encourage riprap blanket failure because oversize stones may preclude mutual mechanical support among individual stones. If the gradation of riprap is such that movement of the underlying natural material through the blanket is likely, a filter bed of sand, crushed rock, gravel, or synthetic cloth (Figure 27) must be placed under the stone blanket. An ideal riprap blanket design would provide a gradual reduction in stone size until the stone of the blanket blends with the natural bed material; however, this is seldom economically justified. The stability of the riprap blanket is sometimes improved by grouting the stones; however, this technique reduces the permeability of the bank, which may lead to revetment failure due to hydrostatic pressure under the blanket.

37. The thickness of a riprap blanket should be at least 1 to 1.5 times the maximum diameter of the largest stones used in the blanket or twice the average diameter of the stones used. The recommended maximum bank slope for dumped stone is 1V on 2H. The maximum slope can be increased to 1V on 1.5H for hand-emplaced stone.

38. Riprap has been used effectively in channel stabilization and realignment efforts using the "trench-fill" technique (Figure 28). This approach requires that the bank be graded to conform to the desired channel configuration. A trench is excavated at the base of the graded
Figure 27. Installation of filter cloth prior to placement of riprap (photo courtesy of the Erosion Control Division, Carthage Mills, Inc.)

Figure 28. Trench-fill revetment
bank and filled with riprap as shown in Figure 28. Additional riprap is placed on the graded bank above the trench. As the erosive action of the stream acts on the bank between the stream and the trench, the bank fails, and eventually the trench becomes the revetment.

39. In-place cost of a stone riprap blanket (Table 5*), including bank preparation, bedding material, and transportation of stone, can vary greatly depending on the location and availability of suitable rock. The current estimate for average in-place cost (1976) ranges from $3.50/\text{yd}^3$ in an area where stone is readily available to $30.00/\text{yd}^3$ in a metropolitan area where stone must be hauled over long distances.

40. The majority of theoretical design work related to streambank protection works has been directed toward riprap. A review of available literature indicates that the riprap studies have yet to be consolidated into a straightforward design procedure that a field engineer can confidently use; however, Engineer Manuals can provide limited design guidance. Also, experience can be gained in on-site work and physical model studies.

Concrete Pavement

41. Concrete pavement is generally an expensive bank protection method because forms must be constructed and concrete mix design, batching, and curing must be rigidly controlled. However, use of concrete pavement provides a high degree of reliability over a long life with a minimum of maintenance (Figure 29). The only major problem results from scour under the slabs due to inadequate subsurface drainage; deterioration of the concrete slab itself is rarely significant. Pavement is used along banks, bridge abutments, and main-line levees in heavily populated or industrialized areas where a large safety factor is required. In-place cost (1976) for concrete pavement, including bank preparation and construction of forms, ranges from 90 to 125 per 100 ft^2 (Table 5).

* Table 5 summarizes 1976 costs for all methods discussed in this part. Cost figures in this report were supplied by Corps of Engineers Divisions and Districts.
42. The development of articulated concrete mattresses (Figure 30) began in 1914 chiefly as a result of the threatened exhaustion of convenient willow growths from which timber and brush mattresses had previously been constructed. Since termination of experiments with bituminous mattresses in 1945 (paragraph 60), concrete mattresses have been used almost exclusively for subaqueous revetment on the lower Mississippi River. An articulated concrete mattress, because of its weight and flexibility, is an effective performer on parts of the bank that are subject to excessive hydraulic flow conditions. Because of the specialized construction equipment required, use of this method cannot be economically justified for small streams except those close to the Mississippi River where the mattresses can be delivered to the construction site by truck or barge.

43. The basic unit of the mattress is a slab of concrete 3 ft 10-1/4 in. long by 14 in. wide by 3 in. thick. These slabs are cast on and tied together by corrosion-resistant reinforcement wire to form rectangular units 4 ft wide by 25 ft long when allowance is made for the
Figure 30. Articulated concrete mattress being sunk from launching barge
1-in. space between the slabs and for the space between adjacent rectangles. These units are commonly called "squares." Because a mattress is made up of squares connected by articulated joints, it possesses a measure of flexibility in all directions. Thus a mattress has the capability of adjusting itself to irregularities in the bank and to scour pockets that may develop. The principal disadvantage of the concrete mattress is the possibility of bank material eroding and escaping through the interstices of the articulated joints.

44. Articulated concrete mattresses with the ends and sides of the slabs notched in a "V" shape (designated a V-type mattress) were developed to reduce the size of the interstices. This design reduced the openings from about 10 percent of the total mattress surface area to 1 percent. Subsequent surveys conducted over a period of several years indicate that the V-type mattresses sank very little because of bank materials washing through the interstices.

45. After the submerged bank has been shaped in preparation for placement of a mattress, the squares are assembled on a launching barge that is anchored over the underwater bank. A mattress up to 140 ft wide, measured parallel to the bank, is assembled by placing the squares side by side on the launching barge and connecting them with corrosion-resistant wire and clamps (Figure 30). When the squares have been assembled into a 25- by 140-ft unit, the configuration is termed a "launch." After the launch has been assembled and connected to successive launches, the completed mattress is moved off the barge and sunk in place on the underwater bank by securing the mattress to the bank and moving the barge toward midstream.

46. Shaping of subaqueous banks and mat sinking operations are not commenced until the river stage has fallen to 15 ft above mean low water. Normally, if a sustained rise above 15 ft is in prospect, these operations are suspended. The restriction of river stage on operations limits revetment placement to the low-water season usually between mid-July and mid-December. In emergencies, mattresses have been placed when the stage was as high as 25 ft above mean low-water stage, river currents and debris conditions permitting. The upper limit of concrete...
subaqueous revetment is normally 6 ft above mean low water. The mattresses are laid into the river to a point 50 ft past the thalweg unless a lesser distance is specified. As of 1976 there were two mattress-sinking plants in operation on the lower Mississippi River, each designed to place a mattress 140 ft wide. Both of these units are capable of placing 10,000 squares per day. At this rate, approximately 20 bank miles of mattresses can be laid by each unit during a normal working period of five months, i.e. the low-water season. Average in-place cost (1976) of the articulated concrete mattress, including bank preparation, is $84 per square (100 ft2) (Table 5).

Prior to 1940, squares were cast entirely on a floating plant. However, as the volume of work increased, it became apparent that this immobilized too many barges during the concrete curing period. To speed up the casting operations, land casting fields have been placed at convenient locations along the riverbanks. At this time (1976) there are seven land casting fields between Cairo and New Orleans having storage capacities ranging from 40,000 to 380,000 squares, which makes it possible to cast and store these units in the quantity necessary for normal demand (Figure 31). The production rate for the floating casting

Figure 31. Concrete squares stored at casting field
plant of 1931 was approximately 60 squares/hr. Steady improvement in field casting production efficiency has resulted in an increase from 100 squares/hr in 1948 to a maximum of 200 in 1970.

Transverse Dikes

48. Transverse dikes are considered to be an indirect method of bank protection, because eroding river currents are deflected away from the bank or reduced in velocity, as opposed to a direct method in which the bank is physically isolated from the eroding currents.

49. Transverse dikes are of two principal types, permeable and impermeable. The permeable type is effective in slowing the current over a portion of the channel area thereby causing deposition of sediment. The accumulation of sediment and the retardation of flow produced by a dike system cause the main channel section to carry a larger proportion of the water than it did in the absence of the dike system thereby increasing the current velocity and the sediment transport capacity. As a result, greater depth is maintained in the main channel. A permeable dike is most effective on a stream where the velocity is sufficient to carry a substantial load of coarse sediment that will settle as a result of a moderate reduction in current velocity. Impermeable dikes do not require sediment deposition to redirect the hydraulic flow. An impermeable dike simply reduces the width of the river, and the river, as it is contracted to a narrower channel, attempts to regain the cross-sectional area required to pass the same discharge as was passed before the dike field was put into place. When the bank opposite the dike field has become stable, the main flow begins to scour out the bed of the river, which produces an improved navigation channel. After the river has deepened enough to regain its normal cross-sectional area, the bottom scouring stops.

50. Timber piles are the basic components of most permeable dikes (Figure 32). Timber-pile dikes of various designs have been constructed using face boards with horizontal bracing, as well as single piles and clumps (three piles strapped together) in single or multiple rows. The
design selected depends on the depth of the stream and the severity of the hydraulic flow conditions that must be sustained by the pile dike once it is in place. The spacing of the piles or clumps can be varied from one location to another in accordance with the quantity and character of the sediment transported. For example, very fine sand entrained by the water requires greater reduction in flow velocity to settle out than does coarser material, and as a result, closer spacing of the piles or clumps is needed. The permeability of pile dikes can be further reduced by suspending screens to encourage more complete and effective deposition. This technique is especially useful where the sediment movement is not great and the sediment contains fines that would otherwise not deposit.

51. Transverse stone dikes are now the most widely used impermeable dikes (Figure 33). They are usually constructed from quarry-run stone with specified limitations on the maximum size of stone and amount of fines. These dikes are built with crowns of various widths up to 10 ft or more, depending on the severity of the expected attack, the
method of construction, and the requirements for maintenance. The principal mechanical advantage in using stone is that a dike can be constructed so that the void volume is minimized and little or no water passes through. Thus, when used for channel contraction or bank protection purposes, impermeable dikes do not require the deposition of sediment in the dike field to as great an extent as do the permeable dikes. Nevertheless, sediment between the dikes is necessary to make the contraction or protection continuous along the dike field and to reduce the scalloping of the banks between the dikes that may be caused by eddies and overtopping flow.

52. In general, transverse dikes extend into the stream past the point where the highest velocities occur. This function is to move the thalweg from its position along an eroding bank to an alignment controlled by the location of the structures.

53. When the principal purpose of transverse stone or pile dikes is bank protection, they are sited uniformly along caving banks based on the following considerations. The spacing between any two dikes has
generally been related to the average of their lengths multiplied by a spacing-length ratio. The spacing-length ratio is derived from the experience of the designer. The final selection of spacing and length may be an economic one, but for bank protection purposes, the length of the dikes should be just sufficient to move the eroding current away from the bank. Of course, there is a limitation on length since it must not be such that the dike will unduly restrict the navigation channel or increase the current velocity to an unacceptable value.

54. The average construction cost of pile board dikes is $40 to $55/lin ft (1976). Untreated pile clumps (three 60-ft piles to a clump) range in cost from $1500 to $2300 each (1976). Transverse stone dikes range in cost from $40 to $65/lin ft (1976) (Table 5).

Fences

55. Wire fences are used to solve a variety of bank protection problems on low-gradient streams with discharges less than 500,000 cfs. Fences can be positioned parallel to the bank (Figure 34) as well as

Figure 34. Wooden fence constructed parallel to bank

50
transverse to the streamflow (Figure 35). Two fences parallel to the bank are sometimes constructed 3 to 10 ft apart. Brush, hay, or rock is stacked between the fences, providing an extra measure of protection against the erosive action of the water currents. If the fences are constructed parallel to the bank and the bank is steep enough, a second fence is not required for holding the brush backfill. Fences constructed parallel to the bank generally serve as an erosion stopgap measure to allow sufficient time for the establishment of vegetation or to prevent sloughing of the bank. Fences constructed across part of the stream section promote sediment deposition. A transverse fence can be positioned to deflect debris downstream or to trap it. By constructing the fence so that it is oriented downstream at an oblique angle to the current flow, debris will be deflected into the main channel. This technique is useful if the stream has a heavy debris load and the designer desires to keep the banks clear. Conversely, the fence can be constructed so that it is oriented upstream at an oblique angle to the current flow. Debris is then trapped behind the fence. This construction method is effective for clearing the main channel of debris and serves to encourage sediment deposition.

56. Many types of local materials can be used for fence construction. The fence posts can be of treated or untreated wood, used rails,
pipe steel beams, or concrete. Additional supporting members for the posts can be constructed of the same materials. The fencing material is generally wood or wire. If wire is used, the required tensile strength depends on the design loading by the water and debris. Field fencing and welded-wire fencing are effective for heavy and medium loading and chicken wire, for light loading.

57. Fencing is not considered to be one of the most effective means of bank protection, but it is commonly used because no special techniques are required for construction and there is a wide availability of materials suitable for assembly of the fences. Installed cost of the fencing is $25 to $50/lin ft (1976) if all material must be purchased new (Table 5); the cost is substantially reduced by the use of secondhand or free materials that are commonly available in rural areas.

Asphalt Mix

58. Asphalt mix has been used in several ways to provide bank protection—as blocks, reinforced mattresses, or uncompacted on an upper bank.

59. Asphalt blocks were used in 1918 and again in 1951 as a substitute for ballasting stone and riprap on the lower Mississippi River below Natchez, Mississippi. Quality stone for riprap is not widely available in this region and must be transported from several hundred miles away, but river sand and petroleum products (essential ingredients of asphalt blocks) are available. The casting and dumping of asphalt blocks proved to be uneconomical for use as ballast or riprap in 1918 and in 1951 as compared with using imported stone. Since 1951, only minor placement and evaluation have been done to investigate the effectiveness of asphalt blocks for constructing bank protection works. Further investigation based on current market values may be warranted.

60. Another type of asphaltic bank protection was used on the lower Mississippi River from 1934 to 1945. Compacted, cable-reinforced mattresses (commonly called bituminous mattresses) were laid on the
shaped riverbank below the low-water line. Most protection of this type was below Baton Rouge, Louisiana, where the bituminous mattresses were placed over timber or old willow mattresses as reinforcement against bank failure (Figure 36). The reinforced, compacted bituminous mattresses were designed to have many of the necessary features of an effective subaqueous mattress. They were continuous, impermeable, fairly flexible, and resistant to abrasion; unfortunately, many failures occurred. The impermeability of a bituminous mattress rendered sinking impossible in currents greater than 5 fps. Even though holes were drilled in the mattress, it acted much like a flag in the breeze. Eventually, the mattress would tear or fold over downstream. Although specifications called for a flexibility superior to that required for highway pavements, the mattresses could not withstand the constant flapping, bending, and folding that occurred at many locations. Low-water inspections indicated that the mattresses did not conform very well to changes in the channel geometry. This resulted in sections

Figure 36. Bituminous mattress placed over timber mattress
Figure 37. Failure of bituminous mattress

breaking away leaving only exposed cable (Figure 37). Other problems resulted from failure of the works at exposed ends and at the connection between the mattresses and the upper bank works. Serious problems also occurred when the impermeable mattresses restricted the natural bank drainage. The increased pressure differential eventually caused failures at weak points in the mattresses ("blow holes"). The mechanically sophisticated plant required to lay the mattresses and the high frequency of failures made the cost of this protection method exceed that of articulated concrete mattresses (paragraphs 42-47). Efforts to place bituminous mattresses were terminated in 1945.

61. The use of uncompacted bulk asphalt mix dumped from trucks (Figure 38) or spreaders (Figure 39) on upper banks has proved to be successful. Bulk asphalt mixes have been in common use since 1945.

62. The mix used for upper bank revetments generally consists of river bar sand and 6 percent, by weight, of 85-100 penetration asphalt. The sand is obtained from the nearest or most accessible bar in the
Figure 38. Bulk asphalt dumped from truck onto upper bank (photo courtesy of Royal Dutch Shell)

Figure 39. Spreader placing asphalt mix on upper bank
river and is transported by barge to a floating asphalt plant where it is dried and mixed with the asphalt. After being mixed, the material is picked up from the discharge bin with a clam bucket and placed in a dump truck or pull-type spreader box on the lower edge of the bank to be paved. A tractor at the top of the bank pulls the spreader slowly up the bank with a winch. In this manner, a nominal 5-in.-thick layer of sand-asphalt is placed on the previously graded bank and left in an uncompacted condition. (The banks are usually graded to a 1V on 3H slope.) This technique has been satisfactory where floodwater velocities have not exceeded 7 fps. Above this velocity, excessive abrasion or total failure of large sections of revetment have occurred. Failure also may occur because of uplift from hydrostatic pressure after a rapid drawdown. Although permeability of the asphalt increases with age, the pores of the pavement rapidly become clogged with silt, which increases the possibility of failure due to buildup of hydrostatic pressure. A subsurface drainage system can eliminate this problem in some cases.

63. Annual surveys have shown that the wearing rate of asphalt paving on upper banks is 1/16 to 1/8 in. per year as a result of abrasion. A very thin surface layer of the asphalt weathers until it loses its adhesive qualities. This can be observed on most asphalt revetments, as the mix takes on a light brown appearance and loses its cohesiveness in the thin layer. In this condition, the thin layer is easily removed by rain, wind, and water currents, and then the weathering process is repeated. If it is assumed that the yearly rate of surface wear is a maximum of about 1/8 in., at the end of 25 years the bank slope will be covered with a 2-in.-thick pavement, which is considered to be serviceable in some situations. This may be a reasonably good minimum estimate for the design life of asphalt pavements on upper bank revetments based on natural deterioration and wear. It should also be noted that the asphalt binder deteriorates with age and the pavement becomes more brittle. Hence, the pavement becomes more subject to massive mechanical failures due to floodwater velocities, impact by debris, hydrostatic pressure, or penetration by vegetation.
64. In-place average cost (1976) for asphalt used for upper bank paving is $60 to $80/\text{yd}^3$ including the costs for bank preparation (Table 5).

65. Between 1946 and 1949 trial installations of subaqueous protection composed of mass asphalt mix at temperatures of 225-275°F were placed along the banks of the lower Mississippi River. Loads of 330 tons of hot mix containing 25 percent asphalt were dumped in bulk by hopper barges covering a slope surface of 600 yd^2 extending out 300 ft from the toe of the bank. The experiments demonstrated that a sand-asphalt mixture can be dropped in a large mass through a considerable depth of water and develop a satisfactory mat. This method, although successful, has been largely neglected except for patchwork, because the major emphasis has been placed on development of articulated concrete mattresses.

Kellner Jack Field

66. The term "jacks" includes a variety of wooden, metal, and concrete configurations. The most common consists of three linear members that are bolted or welded at their midpoint such that each member is perpendicular to the other two (similar to the shape of a toy jack). The members are laced together with cable. The jacks are then assembled in a linear array and connected at intervals of 15-30 ft with cables. Arrays that are parallel to streamflow are called diversion lines; those that make an angle with the flow are termed retard lines. The retard lines are attached to the bank with deadmen and extended into the channel where the free end is anchored to a diversion line. The resulting system is called a Kellner Jack field (Figure 40).

67. Use of a Kellner field is considered to be an indirect bank protection method because the protection works are not in direct contact with the bank. The field is also considered to be a river "training aid," since the thalweg is moved away from the bank by the field. This displacement tends to scour out the main channel and improve navigation.

68. A Kellner field is permeable and extremely flexible and
readily conforms to channel geometry. The placement of Kellner fields has found wide application in the southwestern and midwestern United States where the wide, shallow, silt-laden streams are subject to severe scour during high-velocity flows. The flow velocity may be reduced from a peak of 5 fps to 0.50 to 0.25 fps by an effective Kellner field. The jacks and connecting cable slow the current and cause deposition of the suspended sediments, which in turn build up eroded banks. This system also encourages the collection of debris, which improves the effective density of the works and removes dangerous obstacles from the navigation channel. Vegetation, which not only provides additional bank protection, but also reduces the channel area exposed to evaporation, usually becomes rapidly established in the built-up areas behind the retard lines. This promotes water conservation, an important consideration in arid and semiarid regions.

69. The Kellner field was developed in the 1920's as an economical alternative to pile dikes. Since then, this system has been used for a variety of long-term and emergency protection measures. The jacks can be constructed from used angle iron or rails and can be assembled by inexperienced crews in a relatively short time. The Santa Fe Railroad initially used the system on a large scale in Kansas, Oklahoma, Texas, and New Mexico. Some of the fields have been in place over 25 years. The only maintenance has been the replacing of sections of arrays that
were damaged by debris. Some corrosion has been noted on the jack members, but the useful life of a field should be in excess of 50 years. Successful use of Kellner fields also has been reported by the Albuquerque, Sacramento, and San Francisco Districts of the U. S. Army Corps of Engineers and by the Texas, Oklahoma, and Kansas highway departments.

70. Average initial cost of the field is a function of the availability of used materials. The cost (1976) varies from $16/ to $47/lin ft, which includes the costs of the jacks, the cable to connect them, deadmen on the bank, and labor (Table 5).

71. Although Kellner fields are not aesthetically harmonious with a floodplain landscape, they have proven to be effective when used in locations where timber and riprap are not economically available, but scrap materials are. Jacks are not recommended for use in areas with a corrosive atmosphere, where extremely high velocity flows are experienced, or where the banks to be protected are higher than the jacks.

Vegetation

72. The principal functions of vegetation for streambank protection are to keep fast-moving water and transported coarse materials away from the surface of a streambank slope and to improve the structural integrity of the bank. Vegetation is generally divided into two broad categories: grasses and woody plants. The grasses require much less time than the woody plants to become established on banks, but offer less protection during periods of high-velocity flow (Figure 41). Experiments have demonstrated that the ability of grass to reduce stream velocity (and hence retard erosion) is directly related to the length, width, and density of the blade, the areal density of the grass, and the depth of the root system. A well-established stand of selected grass can reduce the stream velocity as much as 90 percent at the boundary layer between the water and the soil.

73. The major factor affecting the selection of a particular species of grass to be planted is the length of time required for the grass stand to become established on the slope. The selection of a
Figure 41. Grass used for bank protection

Grass species is also based on soil and air temperature, total rainfall and distribution of rainfall, type of soil available for planting, the slope of the bank, and the ability of the soil to store water for plant growth during dry periods. Some species having physical attributes that provide optimum resistance to erosion often must be excluded from use in regions where the growing season is short or where the banks are subjected to prolonged periods of submergence.

74. The topsoil of the bank to be protected is generally stripped because it provides a fertile bed that enhances weed growth, which tends to choke out the grass. The soil that is exposed is usually rolled and then scarified prior to planting. The grass can be planted by sodding, sprigging, or more commonly by the mechanical broadcasting of mulches consisting of seed, fertilizer, and other organic mixtures (Figure 42).

75. Woody plants generally have a greater initial cost than grass and require a longer time to become established, but they provide more effective long-term protection. For sections of a streambank where scour is a problem, woody plants established at the toe of the
slope and grass above the toe have proven to be good protection. Trees raised in nurseries are preferred over local plants because they are usually healthier, bushier, and have better developed root systems at maturity.

76. Above the mean high-water line of bank slopes and in backwater areas, the major soil erosive action results from the mechanical disintegration of soil masses by alternate wetting and drying (periods of precipitation and sunshine) and wind. Grasses have proven to be excellent deterrents to soil erosion under these conditions. Of all the bank protection methods, vegetation is the only self-renewable method and in many cases the most economical and aesthetically pleasing.

77. The cost (1976) of planting grass ranges from $500 to $650 per acre, including soil preparation and fertilizer (Table 5). If woody vegetation is planted with the grass, the average cost is approximately three times that of grass alone.
Gabions

78. Prefabricated gabion cages have been marketed in Europe for many years; however, gabions for the construction of bank protection works in the United States have been used widely only in the past 15 years. The basic element of the gabion works is the cage or "basket." The cage is a rectangular wire-mesh structure divided by diaphragms into cells (Figure 43). The mesh is generally galvanized steel wire, which is coated if the gabions are to be used in a corrosive atmosphere.

79. Prior to placement of the cages, a support apron is laid on the bank that will extend at least 6 ft past the toe of the gabion works (Figure 44). The apron, also constructed of gabion cages, has a minimum height 1.5 to 2 times the depth of the scour predicted at the toe of the bank. Each cage is placed and securely wired to the apron or its neighbors and then filled with stone. Ideally, the stone should be slightly larger than the wire mesh and should be of maximum available density. It should also be able to physically withstand abrasion and be nonfriable and resistant to weathering and freeze-thaw actions. To avoid bulging at the sides of the cage, tie wires are often connected between opposite
walls inside the cells prior to filling with stone.

80. Gabion works are somewhat flexible and are therefore able to accommodate minor changes in bank geometry. The voids between the stones allow bank drainage, which aids in the elimination of failures due to excessive hydrostatic pressure. Filter cloths are sometimes used behind gabions to prevent excessive soil losses.

81. Current in-place costs (1976) for gabion works (Figure 45) are $40/ to $47/\text{yd}^3 \text{ (Table 5).}$ The costs can be reduced somewhat for very large projects near economical sources of stone.

Erosion-Control Matting

82. A variety of erosion-control mats are available on the commercial market. Many of these mats are produced from by-products of other manufacturing processes. This type of bank protection is generally installed by hand (Figure 46) and secured to the bank with stakes or staples. For some applications, the matting, stakes, and staples are biodegradable.

83. The matting is structured in the form of a web, which allows vegetation to grow through the mat. In many design applications, this is considered to be a short-term bank protection measure that allows natural vegetation to reestablish itself on an eroding bank or allows
Figure 45. In-place gabion works (photo courtesy of Maccaferri Gabions, Inc.)

Figure 46. Erosion-control matting being placed by hand
new vegetation adequate time to become established. Some of the currently available mats decompose and add organic matter to the topsoil. Nonorganic webbing has caused some problems during later grass cuttings because of its tendency to become tangled with mower blades.

