A CHANCE CONSTRAINED APPROACH TO BANK DYNAMIC BALANCE SHEET MAN--ETC(U)

MAY 82 A CHARNES, J GALLEGOS, S YAO

N00014-82-K-0295
Research Report CCS 428

A CHANCE-CONSTRAINED APPROACH TO
BANK DYNAMIC BALANCE SHEET MANAGEMENT

by

A. Charnes
J. Gallegos
S. Yao

May 1982

This paper is supported in part by ONR Contract N00014-82-K-0295
with the Center for Cybernetic Studies, The University of Texas
at Austin. Reproduction in whole or in part is permitted for
any purpose of the United States Government.

CENTER FOR CYBERNETIC STUDIES

A. Charnes, Director
Business-Economics Building, 203E
The University of Texas at Austin
Austin, Texas 78712
(512) 471-1821

DISTRIBUTION STATEMENT A
Approved for public release;
Distribution Unlimited
ABSTRACT

The dynamic balance sheet management model formulated deterministically by Chambers and Charnes was extended stochastically by Cohen and Thore to a two-stage LPU2 model. This paper develops a chance-constrained model which compares well with the Cohen and Thore example but in addition is easily extendable to formulations of realistic size, as the C-T model is not, and with the availability of dual evaluators.

KEY WORDS

Dynamic balance sheet management
Two-stage LPU2
Chance-constrained Programming
Intertemporal analysis of bank portfolios
A CHANCE-CONSTRAINED APPROACH
TO
BANK DYNAMIC BALANCE SHEET MANAGEMENT

1. Introduction

Traditional asset management is commonly considered by many bankers to mean a kind of static and quasi-independent portfolio management. They focus only on the allocation of funds to various categories to provide adequate liquidity, serve the credit needs of the bank's customers and maximize short run income from investments. The interactions among the various segments of the investment portfolio, the lending policy of the bank and the expectation of making loans in the future are not adequately represented in their view of the portfolio management problem as one of trying to maximize the current yield of the funds allocated to the investment portfolio.

During the past two decades, active management of the entire asset side and liabilities and capital accounts of the bank's balance sheet has become an important part of portfolio management. In order to obtain the maximum benefits for the bank, we must be able to take account of the interdependencies among all the various
2. balance sheet accounts. This is also why the term "balance sheet management" is more appropriate than either portfolio management or asset management.

Indeed "dynamic balance sheet management" better conveys the idea that optimal decisions regarding the investment securities cannot be made in a static or short-term context.

Proper financial planning and control by a bank involves both long term planning with a time horizon spanning--say ten future years ahead--as well as short term operational management planning. Any predictions of the future might well prove to be wrong. Thus, new predictions should be made continually on the basis of the latest available information. The process of planning and replanning long term and short term is the essence of sound bank financial management [9].

The most successful technique that has actually been developed and implemented in American commercial banks to help senior executives explore and understand the trade-off relationships in dynamic balance sheet management is that of the large-scale deterministic LP model. From both a theoretical and realistic viewpoint, however, it would be desirable to be able to consider economic events such as loan demand, deposit levels and interest rates as random variables described by some joint
probability distribution. A major problem with such an approach might be the detail and complexity of the informational requirements of the resulting model which might thereby be impossible to implement constructively. It seems wise therefore to look for a constructively possible means of bringing into the analytical picture the major features of the uncertainties within which the dynamic balance sheet management process has to be carried out.

K. J. Cohen and S. Thore presented a paper in 1970 [10] in which they developed a two-stage linear programming under uncertainty (LPU2) model to comprehend the effects of uncertainties in optimal dynamic balance sheet management. Unfortunately, this two-stage LPU2 model suffers from several disadvantages. It must prescribe both the actions under all possible arising circumstances and the cost-profit evaluations of all such actions. Thereby the model rapidly becomes so large that computationally very few opportunities and relationships can be considered. By formulating a model in terms of CCP concepts we shall be able to bypass the explicit consideration of every possible state and thereby obtain a more adequate analytical instrument.

Cohen and Thore formulated their two-stage linear programming under uncertainty (LPU2) model with discrete distribution functions as a stochastic variant of the
basic Chambers and Charnes model [9]. LPU2 was originally introduced by Dantzig in 1955 [11], and applied by Dantzig and Ferguson to a transportation problem in 1956. Cohen and Thore broke up a bank's balance sheet management process as it reflects upon the liquidity problem into two stages. During the first stage the bank fixes the value of the portfolio variables under its control, such as loans made and investments in various categories. During the second stage, following stochastic movements in deposits, the bank responds by making adjustments or by borrowing additional reserves. During the second stage accumulations of other assets are not made nor are there positive stochastic accumulations of daily assets or investments or reductions of loans. Cohen and Thore posit net penalty costs for not covering reserve deficits during the second stage.

A major weakness of this model is the assumption that penalty cost can be known and determined a priori and that they are independent of the mode of operation of the system. This weakness can be overcome in a chance-constrained formulation which does not require such information or assumptions. Chance-constrained programming (CCP) involves planning for "almost all" situations, not for every possible situation, since many of these are not predictable a priori and may be impossible to
treat without invoking new measures not under the bank's control. LPU^2 is a very special instance of CCP.

