DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The use of trade name(s) and/or manufacture(s) does not constitute an official endorsement or approval.

DISPOSITION

Destroy this report when it is no longer needed. Do not return it to the originator.
REPORT DOCUMENTATION PAGE

1. REPORT NUMBER
ARLCB-TR-82026

2. GOVT ACCESSION NO.

3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)
VARIATIONAL PRINCIPLE FOR GUN DYNAMICS WITH ADJOINT VARIABLE FORMULATION

5. TYPE OF REPORT & PERIOD COVERED
Final

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(S)
C. N. Shen

8. CONTRACT OR GRANT NUMBER(S)

9. PERFORMING ORGANIZATION NAME AND ADDRESS
US Army Armament Research & Development Command
Benet Weapons Laboratory, DRDAR-LCB-TL
Watervliet, NY 12189

10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
AMCM No. 611102H600011
DA Project No. 11L161102AH60
PRON No. 1A2250041A1A

11. CONTROLLING OFFICE NAME AND ADDRESS
US Army Armament Research & Development Command
Large Caliber Weapon Systems Laboratory
Dover, NJ 07801

12. REPORT DATE
September 1982

13. NUMBER OF PAGES
18

14. MONITORING AGENCY NAME & ADDRESS (IF DIFFERENT FROM CONTROLLING OFFICE)

15. SECURITY CLASS. (OF THIS REPORT)
UNCLASSIFIED

15a. SECURITY CLASS. (OF ABSTRACT)
UNCLASSIFIED

15b. DECLASSIFICATION/DOWNGRADING SCHEDULE
Approved for public release; distribution unlimited.

16. DISTRIBUTION STATEMENT (OF THE REPORT)

17. DISTRIBUTION STATEMENT (OF THE ABSTRACT ENTERED IN BLOCK 20, IF DIFFERENT FROM REPORT)

18. SUPPLEMENTARY NOTES
Published in proceedings of the conference.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
Gun Dynamics
Euler-Bernoulli Beam
Adjoint Variational Principle
Finite Elements
Spline Functions
Boundary and Initial Value Problems
Bilinear Forms

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)
Gun dynamics problems involving a moving shell have several delta functions in the forcing terms of the equations of motion. The use of a variational method in conjunction with finite elements smooths the differentiability of the variables in the expression involving the delta functions. This report suggests that solutions of the gun dynamics problems be obtained numerically by a variation principle where the far end conditions in time are not required.

(CONT'D ON REVERSE)
20. ABSTRACT (CONT'D)

for purposes of computation. In solving mixed boundary and initial value problems of a high order partial differential equation using spline functions, the computation may be simplified considerably if the variable in time can be truncated into arbitrary sections. Each section may have several node points for the spline functions in the time domain. This is true because we found from previous papers that the initial value problem can be solved in one direction using variational principle and cubic Hermite Polynomials, without worrying about the conditions at the far end.

The end conditions of the adjoint system can be adjusted according to the end conditions of the original system so that the bilinear concomitant is identically zero. This satisfies the variational principle. A bilinear form of the original and adjoint variables is employed in determining the coefficients of the variations of the functions and their derivatives. For the spatial variables Hermite Polynomial spline functions will be used. Algorithm and procedure of computation are given.

The variational principle for spatial and temporal problems with boundary and initial conditions are investigated. This variational principle is very general in scope and can be applied to many linear partial differential equations. The Euler-Bernoulli beam equation satisfies these variational principles. This lays the foundation for gun dynamics problems to be studied.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>VARIATIONAL PRINCIPLE USING ADJOINT VARIABLE</td>
<td>2</td>
</tr>
<tr>
<td>BILINEAR CONCOMITANT</td>
<td>3</td>
</tr>
<tr>
<td>INTEGRAL OF BILINEAR EXPRESSION</td>
<td>4</td>
</tr>
<tr>
<td>END CONDITIONS FOR THE ADJOINT SYSTEMS</td>
<td>6</td>
</tr>
<tr>
<td>FIRST VARIATION</td>
<td>7</td>
</tr>
<tr>
<td>DISCUSSION OF THE VARIATIONAL EQUATION</td>
<td>8</td>
</tr>
<tr>
<td>TRANSFORMATION OF COORDINATES</td>
<td>10</td>
</tr>
<tr>
<td>GRID SYSTEMS</td>
<td>11</td>
</tr>
<tr>
<td>SPLINE FUNCTION</td>
<td>13</td>
</tr>
<tr>
<td>CONCLUSION</td>
<td>13</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>15</td>
</tr>
<tr>
<td>APPENDIX</td>
<td>A-1</td>
</tr>
</tbody>
</table>
INTRODUCTION

This report discusses the use of adjoint variable formulation to seek the transient solutions for problems in gun dynamics. The theory from variational principle involving adjoint variables solves a mixed boundary and initial value problem. The partial differential equation governing the motion has a fourth order partial in spatial domain and a second order partial in time domain. It also involves a few step functions and delta functions as follows.1,2

\[\rho Ay + (E I y')'' - [P(x,t)y']' + Ty''H(x-x_p) = \]

\[m[x_p^2y'' + 2x_p y' + y]\delta(x-x_p) \]

\[- mg \cos \alpha \delta(x-x_p) - \rho Ag \cos \alpha \]