84. Installed costs (1976) for matting ranges from $0.50/ to $0.65/ yd2 (Table 5).

Bulkheads

85. Bulkheads are used to protect streambanks when the bank slope is unstable, to expedite the flow of traffic across the water-land interface, or when additional waterfront area is required, i.e. filling behind the bulkhead. A timber bulkhead (Figure 47) generally costs less initially than a comparable concrete bulkhead, but its design life is shorter because of deterioration and destruction caused by repetitive cycles of wetting and drying and attack by organisms. A concrete bulkhead (Figure 48) can provide long service if failures due to cracking or pressure from the fill behind it can be avoided. Concrete bulkheads generally require minimal maintenance; whereas timber requires regular application of wood preservative to minimize deterioration. Hence, costs (initial plus long term) are in many cases nearly the same.

86. Prefabricated asbestos fiber (Figure 49) and metal (Figure 50) bulkheads are available from commercial sources. Each sheet of commercial bulkhead is worked into the soil with a compressed air jet or is driven into the ground with a mechanical aid. The sheets are then joined together and capped. The use of sheet bulkheads eliminates the necessity for driving deep piles or, in some cases, constructing concrete forms; concrete caps are used on some projects.

87. Installed costs (1976) for bulkheads range widely from $14/ to $105/ lin ft (Table 5), depending on availability of materials. Costs of concrete, timber, aluminum, and fiber bulkheads are generally competitive, at an average of $50/lin ft when materials are readily available.
Figure 47. Timber bulkhead

Figure 48. Concrete bulkhead (photo courtesy of the Portland Cement Association)
Figure 49. Asbestos fiber bulkhead (photo courtesy of GAF Corporation)

Figure 50. Aluminum bulkhead (photo courtesy of Kaiser Aluminum)
Other Methods for Streambank Protection

Limited-use methods

88. Additional methods for streambank protection have found application in the United States; however, these methods are not used as widely as those discussed in paragraphs 33-87 because of the lack of locally available materials or manufacturing processes. These limited-use methods are briefly discussed below. No costs are provided because the cost data that are available are generally applicable only to local areas.

89. Automobile bodies. Automobile bodies are used by farmers and other landowners as an emergency or low-budget bank protection method. The bodies are generally placed along the bank in random fashion (Figure 51) and laced with wire cable that is secured to deadmen or trees. Although the use of automobile bodies is assumed to be a preventive measure, bank erosion is sometimes actually increased by the bodies because their random placement and shapes may direct the flow.

Figure 51. Automobile bodies on a streambank
towards the bank instead of away from it. Automobile bodies have been used mostly along small streams in areas where riprap is not economically available, where heavy ice flows are not a problem, and where the waters do not cause excessive rust. Large-scale use of automobile bodies as bank protection devices would improve the landscape aesthetically by eliminating some of the junkyards scattered along the nation's highways but would make the banks of streams unsightly and inaccessible.

90. **Cellular blocks.** Precast cellular blocks are available from several commercial sources (Appendix B). These blocks are cast with cells to allow vegetation to grow through the blocks thus permitting the vegetation root structure to enhance the structural integrity of the bank (Figure 52). Filter cloths are used under the blocks where

Figure 52. Cellular blocks (photo courtesy of D. A. Parsons, Agricultural Research Service, U. S. Department of Agriculture)

...
bank is not adequate. After the cellular blocks have been placed, the resulting revetment has sufficient flexibility to conform to minor changes in bank geometry. In areas of the United States where riprap is not readily available, cellular blocks can provide a viable substitute.

91. Ceramic materials. Ceramic riprap and ceramic mattresses have had very limited application as bank protection. The only known ceramic riprap revetment in the United States, which is now underwater, was placed on the Ohio River by the Corps of Engineers above the present location of Markland Dam. The majority of information available on the use of ceramics for bank protection can be found in Reference 24.

92. Concrete blocks. Precast concrete blocks as well as recycled block (sidewalks, roadways, etc.) have application in areas where suitable stone is not available for riprap revetment or where a source of salvaged blocks is readily available. Costs for a revetment of precast blocks (Figure 53) generally are higher than for a comparable revetment of riprap because of the casting process and individual placement of the blocks. More salvaged blocks could be used in future bank protection works as more highway reconstruction projects are implemented (Figure 54).

93. Rock-and-wire mattresses. This type of bank protection consists of riprap encased in wire (Figure 55). With the use of the wire, the depth of the revetment can be less than for a comparable riprap blanket, and the wire retards loss of individual stones. Although less stone is needed, the cost is more than that of a riprap blanket because of the labor required to fabricate the wire casing.

94. Rubble. Widespread urban renewal projects and other redevelopment efforts have made large quantities of rubble available. Although somewhat unsightly (Figure 56), rubble can provide excellent bank protection for projects where minimal funds are available, such as those frequently planned by private landowners.

95. Sack revetment. Sacks made of burlap and filled with soil, soil-cement, sand, or sand-cement mixtures have long been used for erosion protection around hydraulic structures and for emergency work along levees and streambanks during floods. The burlap bags eventually
Figure 53. Precast concrete blocks (photo courtesy of Portland Cement Association)

Figure 54. Concrete blocks salvaged from highway reconstruction project
Figure 55. Rock-and-wire mattress

Figure 56. Rubble used for bank protection
rot; therefore, only bags filled with soil-cement or sand-cement mixtures provide long-term benefits. On-site mixing of cement and sand obtained from the streambed and placed on the bank in biodegradable sacks now being marketed can provide an effective alternative (Figure 57) to the use of riprap in areas where suitable stone is not available.

96. Soil cement. Soil-cement pavement and blocks have found wide application in the protection of upper banks and, to a lesser extent, in lower banks. Soil-cement pavement (Figure 58) containing 8 to 15 percent portland cement has the advantages of ease of placement, low cost, and availability of materials; however, lack of flexibility and low permeability precludes its use for applications where changes in bank geometry must be accommodated by the revetment, when traffic must be sustained, or when the bank must be drained to maintain stability. Soil-cement blocks have been used in Asia for many years as a substitute for riprap; however, blocks have been used at only a few sites in the United States. Adequate engineering data to determine their effectiveness are not yet available.
97. **Synthetic mattresses, matting, and tubing.** Several manufacturers are marketing synthetic casings (Appendix B) that are filled in place or on the bank to be protected with locally available sand (Figure 59) or other materials. Many of these products have been used as foreshore protection (especially in Europe) and are now being used as

![Figure 58. Soil-cement mixture used to pave bank (photo courtesy of Portland Cement Association)](image)

![Figure 59. Synthetic casing used to protect a stream-bank at bridgehead (photo courtesy of Construction Techniques, Inc.)](image)
98. Temperature control. Limited experiments have been conducted to determine the feasibility of using freezing and fusion processes to stabilize in situ soils on streambanks. In polar climates, steel probes have been used to prevent thawing of frozen banks during summer months (Figure 60). Installation and operation of freeze probes are expensive; hence, the only known installations are in polar locations where stone is not available and property or structures must be protected.

99. Soils can be stabilized to increase their strength and resistance to erosion by heat fusion. Because of increasing costs for fuels, this process may have limited potential; however, experiments have been reported for this method.

100. Tetrapods. Tetrapods have been used effectively for many years as foreshore protection to dissipate energy resulting from continuous wave action. Some use is now being made of tetrapods as components of bank protection revetment (Figure 61). The geometric configuration and mass of tetrapods affords excellent stability under the action of hydraulic forces; however, a casting facility is needed for fabrication and heavy equipment for placement; therefore, tetrapods have not been widely used on streambanks.

101. Used-tire matting. Mattresses constructed of used automobile tires have been successfully employed as streambank protection by the U. S. Army Engineer District, Sacramento; U. S. Bureau of Indian Affairs, Oklahoma; Washington State Highway Department; West Virginia Department of Natural Resources, and U. S. Forest Service, Mississippi. The used tires are generally put in place as a mat (Figure 62). They are laid over the surface to be protected and lashed together with wire or nonbiodegradable rope to form a mat structure. The mat is held in place on the slope by deadmen anchors to prevent it from sliding down the bank or floating. Holes are sometimes drilled in the sidewalls of the tires to allow trapped air to escape and prevent mat flotation. After vegetation becomes established and sediment builds up, mat stability becomes less of a problem.
Figure 60. Freeze probe being inserted into streambank
(photo courtesy of Western Construction)

Figure 61. Tetrapods (photo courtesy of California
Department of Transportation)
Figure 62. Automobile tires on a streambank

Obsolete methods

102. Several methods for streambank protection that were employed earlier are now no longer widely used because of increased labor costs, lack of materials, or the development of more effective streambank protection techniques. These methods which are generally regarded as being obsolete include fascine mattresses, timber and brush, log and cable, cribs, and tetrahedrons.

103. Fascine mattresses. A fascine mattress consists of bundles of untreated tree stems roped together and placed on the bank to be protected (Figure 63). This technique was used on the lower Mississippi River during the early part of this century when there was an abundant supply of willow trees along the banks as a source of timber.

104. Timber-and-brush mattresses. Timber-and-brush mattresses were used extensively for upper and lower bank protection in the latter portion of the nineteenth and early part of the twentieth centuries. Timber and brush were woven by hand into a mattress that was launched from a barge (Figure 64). After the mattress was secured to the bank, stone ballast was placed on the mattress to sink the mattress onto the
Figure 63. Fascine mattress

Figure 64. Assembly of timber-and-brush mattress on launch barge
portion of the bank below the waterline and to improve the upper bank stability under hydraulic loading (Figure 65). Fascine mattresses as

Figure 65. Timber-and-brush mattress with stone ballast

well as timber and brush mattresses have limited design lives as upper bank protection due to timber rot. The alternate wetting and drying of the timber by rain and stage change tend to cause the effectiveness of the mattress to rapidly decrease as the timber rots. Because of the limited design life of the mattresses as upper bank protection, the depletion of sources of timber near the Mississippi River, and the inordinate amount of hand labor involved, use of these mattresses was abandoned by the Corps of Engineers in favor of bituminous and articulated concrete mattresses (bituminous mattresses have not been used since 1945, paragraph 60).

105. Log and cable, and cribs. Streambanks have also been protected directly with timber cabled to deadmen (Figure 66) and earth- or stone-filled cribs made of timber (Figure 67) that direct erosive currents away from the streambank. These methods have been used primarily on small streams and are now being used on a very limited basis in the western United States.

106. Tetrahedrons. Tetrahedrons (Figure 68) are used to construct permeable dike fields that are arranged in a manner similar to a
Figure 66. Log-and-cable revetment
Figure 67. Cribs (photo courtesy of California Department of Transportation)

Figure 68. Tetrahedrons (photo courtesy of California Department of Transportation)
Kellner jack field (paragraphs 66-71). Six sections of rail or beam are required to fabricate a tetrahedron but only three for a comparable jack; hence, tetrahedrons have not been used as much as Kellner jacks even though the tetrahedrons are more stable under hydraulic loading.
107. One of the major objectives of the Streambank Erosion Control Evaluation and Demonstration Act of 1974 (Appendix A) is the development of new methods for effective and economical bank protection. Many innovative methods are currently being discussed and field-evaluated on a limited basis. The following methods are among the most promising for upper bank protection:

a. Used-tire mattress of interconnected tubes positioned perpendicular to the stream (modular units composed of tires stacked on edge, filled with sand and gravel, and interconnected with a steel cable through concrete-filled tires placed on either end of the sand- and gravel-filled tires to complete the modular unit).

b. Membrane encapsulated soil systems (continuous bank paving and soil-filled bag revetment).

c. Chemical stabilization (portland cement, lime, or asphalt) to form monolithic stabilization, stabilized soil blocks, stabilized soil trenches parallel to the stream, chemically grouted soil piles, and continuous armor coating.

d. Rigid or collapsible honeycomb material backfilled with soil.

e. Reinforced earth systems employing membranes and fabrics.

f. Local waste products (without treatment, with minor processing, chemically treated, or membrane encapsulated).

g. Military surplus products such as lightweight pierced landing mat, antisubmarine net, and floating bridges.

108. The following methods should be considered for improved lower bank protection:

a. Used-tire gabion-like bulkhead (modular units with tires stacked vertically, filled with sand and gravel, and interconnected with a steel cable through concrete-filled tires placed on either end of the sand- and gravel-filled tires to complete the modular unit).

b. Used-tire mattresses (paragraphs 101 and 107a).

c. Reinforced earth systems employing membranes and fabrics (paragraph 107e).
d. Stabilization of large masses of soil to form an "artificial clay plug" of controlled dimensions.

e. Root piles (soil stabilization technique consisting of an array of slender piles driven into the streambank; Appendix B).
PART VI: CONCLUSIONS AND RECOMMENDATIONS

Conclusions

109. This report, including the references on erosion and the selected bibliography on streambank protection methods presented in Appendix D, should provide sufficient information to establish the current state of the art on both streambank erosion and the commonly used streambank protection methods.

110. The various types of streambank erosion have been well documented. Existing methods of studying streambank stability include movable-bed hydraulic models and empirical relations based on physical characteristics of stable channels only.

111. The erosion of soils is a function of many parameters, some of which have been identified only recently. There is no available general solution relating all of these parameters to the relative resistivity of soils to erosion. Within the present state of the art, a quantitative procedure for evaluation of streambank stability would require determination of the erosion rate versus hydraulic shear stress from laboratory tests on undisturbed soil samples.

112. The state of the art of streambank protection has not advanced significantly since 1950 (except for a few patented techniques that have been used on a very limited basis); therefore, the selected bibliography in Appendix D should remain current with only minor revisions as new work is documented.

113. Streambank erosion and hydraulic conditions vary so widely from one location to another that it has been considered good engineering practice to solve each bank protection problem independently. Under similar erosive and hydraulic conditions (whether natural or man-made), no method has universal applicability because of logistic and economic constraints such as the availability and cost of materials, transportation, construction equipment, and manpower. An urgent need exists to develop general design guidelines for all effective streambank protection methods, including approaches that consider the entire stream basin.
rather than protection of local reaches only.

114. Preliminary assessment of the effectiveness of the most commonly used streambank protection methods is presented in this report; however, further research and testing are required for complete evaluation. Initial examination of some of the less common methods for protecting streambanks indicates that worthwhile assessments will be difficult. Conversations with persons knowledgeable on the subject of streambank protection and examination of the available literature confirmed that much of the experimental bank protection design, especially that of private citizens and nongovernmental agencies, is not documented.

115. Streambank protection, in its present form, is, at best, "subjective engineering." Of all the methods surveyed, only one, stone riprap, has been studied in detail. The results from this research have not been collated for transfer to the practicing engineer in the form of general design criteria. Engineer manuals (References 71-73) can provide limited design guidance.

116. The program authorized by the Streambank Erosion Control Evaluation and Demonstration Act of 1974 will greatly assist in the needed research on streambank erosion and demonstration of effective protection methods.

Recommendations

117. On the basis of the information presented in this report, it is recommended that:

a. A procedure be developed for evaluating streambank stability based on laboratory measurements of erosion rates and strength properties of undisturbed soils, considering both normal water levels and rapid drawdown.

b. Research be conducted to define the causes and mechanisms of streambank erosion in terms of fluvial geology and to develop techniques for monitoring sedimentological conditions in stream channels.

c. Both laboratory and field hydraulic research be conducted to develop and evaluate new methods and techniques for general application in protecting streambanks against erosion.
d. Practical design criteria be developed for determining the optimum riprap requirements on streambanks for straight and curved reaches because of its extensive and varied usage.

e. General limits of stream attack in channel bends be determined to minimize the length of streambank protection.

f. More effective and economical methods of streambank protection be validated by prototype field demonstration projects throughout the United States as directed by the Section 32 Program (Appendix A).

g. Those streambanks be identified that are too erosive or costly to protect.

h. Those streambanks be identified that require regulated floodplain use to prevent domestic or industrial bankline development. Floodplain regulation could permit low investment activities (tree farms, wildlife reserves, or recreational areas) and enhancement of the local environment.

i. Those streambanks be identified that merit no protection due to their slow rate of erosion.
REFERENCES

1. American Society of Civil Engineers Task Committee on Channel Stabilization Works, "Channel Stabilization on Alluvial Rivers," presented at the ASCE Transportation Engineering Conference, Cincinnati, Ohio, Feb 1964.

4. Elliott, D. O., "The Improvement of the Lower Mississippi River for Flood Control and Navigation" (3 vols), May 1932, Mississippi River Commission, CE, Vicksburg, Miss.

31. Friedkin, J. F., "A Laboratory Study of the Meandering of Alluvial Rivers," May 1945, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

64. U. S. Army Engineer Waterways Experiment Station, CE, "Development of Operating Technique for and Verification of Channel-Meander Model," Potamology Investigations Report No. 16-1, Sep 1953, Vicksburg, Miss.

73. U. S. Army Engineer Waterways Experiment Station, Hydraulic Design Criteria, HDC 712-1, constant revision, Vicksburg, Miss.

86. Webster, S. L. and Andress, A., "Investigation of Fabrics and Bituminous Surfaces for Use in MESL Construction," Miscellaneous Paper No. S-76-14, Aug 1976, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

Table 1
Causes of Erosion and Bank Protection Methods Used for Selected Stream Classifications

<table>
<thead>
<tr>
<th>Maximum Flow Rate, cfs</th>
<th>General Stream Classification and Examples</th>
<th>Causes of Erosion*</th>
<th>Typical Bank Protection Methods Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>>1,000,000</td>
<td>Major alluvial (Mississippi)</td>
<td>1,3,4,5,6</td>
<td>1. Articulated concrete mattress</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. Stone riprap</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. Vegetation (upper bank & levees)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4. Monolithic concrete paving (levees)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5. Asphalt paving (upper bank)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6. Erosion-control matting (upper bank)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7. Bulkhead</td>
</tr>
<tr>
<td>≥500,000 to 1,000,000</td>
<td>Secondary alluvial (Missouri, Tennessee, Arkansas, Rio Grande)</td>
<td>1,3,5,6</td>
<td>1. Stone riprap or transverse dikes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. Wooden piles or fences</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. Vegetation (upper banks & levees)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4. Jacks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5. Gabions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6. Erosion control matting (upper banks)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7. Bulkhead</td>
</tr>
</tbody>
</table>

(Continued)

* 1. Rainfall erosion of upper banks.
2. Overland flow (or runoff).
3. Current attack at toe of slope leading to shear in upper bank.
5. Erosion of lower banks and channel by current action.
6. Erosion of banks and channel by wave action due to wind or passing boats.
7. Erosion of banks by seepage water at relatively low channel velocities.
<table>
<thead>
<tr>
<th>Maximum Flow Rate, cfs</th>
<th>General Stream Classification and Examples</th>
<th>Causes of Erosion</th>
<th>Typical Bank Protection Methods Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>>100,000 to 500,000</td>
<td>High-gradient tributary (Republican, Delaware, Allegheny, Black Warrior)</td>
<td>2,3,5,7</td>
<td>1. Stone riprap or transverse dikes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. Wooden piles or fences</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. Vegetation (upper banks)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4. Gabions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5. Erosion-control matting (upper banks)</td>
</tr>
<tr>
<td>>100,000 to 500,000</td>
<td>Low-gradient tributary (Red, Snake, Sacramento, Apalachicola, Illinois)</td>
<td>2,3,5,7</td>
<td>1. Stone riprap or transverse dikes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. Wooden piles or fences</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. Jacks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4. Vegetation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5. Wire fences</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6. Gabions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7. Erosion-control matting</td>
</tr>
<tr>
<td><100,000</td>
<td>High-gradient tributary (Yellowstone, Nueches, French Broad, Kennebec)</td>
<td>2,3,5,7</td>
<td>1. Stone riprap or transverse dikes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. Wooden piles or fences</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. Vegetation (upper banks)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4. Gabions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5. Erosion-control matting (upper banks)</td>
</tr>
<tr>
<td><100,000</td>
<td>Low-gradient tributary (Ouachita, Oconee, Rock, Minnesota)</td>
<td>2,3,5,7</td>
<td>1. Stone riprap or transverse dikes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. Wooden piles or fences</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. Jacks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4. Vegetation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5. Wire fences</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6. Gabions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7. Erosion-control matting</td>
</tr>
<tr>
<td>Streambank Protection Materials, Structures, or Methods</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single-Component Revetment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asphalt blocks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automobile bodies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cellular blocks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceramic riprap</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concrete blocks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rubble</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sack revetment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stone riprap</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrapods</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trench-fill revetment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mattresses, Matting, and Pavement Revetment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Articulated concrete mattresses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asphalt pavement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bituminous mattresses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceramic mattresses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concrete pavement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erosion-control matting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fascine mattresses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gabions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log and cable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rock-and-wire mattresses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synthetic mattresses, matting, and tubing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pavement Revetment (Continued)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timber-and-brush mattresses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Used-tire matting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulkheads</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concrete or stone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiber</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timber</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil Stabilization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asphalt (bulk)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grout</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic mixtures and mulches</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil cement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vegetation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>River Training Structures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crib</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dikes (sill, groin, spur, jetty)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kellner jack field</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrahedron field</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode of Sediment</td>
<td>Channel Transport (m)</td>
<td>Proportion of Total Sediment Load (%)</td>
<td>Stable (Graded Stream)</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------</td>
<td>---------------------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Suspended load</td>
<td>30-100</td>
<td>85-100</td>
<td>0-15</td>
</tr>
<tr>
<td>Mixed load</td>
<td>8-30</td>
<td>65-85</td>
<td>15-35</td>
</tr>
<tr>
<td>Bedload</td>
<td>0-8</td>
<td>30-65</td>
<td>35-70</td>
</tr>
</tbody>
</table>

Table 3
Classification of Alluvial River Channels for Rivers Transporting Less Than 20 Percent Coarse Gravel (Reference 35)
Table 4

Nonscour Velocities for Soils (Reference 48)

<table>
<thead>
<tr>
<th>Kind of Soil</th>
<th>Values of Nonscour Velocities for Noncohesive Soils, m/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grain Dimensions mm</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Silt with fine sand, vegetable soil</td>
<td>0.005-0.05</td>
</tr>
<tr>
<td>Fine sand with admixture of medium grains</td>
<td>0.05-0.25</td>
</tr>
<tr>
<td>Fine sand with loam; sand of medium grain size with admixture of coarser grains</td>
<td>0.25-1.00</td>
</tr>
<tr>
<td>Coarse sand with admixture of gravel; sand of medium grain size with loam</td>
<td>1.00-2.50</td>
</tr>
<tr>
<td>Fine gravel with admixture of medium grains</td>
<td>2.50-5.00</td>
</tr>
<tr>
<td>Coarse gravel with sand and fine gravel</td>
<td>5.00-10.00</td>
</tr>
<tr>
<td>Small pebbles with sand and gravel</td>
<td>10.0-15.00</td>
</tr>
<tr>
<td>Medium-size pebbles with sand and gravel</td>
<td>15.0-25.00</td>
</tr>
<tr>
<td>Coarse pebbles with admixture of gravel</td>
<td>25.0-40.00</td>
</tr>
<tr>
<td>Small pavers with pebbles and gravel</td>
<td>40.0-75.00</td>
</tr>
<tr>
<td>Small-size cobblestone</td>
<td>75.0-100</td>
</tr>
<tr>
<td>Medium-size cobblestone</td>
<td>100-150</td>
</tr>
<tr>
<td>Coarse cobblestone</td>
<td>150-200</td>
</tr>
<tr>
<td>Boulders</td>
<td>200</td>
</tr>
</tbody>
</table>

Values of Nonscour Velocities for Cohesive Soils, m/sec

<table>
<thead>
<tr>
<th>Kind of Soil</th>
<th>Mean Depth of River</th>
<th>Poorly Compact Soils</th>
<th>Medium Compact Soils</th>
<th>Compact Soils</th>
<th>Very Compact Soils</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Volumetric Weight</td>
<td>Volumetric Weight</td>
<td>Volumetric Weight</td>
<td>Volumetric Weight</td>
<td>Volumetric Weight</td>
</tr>
<tr>
<td></td>
<td>Up to 1.2 tons/m³</td>
<td>1.20-1.66 tons/m³</td>
<td>1.66-2.04 tons/m³</td>
<td>2.04-2.14 tons/m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>1.0</td>
<td>2.0</td>
<td>3.0</td>
<td>0.4</td>
</tr>
<tr>
<td>Sandy loams (heavy)</td>
<td>0.35</td>
<td>0.40</td>
<td>0.45</td>
<td>0.50</td>
<td>0.70</td>
</tr>
<tr>
<td>Sandy loams (light)</td>
<td>0.35</td>
<td>0.40</td>
<td>0.45</td>
<td>0.50</td>
<td>0.65</td>
</tr>
<tr>
<td>Loess soils in the conditions of finished settlement</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.60</td>
<td>0.70</td>
</tr>
<tr>
<td>Loamy sands</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.60</td>
<td>0.70</td>
</tr>
</tbody>
</table>

Note: Volumetric weights refer to the dry soil.
Table 5
1976 In-Place Cost* Summary for the Streambank Protection Methods Discussed in Paragraphs 33-87

<table>
<thead>
<tr>
<th>Streambank Protection Method</th>
<th>Cost/Unit, $</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stone riprap</td>
<td>3.50-30.00</td>
<td>yd3</td>
</tr>
<tr>
<td>Concrete pavement</td>
<td>90-125</td>
<td>100 ft2</td>
</tr>
<tr>
<td>Articulated concrete mattresses</td>
<td>84</td>
<td>100 ft2</td>
</tr>
<tr>
<td>Transverse dikes:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pile board</td>
<td>40-55</td>
<td>lin ft</td>
</tr>
<tr>
<td>Untreated clumps</td>
<td>1500-2300</td>
<td>clump (three 60-ft piles)</td>
</tr>
<tr>
<td>Stone</td>
<td>40-65</td>
<td>lin ft</td>
</tr>
<tr>
<td>Fences</td>
<td>25-50**</td>
<td>lin ft</td>
</tr>
<tr>
<td>Asphalt mix (upper bank)</td>
<td>60-80</td>
<td>yd3</td>
</tr>
<tr>
<td>Kellner jack field</td>
<td>16-47†</td>
<td>lin ft</td>
</tr>
<tr>
<td>Vegetation (grass)</td>
<td>1.15-1.49</td>
<td>100 ft2</td>
</tr>
<tr>
<td></td>
<td>(500-650)</td>
<td>(acre)</td>
</tr>
<tr>
<td>Gabions</td>
<td>40-47</td>
<td>yd3</td>
</tr>
<tr>
<td>Erosion-control matting</td>
<td>5.56-7.22</td>
<td>100 ft2</td>
</tr>
<tr>
<td></td>
<td>(0.50-0.65)</td>
<td>(yd2)</td>
</tr>
<tr>
<td>Bulkheads</td>
<td>14-105</td>
<td>lin ft</td>
</tr>
</tbody>
</table>

* Cost figures supplied by Corps of Engineers Divisions and Districts.
** Range applies to new materials.
† Range applies to used and new materials.
APPENDIX A: SECTION 32 OF THE WATER RESOURCES DEVELOPMENT ACT OF 1975, PUBLIC LAW 93-251 (STREAMBANK EROSION CONTROL EVALUATION AND DEMONSTRATION ACT OF 1974)

Section 32:

a. This section may be cited as the "Streambank Erosion Control Evaluation and Demonstration Act of 1974."

b. The Secretary of the Army, acting through the Chief of Engineers, is authorized and directed to establish and conduct for a period of five fiscal years a national streambank erosion prevention and control demonstration program. The program shall consist of:

(1) An evaluation of the extent of streambank erosion on navigable rivers and their tributaries;

(2) Development of new methods and techniques for bank protection, research on soil stability, and identification of the causes of erosion;

(3) A report to the Congress on the results of such studies and the recommendations of the Secretary of the Army on means for the prevention and correction of streambank erosion; and

(4) Demonstration project including bank protection works.

c. Demonstration projects authorized by this section shall be undertaken on streams selected to reflect a variety of geographical and environmental conditions, including streams with naturally occurring erosion problems and streams with erosion caused or increased by man-made structures or activities. At a minimum, demonstration projects shall be conducted at multiple sites on:

(1) The Ohio River;

(2) That reach of the Missouri River between Fort Randall, South Dakota, and Sioux City, Iowa;

(3) That reach of the Missouri River in North Dakota at or below the Garrison Dam, including areas on the right bank at river miles 1345; 1310; 1311; 1316.5; 1334.5; 1341; 1343.5; 1379.5; and on the left bank at river miles 1316.5; 1320.5; 1323; 1326.5; 1335.7; 1338.5; 1345.2; 1357.5; 1360; 1366.5; 1368; and 1374;

(4) The delta and hill areas of the Yazoo River Basin generally in accordance with the recommendations of Chief of Engineers in his report dated 23 September 1972;

(5) The delta of the Eel River, California;

(6) The lower Yellowstone River from Intake, Montana, to the mouth of such river.