Our CCP model is also based on the deterministic Chambers and Charnes model. It involves a natural extension from deterministic constraints to chance constraints when random variables are involved and from a deterministic objective to one which is the expected value of a function of random variables. We now proceed to formulate our model.

2. **Structure of the Model**

(A) The Variables

Following the classifications of the Chambers-Charnes deterministic model, which are reproduced approximately in the Cohen-Thore model, the bank is assumed to have initial holdings of cash, daily assets, short-term and long-term investments, loans, Federal funds purchased, Federal Reserve borrowings, certificates of deposits, demand deposits, savings deposits, and capital and reserves, etc.

Knowing these and taking certain actions such as change the daily assets, purchase or sell short-term and long-term investments, issue certificates of deposits, at the beginning of the period, Cohen and Thore obtain results at the end of the period which are acted or to give the
terminal balance sheet results in accordance with penalty costs or horizon constraints or investments and other financial position considerations.

Instead of the C-T procedure, in our CCP representation we do not employ actions after the emergence of the random variable yields or other similar sample information just end of penalty costs, we require desired posture conditions to hold at least a prescribed level of probability.

For us let

\[X_1 = \text{amount of daily assets to have at the end of the period} \]

\[X_2 = \text{amount of short-term investments to have at the end of the period} \]

\[X_3 = \text{amount of long-term investments to have at the end of the period} \]

\[X_4 = \text{amount of loans to have at the end of the period} \]

\[X_5 = \text{amount of Federal funds to be purchased to have at the end of the period} \]

\[X_6 = \text{amount of borrowing from the Federal Reserve to have at the end of the period} \]

\[X_7 = \text{amount of certificates of deposit to hold at the end of the period} \]

Besides these decision variables, we designate as follows the following random variables,
7.

\[y_1 = \text{amount of emergent cash holdings at the end of the period} \]
\[y_2 = \text{amount of emergent demand deposits at the end of the period} \]
\[y_3 = \text{amount of emergent savings deposits at the end of the period} \]
\[y_4 = \text{amount of emergent capital and reserves at the end of the period} \]

The \(X_i \) are required to be and the \(y_i \) are non-negative. Since our decision variables are not functions of the observed sample values of the random variables, our class of stochastic decision rules is the so-called "zero-order" decision rule class.

(B) The Constraints

We now consider what constraints to impose on the bank's balance sheet position. Since some terminal variables are stochastic, those constraints involving them will be chance constraints.

(1) Cash Reserve Requirements Constraint

The bank must maintain at least the cash balances specified by the Federal Reserve System's legal minimum reserve requirements. These depend on both the size and composition of the bank's deposits, and savings deposits at the end of the period, respectively.

The terminal holdings of cash, \(y_1 \), may be obtained taking account of decision variable actions by adding cash
inflows to the initial holdings and subtracting all cash outflows. All interest revenues and costs are assumed to be booked on the cash accounts of the current period. Thus, we have

\[
(*) Y_1 = - \sum_{i=1}^{6} (1-e_i)X_i + \sum_{i=5}^{7} (1-e_i)X_i + Y_2 + (1-d_3)Y_3 - g + B_6
\]

where \(e_i \) denotes yield or cost rate of type \(i \)
\(d_3 \) denotes the interest rate on saving deposits
\(g \) denotes the fixed operating cost
\(B_6 \) denotes the initial capital and reserves

The Federal Reserve requirements impose certain proportionate contributions \(a, b, c \) of the minimum reserve requirements of certificates of deposits, demand deposits, and savings deposits, respectively toward the cash balance. This balance condition may be rendered, if all quantities are deterministic, as

\[
Y_1 \geq aX_7 + bY_2 + cY_3
\]

But now \(Y_1, Y_2, Y_3 \) are random variables. Thus we
impose instead the chance constraint:

\[P(Y_1 \geq aX_7 + bY_2 + cY_3) \geq \alpha \]

\[\text{(1)} \]

where "P" denotes the probability operator and
\[0 < \alpha \leq 1 \]

(2) **Lower Limit on Daily Assets Constraint**

A bank wants to make optimal use of the facilities of the Federal Funds market. Generally one finds that a good general policy is to operate always on both sides of the market. To do this, the bank must sell a certain part of the amount it purchases in the market.

Let \(\epsilon \) be the fraction of the amount the bank purchases from the market. This policy condition may be rendered as

\[X_s \geq \epsilon X_s \]

\[\text{(2)} \]

(3) **Upper Limit on Federal Funds Purchased Constraint**

On the basis of the bank's experiences and contacts, it may wish to specify an upper limit to the amount of Federal funds that it can plan to purchase, thus

\[X_s \leq K \]

\[\text{(3)} \]

where \(K \) is the specified upper limit.
(4) Lower Limit on Short-term Investments
Constraint

The deposit uncertainty relates to the various possible outcomes for the level of deposits in the period. A minimal liquidity buffer is needed to provide for the random variations in deposits.