The above equation can be simplified into the following form

\[Ly + Q = 0 \]

where

\[Ly = (ay_t)_t - (\lambda y_{xx})_{xx} + (\ell y_x)_x + (\ell_p y_x)_x H(x-x_p) \]

and

\[-Q = m[x_p^2y'' + 2x_p y' + y]\delta(x-x_p) - mg \cos \alpha \delta(x-x_p) - \rho Ag \cos \alpha \]

We seek the explicit numerical transient solutions of \(y, y_t, y_x, y_{xt}, y_{xx}, \) and \(y_{xxt} \) for some given boundary and initial conditions. The term \(y_{xx} \) will give the stress wave and the term \(y_x \) will show the slope in bending, along

the axis of the gun tube. The solution is the extension of our previous work on initial and boundary problems.3,4

VARIATIONAL PRINCIPLE USING ADJOINT VARIABLE

If the inner product of the variable y, and the adjoint forcing function Q are used for variational purposes, the accuracy is much less than the method using the following inner product by adding a term involving the adjoint variable y as the Lagrange multiplier (see Appendix).

$$J[y, y] = \langle Q, y \rangle + \langle y, (Q + Ly) \rangle = 0$$ (5)

where the partial differential equation is given in Eq. (2). By taking variation on Eq. (5) we have

$$\delta J = \langle \delta y, (Ly + Q) \rangle \quad \text{and} \quad \langle \delta y, Ly \rangle = 0$$ (6)

The above variation vanishes if

$$Ly + Q = 0 \quad \text{(7)}$$

and

$$\langle y, L\delta y \rangle = 0 \quad \text{(9)}$$

We know that Eq. (7) is actually the original p.d.e. and Eq. (8) is its adjoint equation. A method should be established so that Eq. (9) holds true for all arbitrary variation δy.

BILINEAR CONCOMITANT

We will find out the conditions for the assumed equality in Eq. (9) to be true. Let us consider the following bilinear concomitant:5

\[D = \langle y, Ly \rangle - \langle y, Ly \rangle \] (10)

The above expression can be integrated in two different ways and can also be written in terms of boundary conditions and initial conditions. It is assumed that these boundary conditions are assigned in such a manner that the above bilinear concomitant is identically zero for all independent variables, i.e.,

\[D = 0 \] (11)

Then the first variations of \(D \) also vanish.

\[\delta D = \delta D(\delta y) + \delta D(\delta y) = 0 \] (12)

Since \(\delta y \) and \(\delta y \) are independent of each other, then

\[\delta D(\delta y) = \langle \delta y, Ly \rangle - \langle y, L \delta y \rangle = 0 \] (13)

\[\delta D(\delta y) = \langle y, L \delta y \rangle - \langle \delta y, Ly \rangle = 0 \] (14)

Equation (14) is identical to Eq. (9), which is the assumed equality previously. The implication is that if Eq. (11) is true then Eq. (9) or (14) is automatically true.

Since Eq. (10) can be expressed in terms of some integrals involving boundary conditions, Eq. (11) can be true if these boundary conditions are satisfied. The next section will discuss integral of bilinear expression and its boundary conditions.

INTEGRAL OF BILINEAR EXPRESSION

The integral of a bilinear expression for a two dimensional problem having second order partial derivatives in time and fourth order partial derivatives in space can be written as

\[I = \int_{x_0}^{x_b} \int_{t_0}^{t_b} \Omega[y(x,t)y(x,t)]dtdx \]

(15)

where \(\Omega[y,y] \) is a given bilinear expression in the form

\[\Omega[y,y] = a y_t y_t + \lambda y_{xx} y_{xx} + \phi y_x y_x + \phi^* y_x y_x H(x-x_p) \]

(16)

The subscripts \(t \) and \(x \) indicate the partial derivatives of the functions \(y \) and \(y \).

Equation (16) can be integrated by parts. Two different forms of integration and end conditions are given. The first form of the integral is obtained by integrating by parts on the adjoint variable.

\[I = -\int_{t_0}^{t_b} \int_{x_0}^{x_b} y_L y dt dx + \int_{x_0}^{x_b} a y_t y_t dx + \]

\[+ \int_{x_0}^{x_b} \left\{ \lambda y_{xx} y_x \Big|_{x_0}^{x_p} - (\lambda y_{xx})y_x \Big|_{x_0}^{x_p} + \phi y_x y_x \Big|_{x_0}^{x_p} + \phi^* y_x y_x \Big|_{x_0}^{x_p} \right\} dt \]

(17)

where

\[L y = (a y_t)_t - (\lambda y_{xx})_x + (\lambda y_x)_x + (\phi^* y_x)_x H(x-x_p) \]

(18)