Al
d. Prior to construction of any projects under this section, non-
Federal interests shall agree that they will provide without
cost to the United States lands, easement, and rights-of-way
necessary for construction and subsequent operation of the
projects; hold and save the United States free from damages due
to construction, operation, and maintenance of the projects; and
operate and maintain the projects upon completion.

e. There is authorized to be appropriated not to exceed $50,000,000
to carry out this action.

f. The Secretary of the Army shall make an interim report to Con-
gress on work undertaken pursuant to this section by Septem-
ber 30, 1978, and shall make a final report to the Congress no
later than December 31, 1981.
APPENDIX B: LISTING OF COMMERCIAL CONCERNS THAT MARKET STREAMBANK PROTECTION PRODUCTS

1. A listing of commercial organizations that market streambank protection products is provided below.

<table>
<thead>
<tr>
<th>Company</th>
<th>Address</th>
<th>Product(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Construction Specialties Company</td>
<td>P. O. Box 17212, Memphis, Tenn. 38117</td>
<td>Filter cloths</td>
</tr>
<tr>
<td>Air Logistics Corporation</td>
<td>3600 East Foothill Blvd, Pasadena, Calif. 91109</td>
<td>Mo-Mat</td>
</tr>
<tr>
<td>ALCOA Marine Corporation</td>
<td>8235 Pen Randal Place, Upper Marlboro, Md. 20870</td>
<td>Aluminum marine retaining walls (sheet piling)</td>
</tr>
<tr>
<td>American Excelsior Company</td>
<td>P. O. Box 249, Sheboygan, Wis. 53081</td>
<td>Curlex Blanket TM, Holdgro TM Fabric</td>
</tr>
<tr>
<td>ARMCO Steel Corporation</td>
<td>419 Chanin Bldg., 815 Connecticut Ave., NW Washington, D. C. 20006</td>
<td>Bulkheads</td>
</tr>
<tr>
<td>Bekaert Gabions</td>
<td>4930 Energy Way, Reno, Nev. 89502</td>
<td>Gabions</td>
</tr>
<tr>
<td>Boiardi Products Corporation</td>
<td>211 E. 43rd St., New York, N. Y. 10017</td>
<td>Grasstone</td>
</tr>
<tr>
<td>Bomanite Corporation</td>
<td>81 Encina Ave., Palo Alto, Calif. 94301</td>
<td>Grasscrete</td>
</tr>
<tr>
<td>Bowie Industries</td>
<td>P. O. Box 931, Bowie, Tex. 76230</td>
<td>Hydro-Mulcher</td>
</tr>
<tr>
<td>Carthage Mills, Inc.</td>
<td>124 W. 66th St., Cincinnati, Ohio 45216</td>
<td>Plastic filter cloth</td>
</tr>
<tr>
<td>Celanese Fibers Marketing Company</td>
<td>1211 Avenue of the Americas New York, N. Y. 10036</td>
<td>Mirafi 140 fabric filter cloth</td>
</tr>
<tr>
<td>Conwed Corporation</td>
<td>760 29th Avenue, SE Minneapolis, Minn. 55414</td>
<td>Conwed erosion-control net and Hydro-Mulch</td>
</tr>
<tr>
<td>Construction Techniques, Inc.</td>
<td>11900 Shaker Blvd., Cleveland, Ohio 44120</td>
<td>Fabriform</td>
</tr>
<tr>
<td>DuPont</td>
<td>1007 Market St., Wilmington, Del. 19898</td>
<td>TYPAR filter cloth</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Company</th>
<th>Address</th>
<th>Product(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dowling Bag Company</td>
<td>P. O. Box 1768</td>
<td>Jute mesh</td>
</tr>
<tr>
<td></td>
<td>Valdosta, Ga. 31601</td>
<td></td>
</tr>
<tr>
<td>Edward E. Gillen, Company</td>
<td>218 W. Becher St.</td>
<td>Longard tubing and filter cloth</td>
</tr>
<tr>
<td></td>
<td>Milwaukee, Wis. 53207</td>
<td></td>
</tr>
<tr>
<td>ERCO Systems, Inc.</td>
<td>P. O. Box 4133</td>
<td>Gobi (cellular) blocks</td>
</tr>
<tr>
<td></td>
<td>New Orleans, La. 70178</td>
<td></td>
</tr>
<tr>
<td>Erosion Control, Inc.</td>
<td>205 Datura St.</td>
<td>Dura-Bags, fencing, artificial sea-</td>
</tr>
<tr>
<td></td>
<td>West Palm Beach, Fla. 33401</td>
<td>weed filter cloth</td>
</tr>
<tr>
<td>Finn Equipment Company</td>
<td>P. O. Box 68</td>
<td>Equipment for broadcasting Hydro-</td>
</tr>
<tr>
<td></td>
<td>"Station 0"</td>
<td>Mulch</td>
</tr>
<tr>
<td>Firestone Coated Fabrics Co.</td>
<td>P. O. Box 887</td>
<td>Rubber-coated fabric tanks, Fabritank</td>
</tr>
<tr>
<td></td>
<td>Magnolia, Ark. 71753</td>
<td></td>
</tr>
<tr>
<td>Firewater Company</td>
<td>1 First St.</td>
<td>Crust-500 (acetate emulsion)</td>
</tr>
<tr>
<td></td>
<td>Los Altos, Calif. 94022</td>
<td></td>
</tr>
<tr>
<td>GAF Corporation</td>
<td>140 W. 51st St.</td>
<td>Corrugated canal bulkheading</td>
</tr>
<tr>
<td></td>
<td>New York, N. Y. 10020</td>
<td></td>
</tr>
<tr>
<td>Grass Growers, Inc.</td>
<td>P. O. Box 584</td>
<td>Terra Tack mulch binder</td>
</tr>
<tr>
<td></td>
<td>Plainfield, N. J. 07601</td>
<td></td>
</tr>
<tr>
<td>Grass Pavers, Ltd.</td>
<td>3807 Crooks Road</td>
<td>Monoslabs (cellular)</td>
</tr>
<tr>
<td></td>
<td>Royal Oak, Mich. 48073</td>
<td></td>
</tr>
<tr>
<td>Grifflon Company, Inc.</td>
<td>P. O. Box 33248</td>
<td>Griff net</td>
</tr>
<tr>
<td></td>
<td>Houston, Tex. 77033</td>
<td></td>
</tr>
<tr>
<td>Gulf States Paper Corporation</td>
<td>P. O. Box 3199</td>
<td>Erosion-control fabrics</td>
</tr>
<tr>
<td></td>
<td>Tuscaloosa, Ala. 35401</td>
<td></td>
</tr>
<tr>
<td>Hold-That-River, Inc.</td>
<td>P. O. Box 45335</td>
<td>Timber fencing</td>
</tr>
<tr>
<td></td>
<td>Houston, Tex. 77045</td>
<td></td>
</tr>
<tr>
<td>Hudson Pulp and Paper Corporation</td>
<td>P. O. Box 919</td>
<td>Paper riprap, bulkhead bags prefilled</td>
</tr>
<tr>
<td></td>
<td>Palatka, Fla. 32077</td>
<td></td>
</tr>
<tr>
<td>Johns-Manville</td>
<td>Ken-Caryl-Ranch</td>
<td>Tile-Guard filter fabric</td>
</tr>
<tr>
<td></td>
<td>P. O. Box 5108</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Denver, Colo.</td>
<td></td>
</tr>
<tr>
<td>Kaiser Aluminum</td>
<td>300 Lakeside Dr.</td>
<td>Shore-All sheet piling</td>
</tr>
<tr>
<td></td>
<td>Oakland, Calif. 94643</td>
<td></td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Company</th>
<th>Address</th>
<th>Product(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kennross-Naue Canada, Ltd.</td>
<td>320 Alameda Drive</td>
<td>Filter cloth, cellular blocks, sand trap mats</td>
</tr>
<tr>
<td></td>
<td>Palm Springs, Fla.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>33461</td>
<td></td>
</tr>
<tr>
<td>Koch Brothers, Inc.</td>
<td>35 Osage Avenue</td>
<td>Zenith filter</td>
</tr>
<tr>
<td></td>
<td>Kansas City, Kans.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>66105</td>
<td></td>
</tr>
<tr>
<td>Louisiana Industries</td>
<td>P. O. Box 5396</td>
<td>Monoslabs (cellular)</td>
</tr>
<tr>
<td></td>
<td>Bossier City, La.</td>
<td></td>
</tr>
<tr>
<td>Ludlow Textiles</td>
<td>300 West Emory St.</td>
<td>Jute mats</td>
</tr>
<tr>
<td></td>
<td>Dalton, Ga. 30720</td>
<td></td>
</tr>
<tr>
<td>Maccaferri Gabions, Inc.</td>
<td>RR#2, Box 43A</td>
<td>Gabions</td>
</tr>
<tr>
<td></td>
<td>Williamsport, Md. 21795</td>
<td></td>
</tr>
<tr>
<td>Menardi-Southern</td>
<td>P. O. Box 12454</td>
<td>Monofil (J. P. Stevens)</td>
</tr>
<tr>
<td></td>
<td>Houston, Tex. 21795</td>
<td></td>
</tr>
<tr>
<td>Monsanto Textiles Company</td>
<td>800 N. Lindbergh Blvd.</td>
<td>BIDIM engineering fabric</td>
</tr>
<tr>
<td></td>
<td>St. Louis, Mo. 63166</td>
<td></td>
</tr>
<tr>
<td>Owens-Corning Fiberglas</td>
<td>Fiberglas Tower</td>
<td>Bituminous treated glass fibers</td>
</tr>
<tr>
<td>Corporation</td>
<td>Toledo, Ohio 43659</td>
<td></td>
</tr>
<tr>
<td>Ozite Corporation</td>
<td>1755 Butterfield Rd.</td>
<td>HD-10 filter fabric</td>
</tr>
<tr>
<td></td>
<td>Libertyville, Ill. 60048</td>
<td></td>
</tr>
<tr>
<td>Phillips Petroleum Company</td>
<td>15D 2 Phillips Blvd.</td>
<td>Petroset rubberizing emulsions</td>
</tr>
<tr>
<td></td>
<td>Bartlesville, Okla. 74004</td>
<td></td>
</tr>
<tr>
<td>Reinco</td>
<td>P. O. Box 584</td>
<td>Equipment for broadcasting</td>
</tr>
<tr>
<td></td>
<td>Plainfield, N. J. 07061</td>
<td>Hydro-Mulch; Terra Tack</td>
</tr>
<tr>
<td>Spidel Foundations Harbor</td>
<td>1055 North Shore Dr.</td>
<td>Z-Wall piling</td>
</tr>
<tr>
<td>and Marine Corporation</td>
<td>Benton Harbor, Mich. 49022</td>
<td></td>
</tr>
<tr>
<td>Superior Fiber Mulch</td>
<td>Suite 501 Executive Plaza II</td>
<td>Mulch</td>
</tr>
<tr>
<td></td>
<td>Hunt Valley, Md. 21031</td>
<td></td>
</tr>
<tr>
<td>Soil Seal Corporation</td>
<td>600 S. Harvard Blvd.</td>
<td>Soil cement</td>
</tr>
<tr>
<td></td>
<td>Los Angeles, Calif. 90005</td>
<td></td>
</tr>
</tbody>
</table>

(Continued)
2. A limited number of research organizations direct part of their efforts toward the study of streambank protection. These organizations are listed below.

<table>
<thead>
<tr>
<th>Organization</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt Institute</td>
<td>Asphalt Institute Bldg.</td>
</tr>
<tr>
<td></td>
<td>College Park, Md. 20740</td>
</tr>
<tr>
<td>Bituminous Coal Research, Inc.</td>
<td>350 Hochbers Rd.</td>
</tr>
<tr>
<td></td>
<td>Monroeville, Pa. 15146</td>
</tr>
<tr>
<td>Portland Cement Association</td>
<td>Old Orchard Rd.</td>
</tr>
<tr>
<td></td>
<td>Skokie, Ill. 60076</td>
</tr>
</tbody>
</table>
APPENDIX C: GLOSSARY OF STREAMBANK PROTECTION TERMINOLOGY

Armor. Artificial surfacing placed on the banks of a stream to resist erosion or scour.

Articulated concrete mattress. Rigid concrete slabs usually hinged together with corrosion-resistant wire fasteners; primarily for lower bank protection.

Asphalt block. Precast or broken pieces of asphalt that can be hand-placed or dumped on a streambank or filter for protection against erosion.

Asphalt (bulk). Mass uncompacted asphalt usually dumped from a truck (upper bank protection) or a barge (lower bank protection) that is designed to stabilize the bank against erosion.

Bank protection. Placement of revetment or other armor to stabilize a streambank against erosion or use of a river training structure designed to deflect the hydraulic erosive forces away from a streambank.

Bituminous mattress. An impermeable rock-, mesh-, or metal-reinforced mattress of asphaltic or other bituminous material placed on a streambank to prevent erosion.

Bulkhead. A vertical or nearly vertical structure supporting a natural or artificial embankment.

Cellular block. Regularly cavitated concrete block placed directly on a streambank or filter to prevent erosion. The cavities permit the growth of either volunteer or planted vegetation.

Ceramic mattress. Ceramic slabs hinged together with corrosion-resistant fasteners placed on a streambank to prevent erosion.

Ceramic riprap. An armor of whole or broken ceramic blocks or slabs placed on a streambank or filter to prevent erosion.

Concrete block. Precast whole or broken concrete material placed on a streambank or filter to prevent erosion.

Crib. An open-frame structure filled with earth or stone ballast designed to absorb energy and to deflect hydraulic currents away from a streambank.

Cut bank. The concave wall of a meandering stream that is maintained as a steep or overhanging cliff by the impinging streamflow against its base.
Dike (sill, groin, spur, jetty). A river training aid constructed of earth, wood, or stone, designed to deflect erosive currents away from a bank and to control movement of bed material.

Erosion-control matting. Fibrous matting (e.g. jute, paper, fiberglass, etc.) placed or sprayed on a streambank for the purpose of preventing erosion or providing temporary stabilization until vegetation is established.

Fascine. A bundle of brush, sticks, or timber used to make a foundation mat or to make a revetment to protect a streambank against erosion.

Fence. A river training structure normally consisting of mesh attached to a series of posts often in double rows; the interstitial space between the rows may be filled with rock, brush, or other locally available materials.

Filter. Layer of sand, evenly graded rock, or cloth, placed between the bank armor and soil for one or more of three purposes: to prevent the soil from coming through the armor by extrusion or erosion, to prevent the armor from sinking into the soil, and to permit natural seepage from the streambank to occur and thus prevent buildup of excessive hydrostatic pressure.

Freeze probe. A steel cylindrical bar used as a soil stabilization technique in polar climates to maintain bank stability and retard erosion by freezing the soil during warm months.

Gabion. A wooden, wire mesh, or cloth basket or cage filled with earth, stone, or other locally available material placed as a component of a bank protection structure.

Grout. A fluid mixture of cement and water or of cement, sand, and water used to fill joints and voids.

Jack (Jackstraw, Kellner jack). A component of a river training structure consisting of wire or cable strung on three mutually perpendicular metal, wooden, or concrete struts.

Log and cable. Trees or timber anchored to a streambank by a series of cables to serve as protection against erosion.

Lower bank. That portion of a streambank having an elevation less than the mean water level of the stream.

Mattress. A broad flat cage or network of concrete, wood, stone, or other locally available materials used to protect a streambank against erosion.
Organic mixtures and mulches. Any of a number of organic agents (e.g. petrochemicals or vegetative matter) used to stabilize a streambank against erosion by affording permanent protection or temporary protection and nutrients for the establishment of vegetation. These agents, which may be in the form of liquids, emulsions, or slurries, are normally applied by means of mechanical broadcasters.

Pavement. Streambank surface covering, usually impermeable, designed to serve as armor against erosion. Common pavements used on streambanks are concrete and compacted asphalt.

Pile. An elongated member, usually made of timber, concrete, or steel, that serves as a structural component of a river training structure.

Point bar. The convex side of a loop of a meandering stream where active deposition of bed load and suspended sediment load occurs.

Revetment. Armor of erosion-resistant material designed to protect a streambank.

River training structure. Any configuration constructed in a stream or placed on, adjacent to, or in the vicinity of a streambank, which is intended to deflect currents, induce sediment deposition, induce scour, or in some other way alter the velocity regimen of the stream.

Rock-and-wire mattress. A flat or cylindrical wire cage filled with stones or other suitable material placed on a streambank as armor against erosion.

Rubble. Rough, irregular fragments of random size placed on a streambank to retard erosion. The fragments may consist of broken concrete slabs, masonry, or other suitable refuse.

Sack revetment. A revetment consisting of sacks (e.g. burlap, paper, or nylon) filled with concrete, sand, stones, or other available material placed on a streambank to serve as protection against erosion.

Soil cement. A mixture of soil and portland cement at a prescribed moisture content that is compacted to provide stability for a soil surface and to prevent its erosion.

Soil fusion. A process to stabilize a streambank by heating the soil.

Stone riprap. Natural cobbles, boulders, or broken stones dumped or placed on a streambank or filter as armor against erosion.

Synthetic mattress, matting, casing, and tubing. A grout- or sand-filled, manufactured, semiflexible casing placed on a streambank to prevent erosion.
Tetrahedron. Component to river training works made of six steel or concrete struts fabricated in the shape of a pyramid.

Tetrapod. Bank protection component of precast concrete consisting of four legs joined at a central block, each leg making an angle of 109.5 deg with the other three.

Timber-and-brush mattress. A mattress made of brush, poles, logs, or lumber interwoven or otherwise lashed together. The resulting configuration is then placed on the bank of a stream and weighted with natural or artificial stone ballast.

Toe. That portion of a stream cross section where the lower bank terminates and the channel bottom or the opposite lower bank begins.

Trench-fill revetment. Stone, concrete, or ceramic material placed in a trench dug behind and parallel to an eroding streambank. When the erosive action of the stream reaches the trench, the material placed in the trench retards further erosion.

Upper bank. That portion of a streambank having an elevation greater than the mean water level of the stream.

Vegetation. Woody or nonwoody plants used to stabilize a streambank and retard erosion.
1. An index is provided below as an aid for locating references on individual protection methods.

<table>
<thead>
<tr>
<th>Method</th>
<th>Page</th>
<th>Method</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Component Revetment</td>
<td></td>
<td>Mattresses, Matting, and</td>
<td></td>
</tr>
<tr>
<td>asphalt blocks</td>
<td>D2</td>
<td>Pavement Revetment (Cont'd)</td>
<td></td>
</tr>
<tr>
<td>automobile bodies</td>
<td>D2</td>
<td>Timber-and-brush mattresses</td>
<td>D78</td>
</tr>
<tr>
<td>cellular blocks</td>
<td>D4</td>
<td>Used-tire matting</td>
<td>D85</td>
</tr>
<tr>
<td>ceramic riprap</td>
<td>D6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>concrete blocks</td>
<td>D6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rubble</td>
<td>D10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sack revetment</td>
<td>D11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>stone riprap</td>
<td>D13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tetrapods</td>
<td>D41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>trench-fill revetment</td>
<td>D41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mattresses, Matting, and</td>
<td></td>
<td>Bulkheads</td>
<td></td>
</tr>
<tr>
<td>articulated concrete mattresses</td>
<td>D44</td>
<td>concrete or stone</td>
<td>D87</td>
</tr>
<tr>
<td>asphalt pavement</td>
<td>D52</td>
<td>fiber</td>
<td>D90</td>
</tr>
<tr>
<td>bituminous mattresses</td>
<td>D57</td>
<td>metal</td>
<td>D91</td>
</tr>
<tr>
<td>ceramic mattresses</td>
<td>D59</td>
<td>timber</td>
<td>D92</td>
</tr>
<tr>
<td>concrete pavement</td>
<td>D60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>erosion-control matting</td>
<td>D63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fascine mattresses</td>
<td>D65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gabions</td>
<td>D67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>log and cable</td>
<td>D72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rock-and-wire mattresses</td>
<td>D73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>synthetic mattresses,</td>
<td>D76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>matting, and tubing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>River Training Structures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cribs</td>
<td>D117</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dikes (sill, groin, spur, jetty)</td>
<td>D119</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fences</td>
<td>D142</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kellner jack field</td>
<td>D145</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tetrahedron field</td>
<td>D150</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D1
Single-Component Revetment

Asphalt blocks

Blanquet, P. A., "Memoire sur les Protections des Berges en Amerique et en Hollande" ("Memorandum on Bank Protection in America and in Holland"), Translation No. 53-3, Mar 1953, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.; Translated by M. M. Welch for Mississippi River Commission, CE, Vicksburg, Miss.

California, State of, Department of Public Works, Division of Highways, Bank and Shore Protection in California Highway Practice, Sacramento, Calif., Nov 1960.

Automobile bodies

Baltimore Sun, "Old Cars as Breakwater Add Woes to Seaside Town," 12 Apr 1966, Baltimore, Md.
California, State of, Department of Public Works, Division of Highways, Bank and Shore Protection in California Highway Practice, Sacramento, Calif., Nov 1960.

U. S. Army Engineer District, Kansas City, CE, "Bank Erosion," unpublished and undated handout prepared for landowners, Kansas City, Mo.

__________, "Car Bodies Stabilization," (unpublished), Kansas City, Mo.

Cellular blocks

Buffalo Evening News, "Low-Cost Creek Tamer," 10 Apr 1976, Buffalo, N. Y.

Grass Pavers Limited, "Typical Cross-Sections of Interlocking Monoslab (Concrete Revetment Grids) Installation Used for 'Sea Defense','' undated, Royal Oak, Mich.