Let P be the fraction of the demand deposits that must be held as short-term investments. Since Y_2 is a random variable, we may express this liquidity buffer condition by the chance constraint:

$$P(X_2 \geq PY_2) \geq \beta$$...

where $0 < \beta \leq 1$

(5) Upper Limit on Certificates of Deposit
Constraint

Management does not wish to become unduly dependent upon certificates of deposit as a source of funds. To represent this policy, we shall limit certificates of deposit to at most the fraction v of the sum of all deposits. Thus, we have

$$X_7 \leq v(X_7 + y_2 + y_3)$$

if these quantities were deterministic.
Since Y_2, Y_3 are random variables, we employ instead the chance constraint:

\[P[v(y_2 + y_3) \geq (1-v)x_7] \geq \lambda \] \hspace{1cm} ...(5)

where \(0 < \lambda \leq 1 \)

(6) **Lower Limit on Total Investments Constraint**

The Federal Reserve Board requires that a certain position \(u \) of all liabilities and capital must be covered by investments. Assuming that all investments are U.S. government securities, we may regard this as a government-to-assets constraint, which reflects management's need to conform to this externally imposed standard. Let Y^*_4 denote the holdings of capital and reserves at the end of the period. It may be obtained by adding net income earned during the period to the initial capital and reserves and deducting the operating cost. Thus,

\[
(**) \quad Y^*_4 = \sum_{i=1}^n e_i X_i - \sum_{i=5}^7 e_i X_i - d_3 Y_3 - g + B_6
\]

Deterministically, we would have the constraint:

\[X_5 X_6 \geq u (x_5 + x_6 + x_7 + y_2 + y_3 + y_4) \]

where \(u \) denotes the fraction of all liabilities and capital must be covered by investments.
Since \(y_2, y_3, y_4 \) are random variables, we employ the chance constraint:

\[
P[x_2 + x_3 - u x_5 - u x_6 - u x_7 \geq u(y_2 + y_3 + y_4)] \geq \gamma
\]

\[0 < \gamma \leq 1\]

or, equivalently

\[
P[y_2 + y_3 + y_4 \leq \frac{x_2 + x_3}{u} - (x_5 + x_6 + x_7)] \geq \gamma
\]

\(\ldots (6) \)

(7) **Loans Demand Constraint**

The bank wishes to service the loans demand, \(z \). Since \(z \) is a random variable not known in advance, we express the bank's desire to service the loans as a chance constraint which states that the bank's operations are to be such that the bank is able to meet the loans demand at least probability \(\delta \). Thus, we have

\[
P[X_4 \geq z] \geq \delta
\]

\(\ldots (7) \)

where \(0 < \delta \leq 1 \)

(C) **The Objective Function**

We shall take as the bank's objective the maximization of net return on loans, short and long term investment, daily assets, less interest paid on
deposits, Federal funds, Federal borrowings as well as operating costs, etc. over the time period.

To express the expected net income function, we need to multiply all items by their yield or cost rates, respectively.

Let e_i denote the yield or cost rate of type i in the period. Here, we assume that the e_i are known in advance.

Let g denote the fixed operating cost in the period.

Let d_3 denote the interest rate on savings deposits.

Then, the objective of maximizing expected net income may be rendered as:

$$\text{Max } E\left(e_iX_i - d_3E(y_3) - g\right)$$

where "E" denotes the mathematical expectation operator.

(D) Summary of the Model

Our chance-constrained model may now be formulated as:

$$\text{Max } \sum_{i=1}^{n} e_iX_i - \sum_{i=5}^{n} e_iX_i - d_3E(y_3) - g$$

subject to
(1) \(P(y_1 \geq ax_7 + by_2 + cy_3) \geq \alpha \)

(2) \(x_i \geq \epsilon \)

(3) \(x_5 \leq K \)

(4) \(P(X_2 \geq \rho Y_2) \geq \beta \)

(5) \(P(y_2 + y_3 \geq \frac{1-v}{v} x_7) \geq \lambda \)

(6) \(P[y_2 + y_3 + y_4 \leq \frac{x_2 + x_3}{u} - (x_5 + x_6 + x_7)] \geq \gamma \)

(7) \(P(X_4 \geq z) \geq \delta \)

where \(x_i \geq 0 \quad i=1,2,\ldots,7 \)

(E) The Deterministic Equivalent Problem

We next proceed to reduce these chance-constraints to corresponding deterministic equivalents for the case of zero-order decision rules.

From constraint (1) and "*' we have

\[
P[- \sum_{i=1}^{4} (1-e_i)X_i + \sum_{i=5}^{7} (1-e_i)X_i - ax_7 - g + B_6 \geq -(1-b)y_2

- (1-d_3 - c)y_3] \geq \alpha
\]

\[
\Rightarrow P[(1-b)y_2 + (1-d_3 - c)y_3 \leq ax_7 + g - B_6 + \frac{4}{4} (1-e_i)X_i - \frac{7}{7} (1-e_i)X_i]
\]

\[
\leq 1 - \alpha
\]
Assuming that y_2, y_3 have means $E(Y_2), E(Y_3)$ and variances $V(Y_2), V(Y_3)$, respectively, constraint (1) becomes

$$P \left[\frac{(1-b)y_2+(1-d_3-c)y_3-E((1-b)y_2)-E((1-d_3-c)y_3)}{\sqrt{V((1-b)y_2+(1-d_3-c)y_3)}} \leq \frac{\alpha}{\sqrt{V((1-b)y_2+(1-d_3-c)y_3)}} \right]$$