On the other hand, we can perform integration on the original variable to give

\[I = \int_{t_0}^{t_b} \int_{x_0}^{x_b} y_L y dt dx + \int_{x_0}^{x_b} a y_t y_t dx + \]

\[+ \int_{x_0}^{x_b} \left\{ \lambda y_{xx} y_x \Big|_{x_0}^{x_p} - (\lambda y_{xx})y_x \Big|_{x_0}^{x_p} + \phi y_x y_x \Big|_{x_0}^{x_p} + \phi^* y_x y_x \Big|_{x_0}^{x_p} \right\} dt \]

(19)
where

\[L_y = (ay_t)_t - (\lambda y_{xx})_{xx} + (\lambda y_x)_x + (\lambda_p y_x)_x H(x-x_a) \]

For a fourth order spatial partial and a second order temporal partial system

Eq. (10) becomes

\[D = \int_{x_0}^{x_b} \int_{t_0}^{t_b} y_L y_2 dx dt - \int_{x_0}^{x_b} \int_{t_0}^{t_b} y_2 y_1 dx dt \]

(21)

By equating Eqs. (17) and (19) and solving for D in Eq. (21) we are converting the double integral into two single integrals in terms of the boundary conditions.

We can express the quantity D as the sum of three parts on end conditions

\[D_1, D_2, \text{and } D_3 \]

as

\[D = D_1 + D_2 + D_3 \]

(22)

The terms in \(D_1 \) involve the initial conditions of \(y \) and \(y \) as

\[D_1 = \int_{x_0}^{x_b} \left(ay_t y|_{t_0}^{t_b} \right) dx = \int_{x_0}^{x_b} \left(a_t y|_{t_0}^{t_b} \right) dx \]

(23)

The terms in \(D_2 \) involve the boundary conditions from the second partials of \(y \) and \(y \) as

\[D_2 = \int_{t_0}^{t_b} \left(\lambda y_{xx} y|_{x_0}^{x_b} \right) dt = \int_{t_0}^{t_b} \left(\lambda y_{xx} y|_{x_0}^{x_p} \right) dt \]

(24)
The terms in \(D_3 \) involve the boundary conditions from the fourth partials of \(y \) and \(\bar{y} \) as

\[
D_3 = \int_{t_0}^{t_b} \left[\lambda_{yxx} y_y(x) \right]_{x_0} - \left(\lambda_{yxx} x y(x) \right)_{x_0} + (\xi_{yxx} x y(x))_{x_0} \right] \, dt
\]

Evaluating the integrals, we get

\[
D_3 = \int_{t_0}^{t_b} \left[\lambda_{yxx} y_y(x) - \lambda_{yxx} x y(x) + (\xi_{yxx} x y(x)) \right] \, dt
\]

In order that \(D_i = 0 \) in Eq. (22) it is sufficient that

\[
D_1 = 0 \quad (26a)
\]

and

\[
D_2 = 0 \quad (26b)
\]

\[
D_3 = 0 \quad (26c)
\]

END CONDITIONS FOR THE ADJOINT SYSTEMS

In order to satisfy the requirements in Eq. (26) we separate them again into three different parts.

(a) Let us assume that the adjoint variables are

\[
y_b = k_1 y_0 \quad , \quad y_0 = k_1 y_b
\]

\[
y_{tb} = -a_b^{-1} a_o k_1 y_{to} \quad , \quad y_{to} = -a_b^{-1} a_o k_1 y_{tb}
\]

where \(k_1 \) is a constant. The above adjoint boundary conditions satisfy the requirement that \(D_1 = 0 \) in Eq. (23).

(b) Let us assume the following adjoint variables

\[
y_b = k_2 y_b \quad , \quad y_0 = \frac{k_1^2}{k_2} y_0 \quad , \quad y_p = k_3 y_p
\]

\[
y_{xb} = k_2 y_{xb} \quad , \quad y_{xo} = \frac{k_1^2}{k_2} y_{xo} \quad , \quad y_{xp} = k_3 y_{xp}
\]
Where Eq. (29) is inconsistent with Eq. (27) and k_2 is another constant.

Equations (29) and (30) imply that $D_2 = 0$ in Eq. (24).

(c) The following boundary conditions are assumed

\[y_0 = \frac{k_1^2}{k_2} y_0, \quad y_{x0} = y_{x0}, \quad y_{xxx0} = y_{xxx0}, \quad y_{xxxx0} = \left(\frac{k_1^2}{k_2}\right) y_{xxxx0} \] (31)

\[y_b = k_2 y_b, \quad y_{xb} = y_{xb}, \quad y_{xxb} = y_{xxb}, \quad y_{xxxxb} = k_2 y_{xxxxb} \] (32)

Equations (31) and (32) satisfy Eq. (25). Thus $D_3 = 0$.

By giving the appropriate values of the adjoint variables in terms of the original variables one may find that the requirement $D = 0$ can be satisfied. This leads to the condition in Eq. (6) that

\[\delta J = 0 \]

for all arbitrary variations δy and δy.