Mamak, W., River Regulation, Arkady, Warsaw, 1964; Published for U. S. Department of Interior and National Science Foundation.

Naue-Fosertechnik, "Terrafix, Terradrän," Espelkanp-Fiestel, West Germany.

U. S. Army Engineer Waterways Experiment Station, CE, "The Flume Investigation of Prototype Revetment," Miscellaneous Paper No. 2-35, Sep 1952, Vicksburg, Miss.

Ceramic riprap

Buzzell, D. A., "Current Slope Protection Practice," Jan 1946; Presented to American Society of Civil Engineers, Soil Mechanics and Foundation Division, Committee on Earth Dams, Subcommittee on Slope Protection, Washington, D. C.

Concrete blocks

Blanquet, P. A., "Memoire sur les Protections des Berges en Amerique et en Hollande" ("Memorandum on Bank Protection in America and in Holland"), Translation No. 53-3, Mar 1953, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.; Translated by M. M. Welch for the Mississippi River Commission, CE, Vicksburg, Miss.

Bumm, H. et al., "Nouveaux Materiaux et Realisations Nouvelles pour la Defense des Rives et la Protection du Fond des Canaux, des Rivieres et des Ports; Prix de Revient et Avantages Respectifs" ("New Materials and New Methods for Protecting the Banks and Bottoms of Canals, Rivers, and Ports; Their Cost and Respective Advantages"), Translation No. 73-4, Mar 1973, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.; Translated by J. C. Van Tienhoven.

Buzzell, D. A., "Current Slope Protection Practice," Jan 1946; Presented to American Society of Civil Engineers, Soil Mechanics and Foundation Division, Committee on Earth Dams, Subcommittee on Slope Protection, Washington, D. C.

California, State of, Department of Public Works, Division of Highways, Bank and Shore Protection in California Highway Practice, Sacramento, Calif., Nov 1960.

California, State of, Department of Public Works, Division of Highways, Bank and Shore Protection in California Highway Practice, Sacramento, Calif., Nov 1970.

Haas, R. H., "Development of Concrete Revetments on the Lower Mississippi," Concrete, Apr and May 1947, pp l-10 (reprint).

Headquarters, Department of the Army, Office of the Chief of Engineers, Bank Protection, Mississippi River; Plant Methods and Materials in Use on Works Under Direction of Mississippi River Commission, Washington, D. C., 1922.

Mamak, W., River Regulation, Arkady, Warsaw, 1964; Published for U. S. Department of Interior and National Science Foundation.

U. S. Army Engineer District, Omaha, CE, "Report on Channel Protection Against High Velocity Flow," Jun 1953, Omaha, Nebr.

U. S. Army Engineer District, Vicksburg, CE, "Bank Protection and Dike Data Sheets," 30 Jun 1949, Vicksburg, Miss.

U. S. Army Engineer Waterways Experiment Station, CE, "Investigations of Certain Proposed Methods of Bank and Embankment Protection," Waterways Experiment Station Paper No. 12, Jul 1933, Vicksburg, Miss.

Rubble

Sack revetment

California, State of, Department of Public Works, Division of Highways, Bank and Shore Protection in California Highway Practice, Sacramento, Calif., Nov 1960.

________, "Fabricast Molded Blocks," 1975, Cleveland, Ohio.

________, "Spotlight on the World of Prepakt"; Published quarterly since 1973, Cleveland, Ohio.

Stone riprap

Bartleman, B., "Ohio River Chewing Away at Smithland," Sun Democrat, 1 Apr 1973, Paducah, Ky.

Blaisdell, F. W., "Model Test of Box Inlet Drop Spillway and Stilling Basin Proposed for Tillatoba Creek, Tallahatchie County, Mississippi," 1973, St. Anthony Falls Hydraulic Laboratory, Minneapolis, Minn.

Blanquet, P. A., "Memoire sur les Protections des Berges en Amerique et en Hollande" ("Memorandum on Bank Protection in America and in Holland"), Translation No. 53-3, Mar 1953, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.; Translated by M. M. Welch for Mississippi River Commission, CE, Vicksburg, Miss.

D17

Buffalo Evening News, "Low-Cost Creek Tamer," 10 Apr 1976, Buffalo, N. Y.

Bumm, H. et al., "Nouveaux Materiaux et Realisations Nouvelles pour la Defense des Rives et la Protection du Fond des Canaux, des Rivieres et des Ports; Prix de Revient et Avantages Respectifs" ("New Materials and New Methods for Protecting the Banks and Bottoms of Canals, Rivers, and Ports; Their Costs and Respective Advantages"), Translation No. 73-4, Mar 1973, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.; Translated by J. C. Van Tienhoven.

California, State of, Department of Public Works, Division of Highways, Bank and Shore Protection in California Highway Practice, Sacramento, Calif., Nov 1960.
California, State of, Department of Public Works, Division of Highways, Bank and Shore Protection in California Highway Practice, Sacramento, Calif., Nov 1970.

Curry, R. L., "Investigation of Concrete Aggregate and Riprap Stone for the Rend Lake Reservoir, St. Louis District," Miscellaneous Paper No. 6-589, Jul 1963, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

Gorrie, R. M., Soil and Water Conservation with Punjab, Simea, New Delhi, India, 1946.

Grace, J. L., Jr., and Melsheimer, E. S., "Spillway for West Point Dam, Chattahoochee River, Alabama and Georgia; Hydraulic Model Investigation," Technical Report 2-815, Mar 1968, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

Huber, R. L., "Channel Stabilization of the Missouri River," Jun 1952; Presented to the American Society of Civil Engineers, Denver, Colo.

Intrusion-Prepakt, Inc., "Fabriform Stabilizes Trouble Areas on Flood-prone Creek," Fabriform Report FP-58, undated, Cleveland, Ohio.

"Spotlight on the World of Prepakt", Published quarterly since 1973, Cleveland, Ohio.

Karabatsos, G. J., "Channel Stabilization in the Gering Valley, Nebraska," May 1962; Presented at American Society of Civil Engineers Conference, Omaha, Nebr.

Linnton Hydraulic Laboratory, Bank Protection Studies, Portland, Oreg., 1 Jun 1938.

Mamak, W., *River Regulation*, Arkady, Warsaw, 1964; Published for U. S. Department of Interior and National Science Foundation.

Mather, K. and Mather, B., "Evaluation of Stone for Protection Work," Miscellaneous Paper No. 6-480, Mar 1962, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

Matthes, G. H., "Report on Revetments," 8 Oct 1941, Mississippi River Commission, CE, Vicksburg, Miss.

Murphy, T. E., "Control of Scour at Hydraulic Structures," Miscellaneous Paper No. H-71-5, Mar 1971, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

Myers, H. B., "Red River Bank Stabilization" (unpublished and undated), Mississippi River Commission, CE, Vicksburg, Miss.

Naue-Fosertechnik, "Terrafix, Terradrän," undated, Espelkanp-Fiestel, West Germany.

Nebraska, University of, Department of Civil Engineering, River Engineering Laboratory, "Laboratory Investigation of Performance of Riprap Toe Structures with Channel Degradation," May 1968, Mead, Nebr.

Pickering, G. A., "Spillway for Alum Creek Dam, Alum Creek, Ohio; Hydraulic Model Investigation," Technical Report H-70-1, Apr 1970, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

"Riprap Protection of River and Canal Banks (Protection de Talus au Moyen d'Encrochements)," Translation 63-7, Dec 1963, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

Thornber, C. H. and Bubenik, M. C., "Channel Stabilization of the Willamette River" (unpublished and undated).

U. S. Army Engineer District, Buffalo, CE, "Big Creek and Metro Zoo Flood and Aesthetic Improvement, Cleveland, Ohio," Draft, Environmental Impact Statement, Jun 1972, Buffalo, N. Y.

U. S. Army Engineer District, Cincinnati, CE, "Investigation of Slope Protection--Cincinnati District," Sep 1946, Cincinnati, Ohio.

———, "Bank Erosion," unpublished and undated handout prepared for landowners, Kansas City, Mo.

———, "Invitation for Bids (Construction Contract) No. DAC W41-76-B-0050: Channel Stabilization, Missouri River to Mouth--Rulo to Upper Miami Bends (mile 498.4 to mile 262.6)," Mar 29, 1976, Kansas City, Mo.

———, "Republican River Basin-Harlan County Dam and Reservoir--Riprap Appraisal," Sep 1964, Kansas City, Mo.

———, "Report on Stone Work; San Gabriel River Improvement, Santa Fe Dam to Whittier Narrows Dam Contract No. 60-156," Sep 1960, Los Angeles, Calif.

U. S. Army Engineer District, Memphis, CE, "Revetment and Dike Data Sheets," 30 Jun 1964, Memphis, Tenn.
U. S. Army Engineer District, Nashville, "Bank Erosion" (handwritten draft), 8 April 1974, Nashville, Tenn.

U. S. Army Engineer District, Omaha, CE, "Fort Randall Dam--Lake Francis (Missouri River), St. Joseph's Indian School (S.A.) Riprap Failure Report," Apr 1965, Omaha, Nebr.

U. S. Army Engineer District, Rock Island, CE, "How to Engineer a Solution to Long-Term Erosion Problems," undated, Rock Island, Ill.

________, "Russian River Basin (Channel Improvement and Bank Stabilization), Sonoma and Mercedino Counties, California," 1972, San Francisco, Calif.

U. S. Army Engineer District, St. Louis, CE, "Dively Drainage and Levee District (District 23)," Final Environmental Impact Statement, 1972, St. Louis, Mo.

U. S. Army Engineer District, Vicksburg, CE, "Bank Protection and Dike Data Sheets," 30 Jun 1949, Vicksburg, Miss.

Tetrapods

California, State of, Department of Public Works, Division of Highways, Bank and Shore Protection in California Highway Practice, Sacramento, Calif., Nov 1960.

Trench-fill revetment

Christian, H. E., "Channel Stabilization and Bank Protection," *Summer Short Course on River Systems*, University of Nebraska, Lincoln, Nebr., 1972.

U. S. Army Engineer District, Kansas City, CE, "Channel Stabilization Structure," File No. SP-P-0474, Sheets 1-10, Apr 1974, Kansas City, Mo.

Mattresses, Matting, and Pavement Revetment

Articulated concrete mattresses

Blanquet, F. A., "Memoire sur les Protections des Berges en Amerique et en Hollande" ("Memorandum on Bank Protection in America and in Holland"), Translation No. 63-3, Mar 1953, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.; Translated by M. M. Welch for the Mississippi River Commission, CE, Vicksburg, Miss.

California, State of, Department of Public Works, Division of Highways, Bank and Shore Protection in California Highway Practice, Sacramento, Calif., Nov 1960.

California, State of, Department of Public Works, Division of Highways, Bank and Shore Protection in California Highway Practice, Sacramento, Calif., Nov 1970.

Christian, H. E., "Channel Stabilization and Bank Protection," *Summer Short Course on River Systems*, University of Nebraska, Lincoln, Nebr., 1972.

Davis, G. B., "Inspection of Revetments (Upper Bank Paving) Between Vicksburg and Memphis on 17 and 18 Apr 1946," Unpublished Memorandum, 22 Apr 1940, Mississippi River Commission, CE, Vicksburg, Miss.

\[\text{Gilland, M. W., "Making and Placing Concrete Revetment Mat," Journal of the American Concrete Institute, Vol 1, No. 8, Jun 1930, pp 799-830.}\]

Haas, R. H., "Development of Concrete Revetments on the Lower Mississippi," *Concrete*, April and May 1947, pp 1-10 (reprint).
Haas, R. H., "Stabilization of Lower Mississippi River" (unpublished and undated), Mississippi River Commission, CE, Vicksburg, Miss.

Headquarters, Department of the Army, Office of the Chief of Engineers, Bank Protection, Mississippi River; Plant Methods and Materials in Use on Works Under Direction of Mississippi River Commission, Washington, D. C., 1922.

Mamak, W., River Regulation, Arkady, Warsaw, 1964; Published for U. S. Department of Interior and National Science Foundation.

Matthes, G. H., "Report in Revetments," 8 Oct 1941, Mississippi River Commission, CE, Vicksburg, Miss.

Straub, L. G. and Olson, R. M., "Mississippi River Revetment Studies," Project Report No. 21, Jun 1951, St. Anthony Falls Hydraulic Laboratory, University of Minnesota, Minneapolis, Minn.
Straub, L. G. and Olson, R. M., "Mississippi River Revetment Studies; Tests on a Double Layer of Articulated Mattress," Project Report No. 28, Supplement 1 to Project Report 21, May 1952, St. Anthony Falls Hydraulic Laboratory, University of Minnesota, Minneapolis, Minn.

U. S. Army Engineer District, Memphis, CE, "Revetment and Dike Data Sheets," 30 Jun 1964, Memphis, Tenn.

U. S. Army Engineer District, St. Louis, CE, "Improvement of Middle Mississippi River," May 1939, St. Louis, Mo.

U. S. Army Engineer District, Vicksburg, CE, "Bank Protection and Dike Data Sheets," 30 Jun 1949, Vicksburg, Miss.

U. S. Army Engineer Waterways Experiment Station, CE, "Flume Investigation of Prototype Revetment," Miscellaneous Paper No. 2-35, Sep 1952, Vicksburg, Miss.

Asphalt pavement

Asphalt Institute, "The Asphalt for Conservation and Control of Water," Information Series No. 131, Sep 1964, College Park, Md.

Blanquet, P. A., "Memoire sur les Protection des Berges en Amerique et en Hollande" ("Memorandum on Bank Protection in America and In Holland"), Translation No. 53-3, Mar 1953, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.; Translated by M. M. Welch for the Mississippi River Commission, CE, Vicksburg, Miss.

D52

California, State of, Department of Public Works, Division of Highways, Bank and Shore Protection in California Highway Practice, Sacramento, Calif., Nov 1960.

Edge, D. E., "Asphalt in Erosion Control and Hydraulics (unpublished and undated), The Asphalt Institute, College Park, Md.

Matthes, G. H., "Report on Revetments," 8 Oct 1941, Mississippi River Commission, CE, Vicksburg, Miss.

Meredith, E. C., "Investigation of Bituminous Cold Mixes for the Protection of Upper River Banks," Technical Memorandum No. 3-362, Apr 1953, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

Thornber, C. H. and Bubenik, M. B., "Channel Stabilization of the Willamette River" (unpublished and undated), Mississippi River Commission, CE, Vicksburg, Miss.

U. S. Army Engineer District, Vicksburg, CE, "Bank Protection and Dike Data Sheets," 30 Jun 1949, Vicksburg, Miss.

U. S. Army Engineer Waterways Experiment Station, CE, "Bank Caving Investigations, Marville Revetment, Mississippi River," Technical Memorandum No. 3-318, Sep 1950, Vicksburg, Miss.

U. S. Army Engineer Waterways Experiment Station, CE, "Interim Report on Investigation of Sand-Asphalt Revetment," 1 Jul 1949, Vicksburg, Miss.

Bituminous mattresses

"Asphalt Mattress," Construction Methods, Vol 22, No. 4, Apr 1940, p 45.

Blanquet, P. A., "Memoire sur les Protections des Berges en Amerique et en Hollande" ("Memorandum on Bank Protection in America and in Holland"), Translation No. 53-3, Mar 1953, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.; Translated by M. M. Welch, for the Mississippi River Commission, CE, Vicksburg, Miss.

"Notes on Mastic Grouted Gabions and Revet Mattress," undated, Flushing, N. Y.

Waddill, G. C., "Report and Maps on Asphalt Subaqueous Revetment, 12 Oct 1943, Mississippi River Commission, CE, Vicksburg, Miss.

Ceramic mattresses

Concrete pavement

Blanquet, P. A., "Memoire sur les Protections des Berges en Amerique et en Hollande" ("Memorandum on Bank Protection in America and in Holland"), Translation No. 53-3, Mar 1953, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.; Translated by M. M. Welch for the Mississippi River Commission, CE, Vicksburg, Miss.

Buzzell, D. A., "Current Slope Protection Practice," Jan 1946; Presented to American Society of Civil Engineers, Soil Mechanics and Foundation Division, Committee on Earth Dams, Subcommittee on Slope Protection, Washington, D. C.

California, State of, Department of Public Works, Division of Highways, Bank and Shore Protection in California Highway Practice, Sacramento, Calif., Nov 1960.

Haas, R. H., "Development of Concrete Revetments on the Lower Mississippi," Concrete, Apr and May 1947, pp 1-10 (reprint).

Matthes, G. H., "Report on Revetments," 8 Oct 1941, Mississippi River Commission, CE, Vicksburg, Miss.

Washbourne, L. B., Mississippi River Improvement; Concrete Bank Revetment in the Memphis Engineer District, Thesis, University of California, Berkeley, Calif., May 1930.

Erosion-control matting

Conwed Corporation, "Conwed Economy Erosion Control Netting," undated, Minneapolis, Minn.

Gilbert, W. B. and Deal, E. E., "Temporary Ditch Liners for Erosion Control and Sod Establishment" (unpublished and undated), Turf Project, Crop Science Department, North Carolina State University, Raleigh, N. C.

__________, "Hold Gro Recommended Installation Steps," undated, Tuscaloosa, Ala.

Naue-Fosertechnik, "Terrafix, Terradrän," undated, Espelkanp-Fiestel, West Germany.

Richardson, E. V., "Optimization of Water Delivery Systems," Research Project, 1975, State of Colorado, Denver, Colo; Performed by Colorado State University, Agricultural Experiment Station, Fort Collins, Colo.

Toth, J., "U. S. Soil Conservation Service Test Site, Montville, New Jersey" (unpublished and undated), Morristown, N. J.

Fascine mattresses

Dawson, E. F., Notes on the Mississippi River, Thacker, Sprink and Co., Calcutta, 1900.

Headquarters, Department of the Army, Office of the Chief of Engineers, Bank Protection, Mississippi River; Plant Methods and Materials in Use on Works Under Direction of Mississippi River Commission, 1922, Washington, D. C.

Matthes, G. H., "Report on Revetments," 8 Oct 1941, Mississippi River Commission, CE, Vicksburg, Miss.

Gabions

Agostini, R. and Papetti, A., "Revestimenti Flessibili nei Canali e nei Corsi d'Acqua Canalizzati; Tabelle per il Dimensionamento dei Canali a Sezione Trapezia (Flexible Revetments for Canals and Canalized Watercourses; Tables for Dimensions of Channels and Their Cross Sections)," 1976, Officine Maccaferri S.p.A., Bologna, Italy.

________, "Gabion Specifications," undated, Flushing, N. Y.

________, "Instructions for Assembly and Erections," undated, Flushing, N. Y.

________, "Maccaferri Gabions," undated, New York, N. Y.

________, "Notes on Mastic-Grouted Gabions and Revet Mattress," undated, Flushing, N. Y.

________, "The Point, Annapolis, When Is a Wall Not a Wall at All," undated, Flushing, N. Y.

________, "Trapezoidal Gabions," 1973, Flushing, N. Y.

Mamak, W., River Regulation, Arkady, Warsaw, 1964; Published for U. S. Department of Interior and National Science Foundation.

_______, "The Use of Gabions in Flood Control," Technical Booklet No. 1, undated, Bologna, Italy.

_______, "The Use of Gabions in the Construction of Weirs," Technical Booklet No. 9, undated, Bologna, Italy.

U. S. Army Engineer District, Rock Island, CE, "How to Engineer a Solution to Long-Term Erosion Problems," undated, Rock Island, Ill.

Log and cable

Lowry, G. L. and Hunt, L., "Study of Biological and Physical Factors Affecting Eroding Shoreline Areas and Their Initial Stabilization," Research Project, 1976, State of Texas, Austin, Tex.; Performed by Stephen F. Austin State University, School of Forestry, Nacogdoches, Tex.

Rock-and-wire mattresses

Agostini, R. and Papetti, A., "Rivestimenti Flessibili nei Canali e nei Corsi d'Acqua Canalizzati; Tabelle per il Dimensionamento dei Canali a Sezione Trapezio (Flexible Revetments for Canals and Canalized Watercourses; Tables for Dimensions of Channels and Their Cross Sections)," 1976, Officine Maccafferi S.p.A., Bologna, Italy.

———, "Maccaferri Revet Mattress (Maccaferri Reno Mattress)," undated, New York, N. Y.

———, "Notes on Mastic-Grouted Gabions and Revet Mattress," undated, Flushing, N. Y.

THE STREAMBANK EROSION CONTROL EVALUATION AND
DEMONSTRATION ACT OF 1974 S. (U) ARMY ENGINEER
WATERWAYS EXPERIMENT STATION VICKSBURG MS HYDRA.
UNCLASSIFIED M P KEOWN ET AL. DEC 81 WES/TR/H-77-9-APP-A F/G 13/2 NL

Synthetic mattresses, matting, and tubing

D76
Intrusion-Prepakt, Inc., "Erosion Control (Chevron Oil Co.)," Fabriform Report FF-14, undated, Cleveland, Ohio.

_________ "Erosion Control (State of New York)," Fabriform Report FF-47, undated, Cleveland, Ohio.

_________ "Experimental Beach Rehabilitation," Fabriform Report FF-37, undated, Cleveland, Ohio.

_________ "Fabricast Molded Blocks," 1975, Cleveland, Ohio.

_________ "Fabriform Lines Old Canal," Fabriform Report FF-56, undated, Cleveland, Ohio.

_________ "Fabriform Mats Stabilize Channel for Cassadaga Creek," Fabriform Report FF-29 (rev.), undated, Cleveland, Ohio.

_________ "Fabriform Paves Steep Slope," Fabriform Report FF-54, undated, Cleveland, Ohio.

_________ "Fabriform Stabilizes Trouble Areas in Flood Prone Creeping," Fabriform Report FF-58, undated, Cleveland, Ohio.

_________ "Land Development and Drainage Control with Fabriform," Fabriform Report FF-60, undated, Cleveland, Ohio.

_________ "Spotlight on the World of Prepakt," Published quarterly since 1973, Cleveland, Ohio.

_________ "Stabilization of Creek Banks Beneath Interstate Bridge," Fabriform Report FF-63, undated, Cleveland, Ohio.

Monsanto Textiles Co., "Bidim Engineering Fabric for Soil Stabilization and Drainage," undated, St. Louis, Mo.

VSL Corporation, "Discharge Canal Four Corners Plant, New Mexico," Feb 1971, Los Gatos, Calif.

______, "VSL Hydro-Lining," undated, Los Gatos, Calif.

Timber-and-brush mattresses

Central Board of Irrigation and Power, "Manual on River Behavior, Control, and Training," Publication No. 60, 1956, New Delhi, India.

Christian, H. E., "Channel Stabilization and Bank Protection," *Summer Short Course on River Systems*, University of Nebraska, Lincoln, Nebr., 1972.

Huber, R. L., "Channel Stabilization of the Missouri River," Jun 1952; presented to the American Society of Civil Engineers, Denver, Colo.

Manak, W., River Regulation, Arkady, Warsaw, 1964; Published for U. S. Department of Interior and National Science Foundation.

D81
Matthes, G. H., "Report on Revetments," 8 Oct 1941, Mississippi River Commission, CE, Vicksburg, Miss.

Myers, H. B., "Red River Bank Stabilization" (unpublished and undated), Mississippi River Commission, CE, Vicksburg, Miss.

U. S. Army Engineer District, Kansas City, CE, "Improving and Stabilizing the Channel of the Missouri River," Jan 2, 1948 (5th rev.), Kansas City, Mo.

U. S. Army Engineer District, Memphis, CE, "Revetment and Dike Data Sheets," 30 Jun 1964, Memphis, Tenn.

U. S. Army Engineer District, Vicksburg, CE, "Bank Protection and Dike Data Sheets," 30 Jun 1949, Vicksburg, Miss.

D84

Used-tire matting

U. S. Army Engineer District, Kansas City, CE, "Bank Erosion," Unpublished and undated handout prepared for landowners, Kansas City, Mo.

U. S. Army Engineer District, Rock Island, CE, "How to Engineer a Solution to Long-Term Erosion Problems," undated, Rock Island, Ill.

Buikheads

Concrete or stone

California, State of, Department of Public Works, Division of Highways, Bank and Shore Protection in California Highway Practice, Sacramento, Calif., Nov 1960.

________, "Maccaferri Gabions," undated, New York, N. Y.

________, "Structural Designing Data, Retaining Walls," 1974, Flushing, N. Y.

________, "Concrete Structures for Flood Control, Soil and Water Conservation," 1937, Chicago, Ill.

Fiber

D90
GAF Corporation, "GAF Corrugated Canal Bulkheading," undated, New York, N. Y.

Metal

Timber

California, State of, Department of Public Works, Division of Highways, Bank and Shore Protection in California Highway Practice, Sacramento, Calif., Nov 1960.

California, State of, Department of Public Works, Division of Highways, Bank and Shore Protection in California Highway Practice, Sacramento, Calif., Nov 1970.

Dawson, E. F., Notes on the Mississippi River, Thacker, Sprink and Co., Calcutta, 1900.

Naue-Fosertechnik, "Terrafix, Terradran," undated, Espelkamp-Fiestel, W. Germany.