$$\leq 1 - \alpha$$

Let $Z \Delta \frac{(1-b)y_2+(1-d_3-c)y_3-E((1-b)y_2)-E((1-d_3-c)y_3)}{\sqrt{V((1-b)y_2+(1-d_3-c)y_3)}}$

then

$$P[Z \leq \frac{ax_7+g-B_6+\frac{7}{1}(1-e_i)x_i-\frac{7}{5}(1-e_i)x_i-E((1-b)y_2+(1-d_3-c)y_3)}{\sqrt{V((1-b)y_2+(1-d_3-c)y_3)}}]$$

$$\leq 1 - \alpha$$

or

$$F_{Z_1}[\frac{ax_7+g-B_6+\frac{7}{1}(1-e_i)x_i-\frac{7}{5}(1-e_i)x_i-(1-b)E(Y_2)-(1-d_3-c)E(Y_3)}{\sqrt{V((1-b)y_2+(1-d_3-c)y_3)}}]$$

$$\leq 1 - \alpha,$$
where F is the distribution function for the random variable Z_k

Since F is a monotone function, we can invert this to obtain the deterministic equivalent

$$ax_7 + g-B_5 + \sum_{i=1}^{4} (1-e_i)X_i - \sum_{i=5}^{7} (1-e_i)X_i - (1-b)E(Y_2) - (1-d_3-c)E(Y_3)$$

$$F_{Z_2}^{-1}(1-\alpha) \sqrt{\text{Var}((1-b)Y_2+(1-d_3-c)Y_3)} \quad \ldots (1')$$

Next, assuming Y_2 has mean $E(Y_2)$ and variance $\text{Var}(Y_2)$ and setting $Z_2 \equiv \frac{Y_2 - E(Y_2)}{\sqrt{\text{Var}(Y_2)}}$, we have

$$P[Z_2 \leq \frac{1}{\sqrt{\text{Var}(Y_2)}} \left(\frac{1}{\rho} x_2 - E(Y_2) \right)] \geq \beta$$

Hence,

$$F_{Z_2} \left[\frac{1}{\sqrt{\text{Var}(Y_2)}} \left(\frac{1}{\rho} x_2 - E(Y_2) \right) \right] \geq \beta$$

or,

$$\frac{1}{\rho} x_2 - E(Y_2) \geq F_{Z_2}^{-1}(\beta) \sqrt{\text{Var}(Y_2)}$$

and the deterministic equivalent ("d.e." later) is

$$\frac{1}{\rho} x_2 \geq E(Y_2) + F_{Z_2}^{-1}(\beta) \sqrt{\text{Var}(Y_2)} \quad \ldots (4')$$
Next, from (5), we have

\[P[Y_2 + Y_3 \leq \frac{1-v}{v} x_7] \leq 1 - \lambda \]

Setting \(Z_3 \equiv \frac{Y_2 + Y_3 - E(Y_2 + Y_3)}{\sqrt{V(Y_2 + Y_3)}} \), we have

\[P[Z_3 \leq \frac{1-v}{v} x_7 - E(Y_2 + Y_3)] \leq 1 - \lambda \]

Thus,

\[F_{Z_3} \left[\frac{1-v}{v} x_7 - E(Y_2 + Y_3) \right] \leq 1 - \lambda \]

and the d. e. is

\[\frac{1-v}{v} x_7 - E(Y_2) - E(Y_3) \leq F_{Z_3}^{-1}(1-\lambda) \sqrt{V(Y_2 + Y_3)} \] \hspace{1cm} \ldots (5')

From "**" and (6), we have

\[P[Y_2 + y_3 + \sum_{i=1}^{5} e_1 X_i - d_1 y_3 - g + B \leq \frac{x_2 + x_3}{u} - (x_5 + x_6 + x_7)] \geq \gamma \]

or,

\[P[Y_2 + y_3 + \sum_{i=1}^{5} e_1 X_i - d_1 y_3 - g + B \leq \frac{x_2 + x_3}{u} - (x_5 + x_6 + x_7)] \geq \gamma \]
\[P[Y_2 + (1 - d_3)Y_3 \leq \frac{\sum e_i x_i}{\frac{1}{5}} + g - B_6 + u^T(x_2 + x_3 + u, \ldots) - E(Y_2) - (1 - d_3)E(Y_3)] \geq \gamma \]

Setting \(Z_n \triangleq \frac{Y_i + (1 - d_3)Y_3 - E(Y_i + (1 - d_3)Y_3)}{\sqrt{V(Y_2 + (1 - d_3)Y_3)}} \), we have

\[P[Z_n \leq \frac{-\sum e_i x_i + \sum e_i x_i + g - B_6 + u^T(x_2 + x_3 + u, \ldots) - E(Y_2) - (1 - d_3)E(Y_3)}{\sqrt{V(Y_2 + (1 - d_3)Y_3)}}] \geq \gamma \]

so that

\[F_{Z_n}(\gamma) \leq \frac{\sqrt{V(Y_2 + (1 - d_3)Y_3)}}{F_{Z_n}(\gamma)} \]

and the d. e. is

\[-\sum e_i x_i + \sum e_i x_i + g - B_6 + u^T(x_2 + x_3 + u, \ldots) - E(Y_2) - (1 - d_3)E(Y_3) \]

\[\geq F_{Z_n}(\gamma) \sqrt{V(Y_2 + (1 - d_3)Y_3)} \]

