DISTRIBUTED COMPUTATION ON GRAPHS:
SHORTEST PATH ALGORITHMS*

K. M. Chandy
J. Misra

TR-LCS-8203 March 1982

Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFSC)
NOTICE OF TRANSMITTAL TO DTIC
This technical report has been reviewed and is
approved for public release IAW AFR 190-12.
Distribution is unlimited.
MATTHEW J. KERPER
Chief, Technical Information Division

* This work was supported in part by the Air Force Office of
Scientific Research under grant AFOSR 81-0205

DISTRIBUTION STATEMENT A
Approved for public release
Distribution Unlimited
DISTRIBUTED COMPUTATION ON GRAPHS:
SHORTEST PATH ALGORITHMS

K. M. Chandy
J. Misra

Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712

Key Words and Phrases: Distributed Computation, Shortest Path,
Negative Cycle, Depth First Search,
Diffusing Computation

CR Categories: C.2.4, D.1.3, F.2.2, G.2.2

*This work was supported in part by the Air Force Office of
Scientific Research under grant AFOSR 81-0205.*
Abstract

We use the paradigm of diffusing computation, introduced by Dijkstra and Scholten, to solve a class of graph problems. We present a detailed solution to the problem of computing shortest paths from a single vertex to all other vertices, in the presence of negative cycles.
Title: Distributed computation on graphs: shortest path algorithms

Authors: K.M. Chandy and J. Misra

Performing Organization:
- Computer Sciences Department
- University of Texas
 - Austin TX 78712

Contract or Grant Number: AFOSR-81-0205

Program Element, Project, Task, Area & Work Unit Numbers: PE61102F; 2304/A2

Report Date: Mar 1982

Number of Pages: 17

Distribution Statement (of this Report): Approved for public release; distribution unlimited.

DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report):

Supplementary Notes: Accepted for publication in the Communications of the ACM.

Key Words: Distributed computation; shortest path; negative cycle; depth first search; diffusing computation.

Abstract: The authors use the paradigm of diffusing computation, introduced by Dijkstra and Scholten, to solve a class of graph problems. They present a detailed solution to the problem of computing shortest paths from a single vertex to all other vertices, in the presence of negative cycles.
1. INTRODUCTION

This paper presents distributed algorithms, based on the work of Dijkstra and Scholten [1], for solving graph problems using networks of communicating processes. The solution to one particular graph problem—finding shortest paths from a single vertex to all other vertices in a weighted, directed graph, in the presence of negative cycles—is discussed in detail. We then show how this solution may be applied to other graph problems including depth first search in an undirected graph.

Our model of computation is a network of processes in which processes communicate only by sending and receiving messages; the model is presented in detail in section 2.

We describe the shortest path problem and the necessary terminology from graph theory in section 3. The distributed algorithm is given in section 4 and its proof in section 5. Applications to other graph problems are discussed in section 6.

2. MODEL OF A NETWORK OF COMMUNICATING PROCESSES

A process is a sequential program which can communicate with other processes by sending/receiving messages. Two processes P and Q are said to be neighbours if they can communicate directly with one another without having messages go through intermediate processes. We assume that communication channels are bi-directional: if P can send messages to Q then Q can send messages to P. A process knows the identities of its neighbours; otherwise it is ignorant of the identities of all other processes and of the general structure of the network.
We assume a very simple protocol for message communication; this protocol is equivalent to the one used by Dijkstra and Scholten [1]. Every process has an input buffer of unbounded length. If process P sends a message to a neighbor process Q, then the message gets appended at the end of the input buffer of Q after a finite, arbitrary delay. We assume that (1) messages are not lost or altered during transmission, (2) messages sent from P to Q arrive at Q's input buffer in the order sent, and (3) two messages arriving simultaneously at an input buffer are ordered arbitrarily and appended to the buffer. A process receives a message by removing one from its input buffer.

The assumption of unbounded length buffers is for ease of exposition. We show, in section 6, that for our problem the input buffer length of process Q can be bounded by the number of neighbors of Q.