Stepanov, A. V., "Obschii Prodolyni-Izgib Karpusa Sudna s Parymi Lywkami (Shipbuilding and Marine Structures)," 20 May 1975, Naval Intelligence Support Center, Translation Division, Washington, D. C.

U. S. Army Engineer District, Omaha, CE, "Report on Channel Protection Against High Velocity Flow," Jun 1953, Omaha, Nebr.

Soil Stabilization Techniques

Asphalt (bulk)

Meredith, E. C., "Investigation of Mass Placement of Sand Asphalt for Underwater Protection of River Banks," Technical Memorandum No. 3-329, Aug 1951, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

Grout

D95

Asphalt Institute, "Asphalt Leads the Fight Against Beach Erosion," Nov 1955, College Park, Md.

Buzzell, D. A., "Current Slope Protection Practice," Jan 1946; Presented to American Society of Civil Engineers, Soil Mechanics and Foundation Division, Committee on Earth Dams, Subcommittee on Slope Protection, Washington, D. C.

California, State of, Department of Public Works, Division of Highways, Bank and Shore Protection in California Highways Practice, Sacramento, Calif., Nov 1960.

Edge, D. E., "Asphalt in Erosion Control and Hydraulics (unpublished and undated), The Asphalt Institute, College Park, Md.

Thornber, C. H. and Bubenik, M. C., "Channel Stabilization of the Willamette River" (unpublished and undated), Mississippi River Commission, CE, Vicksburg, Miss.

Organic mixtures and mulches

"Bowie Industries, Inc.," Bowie Hydro-Mulcher, undated, Bowie, Tex.

"Procedure Outline for Hydro-Sprigging with the Use of Wood Cellulose Fiber Mulch and the Bowie Hydro-Mulcher" (unpublished and undated), Bowie, Tex.

Conwed Corporation, "Conwed Hydro Mulch and Hydro Mulch 2000 Fiber," Minneapolis, Minn.

———, "Hydraulic Mulching, the One-Step Approach to Turf Establishment," undated, Minneapolis, Minn.

Edge, D. E., "Asphalt in Erosion Control and Hydraulics" (unpublished and undated), The Asphalt Institute, College Park, Md.

Gilbert, W. B. and Deal, E. E., "Temporary Ditch Liners for Erosion Control and Sod Establishment" (unpublished and undated), Turf Project Crop Science Department, North Carolina State University, Raleigh, N. C.

Gorrie, T. M., Soil and Water Conservation in the Punjab, Simla, New Delhi, India, 1946.

Grass Growers, "Terra Tack," undated, Plainfield, N. J.

_________, "Petroset SB Soil Binder," undated, Bartlesville, Okla.

Toth, J., "U. S. Soil Conservation Service Test Site, Montville, New Jersey," (unpublished and undated), Morristown, N. J.

Soil cement

Thermal control

Vegetation

Bowie Industries, Inc., "Bowie Hydro-Mulcher" (undated), Bowie, Tex.
Bowie Industries, Inc., "Procedure Outline for Hydro-Sprigging with the
Use of Wood Cellulose Fiber Mulch and the Bowie Hydro-Mulcher" (unpub-
lished and undated), Bowie, Tex.

Bowie Machine Works, Inc., "Facts About Hydro-Mulching, the New One-Step
Method for Establishing Turf" (undated), Bowie, Tex.

Brown, G. L., Jr., "Fiberglas for Erosion Control" (unpublished),
Jul 1976, Atlanta, Ga.

Brown, T. A., "A Plant for Shoreline Erosion Control" (unpublished and
undated), U. S. Department of Agriculture, Soil Conservation Service,
Jackson, Miss.

Bursali, S., "Economic Revetments for Protecting the Banks of Meric and
Ergene Rivers Flood Canals Against Wave Erosion," Proceedings, Inter-
national Association for Hydraulic Research Symposium on River Mechanics,
Asian Institute of Technology, Bangkok, Thailand, Vol I, 1973,
pp 203-212.

Buzzell, D. A., "Current Slope Protection Practice," Jan 1946; Presented
to American Society of Civil Engineers, Soil Mechanics and Foundation
Division, Committee on Earth Dams, Subcommittee on Slope Protection,
Washington, D. C.

Cheatham, G. C., "Bank Protection-Erosion Controls," Unpublished and
undated handout prepared for landowners, U. S. Army Engineer District,
Tulsa, OK, Tulsa, Okla.

Chepil, W. S. et al., "Vegetative and Nonvegetative Materials to Control
Wind and Water Erosion," Proceedings, Soil Science Society of America,
Vol 27, No. 1, Jan-Feb 1963, pp 86-89.

Christian, H. E., "Channel Stabilization and Bank Protection," Summer
Short Course on River Systems, University of Nebraska, Lincoln, Nebr.,
1972.

Collier, C. A., "Seawall and Revetment Effectiveness, Cost and Construc-
tion," Report No. 6, May 1975, Florida Sea Grant Program, Gainesville,
Fla.

Craig, R. M. and Williams, A. T., "Native Vegetation Along Manmade
Channels in South Florida," Proceedings, Florida State Horticultural

Dale, T. and Ross, W. A., "Conserving Farm Lands," Vocational Division
Bulletin No. 201, Agricultural Series No. 53, 1939, U. S. Department of

Davis, A., "Highway Erosion Control Demonstration," The Dixie Con-

D104

D105

Gorrie, R. M., Soil and Water Conservation in the Punjab, Simla, New Delhi, India, 1946.

Grass Growers, "Terra Tack," undated, Plainfield, N. J.

"Hold Gro Recommended Installation Steps," undated, Tuscaloosa, Ala.

Horton, J. S., "Trees and Shrubs for Erosion Control in Southern California Mountains," undated, State of California, Department of Forestry, Division of Natural Resources, Sacramento, Calif.

Jones, L. G. and Thompson, L. M., "Soil Erosion and Its Control," 1941, Agricultural and Mechanical College of Texas, Department of Agronomy, College Station, Tex.

Lowry, G. L. and Hunt, L., "Study of Biological and Physical Factors Affecting Eroding Shoreline Areas and Their Initial Stabilization," Research Project, 1976, State of Texas, Austin, Tex.; Performed by Stephan F. Austin State University, School of Forestry, Nacogdoches, Tex.

McWhorter, J. C., Carpenter, T. B., and Clark, R. W., "Erosion Control Criteria for Drainage Channels," Mar 1968, Agricultural Experiment Station, Mississippi State University, State College, Miss.

Miller, E. L. and Budy, J. D., "Survival of Grass and Tree Species at High Elevations in the Sierra Nevada," Research Project, 1974, University of Nevada, Agricultural Experiment Station, Reno, Nevada; Performed for the U. S. Department of Agriculture, Cooperative State Research Service, Nevada.

Reinco, "Reinco Hydrograssers and Power Mulchers," undated; Plainfield, N. J.

Rowe, P. B., "Influence of Wooded Chaparral on Water and Soil in Central California," undated, State of California, Department of Natural Resources, Sacramento, California.

U. S. Army Engineer District, Cincinnati, CE, "Investigation of Slope Protection--Cincinnati District," Sep 1946, Cincinnati, Ohio.

U. S. Army Engineer District, Kansas City, CE, "Bank Erosion," Unpublished and undated handout prepared for landowners, Kansas City, Mo.

U. S. Army Engineer District, Omaha, CE, "Mud Creek at Broken Bow, Nebraska, Final Environmental Impact Statement," Mar 1972, Omaha, Nebr.

D114

River Training Structures

Cribs

California, State of, Department of Public Works, Division of Highways, Bank and Shore Protection in California Highway Practice, Sacramento, Calif., Nov 1960.

Dawson, E. F., Notes on the Mississippi River, Thacker, Sprink and Co., Calcutta, 1900.

Mamak, W., River Regulation, Arkady, Warsaw, 1964; Published for U. S. Department of the Interior and National Science Foundation.

D118

U. S. Army Engineer District, Kansas City, CE, "Improving and Stabilizing the Channel of the Missouri River," Jan 2, 1948 (fifth revision), Kansas City, Mo.

U. S. Army Engineer District, Omaha, CE, "Report on Channel Protection Against High Velocity Flow," Jun 1953, Omaha, Nebr.

Dikes (sill, groin, spur, jetty)

Ahmad, M., "Experiments on Design and Behavior of Spur Dikes," Proceedings, Minnesota International Hydraulics Convention, 1-4 Sep 1953, pp 145-159.

"Protection Against Erosion by the Sea," Concrete and Constructional Engineering (London), Apr 1956, pp 355-356.

Asphalt Institute, "Asphalt for Beach Protection," Dec 1950, Institute, New York, N. Y.

"Asphalt Leads the Fight Against Beach Erosion," Nov 1955, College Park, Md.

Baltimore Sun, "Old Cars as Breakwater Add Woes to Seaside Town," 12 Apr 1966, Baltimore, Md.

California, State of, Department of Public Works, Division of Highways, Bank and Shore Protection in California Highway Practice, Sacramento, Calif., Nov 1960.

California, State of, Department of Public Works, Division of Highways, Bank and Shore Protection in California Highway Practice, Sacramento, Calif., Nov 1970.

Childs, W. M., "Experimental Retards, Mile 90, Red River (Interim Report)," Office Memorandum, 16 Jun 1948, Mississippi River Commission, Vicksburg, Miss.
Christian, H. E., "Channel Stabilization and Bank Protection,"
Summer Short Course on River Systems, University of Nebraska, Lincoln, Nebr., 1972.

Dawson, E. F., Notes on the Mississippi River, Thacker, Sprink and Co., Calcutta, 1900.

Fowler, J., "River Tees Improvements," Institute of Civil Engineering, Vol 90, 1887.

Fox, S. W., "Technical Methods of River Improvement as Developed on the Lower Missouri River by the General Government from 1876 to 1903," American Society of Civil Engineers Transactions, Vol 54, 1905, pp 280-345.

Franco, J. J., "Laboratory Research on Design of Dikes for River Regulation," Miscellaneous Paper 2-860, Nov 1966, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

Headquarters, Department of the Army, Office of the Chief of Engineers, Bank Protection, Mississippi River, Plant Methods and Materials in Use on Works Under Direction of Mississippi River Commission, Washington, D. C., 1922.

Huber, R. L., "Channel Stabilization of the Missouri River," June 1952; Presented to American Society of Civil Engineers, Denver, Colo.

India, Central Board of Irrigation and Power, "Manual on River Behavior, Control, and Training," Publication No. 60, 1956, New Delhi, India.

________, "Fabricast Molded Blocks," 1975, Cleveland, Ohio.

________, "Spotlight on the World of Prepakt," Published quarterly since 1973, Cleveland, Ohio.

Kapteyn, P. T., "Improvement of the Lower Weser," Tijdschrift van het Koninklijk Instituut van Ingenieurs, 1892-1893.

________, "Maccaferri Gabions," undated, New York, N. Y.

Mamak, W., River Regulation, Arkady, Warsaw, 1964; Published for U. S. Department of Interior and National Science Foundation.

Naue-Fosertechnik, "Terrafix, Terradran," undated, Espelkamp-Fiestel, W. Germany.

________, "Army Completes Fire Island Work," 6 Dec 1959, New York, N. Y.

__________, "The Use of Gabions in the Construction of Weirs," Technical Booklet No. 9, undated, Bologna, Italy.

Tison, L. J., "The Action of Projecting Obstacles, Primarily Spur Dikes on Banks" (unpublished and undated), Mississippi River Commission, CE, Vicksburg, Miss.

Towl, R. N., "Missouri River Bank Protection at Omaha, Nebraska," Transactions, American Society of Civil Engineers, Vol 85, 1922, p 1482.

________, "Bank Erosion," Unpublished and undated handout prepared for landowners, Kansas City, Mo.

________, "Channel Stabilization Structure," File No. SP-P-0474, Sheets 1-10, Apr 1974, Kansas City, Mo.

________, "Improving and Stabilizing the Channel of the Missouri River," Jan 2, 1948 (fifth revision), Kansas City, Mo.

________, "Invitation for Bids (Construction Contract) No. DACW 41-76-B-0050: Channel Stabilization Missouri River to Mouth--Rulo to Upper Miami Bends (Mile 498.4 to Mile 262.6)," March 29, 1976, Kansas City, Mo.

________, "Revetment and Dike Data Sheets," 30 Jun 1964, Memphis, Tenn.

________, "Reports on Technical Details of Methods and Designs Employed on River and Harbor Works," 14 Dec 1939, Portland, Oreg.

U. S. Army Engineer District, Rock Island, CE, "How to Engineer a Solution to Long-Term Erosion Problems," undated, Rock Island, Ill.

U. S. Army Engineer District, St. Louis, CE, "Geomorphology of the Middle Mississippi River," Contract Report Y-72-2, Jul 1974, St. Louis, Mo.; Prepared by Engineering Research Center, Colorado State University, Fort Collins, Colo., and monitored by Office of Environmental Studies, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

________, "Improvement of Middle Mississippi River," May 1939, St. Louis, Mo.

________, "Jetties and Breakwaters," Coastal and Harbor Engineering, Fort Belvoir, Va., Lesson No. 72, 19 Mar 1948.

D138

U. S. Army Engineer Waterways Experiment Station, CE, "Model Studies for Channel Stabilization, Mississippi," Paper 15, Jan 1934, Vicksburg, Miss.

________, "Regulation of German Rivers and Comparisons with American Practice," 10 Dec 1931, Miscellaneous File No. 211, U. S. Army Engineer Office, CE, Norfolk, Va.; Unpublished Memorandum to Chief of Engineers, Washington, D. C.

Fences

California, State of, Department of Public Works, Division of Highways, Bank and Shore Protection in California Highway Practice, Sacramento, Calif., Nov 1960.

California, State of, Department of Public Works, Division of Highways, Bank and Shore Protection in California Highway Practice, Sacramento, Calif., Nov 1970.

Mamak, W., River Regulation, Arkady, Warsaw, 1964; Published for U. S. Department of Interior and National Science Foundation.

U. S. Army Engineer District, San Francisco, CE, "Russian River Basin (Channel Improvement and Bank Stabilization), Sonoma and Mendocino Counties, California," 1972, San Francisco, Calif.

Kellner, Jack field

California, State of, Department of Public Works, Division of Highway, Bank and Shore Protection in California Highway Practice, Sacramento, Calif., Nov 1960.

Carlson, E. J. and Enger, P. F., "Use of Steel Jetties for Bank Protection and Channelization in Rivers," 22-24 Aug 1956; Presented at meeting of Hydraulics Division, American Society of Civil Engineers, Madison, Wis.

"Frenchman Creek Channelization" (unpublished and undated), Kansas River Projects In-house Report, McCook, Nebr.

"Kansas River Projects, Frenchman Creek Channelization Studies," undated, McCook, Nebr.

D149
Tetrahedron field

California, State of, Department of Public Works, Division of Highways, Bank and Shore Protection in California Highway Practice, Sacramento, Calif., Nov 1960.

California, State of, Department of Public Works, Division of Highways, Bank and Shore Protection in California Highway Practice, Sacramento, Calif., Nov 1970.

Haas, R. H., "Development of Concrete Revetments on the Lower Mississippi," Concrete, April and May 1947, pp l-10 (reprint).

D150
Matthes, G. H., "Notes on Tetrahedral-Block Revetment," 27 May 1943, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

Matthes, G. H., "Report on Revetments," 8 Oct 1941, Mississippi River Commission, CE, Vicksburg, Miss.

U. S. Army Engineer District, Memphis, CE, "Revetment and Dike Data Sheets," 30 Jun 1964, Memphis, Tenn.

U. S. Army Engineer Waterways Experiment Station, CE, "Experiments to Determine the Effectiveness of Concrete Tetrahedral Blocks as Revetment," Technical Memorandum No. 20-2, 28 Jan 1933, Vicksburg, Miss.

D151
APPENDIX E: SELECTED BIBLIOGRAPHIES ON STREAMBANK PROTECTION

Asphalt Institute, "Bibliography, Asphalt in Hydraulics Structures," compiled in 6-year intervals since 1964 (unpublished), College Park, Md.

India, Central Board of Irrigation and Power, "Review and Bibliography on Development of Economic Alternatives to Stone for River Protection Works" (undated), New Delhi, India.

LITERATURE SURVEY AND PRELIMINARY EVALUATION OF
STREAMBANK-PROTECTION METHODS

Supplementary Report
SUPPLEMENTARY LITERATURE SURVEY OF
STREAMBANK-PROTECTION METHODS
TECHNICAL REPORT H-77-9
LITERATURE SURVEY AND PRELIMINARY EVALUATION OF
STREAMBANK-PROTECTION METHODS

Supplementary Report
SUPPLEMENTARY LITERATURE SURVEY OF
STREAMBANK-PROTECTION METHODS

by
E. A. Dardeau, Jr.

Hydraulics Laboratory
U. S. Army Engineer Waterways Experiment Station
P. O. Box 631, Vicksburg, Miss. 39180

December 1981

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Prepared for Office, Chief of Engineers, U. S. Army
Washington, D. C. 20314

Under Work Unit 2, Authorized by Section 32,
Water Resources Development Act, 1974
PREFACE

The study reported herein was performed from 1 January to 15 May 1981 by the U. S. Army Engineer Waterways Experiment Station (WES) for the Office, Chief of Engineers, U. S. Army, under Work Unit 2, "Literature Survey and Evaluation of Bank Protection Methods," authorized by Section 32 of the Water Resources Development Act of 1974, Public Law 93-251. Section 32 may be cited as the "Streambank Erosion Control Evaluation and Demonstration Act of 1974." Research under Work Unit 2 is directed by Mr. N. R. Oswalt, Chief, Spillways and Channels Branch, under the general supervision of Messrs. J. L. Grace, Jr., Chief, Structures Division, H. B. Simmons, Chief, Hydraulics Laboratory, and E. B. Pickett, Program Manager for the Section 32 Program.

The major emphasis of this study was to update WES Technical Report H-77-9, "Literature Survey and Preliminary Evaluation of Streambank Protection Methods," published May 1977. This study was planned and conducted by Mr. E. A. Dardeau, Jr., Environmental Assessment Group (EAG), under the direct supervision of Mr. J. K. Stoll, Chief, EAG, and under the general supervision of Dr. C. J. Kirby, Chief Environmental Resources Division, and Dr. J. Harrison, Chief, Environmental Laboratory. This report was prepared by Mr. Dardeau as a part of Appendix A of the Final Report to Congress on the Section 32 Program.

Director and Commander of WES during the preparation of this report was COL Tilford C. Creel, CE. Technical Director was Mr. Frederick R. Brown.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td>1</td>
</tr>
<tr>
<td>PART I: INTRODUCTION</td>
<td>3</td>
</tr>
<tr>
<td>PART II: UPDATE OF THE LITERATURE SURVEY</td>
<td>4</td>
</tr>
<tr>
<td>PART III: STREAMBANK PROTECTION METHODS</td>
<td>6</td>
</tr>
<tr>
<td>Single-Component Revetments</td>
<td>6</td>
</tr>
<tr>
<td>Mattress, Matting, and Pavement Revetments</td>
<td>7</td>
</tr>
<tr>
<td>Bulkheads</td>
<td>9</td>
</tr>
<tr>
<td>Soil Stabilization</td>
<td>10</td>
</tr>
<tr>
<td>River-Training Structures</td>
<td>11</td>
</tr>
<tr>
<td>Grade-Control Structures</td>
<td>11</td>
</tr>
<tr>
<td>Channel Cutoffs</td>
<td>12</td>
</tr>
<tr>
<td>Overbank Drainage</td>
<td>13</td>
</tr>
<tr>
<td>PART IV: SUMMARY</td>
<td>14</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>15</td>
</tr>
<tr>
<td>TABLES 1-2</td>
<td></td>
</tr>
<tr>
<td>FIGURES 1-25</td>
<td></td>
</tr>
<tr>
<td>APPENDIX A: UPDATED LISTING OF COMMERCIAL CONCERNS THAT MARKET STREAMBANK PROTECTION PRODUCTS</td>
<td>A1</td>
</tr>
<tr>
<td>APPENDIX B: UPDATED LISTING OF RESEARCH ORGANIZATIONS INVOLVED IN THE STUDY OF STREAMBANK PROTECTION</td>
<td>B1</td>
</tr>
<tr>
<td>APPENDIX C: SUPPLEMENTARY GLOSSARY OF STREAMBANK PROTECTION TERMINOLOGY</td>
<td>C1</td>
</tr>
<tr>
<td>APPENDIX D: SUPPLEMENTARY LITERATURE SURVEY OF STREAMBANK PROTECTION</td>
<td>D1</td>
</tr>
<tr>
<td>Single-Component Revetments</td>
<td>D2</td>
</tr>
<tr>
<td>Mattress, Matting, and Pavement Revetments</td>
<td>D30</td>
</tr>
<tr>
<td>Bulkheads</td>
<td>D54</td>
</tr>
<tr>
<td>Soil Stabilization</td>
<td>D65</td>
</tr>
<tr>
<td>River-Training Structures</td>
<td>D92</td>
</tr>
<tr>
<td>Grade-Control Structures</td>
<td>D110</td>
</tr>
<tr>
<td>Channel Cutoffs</td>
<td>D115</td>
</tr>
<tr>
<td>Surface Drainage</td>
<td>D117</td>
</tr>
<tr>
<td>APPENDIX E: SUPPLEMENTARY SELECTED BIBLIOGRAPHIES ON STREAMBANK PROTECTION</td>
<td>E1</td>
</tr>
</tbody>
</table>
1. In recognition of the serious economic losses occurring throughout the Nation due to bank erosion, the U. S. Congress passed the Streambank Erosion Control Evaluation and Demonstration Act of 1974, Section 32, Public Law 93-251 (as amended by Public Law 94-587, Sections 155 and 161, October 1976). This legislation authorized a five-year program providing for an updated analysis of the extent and seriousness of streambank erosion, for research studies of soil stability and hydraulic processes that affect erosion, for an evaluation of existing bank protection techniques, and for the construction and monitoring of demonstration projects to evaluate the most promising bank protection methods. This effort has generally been referred to as the "Section 32 Program." Under this program, the U. S. Army Engineer Waterways Experiment Station (WES) published Technical Report H-77-9, "Literature Survey and Preliminary Evaluation of Streambank Protection Methods" (Keown et al. 1977). This report surveyed the extensive literature on streambank protection methods available at that time and contained the results of preliminary investigations of the mechanisms that contribute to streambank erosion and the evaluation of the effectiveness of the most widely used streambank protection methods.

2. As part of the preparation for the Final Report to Congress on the Section 32 Program, the 1977 literature survey was updated. The results of this survey are included in this report.
PART II: UPDATE OF THE LITERATURE SURVEY

3. The literature survey was updated between 1 January and 15 May 1981 by using appropriate key words to search the following collections for relevant literature sources:
 a. Technical Information Center, WES.
 b. Section 32 Files, WES.
 c. Hydraulic Engineering Information Analysis Center, WES.
 d. Private collections of Dr. E. B. Perry and Messrs. E. B. Pickett and H. H. Allen, WES.
 e. Mississippi River Commission, CE, Vicksburg, Mississippi.

Selected Federal and State agencies, universities, commercial concerns that market streambank protection products, and research organizations that direct at least a part of their efforts to the study of streambank protection* were contacted to obtain other published literature that had limited circulation.

4. Several computerized databases of the DIALOG Information Retrieval Service (operated by Lockheed Information Systems of Palo Alto, California) also yielded domestic and foreign literature sources. These databases included:

<table>
<thead>
<tr>
<th>DIALOG File No(s)</th>
<th>Database</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>COMPENDEX (Engineering Index, Inc., New York, New York).</td>
</tr>
<tr>
<td>10, 110</td>
<td>AGRICOLA (National Agricultural Library, U. S. Department of Agriculture, Beltsville, Maryland).</td>
</tr>
<tr>
<td>34, 94</td>
<td>SCISEARCH (Institute for Scientific Information, Philadelphia, Pennsylvania).</td>
</tr>
</tbody>
</table>

(Continued)

* Appendixes A and B are updated listings of 73 commercial concerns and 6 research organizations, respectively.
5. For the purposes of this literature survey, streambank protection methods were divided into eight groups, as follows:

b. Mattress, matting, and pavement revetments.
c. Bulkheads.
d. Soil stabilization.
e. River-training structures.
f. Grade-control structures.
g. Channel cutoffs.
h. Overbank drainage.

The first five groups have been further subdivided into a number of individual methods (Table 1).*

6. Literature sources were located and examined for content and for possible duplication with the bibliographic listings found in the first survey. If a source did not duplicate listings in the first survey and had significant technical value with regard to streambank protection, it was placed in alphabetical order under the appropriate method or methods listed in Table 1. Appendix D is the resulting supplementary bibliography. In addition, a listing of selected bibliographies on streambank protection was compiled (Appendix E).

* The term "method," as used in this survey, includes the various materials, structures, and techniques for protecting streambanks from erosion or for preventing an unstable condition from developing. New terminology introduced in this survey is defined in Appendix C.
PART III: STREAMBANK PROTECTION METHODS

7. Keown et al. (1977) discussed 38 methods of streambank protection and provided bibliographic citations for each method. Appendix D of this report contains references on most of these 38 methods. In addition, this report discusses and provides references for 18 other methods of streambank protection. Table 2 shows the number of references found for all methods in both literature surveys. The following paragraphs discuss each of the eight groups of streambank protection methods (paragraph 5) and describe those methods not covered in the earlier survey.

