MAGNETIC PHASE TRANSITIONS AND GROUND STATE PROPERTIES OF MAGNE---ETC(U)
JUN 82 J L FRY, N E BRENER
AFOSR-76-2981
AFOSR-TR-82-0658
<table>
<thead>
<tr>
<th>Report Title</th>
<th>MAGNETIC PHASE TRANSITIONS AND GROUND STATE PROPERTIES OF MAGNETIC CRYSTALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors</td>
<td>John L. Fry and Nathan E. Brener</td>
</tr>
<tr>
<td>Organization</td>
<td>Dept. of Physics, University of Texas at Arlington, Arlington, Texas 76019</td>
</tr>
<tr>
<td>Controlling Office</td>
<td>United States Air Force, Air Force Office of Scientific Research, Bolling AFB, D.C. 20332</td>
</tr>
<tr>
<td>Report Date</td>
<td>June 28, 1982</td>
</tr>
<tr>
<td>Type of Report</td>
<td>Final Report</td>
</tr>
<tr>
<td>Period Covered</td>
<td>Oct. 1, 1980-March 31, 1982</td>
</tr>
<tr>
<td>Contract or Grant Number</td>
<td>AFOSR 76-2981</td>
</tr>
<tr>
<td>Distribution Statement</td>
<td>Approved for public release; distribution unlimited.</td>
</tr>
<tr>
<td>Key Words</td>
<td>Magnetism, magnetic phase transitions, energy band theory, Hartree-Fock theory, magnetic susceptibility.</td>
</tr>
</tbody>
</table>

This report describes the progress made on Grant AFOSR 76-2981 from Oct. 1, 1980-March 31, 1982, the final period for this grant. Further studies were made of transition metal magnets. A comprehensive treatment of chromium was concluded which gave a thorough understanding of ground state properties, including the spin-density-wave magnetism. Other studies included tests of new theoretical expressions for the magnetic susceptibility and new numerical procedures to evaluate the susceptibility including contributions of orbital motion of electrons in an applied field.
REPORT NO. AFOSR 76-2981

FINAL SCIENTIFIC REPORT
AFOSR GRANT NO. 76-2981

MAGNETIC PHASE TRANSITIONS AND GROUND
STATE PROPERTIES OF MAGNETIC CRYSTALS

Principal Investigator
Dr. John L. Fry
Professor of Physics
SSAN 460-62-6914

Principal Investigator
Dr. Nathan E. Brener
Assistant Prof. of Physics
SSAN 437-62-4838

June 1982

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFOSR)
NOTICE OF TRANSMISSION TO DTIC
This report has been approved and is authorized for public release. Distribution Unlimited.
MATTHEW J. KEEPER
Chief, Technical Information Division
Final Scientific Report

During the final year and one-half of this contract work continued upon ground state properties and magnetic phase transitions in magnetic crystals. A number of publications were completed which dealt with a wide range of topics related to the basic goals of this contract. A list of publications completed since the last interim report is attached at the end of this brief report.

The work has fallen into roughly four categories:

1. Calculation of ground state properties using standard energy band techniques
2. Correlation corrections to band structure predictions using techniques of many body theory
3. Prediction of magnetic phase transitions using the temperature dependent magnetic susceptibility
4. Development of practical computer codes to perform some of the complicated statistical calculations.

The progress made on the subjects is best understood by reading the published papers. A brief summary of successes and failures follows.

1. It appears that the linear-combination of atomic orbitals method of energy band theory when using a local exchange potential of the van Barth-Hedin type is quite capable of giving a good understanding of ground state properties of magnetic metals such as chromium. A major part of the effort expended over the duration of this contract was devoted to this study and resulted in several papers.
2. Accurate numerical methods of evaluating the spin and orbital susceptibilities of metals have been developed and tested successfully against well known exact results.

3. Improvements over the commonly used random-phase-approximation to the susceptibility have been made using many body theory. There has been some controversy here: the present state of understanding is given in the last publication listed below. Further numerical calculation is needed.

4. Use of the susceptibility to predict phase transitions has been justified by a calculation which successfully predicted the same results obtained from a free-energy calculation by Kimball. See the publication listed below. This is important since free-energy calculations are almost impossible for real systems.

5. A version of the analytic tetrahedron method including matrix element variation in the tetrahedron has been obtained and fully tested against well known exact results for the orbital susceptibility of the uniform electron gas.

6. The calculation of matrix elements for the susceptibility throughout the Brillouin zone for a real system using an LCAO basis has turned out to be an almost impossible job because of the storage and computer time required. An accurate method of interpolating matrix elements must be found to make possible extensive calculations for real systems.
Publications

Papers Submitted for Publication

J. L. Fry, A. V. Kugler, J. L. Thompson and N. E. Brener, "A Soluble Model of a Solid Surface" (Submitted to Int. J. of Quant. Chem.).