FIRST VARIATION

Since the variations δy and δy are independent to each other, the part of δJ in Eq. (6) with variation δy can be expressed as

\[\delta J(\delta y) = \int_{t_0}^{t_b} \int_{x_0}^{x_b} \delta y L_y dt dx + \int_{t_0}^{t_b} \int_{x_0}^{x_b} \delta y Q dt dx = 0 \] (33)

Where L_y is given in Eq. (18) and contains second and fourth partial differentiations in y. It is intended to include only low order partial differentiations in $\delta J(\delta y)$. This can be achieved by considering the variations of the bilinear expression I given by Eqs. (15) and (16) as,

\[\delta J(\delta y) = \int_{t_0}^{t_b} \int_{x_0}^{x_b} \left[\alpha y \delta y_t + \lambda y_{xx} \delta y_{xx} + \xi y_x \delta y_x \right] dt dx \]

\[+ \int_{t_0}^{t_b} \int_{x_0}^{x_b} \xi y_x \delta y_x dt dx \] (34)
A different form of the above variation can be obtained from Eq. (17) as

\[
\delta I(\delta y) = -\int_{t_0}^{t_b} \delta y \frac{dy}{dx} \, dt + \int_{t_0}^{t_b} \alpha y \delta y \, dx + \int_{t_0}^{t_b} \beta y \delta y \, dx + \int_{t_0}^{t_b} \gamma y \delta y \, dx + \int_{t_0}^{t_b} \delta y \, dt
\]

Equating Eqs. (34) and (35), solving for the term containing integrals for \(\delta y \) and substituting into Eq. (33) we have

\[
\delta J(\delta y) = \int_{x_0}^{x_b} (\alpha y \delta y) \, dx + \int_{x_0}^{x_b} \beta y \delta y \, dx + \int_{x_0}^{x_b} \gamma y \delta y \, dx + \int_{x_0}^{x_b} \delta y \, dt
\]

This is the key equation which uses variational principle in solving a mixed initial and boundary value problem for a fourth order partial differential equation.

DISCUSSION OF THE VARIATIONAL EQUATION

Let us discuss the various terms in Eq. (36), the variational equation for the beam problem, into three parts as follows.

(1) The initial conditions of the original variables are given and variations of the adjoints at the far end are zero. The first term in Eq. (36) contains the product of \(y \delta y \) evaluated at the initial condition \(y_{t_0} \delta y_0 \) and at the final condition \(y_{t_b} \delta y_b \). Since the value of \(y_b \) are known as given by Eqs. (27) and (29), \(\delta y_b = 0 \). That is, the variations of the adjoint variable at the far end are zero.
(2) The boundary conditions of the original variables and variation of the adjoints can be determined. The second through fourth terms are the boundary terms involving the variations δy and δy_x and the variables y_x, y_{xx}, and y_{xxx} at both boundaries. For a beam the end conditions can be expressed as

<table>
<thead>
<tr>
<th>Boundary Type</th>
<th>$y = 0$</th>
<th>$y = 0$</th>
<th>$\delta y = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed End</td>
<td>$y_x = 0$</td>
<td>$y_x = 0$</td>
<td>$\delta y_x = 0$</td>
</tr>
<tr>
<td>Hinged End</td>
<td>$y = 0$</td>
<td>$y = 0$</td>
<td>$\delta y = 0$</td>
</tr>
<tr>
<td></td>
<td>$y_{xx} = 0$</td>
<td>$y_{xx} = 0$</td>
<td>$\delta y_{xx} = 0$</td>
</tr>
<tr>
<td>Guided End</td>
<td>$y_x = 0$</td>
<td>$y_x = 0$</td>
<td>$\delta y_x = 0$</td>
</tr>
<tr>
<td></td>
<td>$y_{xxx} = 0$</td>
<td>$y_{xxx} = 0$</td>
<td>$\delta y_{xxx} = 0$</td>
</tr>
<tr>
<td>Free End</td>
<td>$y_{xx} = 0$</td>
<td>$y_{xx} = 0$</td>
<td>$\delta y_{xx} = 0$</td>
</tr>
<tr>
<td></td>
<td>$y_{xxx} = 0$</td>
<td>$y_{xxx} = 0$</td>
<td>$\delta y_{xxx} = 0$</td>
</tr>
</tbody>
</table>

The variations in the adjoint variables shown in the last column coincide to the same end conditions in the original variables given in the first column, whether it is on the left or the right boundary. It is noted that the third partial derivatives can be evaluated at the boundaries.