Single-Component Revetments

8. Ten types of single-component revetments, including asphalt blocks, automobile bodies, ceramic riprap, cellular concrete blocks, solid concrete blocks, rubble, sack revetment, stone riprap, tetrapods, and trench-fill revetment, were discussed in the earlier survey, and a list of references was provided for each method. In the course of the current survey, the WES reviewed literature on four other single-component methods, aggregate blanket, slag, soil-cement blocks, and windrow revetment. These four methods are discussed below.

Aggregate blanket

9. In navigation pools or other hydraulic environments where stream velocities, the amplitude of wave attack, and water-surface elevation fluctuations are minimal, aggregate blankets can be used in lieu of larger diameter materials to protect streambanks from surface erosion. These revetments, which consist of a layer of gravel, crushed rock, shell, or other suitable aggregate material, protect the banks and permit vegetation to become established. Figure 1 shows an aggregate blanket of gravel being placed by clamshell.

Slag

10. Slag, a by-product of iron ore smelting, is a high-density material that can be used in place of stone riprap. Generally, its
use has been restricted to streambanks in close proximity to smelting operations. Figure 2 shows a typical slag revetment, while Figure 3 is a detailed view of the material used to construct that revetment.

Soil-cement blocks

11. Soil-cement blocks are fabricated by casting a mixture of soil and cement at a prescribed moisture content in pits or trenches in the vicinity of the streambank to be protected. After a curing period, the soil cement is removed, cut or broken into blocks, and placed on the streambank (Figure 4).

Windrow revetment

12. The windrow revetment, a distant relative of the trench-fill revetment, is constructed by placing a windrow of stone on the top bank landward of the eroding face (Figure 5). As bank erosion continues, undercutting of the windrow eventually occurs and causes stone to be launched down the bank as armor (Figure 6).

Mattress, Matting, and Pavement Revetments

13. Keown et al. (1977) discussed and presented references on 13* types of mattress, matting, and pavement revetments. These were articulated concrete mattress, asphalt pavement, bituminous mattress, ceramic mattress, concrete pavement, erosion-control matting, fascine mattress, gabion, log-and-cable revetment, rock-and-wire mattress, synthetic mattress, matting, and tubing, timber or brush mattress, and used-tire matting. In this survey, the WES also reviewed literature on four other methods of this group, including cellular-block mattress, clay blanket, sack revetment (monolith construction), and vegetation mattress. Each of these other methods is discussed in the following paragraphs.

*Table 2 lists only 12 types of mattress, matting, and pavement revetments. References located by Keown et al. (1977) for "gabions" and "rock-and-wire mattresses" were later combined (deleting duplicate entries) and placed under "gabions."
Cellular-block mattress

14. The cellular-block mattress is usually constructed by bonding precast cellular blocks to rectangular sheets of filter fabric (referred to as the carrier fabric). Each mattress section is fabricated with sufficient margin of filter fabric extending beyond the blocks on at least three sides. This extra margin of filter fabric permits the mattress sections to be lifted by mobile crane onto the streambank to be protected (Figure 7). Figure 8 shows an in-place cellular-block mattress.*

Clay blanket

15. Cohesionless streambank soils (e.g., sand) can be difficult to stabilize in their in situ condition. One method that has proved to be effective in stabilizing these erosive soils is an impervious clay blanket. The surface layer of the in situ streambank soil should be removed and then replaced with the same thickness (after compaction in one or more lifts) of a blanket of clay (usually the Unified Soil Classification System (U. S. Army Engineer Waterways Experiment Station 1960) soil types of CH or CL or a combination of these two soil types) that is free of plant growth, roots, and humus (Figure 9). Clay blankets can then be seeded and mulched to establish vegetation (Figure 10).

Sack revetment (monolith construction)

16. Monolithic sack revetments allow a simplistic approach to the construction of a pavement by using filled bags as building blocks. The components of this revetment are sacks (usually biodegradable) that are prefilled with a dry sand-cement mixture. Individual sacks are stacked on the eroding bank and are allowed to conform to the bank geometry. When in place, the sacks are wetted so that they will become bonded to each other, thus forming a pavement (Figure 11).

Vegetation mattress

17. A vegetation mattress (Figure 12) is constructed by connecting vegetative materials (e.g., hay bales) to each other in the form of a

* For a complete discussion of filter fabric in streambank protection applications, see Keown and Dardeau (1980).
mattress. The mattress is then anchored to the streambank. This type of revetment has had only limited usage.

Bulkheads

18. Discussions and listings of references were presented on four types of bulkheads (concrete or stone, fiber, metal, and timber) in the earlier literature survey (Keown et al. 1977). In this survey, literature on these four methods and on three other types of bulkheads, including gabion, reinforced earth, and used tires, was also reviewed (Appendix D). The last three types of bulkheads are discussed below.

Gabion

19. A gabion bulkhead (Figure 13) is a vertical or nearly vertical arrangement of gabion components placed along an eroding streambank. Individual baskets (or cages) can be filled and assembled as a bulkhead at the jobsite. Keown et al. (1977) and Dardeau (1980) discussed the construction and use of gabions for streambank protection.

Reinforced earth

20. Reinforced earth is a construction material whose strength can be increased by the introduction of small quantities of other materials in the form of bars, strips, or fibers. The concept of reinforced earth can be traced as far back as the ancient civilizations of Egypt and Babylon where straw was used to give added strength to clay used for building; however, the process was not patented until 1969 by Henri Vidal. In 1971, the Reinforced Earth Company of Arlington, Virginia, was granted a license to use the process in the United States (Al-Hussaini and Perry 1976).

21. Vertical facing panels (often precast concrete) are fastened to reinforcing elements. Bank material is then compacted in lifts over the elements until the desired protection height is reached. Figure 14 shows a reinforced-earth bulkhead under construction, and Figure 15 shows a completed project.

Used tires

22. Used tires can be filled with gravel or other material and
stacked to build a bulkhead to protect riparian property. This type of bulkhead, which can be constructed with limited funds and no heavy equipment, offers an economic advantage to a private landowner willing to invest his labor. In most areas, landowners can obtain used tires free or at minimal cost from tire dealers or service stations. Tires are placed in staggered rows and tamped with fill material (Figure 16). Keown (1979) and Keown, Dardeau, and Causey (1980) documented how individual property owners have protected their riparian properties using this technique.

Soil Stabilization

23. Keown et al. (1977) discussed and presented references on six methods of soil stabilization, including bulk asphalt, grout, organic mixtures and mulches, soil cement, temperature control, and vegetation. Appendix D of this survey contains a supplementary bibliography on most of these methods, as well as three other methods, chemicals, fiberglass, and lime. The three latter methods are discussed below.

Chemicals

24. A number of chemical substances (e.g., acetates, resins, latexes, etc.) have long been used for dust control especially in highway and airfield construction. These same substances can also be used to prevent surface erosion of streambank soils by increasing the cohesiveness of the soil and shifting particle-size distribution to the coarser fractions. Figure 17 shows chemicals being applied to stabilize a streambank.

Fiberglass

25. Fiberglass, although chemically inert, can be used to check surface erosion of streambank soils and to stabilize these soils until vegetation becomes established. Most of the fiberglass sold for the purposes of erosion control is in the form of packages resembling spools of yarn. Compressed air nozzles dispense the fiberglass and separate it into fine strands that form a protective web on the eroding streambank. Figure 18 shows a streambank being treated with fiberglass.
Lime

26. Gutschick (1978) points out that lime (CaO) was first used to stabilize clay-gravel base materials for highway construction in the United States in the mid-1940's. In succeeding years, this substance was used for stabilizing underwater soils including those on levees and streambanks. Researchers found that when lime was mixed with clay, complex calcium and aluminum silicates formed as reaction products and imparted "... enough strength to make the treated layer hydrophobic or non-sensitive to water" (Gutschick 1978). Even the less plastic silty clays and dispersive silts (e.g., loess) can be treated with a compacted reworked soil-lime mixture to form an impervious layer. If desired, a thin layer of topsoil can then be placed over the soil-lime mixture to permit the growth of vegetation (Gutschick 1978). Figure 19 shows lime stabilization of a streambank.

River-Training Structures

27. The crib, dike, Kellner jack field, and tetrahedron field were the types of river-training structures discussed and reviewed in the literature by Keown et al. (1977). Appendix D of this report contains a bibliographic listing of literature on river-training structures reviewed in this survey, including one other type of river-training structure, the floating-tire breakwater.

28. Floating-tire breakwaters, first developed for use as coastal protection, have also been used to dissipate wind- or boat-generated waves in streams. Individual tires are filled with buoyant material (e.g., rigid urethane foam), fastened to each other with straps, cables, chains, etc., and then anchored to deadmen. Figure 20 shows typical plan and sectional views, while Figure 21 shows an in-place floating-tire breakwater.

Grade-Control Structures

29. A degrading channel can bring about the undermining of the
toe of a bank and (if left unchecked) the eventual failure of that bank. Grade-control structures, which are usually placed bank to bank across a stream channel with the central axis of the structure perpendicular to flow, are designed to control bed slope and to prevent scour or headcutting. These structures range in size from small check dams or sills (Figure 22) to massive concrete structures (Figure 23).

Channel Cutoffs

30. The two types of channel cutoffs that develop in nature are (a) the neck cutoff which forms when two adjacent bends of a meander loop erode the same bank until the narrow neck of land between the bends is cut through, and (b) the chute cutoff which forms when successive high-water flows result in a chute across the inside of a point bar. Both types of cutoffs develop in a meandering stream as a means of slope adjustment. Channel cutoffs can also be formed artificially by means of pilot channels (Figure 24). These artificial cutoffs were used extensively on major navigable waterways of the United States with the intent of reducing flood heights and improving navigation (Keown, Dardeau, and Causey 1981).

31. Cutoffs have been also constructed as a channel relocation technique to protect property threatened by encroaching streamflows. The pilot channel should extend from a point upstream to a point downstream from the failing bank. The bed slope of the pilot channel is steeper than the natural channel; therefore, the stream will begin to flow along the shorter and steeper path and erode the bed and bank soils of the pilot channel. The pilot channel continues to erode and increase its capacity while the natural channel becomes blocked due to sediment deposition. Eventually the pilot channel captures all of the streamflow as the stream abandons its meander loop. Because shortening a length of a channel segment can upset the natural balance of a stream, all consequences should be weighed before constructing a channel cutoff.

12
Overbank Drainage

32. Overbank drainage systems allow for control of runoff and the prevention of surface erosion resulting from this runoff flowing down the face of the streambank from areas landward of top bank. Streambank protection projects should include some provisions for overbank drainage as part of their design. Figure 25 shows part of an overbank drainage system constructed at a streambank protection project.
PART IV: SUMMARY

33. This supplementary report updates the material contained in the earlier literature survey on streambank protection (Keown et al., 1977). Much of the literature reviewed by Keown et al. (1977) established the historic perspective of streambank protection, while the current effort was restricted to recently available published references (Appendix D). In the process of reviewing the literature for this survey, the WES also updated its listings of commercial concerns that market streambank protection products (Appendix A) and of research organizations involved in the study of streambank protection (Appendix B). A glossary of streambank protection terminology (Appendix C) and a listing of selected bibliographies on streambank protection (Appendix E) were also prepared.

34. Keown et al. (1977) discussed and provided references on 38 methods of streambank protection. This report describes 18 other methods and presents bibliographic citations for a total of 50 methods (Table 1 and Appendix D). Table 2 shows the numbers of references found for all methods in both surveys.
REFERENCES

Dardeau, E. A., Jr. 1980 (Apr). "Section 32 Program, Streambank Erosion Control; Field Inspection of the Mill Creek Midfloodway Gabion Barrier in the Los Angeles District," Inspection Report 9, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

Keown, M. P. 1979 (May). "Section 32 Program, Streambank Erosion Control Evaluation and Demonstration, Work Unit 2, Evaluation of Existing Bank Protection; Field Inspection of Sites in the New England Division," Inspection Report 6, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

Keown, M. P., Dardeau, E. A., Jr., and Causey, E. M. 1980 (Feb). "Section 32 Program, Streambank Erosion Control Evaluation and Demonstration, Work Unit 2; Field Inspection of Sites in the Ohio River Division," Inspection Report 8, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

U. S. Army Engineer Waterways Experiment Station, CE. 1960. "The Unified Soil Classification System," Technical Memorandum No. 3-357, Vicksburg, Miss.
Table 1
Streambank Protection Methods for Which Literature Sources Were Located in Current Survey

<table>
<thead>
<tr>
<th>Single-Component Revetments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate blanket</td>
</tr>
<tr>
<td>Aggregate blanket</td>
</tr>
<tr>
<td>Concrete blocks, cellular</td>
</tr>
<tr>
<td>Rubble</td>
</tr>
<tr>
<td>Slag</td>
</tr>
<tr>
<td>Stone riprap</td>
</tr>
<tr>
<td>Trench-fill revetment</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mattress, Matting, and Pavement Revetments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Articulated concrete mattress</td>
</tr>
<tr>
<td>Bituminous mattress</td>
</tr>
<tr>
<td>Clay blanket</td>
</tr>
<tr>
<td>Erosion-control matting</td>
</tr>
<tr>
<td>Gablon or rock-and-wire mattress</td>
</tr>
<tr>
<td>Sack revetment (monolith construction)</td>
</tr>
<tr>
<td>Timber or brush mattress</td>
</tr>
<tr>
<td>Vegetation mattress</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bulkheads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete or stone</td>
</tr>
<tr>
<td>Fiber</td>
</tr>
<tr>
<td>Gabion</td>
</tr>
<tr>
<td>Metal</td>
</tr>
<tr>
<td>Reinforced earth</td>
</tr>
<tr>
<td>Timber</td>
</tr>
<tr>
<td>Used tires</td>
</tr>
</tbody>
</table>

(Continued)
THE STREAMBANK EROSION CONTROL EVALUATION AND
DEMONSTRATION ACT OF 1974 S. (U) ARMY ENGINEER
WATERWAYS EXPERIMENT STATION VICKSBURG MS HYDRA.
UNCLASSIFIED M P KEOWN ET AL. DEC 81 WES/TR/H-77-9-APP-A F/G 13/2 NL
Table 1 (Concluded)

<table>
<thead>
<tr>
<th>Soil Stabilization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemicals</td>
</tr>
<tr>
<td>Fiberglass</td>
</tr>
<tr>
<td>Lime</td>
</tr>
<tr>
<td>Organic mixtures and mulches</td>
</tr>
<tr>
<td>Soil cement</td>
</tr>
<tr>
<td>Temperature control</td>
</tr>
<tr>
<td>Vegetation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>River-Training Structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crib</td>
</tr>
<tr>
<td>Dike, impervious</td>
</tr>
<tr>
<td>Dike, pervious</td>
</tr>
<tr>
<td>Floating-tire breakwater</td>
</tr>
<tr>
<td>Kellner jack field</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grade-Control Structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel Cutoffs</td>
</tr>
<tr>
<td>Overbank Drainage</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Keown et al. (1977)</th>
<th>Current Survey</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Component Revetments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aggregate blanket</td>
<td>--</td>
<td>15</td>
</tr>
<tr>
<td>Asphalt blocks</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Automobile bodies</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>Ceramic riprap</td>
<td>7</td>
<td>--</td>
</tr>
<tr>
<td>Concrete blocks, cellular</td>
<td>27</td>
<td>40</td>
</tr>
<tr>
<td>Concrete blocks, solid</td>
<td>52</td>
<td>29</td>
</tr>
<tr>
<td>Rubble</td>
<td>8</td>
<td>19</td>
</tr>
<tr>
<td>Sack revetment</td>
<td>36</td>
<td>26</td>
</tr>
<tr>
<td>Slag</td>
<td>--</td>
<td>5</td>
</tr>
<tr>
<td>Soil-cement blocks</td>
<td>--</td>
<td>5</td>
</tr>
<tr>
<td>Stone riprap</td>
<td>343</td>
<td>175</td>
</tr>
<tr>
<td>Tetrapods</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>Trench-fill revetment</td>
<td>19</td>
<td>1</td>
</tr>
<tr>
<td>Windrow revetment</td>
<td>--</td>
<td>8</td>
</tr>
<tr>
<td>Mattress, Matting, and Pavement Revetments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Articulated concrete mattress</td>
<td>105</td>
<td>12</td>
</tr>
<tr>
<td>Asphalt pavement</td>
<td>65</td>
<td>16</td>
</tr>
<tr>
<td>Bituminous mattress</td>
<td>33</td>
<td>3</td>
</tr>
<tr>
<td>Cellular-block mattress</td>
<td>--</td>
<td>6</td>
</tr>
<tr>
<td>Ceramic mattress</td>
<td>3</td>
<td>--</td>
</tr>
<tr>
<td>Clay blanket</td>
<td>--</td>
<td>4</td>
</tr>
<tr>
<td>Concrete pavement</td>
<td>37</td>
<td>23</td>
</tr>
<tr>
<td>Erosion-control matting</td>
<td>32</td>
<td>52</td>
</tr>
<tr>
<td>Fascine mattress</td>
<td>24</td>
<td>7</td>
</tr>
<tr>
<td>Gabion or rock-and-wire mattress</td>
<td>83*</td>
<td>76</td>
</tr>
<tr>
<td>Log- (or tree-) and-cable revetment</td>
<td>14</td>
<td>6</td>
</tr>
<tr>
<td>Sack revetment (monolith construction)</td>
<td>--</td>
<td>15</td>
</tr>
<tr>
<td>Synthetic mattress, matting, and tubing</td>
<td>35</td>
<td>66</td>
</tr>
<tr>
<td>Timber or brush mattress</td>
<td>92</td>
<td>7</td>
</tr>
<tr>
<td>Used-tire matting</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>Vegetation mattress</td>
<td>--</td>
<td>4</td>
</tr>
</tbody>
</table>

(Continued)

* Total number of references compiled by Keown et al. (1977) under "gabions" and "rock-and-wire mattresses" with duplicate entries deleted.
<table>
<thead>
<tr>
<th>Method</th>
<th>Number of References</th>
<th>Keown et al. (1977)</th>
<th>Current Survey</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulkheads</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concrete or stone</td>
<td>56</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Fiber</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Gabion</td>
<td>--</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Metal</td>
<td>14</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Reinforced earth</td>
<td>--</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Timber</td>
<td>39</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Used tires</td>
<td>--</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Soil Stabilization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asphalt, bulk</td>
<td>9</td>
<td></td>
<td>--</td>
</tr>
<tr>
<td>Chemicals</td>
<td>--</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>fiberglass</td>
<td>--</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Grout</td>
<td>22</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Lime</td>
<td>--</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Organic mixtures and mulches</td>
<td>38</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>Soil cement</td>
<td>24</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Temperature control</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Vegetation</td>
<td>183</td>
<td>155</td>
<td></td>
</tr>
<tr>
<td>River-Training Structures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crib</td>
<td>35</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Dike, impervious</td>
<td>294</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td>Dike, pervious</td>
<td>47</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Floating-tire breakwater</td>
<td>--</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Kellner jack field</td>
<td>30</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Tetrahedron field</td>
<td>28</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Grade-Control Structures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel Cutoffs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overbank Drainage</td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1893</td>
<td>1464</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1. Gravel aggregate blanket being placed by clamshell

Figure 2. Slag used as streambank protection
Figure 4. Soil-cement blocks of various sizes placed on a streambank

Figure 5. Windrow revetment as constructed
Figure 6. Windrow revetment that has been undercut, causing stones to be launched as bank armor

Figure 7. Cellular-block mattress being placed by a mobile crane on a streambank (courtesy of ERCO Systems, Inc.)
Figure 8. In-place cellular-block mattress

Figure 9. Clay blanket placed on the berm and lower portion of the side slope prior to seeding
Figure 10. Clay blanket (left) on which planted vegetation has become established

Figure 11. Sack revetment (monolith construction)
Figure 14. Construction of a reinforced-earth bulkhead
(Reinforced Earth® design by The Reinforced Earth Company)
Figure 1.5. Completed reinforced-earth bulkhead (Reinforced Earth® design by The Reinforced Earth Company)
Figure 16. Used-tire bulkhead

Figure 17. Chemicals being applied to stabilize streambank soils (courtesy of Colonel Bear Division of Witco Chemical Corporation)
Figure 18. Fiberglass applied to stabilize a streambank (courtesy of PPG Industries, Inc.)

Figure 19. Lime stabilization of a streambank (courtesy of National Lime Association)
Figure 20. Typical plan and sectional views of a portion of a floating-tire breakwater
Figure 21. Floating-tire breakwater

Figure 22. Small grade-control structure or sill
Figure 24. Development of new river channel and abandonment of old meander loop following construction of man-made cutoff.
Figure 25. Concrete overbank drainage structure constructed at a streambank protection project
APPENDIX A: UPDATED LISTING OF COMMERCIAL CONCERNS THAT MARKET STREAMBANK PROTECTION PRODUCTS