3. THE SHORTEST PATH PROBLEM

\(G = (V,E) \) is a directed graph in which \(V \) is the set of vertices and \(E \) is the set of edges. Edge \((v_i,v_j)\) has an associated length \(w_{ij} \). If edge \((v_i,v_j)\) exists then \(v_j \) is said to be a successor of \(v_i \) and \(v_i \) is said to be a predecessor of \(v_j \). It is required to determine lengths of the shortest paths from a special vertex \(v_1 \) in \(V \) to all other vertices in \(V^* \). Since some \(w_{ij} \)'s may be negative, a cycle of negative total length (called a negative cycle) may exist in the graph. If a negative cycle is reachable from \(v_1 \) then all vertices reachable from \(v_1 \) will have a shortest path length of \(\infty \). Distance of a vertex \(v_i \) is the length of the shortest path from \(v_1 \) to \(v_i \) and is denoted by \(L_i \).

* We assume familiarity with graph theoretic terms such as path, shortest path, etc.
4. A DISTRIBUTED ALGORITHM FOR THE SHORTEST PATH PROBLEM

Consider a network of processes corresponding to graph G; process \(p_i \) represents vertex \(v_i \), for all \(i \), and \(p_i \) and \(p_j \) are neighbours if edges \((v_i,v_j)\) or \((v_j,v_i)\) exist in G. \(p_i \) knows the weight \(w_{ij} \) for every outgoing edge \((v_i,v_j)\). However, \(p_i \) may not know the weights of incoming edges or the identities of processes other than its neighbours.

Process \(p_1 \) initiates a computation to determine the lengths of shortest paths from \(v_1 \) to all vertices. In the following, we use vertex \(v_i \) and process \(p_i \) interchangeably when no confusion can result.

4.1 The Structure of the Algorithm

The algorithm works in 2 phases, both of which are initiated by \(p_1 \). At the end of phase I, every process \(p_i \) will have the value of \(L_i \), if \(L_i \neq -\infty \).

If for some vertex \(v_j \), \(L_j = -\infty \) then \(p_j \) will not be aware of this fact at the end of phase I; the goal of phase II is to inform all such processes that they are at distances of \(-\infty\).

4.2 The Structure of Phase I Computation

4.2.1 Messages used in Phase I

Phase I computation uses two kinds of messages:

1. a **length message** is a two-tuple \((s,p)\) where \(p \) is the identity of the process sending the message and \(s \) is a number. \(p_i \) sends a length message \((s,p_i)\) to \(p_j \) to inform \(p_j \) that there is a path of length \(s \) from \(v_1 \) to \(v_j \) in which \(v_i \) is the prefinal vertex.

2. an **acknowledgement message** or **ack** has no other data associated with it. A process \(p_j \) sends an ack to a process \(p_i \) in response to a length message sent by \(p_i \). Intuitively, an ack denotes that the length sent by \(p_i \) to \(p_j \) has been (or will be) taken into consideration by all processes reachable from \(p_j \).
A process p_i, $i \neq 1$, maintains a local variable d which denotes the length of the shortest path received so far by p_i. Upon receiving a length s from a predecessor, if $s < d$, p_i sets d to s and in this case it sends a length message $(s + w_{ij}, p_i)$ to every successor p_j. It may seem that ack's are superfluous. Clearly length messages can be used to compute successively shorter paths. However, the presence of negative cycles means that this will be a nonterminating computation. Ack's are used to terminate phase I computation as described below.

4.2.2 Local data used by a process p_i during Phase I

Each process p_i uses 3 local variables.

d : This is the shortest length of paths from v_1 to v_i
 known to this process at this point in the computation;
 $d = \infty$ if no length message has been received.

pred : This is the predecessor from which the length d was received;
 this is the prefinal vertex on the shortest path to v_i
 computed so far. pred is undefined if $d = \infty$ or $i = 1$.

num : This is the number of unacknowledged messages, i.e. the number of messages sent by this process for which no ack has been received so far.