Finally, from (7), we have

\[P(z \leq x_4) \geq \delta \]

Assuming \(z \) has mean \(E(z) \) and variance \(V(z) \), and

Setting \(Z_{z} \triangleq \frac{z - E(z)}{\sqrt{V(z)}} \), we have
Thus,
\[F_{Z_5}\left[\frac{x_4 - E(z)}{\sqrt{V(z)}} \right] \approx \delta \]

and
\[X_4 - E(z) \geq F_{Z_5}^{-1}(\delta) \sqrt{V(z)} \]

so that the d. e. is
\[X_4 \geq E(z) + F_{Z_5}^{-1}(\delta) \sqrt{V(z)} \]

Therefore, the deterministic equivalent model is:

\[\text{Max } \sum_{i=1}^{4} e_i X_i - \sum_{i=5}^{7} e_i X_i - d_3E(y_3) - g \]

s. t.

\[\begin{align*}
(1') & \quad aX_7 + \sum_{i=1}^{4}(1-e_{i1})X_i - \sum_{i=5}^{7}(1-e_{i1})X_i \leq B_6 - g + (1-b)E(y_2) + (1-d_3-c)E(y_3) \\
& \quad + F_{Z_1}^{-1}(1-\alpha) \sqrt{V(1-b)y_2 + (1-d_3-c)y_3} \\
(2) & \quad -X_1 + \epsilon X_5 \leq 0 \\
(3) & \quad X_4 \leq k \\
(4) & \quad -X_2 \leq -\rho E(y_2) - \rho F_{Z_2}^{-1}(\beta) V(y_2) \\
(5') & \quad X_7 \leq \frac{v}{1-v} E(y_2) + \frac{v}{1-v} E(y_3) + \frac{v}{1-v} F_{Z_3}^{-1}(1-\lambda) \sqrt{V(y_2 + y_3)}
\end{align*} \]
\[20. \]

\[\sum_{i=1}^{4} e_i X_i - \sum_{i=5}^{7} e_i X_i - u^{-1}(X_2 + X_3 - uX_5 - uX_6 - uX_7) \leq g - B_6 - E(y_2) - (1-d_3)E(y_3) \]

\[F_{Z_4}^{-1}(\gamma) \sqrt{V(y_2 + (1-d_3)y_3)} \]

\[(7') \quad -X_i \leq -E(z) - F_{Z_5}^{-1}(\delta)\sqrt{V(z)} \]

\[x_i \geq 0 \quad i = 1, 2, \ldots, 7 \]

Its dual:

\[
\begin{align*}
\text{Min } & \quad [B_6 - g + (1-b)E(y_2) + (1-d_3 - c)E(y_3) + F_{Z_2}^{-1}(1-\gamma)] \\
& \quad \sqrt{V((1-b)y + (1-d_3 - c)y')W_1} + KW_3 - [E(y_2) + F_{Z_2}^{-1}(\beta)\sqrt{V(y_2)}W_4] \\
& \quad + [E(y_2) + E(y_3) + F_{Z_3}^{-1}(1-\lambda)\sqrt{V(y_2 + y')W_5} - [B_6 - g + E(y_2) + (1-d_3)cE(y)] \\
& \quad + F_{Z_4}^{-1}(\gamma) \sqrt{V(y_2 + (1-d_3)y)}W_6 - [E(z) + F_{Z_5}^{-1}(\delta)\sqrt{V(z)}W_7] \\
& \quad - d_3E(y_3) - g \\
\text{s. t.} \\
& \quad (1-e_1)W_1 - W_2 + e_1W_6 \geq e_1 \\
& \quad (1-e_2)W_1 - W_4 + (e_2 - u^1)W_6 \geq e_2 \\
& \quad (1-e_3)W_1 + (e_3 - u^3)W_6 \geq e_3 \\
& \quad (1-e_4)W_1 + e_4W_6 - W_7 \geq e_4 \\
& \quad -(1-e_5)W_1 + eW_2 + W_3 + (1-e_5)W_6 \geq -e_5 \\
& \quad -(1-e_6)W_1 + (1-e_6)W_6 \geq -e_6 \\
& \quad -(1-e_7 - c)W_1 + W_5 + (1-e_7)W_6 \geq -e_7 \\
& \quad W_i \geq 0 \quad i = 1, \ldots, 7
\end{align*}
\]

Note implicitly that no assumption on the distributions have been made to obtain this deterministic equivalent model.
At this point, solely for comparison with the Cohen-Thore LPU\(^2\) results which employ symmetric discrete distributions, we shall take our random variables to be normally distributed. (In later work, non-symmetric gamma distributions will be employed for some of these). Also, \(Y_2, Y_3\), and \(z\) are to be independent random variables.

3. Computational Example

Here we use the same data as in [47] for a numerical example to compare our and Cohen-Thore results. The known parameters are as shown on Table I.