1. A listing of commercial organizations that market streambank protection products is provided below.

<table>
<thead>
<tr>
<th>Company</th>
<th>Address</th>
<th>Product(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Construction Specialties Company</td>
<td>P. O. Box 17212 Memphis, Tenn. 38117</td>
<td>Sackurity Bag</td>
</tr>
<tr>
<td>Air Logistics Corporation</td>
<td>3600 East Foothill Blvd. Pasadena, Calif. 91109</td>
<td>Mo-Mat</td>
</tr>
<tr>
<td>American Cyanamid Company</td>
<td>Berdan Ave. Wayne, N. J. 07470</td>
<td>Aerospray 52, Aerospray 70</td>
</tr>
<tr>
<td>American Enka Company</td>
<td>Enka, N. C. 28728</td>
<td>Enkamat</td>
</tr>
<tr>
<td>American Excelsior Company</td>
<td>P. O. Box 249 Sheboygan, Wis. 53081</td>
<td>Curlex Blanket</td>
</tr>
<tr>
<td>American Hoechst Corporation</td>
<td>Industrial Chemicals Division P. O. Box 2500 Somerville, N. J. 08876</td>
<td>Curasol AK Binder</td>
</tr>
<tr>
<td>ARMCO Steel Corporation</td>
<td>1747 Pennsylvania Ave., N.W. Suite 702 Washington, D. C. 20006</td>
<td>Bulkhead</td>
</tr>
<tr>
<td>Barrett Industries</td>
<td>6889 Evans Rd. Rt. 3, Box 211-BI San Antonio, Tex 78216</td>
<td>Prefilled Rip Rap Bag</td>
</tr>
<tr>
<td>Belton Bagging Company</td>
<td>P. O. Box 127 Belton, S. C. 29627</td>
<td>Soil Anti-Wash</td>
</tr>
<tr>
<td>Boiardi Products Corporation</td>
<td>211 E. 43rd St. New York, N. Y. 10017</td>
<td>Grasstone</td>
</tr>
<tr>
<td>Bomanite Corporation</td>
<td>81 Encina Ave. Palo Alto, Calif. 94301</td>
<td>Grasscrete</td>
</tr>
<tr>
<td>Bowie Industries</td>
<td>P. O. Box 931 Bowie, Tex. 76230</td>
<td>Bowie Hydro-Mulcher</td>
</tr>
<tr>
<td>Brighton By-Products, Inc.</td>
<td>P. O. Box 23 New Brighton, Pa. 15066</td>
<td>Weed-chek</td>
</tr>
<tr>
<td>Broeklyns Westbrick, Ltd.</td>
<td>17 Paul Street Taunton Somerset TA1 3PF England</td>
<td>Precast concrete block</td>
</tr>
<tr>
<td>Company</td>
<td>Address</td>
<td>Product(s)</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>B.S.C. Sections</td>
<td>P. O. Box 16
Middlesbrough
Cleveland TS3 8BN
England</td>
<td>Steel sheet
piling</td>
</tr>
<tr>
<td>Cape Universal Claddings, Ltd.</td>
<td>P. O. Box 165
Tolpits
Walford WD1 8QZ
England</td>
<td>Nonmetallic
bulkhead
(asbestos-cement)</td>
</tr>
<tr>
<td>C. L. Industries, Inc.</td>
<td>P. O. Box 13704
8360 S. Orange Ave.
Orlando, Fla. 32809</td>
<td>Prefilled Rip
Rap Bag</td>
</tr>
<tr>
<td>Coastal Research Corporation</td>
<td>Erosion Control Division
207 Baltimore-Annapolis Blvd., N.W.
Glen Burnie, Md. 21061</td>
<td>Lok-Gard</td>
</tr>
<tr>
<td>Colcrete, Ltd.</td>
<td>Bryant House
Strood
Rochester
Kent ME2 3EN
England</td>
<td>Concrete Mats</td>
</tr>
<tr>
<td>Con-Serv (Division of Bay State Gas Company)</td>
<td>61 Glenn St.
Lawrence, Mass. 01843</td>
<td>CFM Fiber Mulch</td>
</tr>
<tr>
<td>Construction Techniques, Inc.</td>
<td>11900 Shaker Blvd.
Cleveland, Ohio 44120</td>
<td>Fabriform</td>
</tr>
<tr>
<td>Conwed Corporation</td>
<td>P. O. Box 43237
St. Paul, Minn. 55164</td>
<td>Conwed erosion-control netting, Hydro Mulch</td>
</tr>
<tr>
<td>Delta Company</td>
<td>616 Bendview Dr.
Charleston, W. Va. 25314</td>
<td>Genaqua</td>
</tr>
<tr>
<td>Dixie Concrete Products</td>
<td>3300 N. Liberty St.
Winston-Salem, N. C. 27105</td>
<td>Paverlock</td>
</tr>
<tr>
<td>Dowling Bag Company</td>
<td>P. O. Box 1768
Valdosta, Ga. 31601</td>
<td>Jute mesh</td>
</tr>
<tr>
<td>Edward E. Gillen Company</td>
<td>218 W. Becher St.
Milwaukee, Wis. 53207</td>
<td>Longard tubing</td>
</tr>
<tr>
<td>ERCO Systems, Inc.</td>
<td>P. O. Box 10547
Jefferson, La. 70181</td>
<td>ERCO-Block, ERCO-Mat, Tri-Lock</td>
</tr>
<tr>
<td>Company</td>
<td>Address</td>
<td>Product(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>--</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Erosion Control, Inc.</td>
<td>Forum III, Suite 507, 1655 Palm Beach Lakes Blvd. West Palm Beach, Fla. 33401</td>
<td>Dura-Bag, Perma Bag, Easy Fencin'</td>
</tr>
<tr>
<td>Finn Corporation</td>
<td>P. O. Box 8068 Cincinnatti, Ohio 45208</td>
<td>HydroSeeder, Mulch Spreader</td>
</tr>
<tr>
<td>Firewater Company</td>
<td>1 First St. Los Altos, Calif. 94022</td>
<td>Crust-500 (acetate emulsion)</td>
</tr>
<tr>
<td>Georgia-Pacific</td>
<td>Multiwall Bag Division P. O. Box 105041 Atlanta, Ga. 30348</td>
<td>Rip Rap Bag</td>
</tr>
<tr>
<td>G.K.N. Gridweld Engineering</td>
<td>Woodhouse Lane Wigan WN6 7NS England</td>
<td>Gridweld Gabions</td>
</tr>
<tr>
<td>Gold Bond Building Products (Division of National Gypsum Co.)</td>
<td>2001 Rexford Rd. Charlotte, N. C. 28211</td>
<td>Lime stabilization</td>
</tr>
<tr>
<td>Golden Bear (Division of Witco Chemical Corporation)</td>
<td>P. O. Box 378 Bakersfield, Calif. 93302</td>
<td>Coherex</td>
</tr>
<tr>
<td>Grass Growers, Inc.</td>
<td>420 Cottage Place Plainfield, N. J. 07601</td>
<td>Terra Tack Mulch Binder</td>
</tr>
<tr>
<td>Grass Pavers, Ltd.</td>
<td>3807 Crooks Rd. Royal Oak, Mich. 48073</td>
<td>Monoslab, Ambigrid</td>
</tr>
<tr>
<td>Gulf States Paper Corporation</td>
<td>P. O. Box 3199 Tuscaloosa, Ala. 35401</td>
<td>Hold-Gro</td>
</tr>
<tr>
<td>Hilfiker Pipe Company</td>
<td>P. O. Drawer L Eureka, Calif. 95501</td>
<td>Concrib Retaining Wall</td>
</tr>
<tr>
<td>Hold-That-River, Inc.</td>
<td>P. O. Box 1916 Houston, Tex. 77001</td>
<td>Henson Permeable Jetties</td>
</tr>
<tr>
<td>ICI Linear Composites, Ltd.</td>
<td>Hookstone Rd. Harrowgate North Yorkshire HG2 8QN England</td>
<td>Paraweb Mat</td>
</tr>
<tr>
<td>Jim Walls Company</td>
<td>Suite 126, Commercial Plaza 12820 Hillcrest Rd. Dallas, Tex. 75230</td>
<td>Soil Saver</td>
</tr>
<tr>
<td>Kaiser Aluminum and Chemical Sales, Inc.</td>
<td>Kaiser Center, Rm 1140-KB 300 Lakeside Dr. Oakland, Calif. 94643</td>
<td>Shore-All Sheet Piling</td>
</tr>
<tr>
<td>Company</td>
<td>Address</td>
<td>Product(s)</td>
</tr>
<tr>
<td>--</td>
<td>----------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Mabey Hire Company, Ltd.</td>
<td>Floral Mile Twyford Reading RG10 9SQ England</td>
<td>Steel sheet piling</td>
</tr>
<tr>
<td>Maccaferri Gabions, Inc.</td>
<td>Governor Lake Blvd. Williamsport, Md. 21795</td>
<td>Gabion</td>
</tr>
<tr>
<td>Marathon Paving and Utility Constructors, Inc.</td>
<td>922 Holmes Rd. Rt. 3, Box 1388-1 Houston, Tex. 77045</td>
<td>Marathon Mortar-Mats</td>
</tr>
<tr>
<td>Mercantile Development, Inc.</td>
<td>274 Riverside Ave. Westport, Conn. 06880</td>
<td>Geofab Silt Fence</td>
</tr>
<tr>
<td>Mitsui Harbour and Urban Construction Co., Ltd.</td>
<td>Skinjuku Mitsui Bldg. 1-1 Nishi-Shinjuku 2-chome Shinjuku-ku Tokyo 160, Japan</td>
<td>Mitsui Tripole Block</td>
</tr>
<tr>
<td>Mono Concrete, Ltd.</td>
<td>Epic House Lower Hill St. Leicester LE1 3SH England</td>
<td>Mono Block</td>
</tr>
<tr>
<td>Morbark Industries, Inc.</td>
<td>P. O. Box 1000 Winn, Mich. 48896</td>
<td>Chiparvestor, Eeger Beaver (tree chipper)</td>
</tr>
<tr>
<td>Netlon, Ltd.</td>
<td>Civil Engineering Dept. Mill Hill Blackburn BB2 4PJ England</td>
<td>Gabion, Tensar (Soil reinforce-ment)</td>
</tr>
<tr>
<td>Nicolon Corporation</td>
<td>Erosion-Control Products, Suite 1990 Peachtree Corners Plaza Norcross/Atlanta, Ga. 30071</td>
<td>Gobimat, Armorflex</td>
</tr>
<tr>
<td>Nippon Tetrapod Company</td>
<td>44-164-3 Hako St. Kaneohe, Hawaii 96744</td>
<td>Nippon Tetrapod</td>
</tr>
<tr>
<td>Owens-Corning Fiberglass Corporation</td>
<td>Fiberglass Tower Toledo, Ohio 43659</td>
<td>Fiberglass roving</td>
</tr>
<tr>
<td>Permapost Products Company</td>
<td>P. O. Box 121 25600 S.W. Tualatin Hwy. Hillsboro, Oreg. 97123</td>
<td>Perma-Crib Wall</td>
</tr>
<tr>
<td>Petra, Inc.</td>
<td>P. O. Box 599 Channelview Houston, Tex. 77520</td>
<td>Petraflex pre-cast cellular-block mattress</td>
</tr>
<tr>
<td>Company</td>
<td>Address</td>
<td>Product(s)</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>PPG Industries, Inc.</td>
<td>Fiber Glass Division</td>
<td>Glassroot</td>
</tr>
<tr>
<td></td>
<td>One Gateway Center</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pittsburgh, Pa. 15222</td>
<td></td>
</tr>
<tr>
<td>Quikcrete Products, Inc.</td>
<td>200 Hord St.</td>
<td>Prefilled Rip</td>
</tr>
<tr>
<td></td>
<td>Harahan, La. 70183</td>
<td>Rap Bag</td>
</tr>
<tr>
<td>Ravens Metal Products Company</td>
<td>P. O. Box 1168</td>
<td>Aluminum retaining wall</td>
</tr>
<tr>
<td></td>
<td>Parkersburg, W. Va. 26101</td>
<td></td>
</tr>
<tr>
<td>Reinco</td>
<td>P. O. Box 584</td>
<td>Hydrograss, Power Mulcher</td>
</tr>
<tr>
<td></td>
<td>Plainfield, N. J. 07061</td>
<td></td>
</tr>
<tr>
<td>The Reinforced Earth Company</td>
<td>1700 North Moore St.</td>
<td>Reinforced earth</td>
</tr>
<tr>
<td></td>
<td>Suite 2200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arlington, Va. 22209</td>
<td></td>
</tr>
<tr>
<td>River and Sea Gablons (London), Ltd.</td>
<td>2 Swallow Place</td>
<td>Flexible gabion</td>
</tr>
<tr>
<td></td>
<td>London W1R 8SQ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>England</td>
<td></td>
</tr>
<tr>
<td>Ryowa Concrete Industry, Ltd.</td>
<td>4-chome, Stokanda chiyoda-ku</td>
<td>Hollow-Square (cellular block)</td>
</tr>
<tr>
<td></td>
<td>Tokyo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Japan</td>
<td></td>
</tr>
<tr>
<td>Sackner Products, Inc.</td>
<td>901 Ottawa Ave.</td>
<td>Erosionet, Mulchnet</td>
</tr>
<tr>
<td></td>
<td>Grand Rapids, Mich. 49503</td>
<td></td>
</tr>
<tr>
<td>Soil Seal Corporation</td>
<td>3720 West Sixth St.</td>
<td>Dust-re-tardent chemicals</td>
</tr>
<tr>
<td></td>
<td>Los Angeles, Calif. 90005</td>
<td></td>
</tr>
<tr>
<td>Spidel Foundations Harbor and Marine Corporation</td>
<td>220 North Wayne St.</td>
<td>Z-Wall piling</td>
</tr>
<tr>
<td></td>
<td>St. Joseph, Mich. 49088</td>
<td></td>
</tr>
<tr>
<td>Stevens Point Concrete Company, Inc.</td>
<td>P. O. Box 367</td>
<td>Turfstone (cellular block)</td>
</tr>
<tr>
<td></td>
<td>200 Patch St.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stevens Point, Wis. 54481</td>
<td></td>
</tr>
<tr>
<td>Superior Fiber Products Company</td>
<td>1201 65th St.</td>
<td>Fiberlock, Turfiber</td>
</tr>
<tr>
<td></td>
<td>Baltimore, Md. 21237</td>
<td></td>
</tr>
<tr>
<td>Tenon Corporation</td>
<td>3330 S. Lakeshore Dr.</td>
<td>Great Lakes Sandgrabber (cellular block or bulkhead component)</td>
</tr>
<tr>
<td></td>
<td>St. Joseph, Mich. 49085</td>
<td></td>
</tr>
<tr>
<td>Terra Aqua Conservation</td>
<td>4930 Energy Way</td>
<td>Gabion</td>
</tr>
<tr>
<td>(Division of Bekaert Steel Wire Corporation)</td>
<td>Reno, Nev. 89502</td>
<td></td>
</tr>
<tr>
<td>Company</td>
<td>Address</td>
<td>Product(s)</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Union Carbide Corporation</td>
<td>Old Ridgebury Rd., Danbury, Conn. 06817</td>
<td>DCA-70</td>
</tr>
<tr>
<td>VSL Corporation</td>
<td>3871 Northeast Expressway Atlanta, Ga. 30340</td>
<td>VSL Hydro-Lining</td>
</tr>
<tr>
<td>Weyerhauser Company</td>
<td>No. 10 Rockledge Rd., Montclair, N. J. 07042</td>
<td>Silva-Fiber Mulch</td>
</tr>
<tr>
<td>W. R. Bonsal Company</td>
<td>P. O. Box 38, Lilesville, N. C. 28091</td>
<td>Prefilled Sand/Cement Rip Rap Bag</td>
</tr>
</tbody>
</table>
APPENDIX B: UPDATED LISTING OF RESEARCH ORGANIZATIONS INVOLVED IN THE STUDY OF STREAMBANK PROTECTION

1. A number of research organizations direct part of their efforts toward the study of streambank protection. These organizations are listed below.

<table>
<thead>
<tr>
<th>Organization</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt Institute</td>
<td>Asphalt Institute Bldg. College Park, Md. 20740</td>
</tr>
<tr>
<td>Bituminous Coal Research, Inc.</td>
<td>350 Hochberg Rd. Monroeville, Pa. 15146</td>
</tr>
<tr>
<td>National Concrete Masonry Association</td>
<td>2302 Horse Pen Rd. P. O. Box 781 Herndon, Va. 22070</td>
</tr>
<tr>
<td>National Crushed Stone Association</td>
<td>1415 Elliot Place, N.W. Washington, D. C. 20007</td>
</tr>
<tr>
<td>National Lime Association</td>
<td>5010 Wisconsin Avenue, N.W. Washington, D. C. 20016</td>
</tr>
<tr>
<td>Portland Cement Association</td>
<td>5420 Old Orchard Rd. Skokie, Ill. 60076</td>
</tr>
</tbody>
</table>
APPENDIX C: SUPPLEMENTARY GLOSSARY OF STREAMBANK PROTECTION TERMINOLOGY

Aggregate blanket. Layer of gravel, crushed rock, shell, or other suitable aggregate placed on a streambank to resist surface erosion.

Cellular-block mattress. Regularly cavitated interconnected concrete blocks placed directly on a streambank or filter to prevent erosion. The cavities can permit bank drainage and the growth of either volunteer or planted vegetation when filter fabric is not used between the mattress and bank.

Channel cutoff. A new relatively short channel (natural or artificial) formed when a stream cuts or is realigned through the neck of an oxbow (or horseshoe bend). A cutoff can also develop as successive high-water flows form a chute across the inside of a point bar.

Chemical stabilization. Streambank-protection technique involving the application of chemical substances to increase particle cohesiveness and to shift the size distribution towards the coarser fraction. The net effect is to improve the erosion resistance of the material.

Clay blanket. Layer of compacted clay placed over erosive, cohesionless streambank soils to protect them against erosive streamflow.

Fiberglass stabilization. Soil stabilization involving the application of fiberglass to a soil to keep surface erosion in check until vegetation becomes established.

Grade-control structure. Structure placed bank to bank across a stream channel (usually with its central axis perpendicular to flow) for the purpose of controlling bed slope and preventing scour or headcutting.

Lime stabilization. Soil-stabilization technique that involves the mixing of lime (CaO) with the streambank soil to form a hydrophobic or water-resistant layer. This technique has been used with both clays and silts.

Overbank drainage. Any method designed to control runoff from areas landward of top bank and thus prevent surface erosion resulting from this runoff flowing down the face of the streambank.

Reinforced-earth bulkhead. A retention structure fabricated by placing vertical panels (e.g., precast concrete) adjacent to an eroding streambank and attaching bars or strips to the panels. The bars or strips are then run perpendicular to the panels into the streambank. Compacted backfill material is placed in lifts as the bars or strips are laid to strengthen the bank.

Slag. Fused refuse or dross separated from a metal in the process of smelting.

Cl
Vegetation mattress. Mattress revetment consisting of interconnected vegetative materials (e.g., hay bales) fastened to each other and anchored to a streambank.

Windrow revetment. A row of stone (called a windrow) placed on top bank landward of an eroding streambank. As erosion continues, undercutting of the windrow eventually occurs and causes stone to be launched down the bank as armor.
APPENDIX D: SUPPLEMENTARY LITERATURE SURVEY OF STREAMBANK PROTECTION

1. An index for locating references on individual protection methods is provided below:

<table>
<thead>
<tr>
<th>Method</th>
<th>Page</th>
<th>Method</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Component Revetments</td>
<td></td>
<td>Bulkheads (Continued)</td>
<td></td>
</tr>
<tr>
<td>Aggregate blanket</td>
<td>D2</td>
<td>Metal</td>
<td>D58</td>
</tr>
<tr>
<td>Asphalt blocks</td>
<td>D3</td>
<td>Reinforced earth</td>
<td>D60</td>
</tr>
<tr>
<td>Automobile bodies</td>
<td>D3</td>
<td>Timber</td>
<td>D62</td>
</tr>
<tr>
<td>Concrete blocks, cellular</td>
<td>D4</td>
<td>Used tires</td>
<td>D64</td>
</tr>
<tr>
<td>Concrete blocks, solid</td>
<td>D7</td>
<td>Soil Stabilization</td>
<td>D65</td>
</tr>
<tr>
<td>Rubble</td>
<td>D9</td>
<td>Chemicals</td>
<td>D65</td>
</tr>
<tr>
<td>Sack revetment</td>
<td>D11</td>
<td>Fiberglass</td>
<td>D67</td>
</tr>
<tr>
<td>Slag</td>
<td>D13</td>
<td>Lime</td>
<td>D69</td>
</tr>
<tr>
<td>Soil-cement blocks</td>
<td>D13</td>
<td>Organic mixtures and</td>
<td></td>
</tr>
<tr>
<td>Stone riprap</td>
<td>D14</td>
<td>mulches</td>
<td></td>
</tr>
<tr>
<td>Tetrapods</td>
<td>D28</td>
<td>Soil cement</td>
<td>D77</td>
</tr>
<tr>
<td>Trench-fill revetment</td>
<td>D29</td>
<td>Temperature control</td>
<td>D79</td>
</tr>
<tr>
<td>Windrow revetment</td>
<td>D29</td>
<td>Vegetation</td>
<td>D79</td>
</tr>
<tr>
<td>Mattress, Matting, and</td>
<td>D30</td>
<td>River-Training Structures</td>
<td>D92</td>
</tr>
<tr>
<td>Pavement Revetments</td>
<td></td>
<td>Crib</td>
<td>D92</td>
</tr>
<tr>
<td>Articulated concrete mattress</td>
<td>D30</td>
<td>Dike, impervious</td>
<td>D94</td>
</tr>
<tr>
<td>Asphalt pavement</td>
<td>D31</td>
<td>Dike, pervious</td>
<td>D103</td>
</tr>
<tr>
<td>Bituminous mattress</td>
<td>D32</td>
<td>Floating-tire breakwater</td>
<td>D107</td>
</tr>
<tr>
<td>Cellular-block mattress</td>
<td>D32</td>
<td>Kellner jack field</td>
<td>D109</td>
</tr>
<tr>
<td>Clay blanket</td>
<td>D33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concrete pavement</td>
<td>D33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erosion-control matting</td>
<td>D35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fascine mattress</td>
<td>D39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gabion or rock-and-wire</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mattress</td>
<td>D40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log- (or tree-) and-cable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>revetment</td>
<td>D45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sack revetment (monolith</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>revetment)</td>
<td>D46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synthetic mattress,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>matting, and tubing</td>
<td>D47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timber or brush mattress</td>
<td>D51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Used-tire matting</td>
<td>D52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vegetation mattress</td>
<td>D53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulkheads</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concrete or stone</td>
<td>D54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiber</td>
<td>D57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gabion</td>
<td>D57</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D1
Single-Component Revetments

Aggregate blanket

Keown, M. P., Dardeau, E. A., Jr., and Causey, E. M. 1980 (Feb). "Section 32 Program, Streambank Erosion Control Evaluation and Demonstration, Work Unit 2, Evaluation of Existing Bank Protection; Field Inspection of Sites in the Ohio River Division," Inspection Report 8, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

Asphalt blocks

Automobile bodies

U. S. Army Engineer District, Kansas City, CE. 1980 (Sep). "Kansas and Osage Rivers," Reconnaissance Report, Kansas City, Mo.; published with a number of companion volumes and appendixes.

Concrete blocks, cellular

Dixie Concrete Products (Division of Exposiac Industries). "Paverlock" (not dated), Winston-Salem, N. C.

Grass Concrete, Ltd., and Grass Concrete International, Ltd. 1979 (Jun). "The Use of Grass Concrete in the Water Environment," Wakefield, England (reprint furnished by Bomanite Corporation, Palo Alto, Calif.).

Grass Pavers, Ltd. "Ambigrid" (descriptive brochure) (not dated), Royal Oak, Mich.

Ryowa Concrete Industry Co. "Application of Hollow-Squares on River Improvement" (not dated), Tokyo, Japan.

Stevens Point Concrete Company, Inc. "SPC Turfstone" (not dated), Stevens Point, Wis.

Toa Harbor Works Co., Ltd. "Cross Hollow Method" (not dated), Tokyo, Japan.

Concrete blocks, solid

Keown, M. P. 1979 (May). "Section 32 Program, Streambank Erosion Control Evaluation and Demonstration, Work Unit 2, Evaluation of Existing Bank Protection; Field Inspection of Sites in the New England Division," Inspection Report 6, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

U. S. Army Engineer District, Baltimore, CE. "Shore Erosion Control — a Guide for Waterfront Property Owners in the Chesapeake Bay Area" (not dated), Baltimore, Md.; prepared in cooperation with other Federal and State agencies.

U. S. Army Engineer District, San Francisco, CE. "Shoreline Erosion Control Demonstration Program, Alameda, California" (not dated), San Francisco, Calif.

New England River Basins Commission. "Lake Champlain Shoreline Erosion Control" (not dated), Boston, Mass.

U. S. Army Engineer District, Alaska, CE. "Shoreline Erosion Control" (not dated), Anchorage, Alaska.

U. S. Army Engineer District, San Francisco, CE. "Shoreline Erosion Control Demonstration Program, Alameda, California" (not dated), San Francisco, Calif.

Sack revetment

Erosion Control, Inc. "Dura-Bags and Perma-Bags" (not dated), West Palm Beach, Fla.

U. S. Army Engineer District, Alaska, CE. "Shoreline Erosion Control" (not dated), Anchorage, Alaska.

U. S. Army Engineer District, San Francisco, CE. "Shoreline Erosion Control Demonstration Program, Alameda, California" (not dated), San Francisco, Calif.

Slag

Soil-cement blocks

Stone riprap

Anonymous. 1977 (8 Sep). "Is Riprap Being Miscalculated?" New Civil Engineer, p 7 (reprint).

Dardeau, E. A., Jr. 1980 (Apr). "Section 32 Program, Streambank Erosion Control Evaluation and Demonstration, Work Unit 2, Evaluation of Existing Bank Protection; Field Inspection of the Mill Creek Midfloodway Gabion Barrier in the Los Angeles District," Inspection Report 9, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

Dominguez, R. F., and Herbich, J. B. 1971 (Jan). "Revetment Stability Study for Puerto Yabucoa Harbor, Puerto Rico," Coastal and Ocean Engineering Division Report COE 134, Texas Engineering Experiment Station, Texas A&M University, College Station, Tex.

Keown, M. P. 1979 (May). "Section 32 Program, Streambank Erosion Control Evaluation and Demonstration, Work Unit 2, Evaluation of Existing Bank Protection; Field Inspection of Sites in the New England Division," Inspection Report 6, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

Keown, M. P., Dardeau, E. A., Jr., and Causey, E. M. 1980 (Feb). "Section 32 Program, Streambank Erosion Control Evaluation and Demonstration, Work Unit 2, Evaluation of Existing Bank Protection; Field Inspection of Sites in the Ohio River Division," Inspection Report 8, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

________. 1978 (Feb). "Section 32 Program, Streambank Erosion Control Evaluation and Demonstration, Work Unit 2, Evaluation of Existing Bank Protection; Field Inspection of Bank Protection Measures on the Upper Yazoo River," Inspection Report 4, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

Michigan Sea Grant Program Advisory Service. "Shore Erosion, What to Do" (not dated), Report No. MICHU-SG-75-100, Ann Arbor, Mich.; published with the cooperation of the University of Michigan, Coastal Zone Laboratory and the Michigan Department of Natural Resources, Water Development Services Division.

Miller, S. P. 1978 (Feb). "Bank Distress on Low-Water Weirs on Big Creek, Louisiana," Miscellaneous Paper S-78-2, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

New England River Basins Commission. "Lake Champlain Shoreline Erosion Control" (not dated), Boston, Mass.

Oswalt, N. R. 1977 (Jun). "Red River Waterway, Louisiana, Texas, Arkansas, and Oklahoma, Mississippi River to Shreveport, Louisiana, Reach, Lock and Dam No. 1; Hydraulic Model Investigation," Technical Report H-77-13, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

U. S. Army Engineer District, Baltimore, CE. "Shore Erosion Control: a Guide for Waterfront Property Owners in the Chesapeake Bay Area" (not dated), Baltimore, Md.; prepared in cooperation with other Federal and State agencies.

U. S. Army Engineer District, Kansas City, CE. 1972 (Jul). "Little Blue River Channel and Lake City Improvement, Vicinity of Kansas City, Missouri," Design Memorandum No. 1, Kansas City, Mo.

U. S. Army Engineer District, Kansas City, CE. 1980 (Sep). "Kansas and Osage Rivers," Reconnaissance Report, Kansas City, Mo.; published with a number of companion volumes and appendixes.

U. S. Army Engineer District, San Francisco, CE. "Shoreline Erosion Control Demonstration Program, Alameda, California" (not dated), San Francisco, Calif.

U. S. Army Engineer Division, Missouri River, CE, Mead Hydraulic Laboratory. 1978 (Nov). "Erosion Control Demonstration Projects Study (P. L. 93-251, Section 32), Work Unit 3; Laboratory Investigation of Reinforced Revetment - Phase I," MRD Hydraulic Laboratory Series Report 10, Mead, Nebr.

1975 (Jul). "Guidelines for the Control of Erosion and Sediment in Urbanizing Areas Within Mississippi," Jackson, Miss.