4.2.3 Phase I algorithm for process p_i, $j \neq 1$

Initialization

(No length message has been received. There are no unacknowledged messages)

$\begin{array}{l}
\text{begin} \quad d := \infty; \text{pred is undefined; num} := 0 \quad \text{end;}
\end{array}$
Upon receiving a length message \((s, p_i)\)

\[
\text{if } s < d \text{ then } \\
\begin{align*}
\text{begin} & \quad \{\text{send an ack to pred, the prefinal vertex on the previous shortest path, if it has not been sent already}\} \\
\text{if } \text{num} > 0 \text{ then send an ack to pred;} & \\
\{\text{update } d, \text{ pred}\} & \\
\text{pred} := p_i; \quad d := s; & \\
\{\text{send length messages to all successors of } v_j \text{ and increment num appropriately and then return ack to pred if num = 0}\} \\
& \text{send a length message } (d + w_{jk}, p_j) \text{ to every successor } p_k; \\
& \text{num} := \text{num} + \text{the number of successors of } v_j; \\
& \text{if } \text{num} = 0 \text{ then send an ack to pred } \\
\end{align*}
\]

\text{else } \{s \geq d\} \{\text{new length does not denote a shorter path}\} \\
\begin{align*}
\text{send ack to } p_i. & \\
\end{align*}

Upon receiving an ack from process \(p_k\):

\[
\begin{align*}
\text{begin} & \\
\{\text{decrement number of unacknowledged messages}\} \\
& \text{num} := \text{num} - 1; \\
\{\text{send acknowledgement to pred if acks have been received for all messages}\} \\
& \text{if } \text{num} = 0 \text{ then send ack to pred } \\
\end{align*}
\]

\text{end.}

\textbf{Note:}

1. If \text{num} \geq 0 at any time, then a process has exactly one message to which it has not sent an ack, and this ack should go to pred.
4.2.4 Initiation of Phase I

Phase I algorithm for process p_1

Initialization

$d := 0$; pred is undefined;

send (w_{lk}, p_1) to all successors p_k; \(\text{num} := \text{number of successors of } v_1 \).

Upon receipt of a length message (s, p_1)

\[\text{(start phase II if a negative cycle is detected)} \]

if $s < 0$ then terminate phase I and start phase II

else return ack to p_1

Upon receiving an ack

\[\text{(update num; start phase II if there is no unacknowledged message remaining)} \]

\[\text{num := num - 1;} \]

if num = 0 then terminate phase I and start phase II.

4.2.5 Example

Consider the graph shown in figure 1.

![Graph](image)

Figure 1.

A network with weighted edges.
Four feasible snapshots of the network showing possible values for d, pred and num for the six processes in this example are shown below. Since transmission delays are arbitrary, network computation is non-deterministic. Hence the four snapshots shown below form only one of many sequences which may arise. "?" denotes undefined value for pred.

Snapshot 1

p_1 has sent one message to each of p_2 and p_3 which have not yet been received.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>num</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Snapshot 2

p_2, p_3 have received length messages $(3, p_1), (4, p_1)$ respectively.

p_3 has sent $(10, p_3)$ to p_4, which p_4 has received.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>10</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>pred</td>
<td>?</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>num</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

p_5, p_6 receive $(11, p_4), (12, p_4)$ respectively from p_4. p_6 sends an ack to p_4; this ack is received by p_4.

p_4 receives $(5, p_2)$. Next p_4 sends an ack to p_3 and sends $(6, p_4), (7, p_4)$ to p_5 and p_6 respectively which they both receive. p_5 sends an ack to p_4 which is received by p_4.
p₃ sends an **ack** to p₁ since p₃'s num is zero.

p₅ sends (2,p₃) to p₂, thus causing p₂ to send an **ack** to p₁. Since p₁ has no further unacknowledged messages it terminates phase T.

4.3 The Structure of Phase II Computation

4.3.1 Messages used in Phase II

Phase II employs two kinds of messages: **over?** and **over-**. An over- message is sent by process j to all its successors if process j has determined that phase I is over and Lⱼ = -∞; an over- message orders the recipient to halt all phase I computation (if it has not done so already), set its d to -∞ and propagate the over- message to its successors.

If a process already has its d = -∞ when it receives an over- message, it takes no action. An over? message is sent by process j to all its successors when it has determined that phase I is over, but has not determined whether Lⱼ = -∞. An over? message orders the recipient to
halt all phase I computation. If the recipient \(p_1 \) has \(\text{num} = 0 \) it sends over?
messages to its successors; otherwise (if \(p_1 \) has \(\text{num} > 0 \)) it can be shown
that \(L_1 = -\infty \), therefore \(p_1 \) sets its \(d := -\infty \) and sends over- to its successors.
Note that it is redundant for any process \(p_1 \) to send duplicate messages to a
process \(p_j \) or to send over? after over-. Every process other than \(p_1 \) will receive
an over? or an over- message.