TABLE I

The Parameters

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Y_2)</td>
<td>305,000</td>
<td>205,000,000</td>
</tr>
<tr>
<td>(Y_3)</td>
<td>131,250</td>
<td>12,810,000</td>
</tr>
<tr>
<td>(z)</td>
<td>218,000</td>
<td>108,905,000</td>
</tr>
</tbody>
</table>

\[\epsilon = .4, \quad \upsilon = .2, \quad \alpha = .04\]
\[\upsilon = .3, \quad \rho = .03, \quad \beta = .165\]
\[k = 20,000, \quad g = 2,500, \quad c = .04\]

\[e_1, e_2, e_3, e_4, e_5, e_6, e_7, d_3\]
\[.02, .025, .035, .04, .025, .06, .0375, .035\]

We take \(\alpha = \beta = \delta = \lambda = .95\)
Suppose that the initial balance sheet for the bank is the same as in [47]. We list it in Table II.

For readers' convenience we exhibit the linear programming problem which is the deterministic equivalent of our CCP in Table III. Via the SMULP code and the U.T. dual cyber 170/750 computer system, optimal solutions were obtained within 0.265 seconds.

The optimal decision variables are as shown in Table IVa. We translate them into the optimal balance sheet and profit for the bank as shown in Table V.

The optimal balance sheet items are as follows:

Daily assets = $X_1 = $8,000
Short-term investments = $X_2 = $9,868
Long-term investments = $X_3 = $67,235
Loans = $X_4 = $364,417
Federal funds purchased = $X_5 = $20,000
Borrowing at Federal Reserve = $X_6 = 0
Certificates of deposit = $X_7 = $10,299
Demand deposits = $E(y_2) = $305,000
Savings deposits = $E(y_3) = $131,250
Capital and Reserves = $E(y_4) = $59,357 (from "**")
Cash = $E(y_1) = $76,386 (from "**")
TABLE II

Initial Balance Sheet for the Bank

<table>
<thead>
<tr>
<th>Account Name</th>
<th>Notation</th>
<th>Yield or Cost Rate</th>
<th>Holding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash</td>
<td>A₁</td>
<td>-</td>
<td>$100,000</td>
</tr>
<tr>
<td>Daily assets</td>
<td>A₂</td>
<td>.02</td>
<td>50,000</td>
</tr>
<tr>
<td>Short-term investments</td>
<td>A₃</td>
<td>.025</td>
<td>150,000</td>
</tr>
<tr>
<td>Long-term investments</td>
<td>A₄</td>
<td>.035</td>
<td>50,000</td>
</tr>
<tr>
<td>Loans</td>
<td>A₅</td>
<td>.04</td>
<td>200,000</td>
</tr>
<tr>
<td>TOTAL ASSETS</td>
<td></td>
<td></td>
<td>$550,000</td>
</tr>
<tr>
<td>Federal funds purchased</td>
<td>B₁</td>
<td>.025</td>
<td>$15,000</td>
</tr>
<tr>
<td>Borrowing at Federal Reserve</td>
<td>B₂</td>
<td>.06</td>
<td>5,000</td>
</tr>
<tr>
<td>Certificates of deposits</td>
<td>B₃</td>
<td>.0375</td>
<td>50,000</td>
</tr>
<tr>
<td>Demand deposits</td>
<td>B₄</td>
<td>-</td>
<td>300,000</td>
</tr>
<tr>
<td>Savings deposits</td>
<td>B₅</td>
<td>.035</td>
<td>130,000</td>
</tr>
<tr>
<td>Capital and Reserves</td>
<td>B₆</td>
<td>-</td>
<td>50,000</td>
</tr>
<tr>
<td>TOTAL LIABILITIES AND CAPITAL</td>
<td></td>
<td></td>
<td>$550,000</td>
</tr>
</tbody>
</table>
TABLE III

<table>
<thead>
<tr>
<th>Variables</th>
<th>X_1</th>
<th>X_2</th>
<th>X_3</th>
<th>X_4</th>
<th>X_5</th>
<th>X_6</th>
<th>X_7</th>
<th>r.h.s.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficient</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.98</td>
<td>.975</td>
<td>.965</td>
<td>-.975</td>
<td>-.94</td>
<td>-.9225</td>
<td>≤ 403,182</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>- .4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>≥ 0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>≤ 20,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>≥ 9,868</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>≤ 102,993</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-.02</td>
<td>8.308</td>
<td>8.298</td>
<td>-.04</td>
<td>-.975</td>
<td>-.94</td>
<td>-.9625</td>
<td>≥ 503,379</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>≥ 235,183</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective Function</td>
<td>.02x_1+.025x_2+.035x_3+.04x_4.025x_5-.06x_6-.0375x_7-7094</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE IV