(3) Interior region - The last two terms give the interior where the forcing function Q, the adjoint-variations δy, δy_t, δy_x, and δy_{xx} and the variables y_t, y_x, and y_{xx} are shown. No third order partial of y with respect to x is present. Thus the variables that are needed for the computation are y, y_t, y_x, y_{xt}, y_{xx}, and y_{xxt}. This requires a c^2 continuity in the spatial direction and a c^1 continuity in the time domain.
TRANSFORMATION OF COORDINATES

The integral signs in Eq. (36) can be converted into summation signs if
discrete intervals for integration are used. We may take some scale factors
to nondimensionalize the problem by giving

\[t_0 = 0 , \quad t_b = 1 \quad 0 < t < 1 \]

\[x_0 = 0 , \quad x_b = 1 \quad 0 < x < 1 \]

Moreover, Eq. (36) can be discretized by letting

\[\xi = \frac{Ht - i + 1}{H} \quad 0 < \xi < 1 \quad i = 1,2,\ldots,H \]

\[\eta = \frac{Kx - j + 1}{K} \quad 0 < \eta < 1 \quad j = 1,2,\ldots,K \]

where \(H \) and \(K \) are number of intervals for \(t \) and \(x \) respectively. Thus the

partial derivatives are

\[y_t = \frac{\partial y}{\partial t} = H \frac{\partial y}{\partial \xi} = Hy_\xi \]

\[y_x = \frac{\partial y}{\partial x} = K \frac{\partial y}{\partial \eta} = Ky_\eta \]

\[y_{xx} = \frac{\partial^2 y}{\partial x^2} = K \frac{\partial^2 y_x}{\partial \eta^2} = K^2 y_{\eta\eta} \]

\[y_{xxx} = \frac{\partial^3 y}{\partial x^3} = K \frac{\partial^3 y_{xx}}{\partial \eta^3} = K^3 y_{\eta\eta\eta} \]

Use of Eqs. (36) through Eq. (44) then leads to

\[0 = \delta J(\delta y) \]

\[= \sum_{i=1}^{K} \int_{0}^{1} [aHy_\xi(i,j)] \delta y(i,j) \bigg|_{t_0}^{t_b} \frac{1}{d_\eta} \frac{d_\xi}{K} \]

\[+ \sum_{i=1}^{H} \int_{0}^{1} [Ky_\eta - (\lambda K^3 y_{\eta\eta\eta})_\eta] \delta y(i,j) \bigg|_{x_0}^{x_b} \frac{1}{d_\xi} \frac{d_\eta}{H} \]
\[+ \sum_{i=1}^{H} \int_{0}^{1} \left(\lambda K^2 y_{n\theta} \delta y_{n\theta}(1,j) \right) \frac{\xi b}{x_0} \frac{1}{H} d\xi \]

\[+ \sum_{i=p}^{K} \int_{0}^{1} \left(\lambda K y_{n\theta} \delta y_{n\theta}(1,j) \right) \frac{\xi b}{x_p} \frac{1}{H} d\xi \]

\[+ \sum_{j=1}^{K} \int_{0}^{1} \left(\frac{1}{H} \delta y(1,j) \right) \frac{1}{K} \frac{1}{H} d\xi \]

\[- \sum_{i=1}^{H} \int_{0}^{1} \left(\frac{1}{H} \delta y(1,j) \right) \frac{1}{K} \frac{1}{H} d\xi \]

\[- \sum_{i=p}^{K} \int_{0}^{1} \left(\frac{1}{H} \delta y(1,j) \right) \frac{1}{K} \frac{1}{H} d\xi \]

\[- \sum_{i=1}^{H} \int_{0}^{1} \left(\frac{1}{H} \delta y(1,j) \right) \frac{1}{K} \frac{1}{H} d\xi \]

\[- \sum_{i=p}^{K} \int_{0}^{1} \left(\frac{1}{H} \delta y(1,j) \right) \frac{1}{K} \frac{1}{H} d\xi \]

\[= 0 \quad (45) \]

GRID SYSTEMS

The \((24 \times 1)\) vector \(Y(1,j)\) has a grid of four \((6 \times 1)\) vectors \(Y_1(1,j)\) through \(Y_4(1,j)\), thus

\[Y(1,j) = \left[\begin{array}{c} Y_1(1,j) \\ Y_2(1,j) \\ Y_3(1,j) \\ Y_4(1,j) \end{array} \right] \]

Each of the \((6 \times 1)\) vectors has six components consisting of the function, its first and second partials in spatial directions, and its mixed partials in space and time.

\[Y_1(1,j) = \left[\begin{array}{c} y(\xi_1,\eta_j) \\ y\xi(\xi_1,\eta_j) \\ y\eta(\xi_1,\eta_j) \\ y\xi\eta(\xi_1,\eta_j) \\ y\eta\eta(\xi_1,\eta_j) \\ y\xi\eta\eta(\xi_1,\eta_j) \end{array} \right] \]

\[Y_2(1,j) = \left[\begin{array}{c} y(\xi_1,\eta_{j+1}) \\ y\xi(\xi_1,\eta_{j+1}) \\ y\eta(\xi_1,\eta_{j+1}) \\ y\xi\eta(\xi_1,\eta_{j+1}) \\ y\eta\eta(\xi_1,\eta_{j+1}) \\ y\xi\eta\eta(\xi_1,\eta_{j+1}) \end{array} \right] \]