4.3.2 Detailed algorithm for Phase II

Initiation of Phase II by process \(p_1 \)

\[
\begin{align*}
&\text{if } p_1 \text{ receives a message } (s,p), \text{ with } s < 0, \text{ during phase I} \\
&\quad \text{then } (p_1 \text{ detects that it is in a negative cycle}) \\
&\quad \text{send an over- message to all its successors} \\
&\quad \text{else } (\text{num} = 0 \text{ for } p_1 \text{ at the end of phase I}) \\
&\quad \text{send over? message to all successors}.
\end{align*}
\]

Phase II algorithm for process \(p_1 \) with \(\text{num} > 0 \)

\[
\begin{align*}
&\text{Upon receiving a phase II message (over- or over?)} \\
&\quad \text{if } d \neq -\infty \text{ then} \\
&\quad \quad \text{begin } d := -\infty; \\
&\quad \quad \quad \text{send over- to all successors} \\
&\quad \quad \text{end.}
\end{align*}
\]

Phase II algorithm for process \(p_1 \) with \(\text{num} = 0 \)

\[
\begin{align*}
&\text{Upon receiving an over- message} \\
&\quad \text{if } d \neq -\infty \text{ then} \\
&\quad \quad \text{begin } d := -\infty; \\
&\quad \quad \quad \text{send over- to all successors} \\
&\quad \quad \text{end.}
\end{align*}
\]

Upon receiving an over? message

\[
\begin{align*}
&\quad \text{if } d \neq -\infty \text{ then send over? to all successors}.
\end{align*}
\]
5. PROOF OF CORRECTNESS

We define \(v_i \) to be a finite vertex if \(L_i \neq -\infty \); \(v_i \) is an infinite vertex if \(L_i = -\infty \).

Lemma 1: For any \(j \), \(L_j \leq d_j \) at all times.

Proof: We observe that every \(d_j \) is the length of some path from \(v_1 \) to \(v_j \).

Lemma 2: If there is a finite path of length \(d_j^* \) to a vertex \(v_j \), then from some point onward in the computation \(d_j \leq d_j^* \), if Phase I does not terminate.

Proof: Proof is by induction on the number of edges on the path. Lemma 2 is trivial when the number of edges in the path is zero. Now assume Lemma 2 holds for all paths with \(k \) or fewer edges. Consider a path with \(k + 1 \) edges from \(v_1 \) to \(v_j \) in which \(v_i \) is the prefinal vertex and the path length to \(v_1 \) is \(d_i^* = d_j^* - w_{ij} \). From the induction hypothesis eventually, \(d_i \leq d_i^* = d_j^* - w_{ij} \); therefore \(p_j \) will eventually receive \((d_i + w_{ij}, p_i)\) which guarantees that \(d_j \leq d_i + w_{ij} \leq d_j^* \). It follows from the algorithm that \(d_j \) can never increase. Therefore, \(d_j \leq d_j^* \) from that point onward in the computation.

Lemma 3: If phase I does not terminate then from some point onward in the computation every infinite vertex \(v_j \) will have an infinite vertex for \(\text{pred}_j \) and every finite vertex \(v_j \) will have a finite vertex for \(\text{pred}_j \), \(j \neq 1 \).

Proof: The following holds for all \(j, j \neq 1 \), at all times:

\[
d_i + w_{ij} \leq d_j \quad \text{if } i = \text{pred}_j.
\]

From lemma 1, \(L_i \leq d_i \), for all \(i \). Therefore,

\[
L_i + w_{ij} \leq d_j \quad \text{if } i = \text{pred}_j.
\]
If \(v_j \) is infinite then from lemma 2, eventually \(d_j \) gets arbitrarily small.

In particular, from some point onwards in the computation, for every finite \(v_i \),

\[
d_j < L_i + w_{ij}
\]

Hence from that point onwards \(\text{pred}_j \) will be an infinite vertex.