Whipple, W., Jr. 1979 (Apr). "The Stream and the Landowner," Rutgers - the State University, Water Resources Research Institute, New Brunswick, N. J.

Tetrapods

Mitsui Harbour and Urban Construction Co., Ltd. "Mitsui Harbour and Urban Construction" (not dated), Tokyo, Japan.

Nippon Tetrapod Co., Ltd. "Igloo" (not dated), Tokyo, Japan.

Trench-fill revetment

Windrow revetment

U. S. Army Engineer District, Kansas City, CE. 1980 (Sep). "Kansas and Osage Rivers," Reconnaissance Report, Kansas City, Mo.; published with a number of companion volumes and appendixes.

U. S. Army Engineer Division, Missouri River, CE, Mead Hydraulic Laboratory, 1981. "Erosion Control Demonstration Projects Study (P. L. 93-251, D29
Section 32); Laboratory Investigation of Windrow, Hard Point, and Reinforced Revetments, "MRD Hydraulic Laboratory Series Report 11, Mead, Nebr.

Mattress, Matting, and Pavement Revetments

Articulated concrete mattress

Asphalt pavement

Bituminous mattress

Cellular-block mattress

Clay blanket

U. S. Army Engineer District, Kansas City, CE. 1972 (Jul). "Little Blue River Channel and Lake City Improvement, Vicinity at Kansas City, Missouri," Design Memorandum No. 1, Kansas City, Mo.

Concrete pavement

D33

Erosion-control matting

________. "The Ultimate in Erosion Control" (not dated), Arlington, Tex.

Belton Bagging Co. "Belton Soil Anti-Wash" (not dated), Belton, S. C.
Belton Bagging Co. "Belton Soil Anti-Wash Protects Soil from Erosion During the Critical Period of Vegetative Establishment Effectively and Economically" (not dated), Belton, S. C.

Brighton By-Products Company, Inc. "Erosion Control - Site Preparation Products" (not dated), New Brighton, Pa.

Gulf States Paper Corporation. "Be Right on Top with Roll Lite" (not dated), Tuscaloosa, Ala.

"End Washout Worries with Hold/Gro" (not dated), Tuscaloosa, Ala.

"Hold/Gro Erosion Control Systems, Another Innovative Product from Gulf States Paper Corporation" (not dated), Tuscaloosa, Ala.

"Hold/Gro Erosion Control Systems, Installation Instructions" (not dated), Tuscaloosa, Ala.

"Hold/Gro Holds Your Ground" (not dated), Tuscaloosa, Ala.

1976 (Jun). "Erosion Control News; Hold/Gro Gets Grass Going on Georgia Power Dam Slope" Tuscaloosa, Ala. (reprinted from Civil Engineering (New York)).

Jim Walls Company. "How to Use Soil Saver" (not dated), Dallas, Tex.

Sackner Products, Inc. "Erosionet, Mulchnet, Sackner's Two Low-Cost, Effective, Erosion Control and Seeding Aid Products for Landscaping and Soil Conservation" (not dated), Grand Rapids, Mich.

Fascine mattress

Gabion or rock-and-wire mattress

Dardeau, E. A., Jr. 1980 (Apr). Section 32 Program, Streambank Erosion Control Evaluation and Demonstration, Work Unit 2, Evaluation of Existing Bank Protection; Field Inspection of the Mill Creek Midfloodway Gabion Barrier in the Los Angeles District," Inspection Report 9, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

Maccaferri, Gabions, Inc. "Maccaferri Gabions, Gabions, Reno Mattress, Woven Hexagonal Netting for River Works, Soil Conservation, Roads, Railways, Airports, Channel and Earth-Fill Dam Lining" (not dated), Williamsport, Md.

. "Maccaferri Revet Mattress, New Heavy Duty 6x8 Mesh" (not dated), Williamsport, Md.

. "Specifications for Galvanizing Gabions" (not dated), Williamsport, Md.

. "Specifications for Galvanized Revet Mattress" (not dated), Williamsport, Md.

. "Specifications for P.V.C.-Coated Gabions" (not dated), Williamsport, Md.

. "Specifications for P.V.C.-Coated Revet Mattress" (not dated), Williamsport, Md.

Netlon, Ltd. "Designing with Tensar, Techniques and Design Philosophy for Utilizing 'Tensar' Grids in the Reinforcing of Soil Structures" (not dated), Blackburn, England.

Netlon, Ltd. "Netlon Gabion and Mattress Construction" (not dated), Blackburn, England.

Netlon, Ltd. "Netlon in River and Canal Protection Works" (not dated), Blackburn, England.

Netlon, Ltd. "Specification Data for Netlon Civil Engineering Products" (not dated), Blackburn, England.

New England River Basins Commission. "Lake Champlain Shoreline Erosion Control" (not dated), Boston, Mass.

New South Wales Institute of Technology. 1978 (Oct). Soil Reinforcing and Stabilizing Techniques in Engineering Practice, Proceedings of a Symposium (in two volumes), Sydney, Australia; organized jointly with the University of New South Wales.

Report 3, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

Terra Aqua Conservation (Division of Bekaert Steel Wire Corporation). "Bekaert Gabions, New Ideas for a Proven Device" (not dated), Reno, Nev.

U. S. Army Engineer District, Alaska, CE. "Shoreline Erosion Control" (not dated), Anchorage, Alaska.

U. S. Army Engineer District, Baltimore, CE. "Shore Erosion Control: a Guide for Waterfront Property Owners in the Chesapeake Bay Area" (not dated), Baltimore, Md.; prepared in cooperation with other Federal and State agencies.

Whipple, W., Jr. 1979 (Apr). "The Stream and the Landowner," Rutgers the State University, Water Resources Research Institute, New Brunswick, N. J.

Log- (or tree-) and-cable revetment

U. S. Army Engineer District, Kansas City, CE. 1980 (Sep). "Kansas and Osage Rivers," Reconnaissance Report, Kansas City, Mo.; published with a number of companion volumes and appendixes.

Sack revetment (monolith construction)

W. R. Bonsal Company. "Bonsal Sand/Cement Riprap" (not dated), Lillsville, N. C.

Synthetic mattress, matting, and tubing

Aldek a.s. "Flexible Sandfilled Tubes for Coast Protection" (not dated), Odense, Denmark.

American Enka Company. "Enkamat" (not dated), Enka, N. C.

________. "Enkmat Matting Prevents Erosion on Georgia River Dike" (not dated), Info Update 3, Enka, N. C.

________. "Enkmat Stabilenka 'Sandwich' Neutralizes Acid Slope on Texas Highway" (not dated), Info Update 4, Enka, N. C.

________. 1978 (Sep). "Western State D. O. T. Installs Enkamat," Info Update 1, Enka, N. C.

________. 1979 (Oct). "Enkamat Helps Turn Swamp into Boating Channel," Info Update 2, Enka, N. C.

D47

Construction Techniques, Inc. "The Fabriform Erosion Control System Selected and Value Engineered by State Department of Transportation" (not dated), Cleveland, Ohio.

. "The Fabriform Erosion Control System Selected and Value Engineered by U. S. Army Corps of Engineers" (not dated), Cleveland, Ohio.

. "The Fabriform Erosion Control System Selected and Value Engineered for Creeks, Canals, and Rivers" (not dated), Cleveland, Ohio.

. "The Fabriform Erosion Control System Selected and Value Engineered for Residential-Recreational Areas" (not dated), Cleveland, Ohio.

. "Fabriform Technical Data Installation" (not dated), Cleveland, Ohio.

. "Fabriform Technical Data - Performance" (not dated), Cleveland, Ohio.
Construction Techniques, Inc. "Where Soil and Water Meet ... Fabriform is the Solution to Erosion Problems" (not dated), Cleveland, Ohio.

Greer, A. 1976 (Sep). "Winning the Battle Against Erosion in Chesapeake Bay," Sea Grant '70s, Vol 7, No. 1, pp 2-3.

ICI Linear Composites, Ltd. "Linear Composites Erosion Control Systems" (not dated), Harrogate, North Yorkshire, England.

_______. "Linear Composites Interwoven Paraweb Mat" (not dated), Harrogate, North Yorkshire, England.

Intrusion-Prepakt, Inc. "Typical Installations Where Fabriform was Specified and Used by the Corps of Engineers" (not dated), Cleveland, Ohio.

_______. "Typical Installations Where Fabriform Was Specified and Used by State Departments of Transportation" (not dated), Fabriform Report FF-112, Cleveland, Ohio.

Netlon, Ltd., "Netlon in River and Canal Protection Works" (not dated), Blackburn, England.

D50
Streambank Erosion; Investigation of a Grid for Bank Protection," Investigation Report 3, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

. "Guide Specifications for VSL Hydro-Lining and Revetment Mats" (not dated), Atlanta, Ga.

. "Irrigation Canal - 'County of Schyz,' Switzerland" (not dated), Atlanta, Ga.

. "VSL Hydro-Lining" (not dated), Los Gatos, Calif.

Timber or brush mattress

D51

... 1980 (May). "Specific Site Vegetation Plan on the Missouri River," U. S. Department of Agriculture, Forest Service, State and Private Forestry, Missoula, Mont.; produced in cooperation with the U. S. Army Engineer District, Omaha, CE, the North Dakota State Forest Service, and North Dakota State University.

Used-tire matting

U. S. Army Engineer District, Kansas City, CE. 1980 (Sep). "Kansas and Osage Rivers," Reconnaissance Report, Kansas City, Mo.; published with a number of companion volumes and appendices.

Vegetation mattress

D53

Bulkheads

Concrete or stone

Hilfiker Pipe Company. "Concrete Retaining Walls" (not dated), Eureka, Calif.

Mitsui Harbour and Urban Construction Co., Ltd. "Mitsui Harbour and Urban Construction" (not dated), Tokyo, Japan.

New England River Basins Commission. "Lake Champlain, Shoreline Erosion Control" (not dated), Boston, Mass.

Nippon Tetrapod Co., Ltd. "Igloo" (not dated), Tokyo, Japan.

Portland Cement Association. "Small Retaining Walls - Construction and Tables" (not dated), Concrete Information, Skokie, Ill.

Toa Harbor Works Co., Ltd. "Cross Hollow Method" (not dated), Tokyo, Japan.

Whipple, W., Jr. 1979 (Apr). "The Stream and the Landowner," Rutgers—the State University, Water Resources Research Institute, New Brunswick, N. J.

Fiber

U. S. Army Engineer District, Baltimore, CE. "Shore Erosion Control: a Guide for Waterfront Property Owners in the Chesapeake Bay Area" (not dated), Baltimore, Md.; prepared in cooperation with other Federal and State agencies.

Gabion

Maccaferri Gabions, Inc. "Maccaferri Gabions, Gabions, Reno Mattress, Woven Hexagonal Netting for River Works, Soil Conservation, Roads, Railways, Airports, Channel and Earth-Fill Dam Lining" (not dated), Williamsport, Md.

1979. "Maccaferri Gabions" (in English, Italian, and Spanish), Bologna, Italy.

Terra Aqua Conservation (Division of Bekaert Steel Wire Corporation). "Bekaert Gabions, New Ideas for a Proven Device" (not dated), Reno, Nev.

Terra Aqua Conservation (Division of Bekaert Steel Wire Corporation). "Bekaert Gabions, New Ideas for a Proven Device" (not dated), Reno, Nev.

Michigan Sea Grant Program Advisory Service. "Shore Erosion, What to Do" (not dated), Report No. MICHU-SG-25-100, Ann Arbor, Mich.; published with the cooperation of the University of Michigan, Coastal Zone Laboratory and the Michigan Department of Natural Resources, Water Development Services Division.

New England River Basins Commission. "Lake Champlain Shoreline Erosion Control" (not dated), Boston, Mass.

U. S. Army Engineer District, Baltimore, CE. "Shore Erosion Control: a Guide for Waterfront Property Owners in the Chesapeake Bay Area" (not dated), Baltimore, Md.; prepared in cooperation with other Federal and State agencies.

Reinforced earth

Netlon, Ltd. "Designing with Tensar, Techniques and Design Philosophy for Utilizing 'Tensar' Grids in the Reinforcing of Soil Structures" (not dated), Blackburn, England.

- "Specification Data for Netlon Civil Engineering Products" (not dated), Blackburn, England.
- "Tensar from Netlon, Soil Reinforcement Grids, Structure SR1 and SR2" (not dated), Blackburn, England.
- "Without It, You're Slipping" (not dated), Blackburn, England.

New South Wales Institute of Technology. 1978 (Oct). Soil Reinforcing and Stabilizing Techniques in Engineering Practice, Proceedings of a Symposium (in two volumes), Sydney, Australia; organized jointly with the University of New South Wales.

Timber

U. S. Army Engineer District, Baltimore, CE. "Shore Erosion Control: a Guide for Waterfront Property Owners in the Chesapeake Bay Area" (not dated), Baltimore, Md.; prepared in cooperation with other Federal and State agencies.

References

Keown, M. P. 1979 (May). "Section 32 Program, Streambank Erosion Control Evaluation and Demonstration, Work Unit 2, Evaluation of Existing Bank Protection; Field Inspection of Sites in the New England Division," Inspection Report 6, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

Keown, M. P., Dardeau, E. A., Jr., and Causey, E. M. 1980 (Feb). "Section 32 Program, Streambank Erosion Control Evaluation and Demonstration, Work Unit 2, Evaluation of Existing Bank Protection; Field Inspection of Sites in the Ohio River Division," Inspection Report 8, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

Soil Stabilization

Chemicals

Golden Bear (Division of Witco Chemical Corporation). "The Coherex Dust Control Manual" (not dated), Bakersfield, Calif.

. "Coherex Dust Retardant for Clean, Economical, Long-Lasting Dust Control" (not dated), Bakersfield, Calif.

. "Coherex, the Solution to Dust Problems" (not dated), Bakersfield, Calif.

cooperation with the U. S. Department of Transportation, Federal Highway Administration.

Fiberglass

THE STREAMBANK EROSION CONTROL EVALUATION AND
DEMONSTRATION ACT OF 1974 S..(U) ARMY ENGINEER
WATERWAYS EXPERIMENT STATION VICKSBURG MS HYDRA.
UNCLASSIFIED M P KEOWN ET AL. DEC 81 WES/TR/H-77-9-APP-A F/G 13/2.
END

PPG Industries. "Glassroot, the Spray-On Fiberglass Web for Soil Erosion Control" (not dated), Pittsburgh, Pa.

Lime

conducted in cooperation with the Indiana State Highway Commission and the U. S. Department of Transportation, Federal Highway Administration.

Gold Bond Building Products (Division of National Gypsum Co.). "Gold Bond Lime" (not dated), Charlotte, N. C.

Gold Bond Building Products (Division of National Gypsum Co.). "Gold Bond Soil Stabilizer," Form 81582, Earthwork/Soil Stabilization, Buffalo, N. Y.

Organic mixtures and mulches

Con-Serv (CFM Fiber Mulch). "Now Fiber Mulch from CFM for Efficient Hydroseeding" (not dated), Lawrence, Mass.

________. 1980. "Hydraulic Mulching with Conwed Hydro-Mulch Fibers, the One-Step Approach to Turf Establishment," Form 624580, St. Paul, Minn.

Finn Equipment Company. "Finn Erosion Control Equipment" (not dated), Bulletin No. 64-76, Cincinnati, Ohio.

Grass Growers. "Terra Tack AR, Hay and Straw Mulch Tack" (not dated), Plainfield, N. J.

________. "Terra Tack I, Multi-Purpose Binder and Tack, Low-Cost Protection for Grass Seeding" (not dated), Plainfield, N. J.

________. "Terra Tack III, Wood Fiber Mulch Binder" (not dated), Plainfield, N. J.

Keown, M. P. 1979 (May). "Section 32 Program, Streambank Erosion Control Evaluation and Demonstration, Work Unit 2, Evaluation of Existing Bank Protection; Field Inspection of Sites in the New England Division,"
Inspection Report 6, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

Krisburg, N. M. "The High Cost of Controlling Erosion" (not dated), Reinco, Plainfield, N. J.

Morbark Industries, Inc. "Morbark, the Leader in Wood Harvesting and Processing Equipment" (not dated), Winn, Mich.

Reinco. (not titled and not dated) (deals with hydroseeding), Plainfield, N. J.

Reinco. "Hydrograssing and Mulching" (not dated), Plainfield, N. J.

Reinco. "Operations Manual, Parts Listing, Power Mulcher" (not dated), Plainfield, N. J.

Reinco. "We Make It Easy" (not dated), Plainfield, N. J.

Superior Fiber Products Company. "Now You Can Lock In Soil Stability with Fiber Lock" (not dated), Baltimore, Md.

Soil Cement

W. R. Bonsal Company. "Bonsal Sand/Cement Riprap" (not dated), Lilesville, N. C.

Temperature control

Vegetation

. 1975 (Sep). "The Role and Use of Vegetation for the Protection of Backshore Slopes in the Coastal Zone"; presented at Workshop on
Great Lakes Coastal Vegetation, Michigan Department of Natural Resources, Lansing, Mich.

Vicksburg District in the Upper Yazoo Basin," Inspection Report 5, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

Keown, M. P., Dardeau, E. A., Jr., and Causey, E. M. 1980 (Feb). "Section 32 Program, Streambank Erosion Control Evaluation and Demonstration, Work Unit 2, Evaluation of Existing Bank Protection; Field Inspection of Sites in the Ohio River Division," Inspection Report 8, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

———. 1980 (Oct). "Section 32 Program, Streambank Erosion Control Evaluation and Demonstration, Work Unit 2, Evaluation of Existing Bank Protection; Field Inspection of Sites in the Missouri River Division," Inspection Report 10, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

Logan, L. D., et al. 1979 (Feb). "Vegetation and Mechanical Systems for Streambank Erosion Control," U. S. Department of Agriculture, Forest Service, State and Private Forestry, Missoula, Mont.; produced through a Memorandum of Understanding with the U. S. Army Engineer District, Omaha, NE, the North Dakota State Forest Service, and North Dakota State University.

New England River Basins Commission. "Lake Champlain Shoreline Erosion Control" (not dated), Boston, Mass.

New South Wales Institute of Technology. 1978 (Oct). Soil Reinforcing and Stabilizing Techniques in Engineering Practice, Proceedings of a Symposium (in two volumes), Sydney, Australia; organized jointly with the University of New South Wales.

U. S. Department of Agriculture, Cooperative Extension Service; University of Vermont; and U. S. Department of Agriculture, Soil Conservation Service.

D87

1975. "Artificial Establishment of Vegetation and Effects of Fertilizer Along Shorelines of Lake Oahe and Lake Sakakawea, Mainstem Missouri Reservoirs," University of South Dakota, Department of Biology, Vermillion, S. Dak.

U. S. Army Engineer District, Baltimore, CE. "Shore Erosion Control: a Guide for Waterfront Property Owners in the Chesapeake Bay Area" (not dated), Baltimore, Md.; prepared in cooperation with other Federal and State agencies.

U. S. Army Engineer District, Nashville, CE. 1975 (Nov). "Erosion-Control Experimentation, Tennessee-Tombigbee Waterway Project, Divide Cut Section," Final Report, Nashville, Tenn.; prepared by Mississippi Agricultural and Forestry Experiment Station, Mississippi State University, Mississippi State, Miss.

U. S. Army Engineer District, San Francisco, CE. "Shoreline Erosion Control Demonstration Program, Alameda, California" (not dated), San Francisco, Calif.

U. S. Army Engineer Waterways Experiment Station, CE, Environmental Laboratory. 1979. "Habitat Development Workshop," Vicksburg, Miss.

Whipple, W., Jr. 1979 (Apr). "The Stream and the Landowner," Rutgers - the State University, Water Resources Research Institute, New Brunswick, N. J.

Ziolkowski, S. 1968. "Reed and Other Aquatic Plants as Biological Bank Protection in Navigable Canals" (translated from the Polish by M. Radziwill), National Science Foundation, Special Foreign Currency Science Information Program, Washington, D. C.

River-Training Structures

Crib

New England River Basins Commission. "Lake Champlain Shoreline Erosion Control" (not dated), Boston, Mass.

Dike, impervious

Aldek a-s. "Flexible Sandfilled Tubes for Coast Protection" (not dated), Odense, Denmark.

Dardeau, E. A., Jr. 1980 (Apr). "Section 32 Program, Streambank Erosion Control Evaluation and Demonstration, Work Unit 2, Evaluation of Existing Bank Protection; Field Inspection of the Mill Creek Midfloodway Gabion Barrier in the Los Angeles District," Inspection Report 9, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

Erosion Control, Inc. "Dura-Bags and Perma-Bags" (not dated), West Palm Beach, Fla.

Greer, A. 1976 (Sep). "Winning the Battle Against Erosion in Chesapeake Bay," Sea Grant '70s, Vol 7, No. 1, pp 2-3.

Harbors Division, American Society of Civil Engineers, Vol 102, No. WW1, p 13.

1980 (May). "Specific Site Vegetation Plan on the Missouri River," U. S. Department of Agriculture, Forest Service, State and Private Forestry, Missoula, Mont.; produced in cooperation with the U. S. Army Engineer District, Omaha, CE, the North Dakota State Forest Service, and North Dakota State University.

Michigan Sea Grant Program Advisory Service. "Shore Erosion, What to Do" (not dated), Report No. MICHU-SG-75-100, Ann Arbor, Mich.; published
with the cooperation of the University of Michigan, Coastal Zone Laboratory, and the Michigan Department of Natural Resources, Water Development Services Division.

U. S. Army Engineer District, Alaska, CE. "Shoreline Erosion Control" (not dated), Anchorage, Alaska.

U. S. Army Engineer District, Baltimore, CE. "Shore Erosion Control: a Guide for Waterfront Property Owners in the Chesapeake Bay Area" (not dated), Baltimore, Md.; prepared in cooperation with other Federal and State agencies.

U. S. Army Engineer District, Kansas City, CE. 1980 (Sep). "Kansas and Osage Rivers," Reconnaissance Report, Kansas City, Mo.; published with a number of companion volumes and appendixes.

1978 (Nov). "Erosion Control Demonstration Projects Study (P. L. 93-251 Section 32), Work Unit 3; Laboratory Investigation of Reinforced Revetment - Phase I," MRD Hydraulic Laboratory Series Report 10, Mead, Nebr.

Dardeau, E. A., Jr. 1980 (Apr). "Section 32 Program, Streambank Erosion Control Evaluation and Demonstration Work Unit 2, Evaluation of Existing Bank Protection; Field Inspection of the Mill Creek Midfloodway Gabion Barrier in the Los Angeles District," Inspection Report 9, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

Erosion Control, Inc. "Easy Fencing" (not dated), West Palm Beach, Fla.

Hold-That-River, Inc. "HTR...The Company that Stabilizes Banks and Prevents Further Erosion" (not dated), Houston, Tex.

Mercantile Development, Inc. "Geofab Silt Fence" (not dated), Westport, Conn.

Mitsui Harbour and Urban Construction Co., Ltd. "Mitsui Harbour and Urban Construction" (not dated), Tokyo, Japan.

Floating-tire breakwater

D107

U. S. Department of Agriculture, Cooperative Extension Service; University of Vermont; and U. S. Department of Agriculture, Soil Conservation Service.

Grade-Control Structures

D110

D111
Congress of the International Association for Hydraulic Research, Fundamental Tools to be Used in Environmental Problems, Organizing Committee of the XVI Congress of the International Association for Hydraulic Research, Sao Paulo, Brazil, Vol 4, Paper D32, pp 254-261.

D112

Maccabelli Gabions, Inc. "Maccaferri Gabions, Gabions, Reno Mattress, Woven Hexagonal Netting for River Works, Soil Conservation, Roads, Railways, Airports, Channel and Earth-Fill Dam Lining" (not dated), Williamsport, Md.

Miller, S. P. 1978 (Feb). "Bank Distress on Low-Water Weirs on Big Creek, Louisiana," Miscellaneous Paper S-78-2, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

Terra Aqua Conservation (Division of Bekaert Steel Wire Corporation). "Bekaert Gabions, New Ideas for a Proven Device" (not dated), Reno, Nev.

U. S. Army Engineer District, Kansas City, CE. 1972 (Jul). "Little Blue River Channel and Lake City Improvement, Vicinity of Kansas City, Missouri," Design Memorandum No. 1, Kansas City, Mo.

Channel Cutoffs

Keown, M. P., Dardeau, E. A., Jr., and Causey, E. M. 1980 (Feb). "Section 32 Program, Streambank Erosion Control Evaluation and Demonstration, Work Unit 2, Evaluation of Existing Bank Protection; Field Inspection of Sites in the Ohio River Division," Inspection Report 8, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

Overbank Drainage

Keown, M. P., Dardeau, E. A., Jr., and Causey, E. M. 1980 (Feb). "Section 32 Program, Streambank Erosion Control Evaluation and Demonstration, Work Unit 2, Evaluation of Existing Bank Protection; Field Inspection of Sites in the Ohio River Division," Inspection Report 8, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

1975 (Jul). "Guidelines for the Control of Erosion and Sediment in Urbanizing Areas Within Mississippi," Jackson, Miss.
APPENDIX E: SUPPLEMENTARY SELECTED BIBLIOGRAPHIES ON STREAMBANK PROTECTION