\[Y_3(1,j) = \left[\begin{array}{c} y(\xi_1,\eta_j) \\ y\xi(\xi_1,\eta_j) \\ y\eta(\xi_1,\eta_j) \\ y\xi\eta(\xi_1,\eta_j) \\ y\eta\eta(\xi_1,\eta_j) \\ y\xi\eta\eta(\xi_1,\eta_j) \end{array} \right] \]

\[Y_4(1,j) = \left[\begin{array}{c} y(\xi_1,\eta_{j+1}) \\ y\xi(\xi_1,\eta_{j+1}) \\ y\eta(\xi_1,\eta_{j+1}) \\ y\xi\eta(\xi_1,\eta_{j+1}) \\ y\eta\eta(\xi_1,\eta_{j+1}) \\ y\xi\eta\eta(\xi_1,\eta_{j+1}) \end{array} \right] \]
If we increase the row index from i to $i+1$, then the grid point shifts down by one step and the following holds

$$Y_1(i+1,j) = Y_2(i,j) \quad Y_3(i+1,j) = Y_4(i,j)$$ (48)

If we increase the column index from j to $j+1$ then the grid point shifts to the right by one step and one obtains

$$Y_1(i,j+1) = Y_3(i,j) \quad Y_2(i,j+1) = Y_4(i,j)$$ (49)

The following diagram shows the relationship of the grid system.

\[
\begin{align*}
Y_1(i,j) & \quad Y_3(i,j) = Y_1(i,j+1) \\
& \quad Y_3(i,j+1) \\
Y_2(i,j) & \quad Y_4(i,j) = Y_2(i,j+1) \\
& \quad Y_4(i,j+1) \\
\vdots & \quad \vdots \\
Y_1(i+1,j) & \quad Y_3(i+1,j) = Y_1(i+1,j+1) \\
& \quad Y_3(i+1,j+1) \\
Y_2(i+1,j) & \quad Y_4(i+1,j) = Y_2(i+1,j+1) \\
& \quad Y_4(i+1,j+1) \\
\end{align*}
\]
SPLINE FUNCTION

We may express the variables \(y(1,j) \) and \(\delta y(1,j) \) in Eq. (45) in terms of the (1x24) spline function \(a^T(\xi,n) \) and the (24x1) node point function \(y(1,j) \) as follows.

\[
y(1,j)(\xi,n) = a^T(\xi,n)y(1,j)
\]

where

\[
a^T(\xi,n) = ([a^1(\xi,n)]^T [a^2(\xi,n)]^T [a^3(\xi,n)]^T [a^4(\xi,n)]^T
\]

and

\[
\delta y(1,j)(\xi,n) = a^T(\xi,n)\delta y(1,j)
\]

A typical term for a product can be written as

\[
\delta y(1,j)y(1,j) = [\delta y(1,j)]^T a(\xi,n)a^T(\xi,n)y(1,j)
\]

CONCLUSION

A bilinear form of the original and adjoint variable is employed in determining the coefficients of the variations of the functions and their first derivatives. There is no term involving the variations of any higher derivatives than second. In solving mixed boundary and initial value problems of a fourth order partial differential equation using spline functions, the computation may be simplified considerably if the variable in time can be truncated into arbitrary sections. The entire problem is divided into several strips of distinct time intervals, each strip containing mostly the boundary value problem.

The variational principle for spatial and temporal problems with boundary and initial conditions have been investigated. This variational principle is very general in scope and can be applied to many linear partial differential
equations. The principle is applicable if the bilinear concomitant is identically zero. This leads to the requirement that a set of end conditions for the adjoint systems must be found to satisfy this condition. Otherwise the variational principle as stated may not be applicable.

The beam equation (with one dimensional spatial direction) satisfy these variational principles. For future work the analytic solution of these equations using finite element method will be studied. The assembly of the elements of the matrices involved in the formulation will be demonstrated. The stability problem in numerical solutions on these equations will also be investigated. This lays the foundation for the gun dynamics problem to be studied in the future.
REFERENCES

APPENDIX

THE VARIATIONAL PRINCIPLE

A more accurate estimate can be made by constructing a variational principle.\(^5\) By using the adjoint variable \(y\) as a Lagrange multiply we have

\[
J[y, y] = \langle Qy \rangle + \langle y, (Q + Ly) \rangle
\]

\[
= \langle Qy \rangle + \langle y, Q \rangle + \langle y, Ly \rangle \tag{A1}
\]

In order that \(J\) be a variational principle the following requirements must be satisfied.