a) Optimal Decision Variables

<table>
<thead>
<tr>
<th>Account Name</th>
<th>Variable</th>
<th>(1) Value ($)</th>
<th>(2) c_{ij}</th>
<th>(1) $x(2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily assets</td>
<td>X_1</td>
<td>$8,000$</td>
<td>.02</td>
<td>160</td>
</tr>
<tr>
<td>Short-term investments</td>
<td>X_2</td>
<td>9,868</td>
<td>.025</td>
<td>247</td>
</tr>
<tr>
<td>Long-term investments</td>
<td>X_3</td>
<td>67,235</td>
<td>.035</td>
<td>2,353</td>
</tr>
<tr>
<td>Loans</td>
<td>X_4</td>
<td>364,417</td>
<td>.04</td>
<td>14,577</td>
</tr>
<tr>
<td>Federal funds purchased</td>
<td>X_5</td>
<td>20,000</td>
<td>-.025</td>
<td>(500)</td>
</tr>
<tr>
<td>Borrowing at Federal Reserve</td>
<td>X_6</td>
<td>-0-</td>
<td>-.06</td>
<td>-0-</td>
</tr>
<tr>
<td>Certificates of deposit</td>
<td>X_7</td>
<td>10,299</td>
<td>-.0375</td>
<td>(386)</td>
</tr>
<tr>
<td>Objective Value</td>
<td></td>
<td>9,357</td>
<td></td>
<td>(7094)</td>
</tr>
</tbody>
</table>

b) Optimal Dual Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>(3) Value</th>
<th>(4) r.h.s.</th>
<th>(3) x (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_1</td>
<td>.04164</td>
<td>$403,182$</td>
<td>$16,789$</td>
</tr>
<tr>
<td>W_2</td>
<td>.0208</td>
<td>-0-</td>
<td>-0-</td>
</tr>
<tr>
<td>W_3</td>
<td>-0-</td>
<td>20,000</td>
<td>-0-</td>
</tr>
<tr>
<td>W_4</td>
<td>.01042</td>
<td>-9,868</td>
<td>(103)</td>
</tr>
<tr>
<td>W_5</td>
<td>.00065</td>
<td>102,993</td>
<td>67</td>
</tr>
<tr>
<td>W_6</td>
<td>.0006</td>
<td>-503,379</td>
<td>(302)</td>
</tr>
<tr>
<td>W_7</td>
<td>-0-</td>
<td>-235,183</td>
<td>-0-</td>
</tr>
<tr>
<td>Objective Value</td>
<td>9,357</td>
<td></td>
<td>(7094)</td>
</tr>
</tbody>
</table>
TABLE V
The Optimal Balance Sheets and Net Income for the Bank

<table>
<thead>
<tr>
<th>Account Name</th>
<th>Holding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash</td>
<td>$ 76,386</td>
</tr>
<tr>
<td>Daily assets</td>
<td>8,000</td>
</tr>
<tr>
<td>Short-term investments</td>
<td>9,868</td>
</tr>
<tr>
<td>Long-term investments</td>
<td>67,235</td>
</tr>
<tr>
<td>Loans</td>
<td>364,417</td>
</tr>
<tr>
<td>TOTAL ASSETS</td>
<td>$525,906</td>
</tr>
<tr>
<td>Federal funds purchased</td>
<td>20,000</td>
</tr>
<tr>
<td>Borrowing at Federal Reserve</td>
<td>-0-</td>
</tr>
<tr>
<td>Certificates of deposits</td>
<td>10,299</td>
</tr>
<tr>
<td>Demand deposits</td>
<td>305,000</td>
</tr>
<tr>
<td>Savings deposits</td>
<td>131,250</td>
</tr>
<tr>
<td>Capital and Reserves</td>
<td>59,357</td>
</tr>
<tr>
<td>TOTAL LIABILITIES & CAPITAL</td>
<td>$525,906</td>
</tr>
<tr>
<td>PROFIT</td>
<td>$ 9,357</td>
</tr>
</tbody>
</table>
TABLE VI
Optimal Balance Sheet and Net Income at Different Level

<table>
<thead>
<tr>
<th>ACCOUNT NAME</th>
<th>(level = 95%)</th>
<th>(level = 90%)</th>
<th>(C-T model level = 100%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash</td>
<td>$ 76,386</td>
<td>$ 71,866</td>
<td>$ 56,011</td>
</tr>
<tr>
<td>Daily Assets</td>
<td>8,000</td>
<td>8,000</td>
<td>8,000</td>
</tr>
<tr>
<td>Short-term Investments</td>
<td>9,868</td>
<td>9,709</td>
<td>9,159</td>
</tr>
<tr>
<td>Long-term Investments</td>
<td>67,235</td>
<td>66,941</td>
<td>65,866</td>
</tr>
<tr>
<td>Loan</td>
<td>364,417</td>
<td>369,718</td>
<td>388,345</td>
</tr>
<tr>
<td>TOTAL ASSETS</td>
<td>$525,906</td>
<td>$526,234</td>
<td>$527,381</td>
</tr>
<tr>
<td>Federal Funds Purchased</td>
<td>20,000</td>
<td>20,000</td>
<td>20,000</td>
</tr>
<tr>
<td>Borrowing at Federal Reserve</td>
<td>-0-</td>
<td>-0-</td>
<td>-0-</td>
</tr>
<tr>
<td>Certificate of Deposits</td>
<td>10,299</td>
<td>10,434</td>
<td>10,906</td>
</tr>
<tr>
<td>Demand Deposits</td>
<td>305,000</td>
<td>305,000</td>
<td>305,000</td>
</tr>
<tr>
<td>Savings deposits</td>
<td>131,250</td>
<td>131,250</td>
<td>131,250</td>
</tr>
<tr>
<td>Capital & Reserve</td>
<td>59,357</td>
<td>59,550</td>
<td>60,225</td>
</tr>
<tr>
<td>TOTAL LIABILITIES AND CAPITAL</td>
<td>$523,906</td>
<td>$526,234</td>
<td>$527,381</td>
</tr>
<tr>
<td>PROFIT</td>
<td>$ 9,357</td>
<td>$ 9,550</td>
<td>$ 10,225</td>
</tr>
</tbody>
</table>
From Table II, IV, V, we see that cash and holding of daily assets, short-term investments are reduced from the initial values during the period. However, the holding of long-term investments and the loan portfolio are considerably increased in volume. For the items of liabilities and capital, we see that the federal funds purchased, demand deposits, savings deposits, capital and reserves all are increased while the holding of certificates of deposit will be reduced and the borrowings from Federal Reserve system must be sold out in order to maximize our profit.