From lemmas 1 and 2, if phase I does not terminate then eventually every finite \(v_i \) will have \(d_i = L_i \) and \(\text{pred}_i \) will be the prefinal vertex on this path; \(\text{pred}_i \) must therefore be a finite vertex.

Theorem 1: Phase I terminates.

Proof: Assume phase I never terminates. Then \(d_j = L_j \) for every finite vertex \(v_j \) from some point in phase I computation and hence no finite vertex sends a length message from then on. From lemma 3, finite vertices eventually form a rooted directed tree where \(\text{pred}_j \) is the father of \(v_j, j \neq 1 \), and \(v_1 \) is the root. A leaf vertex \(v_j, j \neq 1 \), in this tree cannot be the pred for any finite vertex (since it is a tree) nor can it be the pred for any infinite vertex, from lemma 3; therefore eventually \(\text{num}_j = 0 \) and \(v_j \) will send an ack to \(\text{pred}_j \). Induct on the height of the tree to show that every finite vertex will eventually have \(\text{num} = 0 \). If \(p_1 \) is a finite vertex it will then terminate phase I computation. If \(p_1 \) is an infinite vertex, from lemma 2, it will eventually detect that it is in a negative cycle and hence terminate phase I. Hence phase I will terminate! Contradiction!

Theorem 2: At the termination of Phase I,

1. if \(v_j \) is a finite vertex, \(d_j = L_j \) and \(\text{num}_j = 0 \).

2. if \(v_j \) is an infinite vertex, then there is some \(v_i \) such that there is a path from \(v_1 \) to \(v_j \) through \(v_i \), in the graph, and \(\text{num}_i > 0 \).
Proof:

(1) For a finite vertex v_j, we define $e(j)$ to be the number of edges on a shortest path from v_1 to v_j (if there are several shortest paths we choose the shortest loopfree path with maximum number of edges). The result follows by induction on $e(j)$.

(2) Assume the contrary that for an infinite vertex v_{j}, every vertex v_i on a path from v_1 to v_{j} has $\text{num}_{i} = 0$, at the end of Phase I. Even if phase I computation continues, v_j will never receive a length message and thus d_{j} will not decrease. This contradicts lemma 2. The other part of the proof follows by similar arguments.

Theorem 3: Phase II terminates and at that point $d_{j} = L_{j}$ for every vertex v_{j}.

Proof: Phase II terminates since any process sends at most 2 messages: over? followed by a over- message. No finite vertex receives a over- message because there cannot be an infinite vertex on a path from v_1 to a finite vertex. Therefore d_{j} remains unchanged during Phase II for a finite vertex and from theorem 2, $d_{j} = L_{j}$ at the beginning of Phase II. For an infinite vertex v_{j}, there is a path from v_1 to v_{j} through v_i, where $\text{num}_{i} > 0$ at the end of Phase I. Therefore p_i will propagate an over- message once it receives any Phase II message and therefore $d_{j} = -\infty = L_{j}$ eventually.

6. NOTES ON THE ALGORITHM

6.1 Unbounded Buffers

A process p_i sends (strictly) monotone decreasing lengths in every length message to any other process p_j. Therefore any length message sent by p_i can overwrite any earlier message sent by p_i which is still in the buffer. Hence p_j need only store one message (the latest message) from each predecessor. The space requirement for acks can be reduced by storing the number of acks.
sent from \(p_j \) to \(p_i \), which are still in the buffer; this number is incremented by 1 each time \(p_j \) sends an ack to \(p_i \). \(P_i \) can remove multiple acks from the buffer and reduce \numi \ accordingly. Hence we need space for at most one message and one ack count for every neighbour of a process \(p_j \) in the input buffer of \(p_j \).