(a) \(J\) is stationary about the function \(y_s\) which satisfies the following relation

\[
Ly_s = -Q \tag{A2}
\]

(b) The stationary value of \(J\) deduced from Eqs. (2) through (5) is

\[
J[y, y] = \langle Q, y_s \rangle + \langle Q, y_a \rangle \tag{A3}
\]

where \(y_a\) is the actual solution. Consider first the stationarity of \(J\) by taking the variation of Eq. (A1)

\[
\delta J = \langle Q, \delta y \rangle + \langle \delta y, Q \rangle + \langle \delta y, Ly \rangle + \langle y, L\delta y \rangle
\]

\[
= \langle \delta y, (Ly + Q) \rangle + \langle \delta y, (Ly + Q) \rangle
\]

\[
- \langle \delta y, Ly \rangle + \langle y, L\delta y \rangle \tag{A4}
\]

We will make an effort later to impose certain conditions in order that the following equality holds:

\[
\langle y, L\delta y \rangle = \langle \delta y, Ly \rangle \tag{A5}
\]

where \(L\) is the adjoint operator.

By combining Eqs. (A4) and (A5) one obtains
\[\delta J = \langle \delta y, (Ly + Q) \rangle + \langle \delta y, (Ly + Q) \rangle = 0 \]
(A6)

Since the variations \(\delta y \) and \(\delta y \) are arbitrary it leads to the requirement that the stationary values \(y_s \) and \(y_s \) must satisfy
\[Ly_s = -Q \]
(A7)
\[Ly_s = -Q \]
(A8)

Since Eq. (A7) is the same as Eq. (A2) therefore, \(J \) is stationary about the function \(y_s \).

Equation (A8) is the adjoint equation in terms of the adjoint operator, \(L \), the adjoint variable \(y \), and the adjoint forcing function \(Q \).

It is noted that \(\delta J \) in Eq. (A6) vanishes and is independent of the arbitrary variations \(\delta y \) and \(\delta y \). By using \(\delta J \) one can claim that the estimate is very accurate and free from the arbitrary variations.

Using the relationship in Eq. (A7) the stationary value of \(J \) from Eq. (A1) is
\[J[y_s, y_s] = \langle Q, y_s \rangle + \langle y_s, Q \rangle + \langle y_s, Ly_s \rangle = \langle Q, y_s \rangle \]
(A9)

Since \(J \) is stationary and \(\delta J + 0 \), then
\[\langle Q, y_s \rangle + \langle Q, y_a \rangle \]
(A10)

which is the requirement given in Eq. (A3).

It is noted that Eq. (A6) contains no boundary terms to be satisfied.

This bears an important point in the future discussion.
<table>
<thead>
<tr>
<th>Department/Section</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHIEF, DEVELOPMENT ENGINEERING BRANCH</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: DRDAR-LCB-DP</td>
<td>1</td>
</tr>
<tr>
<td>-DR</td>
<td>1</td>
</tr>
<tr>
<td>-DS (SYSTEMS)</td>
<td>1</td>
</tr>
<tr>
<td>-DS (ICAS GROUP)</td>
<td>1</td>
</tr>
<tr>
<td>-DC</td>
<td>1</td>
</tr>
<tr>
<td>CHIEF, ENGINEERING SUPPORT BRANCH</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: DRDAR-LCB-SE</td>
<td>1</td>
</tr>
<tr>
<td>CHIEF, RESEARCH BRANCH</td>
<td>2</td>
</tr>
<tr>
<td>ATTN: DRDAR-LCB-R (ELLEN FOGARTY)</td>
<td>1</td>
</tr>
<tr>
<td>-RA</td>
<td>1</td>
</tr>
<tr>
<td>-RM</td>
<td>1</td>
</tr>
<tr>
<td>-RP</td>
<td>1</td>
</tr>
<tr>
<td>-RT</td>
<td>1</td>
</tr>
<tr>
<td>TECHNICAL LIBRARY</td>
<td>5</td>
</tr>
<tr>
<td>ATTN: DRDAR-LCB-TL</td>
<td></td>
</tr>
<tr>
<td>TECHNICAL PUBLICATIONS & EDITING UNIT</td>
<td>2</td>
</tr>
<tr>
<td>ATTN: DRDAR-LCB-TL</td>
<td></td>
</tr>
<tr>
<td>DIRECTOR, OPERATIONS DIRECTORATE</td>
<td>1</td>
</tr>
<tr>
<td>DIRECTOR, PROCUREMENT DIRECTORATE</td>
<td>1</td>
</tr>
<tr>
<td>DIRECTOR, PRODUCT ASSURANCE DIRECTORATE</td>
<td>1</td>
</tr>
</tbody>
</table>