Our results are almost the same as those of Cohen and Thore [10] (aside from what is due to our additional liquidity constraint) and the results come from explicitly setting down chance-constraints including horizon posture ones at specified confidence levels rather than arbitrarily assuming penalty costs which cannot be determined or known a priori. Further, we obtain explicitly (as the dual optimal variables) the opportunity costs associated with each constraint. These are not available from the Cohen-Thore model. Still further, it is easy to investigate the effects of changing the required probability levels.

Here we compare three different levels of probability. We list the optimal balance sheets as shown on Table VI.
From Table VI, we see that the daily assets, Federal funds purchased, borrowing at Federal Reserves, demand deposits, and savings deposits remain the same no matter what the probability levels are. The items of cash, short-term investments, and long-term investments decrease as one goes from a probability level of .95 to .90. The other items including profit move in the opposite direction.

Why then do these trends continue on going back up to a probability level of 1? Because this level refers to the results of the Cohen-Thore model which has in particular no constraints on cash level while our model requires at least 60% of initial cash in reserve. The power of this liquidity consideration is also immediately brought to our attention by the optimal dual variables ("opportunity costs") corresponding to our constraints. The dual variable for this cash constraint is several times the magnitude of the other opportunity costs.

From Table VI and the primal solution, we see plausibly that we should make more loans and absorb more certificates of deposit in order to obtain more profit no matter what the probability levels are. This is consistent with common sense. We also see that the results seem to be sensitive to loan demand and minimum cash reserve requirements.
We thus look specifically at the values of the optimal dual variables shown in Table IVb. The first constraint on minimum cash reserve requirements has a dual variable big enough to account for most of the possible change in objective function value. Thus an increase in this minimum cash level will significantly change the objective function upwards. The values of the dual variables are very small for constraints 4, 5, and 6. Therefore, a small change in the right hand sides will contribute only a small change in profit.

4. Conclusions

In the preceding section we have illustrated our model with an example employing the data of the Cohen-Thore example. We pointed out similarities, differences and made observations on the sensitivity analyses available through our formulation. In this section we discuss several other considerations.

Cohen and Thore allowed only demand deposits and savings deposits as random variables. In our model we take loan demand, terminal cash holdings, and terminal holdings of capital and reserve be stochastic as well as deposit levels.

Cohen and Thore assumed that movements in demand and savings deposits were perfectly correlated although
they suggested that it would be more realistic to assume that the movements of these two types of deposits were governed merely by a statistically dependent joint probability distribution. But for their model, if there are 6 possible discrete outcomes for demand deposits and savings deposits respectively, then there will be 36 possible joint outcomes. In principle one could specify any type of statistical dependence one wished. However, one would face the need to specify the probabilities of all joint events. This rapidly would become an impossible burden as the number of discrete outcomes and the number of factors affecting outcomes increased. In our model, we can easily employ continuous probability distributions with dependence specified through a few parameters. It is also easy thereby to study the effects of changes in these parameters.

A bank normally plans its liquidity position to enable it to satisfy increases in loan demand. Such loan demand is not deterministic but is rather stochastic, i.e. it should be represented as a chance-variable and involved in chance-constraints. Our model does represent future loan demand in stochastic fashion. The Cohen-Thore model does not treat it so and thereby cannot draw conclusions which properly reflect its stochastic nature.
Up to now, we have assumed that all interest rates and yields are deterministic and known in advance. Also CCP model could be extended to a "control" model such as in Charnes and Stedry [7] for continuing operations and applications.
REFERENCES

A CHANCE-CONSTRAINED APPROACH TO BANK DYNAMIC BALANCE SHEET MANAGEMENT

Authors: A. Charnes, J. Gallegos, S. Yao

Performing Organization: Center for Cybernetic Studies, The University of Texas at Austin, Austin, Texas 78712

Controlling Office: Office of Naval Research (Code 434), Washington, D.C.

Report Date: May 1982

Number of Pages: 36

Distribution Statement: This document has been approved for public release and sale; its distribution is unlimited.

Supplementary Notes:

Key Words: Dynamic balance sheet management, two-stage LPU^2, chance-constrained programming, intertemporal analysis of bank portfolios

Abstract: The dynamic balance sheet management model formulated deterministically by Chambers and Charnes was extended stochastically by Cohen and Thore to a two-stage LPU^2 model. This paper develops a chance-constrained model which compares well with the Cohen and Thore example but in addition is easily extendable to formulations of realistic size, as the C-T model is not, and with the availability of dual evaluators.