6.2 Applications to Other Graph Problems

A number of other graph problems can be formulated as shortest path problems using a more general notion of path length. We define a path length function \(f \), a real valued function on paths, starting from \(v_i \), as follows.

\[
f[\text{path with no edges}] = 0 \\
\frac{f[P_i; (i, j)] = g_i(f(P_i), w_{ij})}{where \ P_i \ is \ any \ path \ from \ v_i \ to \ v_j,} \\
\frac{P_i; (i, j) \ is \ the \ path \ P_i \ followed \ by \ edge \ (v_i, v_j),}{g_i \ is \ any \ arbitrary \ computable \ function \ which \ is \ monotone \ in \ the \ first \ argument,} \\
\frac{w_{ij} \ is \ some \ given \ real \ number \ denoting \ the \ "length" \ of \ edge \ (v_i, v_j).}{}
\]

The shortest path algorithm of section 4 can be used to compute,

\[
d_j = \min\{f(P_j) \mid P_j \ is \ a \ path \ from \ v_i \ to \ v_j\}, \ for \ all \ j.
\]

The only change is in Phase 1 computation in the content of the length message sent; instead of \(p_j \) sending \((d_j + w_{jk}, p_j)\) to a successor \(p_k \), it now sends \((g_j(d_j, w_{jk}), p_j))\). Monotonicity of \(g \) in the first argument is essential, since it guarantees that every process sends monotone decreasing path lengths, if it receives monotone decreasing path lengths.
We list some graph problems and show how they can be solved under this shortest path formulation.

1. Find all vertices reachable from v_1 : We wish to set d_j to 0 if v_j is reachable from v_1, else set d_j to ∞. We use the following function,
 \[g_1(x,y) = x \]

2. Find all vertices which can reach v_1 : same as (1), except length messages are sent to predecessors.

3. Maximum strongly connected component: Determine if a given vertex v_1 is in a nontrivial strongly connected component: use both (1) and (2). A separate computation is then needed to determine whether there is a vertex which has its d set to 0 in both computations.

4. Construction of Depth First Search Tree: Consider an undirected graph G. For each vertex j label all the edges incident on j with 1, 2, 3, In a depth-first search we would normally label the "left-most" edge on j with 1, the next left-most edge 2 and so on. (However, for purposes of proof the labelling is arbitrary.) Note that edge (i,j) may be the r-th left-most edge incident on i and the s-th left-most edge incident on j and it is not necessary that $r = s$. An example is shown below.

![Diagram](image)

Figure 2. An undirected graph with labelled edges: an application of depth first search.
In a depth-first search starting from a vertex (say vertex 1), the vertices of the graph are traversed beginning with a depth-first search of the left-most successor of vertex 1. The collection of paths traversed to reach each vertex for the first time forms a tree called the depth-first search tree. In the above example the depth-first search tree has edges (1,2), (2,3) and (3,4). Our goal is to determine the depth-first search tree; in particular we want to determine the path leading to every vertex in the depth-first search tree.

Let P be a path (i_1, \ldots, i_k). Then define $f(P) = (j_1, \ldots, j_{k-1})$ where $j_m = i_{m+1}$ is the label assigned to edge (i_m, i_{m+1}) at vertex i_m. In our example, if $P = (1,2,3,4)$ then $f(P) = (1,1,2)$.

Let $f(P) = (j_1, \ldots, j_m)$ and $f(P') = (k_1, \ldots, k_n)$. We define $f(P) < f(P')$ if and only if either

(i) for some r, $j_r < k_r$ and $j_i = k_i$ for $i=1, \ldots, r-1$ or

(ii) $n > m$ and $j_i = k_j$ for $i=1, \ldots, m$.

Thus $(1,1,2) < (3)$ and $(1) < (1,1,2,2)$

It is evident that $d_j = \min \{ f(P_j) \mid P_j \text{ is a path from } v_1 \text{ to } v_j \}$, denotes the path in the depth first search tree up to v_j.

6.3 Earlier Work

The algorithm suggested in this paper is a modification of an algorithm proposed by Dijkstra and Scholten [1], for termination detection of a class of distributed computations, called diffusing computations. In their algorithm pred_j does not change as long as $\text{num}_j > 0$; the algorithm terminates when $\text{num}_j = 0$ for every p_j. We allow pred_j to change while $\text{num}_j > 0$; this allows us to terminate the phase I algorithm even when some $\text{num}_j > 0$. This is
critical for identifying infinite vertices since those are the ones which are reachable from a vertex with num > 0.

Acknowledgement

We are indebted to Professor E. W. Dijkstra for his comments on an earlier draft of this paper; his suggestions led to more concise proofs in section 5. We are also grateful to unknown referees and M. D. McIlroy for their suggestions and corrections.
REFERENCES

M-4

11-82

END