NOTE: PLEASE NOTIFY DIRECTOR, BENET WEAPONS LABORATORY, ATTN: DRDAR-LCB-TL, OF ANY REQUIRED CHANGES.
<table>
<thead>
<tr>
<th>Address</th>
<th>No. of Copies</th>
<th>Address</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASST SEC OF THE ARMY RESEARCH & DEVELOPMENT</td>
<td>1</td>
<td>COMMANDER ROCK ISLAND ARSENAL</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: DEP FOR SCI & TECH THE PENTAGON</td>
<td></td>
<td>ATTN: SARRI-ENM (MAT SCI DIV) ROCK ISLAND, IL 61299</td>
<td></td>
</tr>
<tr>
<td>WASHINGTON, D.C. 20315</td>
<td></td>
<td>COMMANDER US ARMY INDUSTRIAL BASE ENG ACT</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATTN: DRXIB-M ROCK ISLAND, IL 61299</td>
<td></td>
</tr>
<tr>
<td>COMMANDER DEFENSE TECHNICAL INFO CENTER</td>
<td>12</td>
<td>COMMANDER US ARMY TANK-AUTMV R&D COMD</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: DTIC-DDA ALEXANDRIA, VA 22314</td>
<td></td>
<td>ATTN: TECH LIB - DRSTA-TSL WARREN, MICHIGAN 48090</td>
<td></td>
</tr>
<tr>
<td>CAMERON STATION</td>
<td></td>
<td>COMMANDER US ARMY TANK-AUTMV COMD</td>
<td>1</td>
</tr>
<tr>
<td>ALEXANDRIA, VA 22314</td>
<td></td>
<td>ATTN: DRSTA-RC WARREN, MICHIGAN 48090</td>
<td></td>
</tr>
<tr>
<td>COMMANDER US ARMY ARRADCOM</td>
<td>1</td>
<td>COMMANDER US MILITARY ACADEMY</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: DRDAR-LC</td>
<td></td>
<td>ATTN: CHMN, MECH ENGR DEPT WEST POINT, NY 10996</td>
<td></td>
</tr>
<tr>
<td>DRDAR-LCA (PLASTICS TECH EVAL CEN)</td>
<td>1</td>
<td>US ARMY MISSILE COMD</td>
<td></td>
</tr>
<tr>
<td>DRDAR-LCE</td>
<td>1</td>
<td>REDSTONE SCIENTIFIC INFO CEN</td>
<td>2</td>
</tr>
<tr>
<td>DRDAR-LCM (BLDG 321)</td>
<td></td>
<td>ATTN: DOCUMENTS SECT, BLDG 4484 REDSTONE ARSENAL, AL 35898</td>
<td></td>
</tr>
<tr>
<td>DRDAR-LCS</td>
<td></td>
<td>COMMANDER US ARMY FGN SCIENCE & TECH CEN</td>
<td>1</td>
</tr>
<tr>
<td>DRDAR-LCU</td>
<td>1</td>
<td>ATTN: DRXST-SD 220 7TH STREET, N.E. CHARLOTTESVILLE, VA 22901</td>
<td></td>
</tr>
<tr>
<td>DRDAR-LCW</td>
<td>1</td>
<td>COMMANDER US ARMY MATERIALS & MECHANICS RESEARCH CENTER</td>
<td></td>
</tr>
<tr>
<td>DRDAR-TSS (STINFO)</td>
<td>2</td>
<td>ATTN: TECH LIB - DRXMR-PL WATERTOWN, MASS 02172</td>
<td></td>
</tr>
<tr>
<td>DOVER, NJ 07801</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIRECTOR US ARMY BALLISTIC RESEARCH LABORATORY</td>
<td>1</td>
<td>COMMANDER US ARMY ARRCOM</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: DRDAR-TSB-S (STINFO)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABERDEEN PROVING GROUND, MD 21005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMMANDER US ARMY ARRADCOM</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: DRSAR-LEP-L ROCK ISLAND ARSENAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROCK ISLAND ARSENAL ROCK ISLAND, IL 61299</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: PLEASE NOTIFY COMMANDER, ARRADCOM, ATTN: BENET WEAPONS LABORATORY, DRDAR-LCB-TL, WATERVERLIENT ARSENAL, WATERVERLIENT, N.Y. 12189, OF ANY REQUIRED CHANGES.
TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST (CONT.)

<table>
<thead>
<tr>
<th>COMMANDER</th>
<th>NO. OF COPIES</th>
<th>NO. OF COPIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>US ARMY RESEARCH OFFICE</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: CHIEF, IPO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P.O. BOX 12211</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESEARCH TRIANGLE PARK, NC 27709</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US ARMY HARRY DIAMOND LAB</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ATTN: TECH LIB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2800 POWDER MILL ROAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADELPHIA, MD 20783</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAVAL SURFACE WEAPONS CEN</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ATTN: TECHNICAL LIBRARY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CODE X212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAHLGREN, VA 22448</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US NAVAL RESEARCH LAB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: DIR, MECH DIV CODE 26-27 (DOC LIB)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WASHINGTON, D.C. 20375</td>
<td></td>
<td></td>
</tr>
<tr>
<td>METALS & CERAMICS INFO CEN BATTELLE COLUMBUS LAB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>505 KING AVE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COLUMBUS, OHIO 43201</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATERIEL SYSTEMS ANALYSIS ACTV ATTN: DRSXY-MP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABERDEEN PROVING GROUND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MARYLAND 21005</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: PLEASE NOTIFY COMMANDER, ARRADCOM, ATTN: BENET WEAPONS LABORATORY, DRDAR-LCB-TL, WATERVIET ARSENAL, WATERVIET, N.Y. 12189, OF ANY REQUIRED CHANGES.