A TRANSFORMATION YIELDING AN ADDITIVE REPRESENTATION OF DATA IN -- ETC (U)
A TRANSFORMATION YIELDING AN ADDITIVE REPRESENTATION
OF DATA IN A TWO-WAY ARRAY

James A. Paulson
Psychology Department
Portland State University

Approved for public release; distribution unlimited.
Reproduction in whole or in part is permitted for
any purpose of the United States Government.

This research was supported by the Advanced Research Projects Agency and
monitored by the Office of Naval Research, Personnel and Training Research
Programs, under Contract N00014-79-C-0214, NR 154-387. I would like to thank
Michael Levine and Gerald Murch for helpful discussions while the report was
in preparation.
A Transformation Yielding An Additive Representation Of Data In a Two-way Array

James A. Paulson

Psychology Department
Portland State University
Portland, OR 97207

Defense Advanced Research Projects Agency
1400 Wilson Blvd.
Arlington, VA 22209

Personnel and Training Research Programs
Office of Naval Research
Arlington, VA 22217

Approved for public release; distribution unlimited.

It is common practice when seeking an additive representation of data in a two-way array to try out various transformations using Tukey's single degree of freedom for nonadditivity as an index of the extent of the deviation of the reexpressed data from additivity. It is shown that when data fit Tukey's model and an additive representation exists in the sense defined by Luce and Tukey (1964), the transformation required to obtain the additive representation is log (Ay + 1 - Al), where A is the weight for the degree of freedom for nonadditivity. The transformation is unique up to a linear transformation.
A TRANSFORMATION YIELDING AN ADDITIVE REPRESENTATION
OF DATA IN A TWO-WAY ARRAY

James A. Paulson
Psychology Department
Portland State University

It is common practice when seeking an additive representation of data in a two-way array to try out various transformations using Tukey's single degree of freedom for nonadditivity as an index of the extent of the deviation of the reexpressed data from additivity. It is shown that when data fit Tukey's model and an additive representation exists in the sense defined by Luce and Tukey (1964), the transformation required to obtain the additive representation is

\[f(y) = \log (\lambda y + 1 - \lambda u) , \]

where \(\lambda \) is the weight for the degree of freedom for nonadditivity. The transformation is unique up to a linear transformation. This result is in apparent conflict with power transformations suggested by Anscombe and Tukey (1963).
Introduction

Suppose the structure of expected values, \((\mu_{ij})\), of a two-way array of random variables, \((y_{ij})\), is given by Tukey's (1949) model with a single degree of freedom for nonadditivity,

\[
\mu_{ij} = \mu + \alpha_i + \beta_j + \lambda \alpha_i \beta_j .
\]

(1)

The following linear transformation yields a multiplicative representation of the array.

\[
\lambda \mu_{ij} - \lambda \mu + 1 = (1 + \lambda \alpha_i)(1 + \lambda \beta_j) .
\]

(2)

If \(1 + \lambda \alpha_i\) and \(1 + \lambda \beta_j\) are positive for all \(i, j\), then we may take logarithms on both sides to obtain the additive representation

\[
\log (\lambda \mu_{ij} - \lambda \mu + 1) = \log (1 + \lambda \alpha_i) + \log (1 + \lambda \beta_j) .
\]

(3)

An additive representation of an array \((u_{ij})\) exists in the sense defined by Luce and Tukey (1964) if there is a transformation of the \(\mu_{ij}\)'s, \(f(u_{ij})\), and functions of the row and column indices, \(r(i)\) and \(c(j)\), such that

\[
f(u_{ij}) = r(i) + c(j)
\]

(4)

for all \(i, j\) and

\[
f(u_{ij}) \geq f(u_{kl})
\]

if and only if

\[
\mu_{ij} \geq \mu_{kl}
\]

for all \(i, j, k, l\).
Luce and Tukey show that if such a transformation exists, then it is unique up to a linear transformation, as are the functions \(r(i) \) and \(c(j) \). Equation 3 shows that such a transformation exists for data described by Tukey's model, provided \(1 + \lambda a_i \) and \(1 + \lambda b_j \) are positive for all \(i, j \). If either \(1 + \lambda a_i \) or \(1 + \lambda b_j \) are nonpositive for any \(i \) or \(j \), then no additive representation exists. To see this, note that it follows immediately from Luce and Tukey's definition of an additive representation that the array \((u_{ij})\) has such a representation only if the order of elements in any row is determined by the column function, \(c(j) \), and the order of elements in any column is determined by the row function, \(r(i) \). For example, for elements in row \(i \) it follows from Equation 4 that

\[u_{ij} - u_{ik} \geq 0 \]

if and only if

\[f(u_{ij}) - f(u_{ik}) = c(j) - c(k) \geq 0 . \]

Equation 1 can be rewritten to show that the elements in row \(i \) are a linear function of \(\beta_j \), with slope \(1 + \lambda a_i \):

\[u_{ij} = \mu + a_i + (1 + \lambda a_i)\beta_j . \]

If \(1 + \lambda a_i \) is negative, the order of the \(u_{ij} \)'s in row \(i \) is the reverse of the order of the \(\beta_j \)'s. But in the additive representation given in Equation 3, \(c(j) = \log (1 + \lambda b_j) \), so the order of the \(c(j) \)'s is the same as the order of the \(\beta_j \)'s. Thus, the order of the \(u_{ij} \)'s must differ from the order of the \(c(j) \)'s, contradicting the possibility of an additive representation.

The transformation \(\log (\lambda y - \lambda \mu + 1) \), just shown to be required to
obtain an additive representation if Tukey's model holds, has not been suggested before in the statistical literature, to the author's knowledge. Transformations of the form $\log (y + c)$ are mentioned in passing by Tukey (1949), Anscombe and Tukey (1963), and Box and Cox (1964), but the necessary connection between the parameters of Tukey's model and the value of c is not discussed. In fact, Anscombe and Tukey (1963) propose a different transformation based on the parameters of Tukey's model—the power transformation $y^{1-\lambda}$. In the case $1-\lambda = 0$, they suggest the transformation $\log y$, which is the only case where their recommendation coincides with the transformation implied by the model. Kruskal (1965) and de Leeuw et al. (1976) have developed general numerical algorithms to find the monotone transformation that will render a given two-way array most additive, assuming only that such a transformation exists. It is beyond the scope of this paper to discuss the comparative virtues of the different approaches in detail, but there are a few points that should be mentioned. This might best be done in the context of an example.

Example

Figures 1a and 1b are two slightly different ways of plotting data from an experiment of Carterette and Anderson (1979) on the scaling of loudness, using the bisection method. This method has the subject adjust a sound to the point where its loudness is halfway between the loudnesses of two given sounds. Carterette and Anderson propose a simple algebraic theory which implies that the subjective loudness of the sounds which the subjects give as their bisection responses should be an additive function of the loudnesses of the sounds being bisected. A problem that arises in evaluating this theory empirically is that the subject's subjective sensation is an unknown function of the physical sound intensity expressed in decibels.
Carterette and Anderson circumvented this problem by applying the numerical algorithm of de Leeuw, et al. (1976) mentioned above to obtain a monotone transformation which renders their data as additive as possible. They then evaluate how well the transformed bisection response data fit the predictions of their theory. We shall use the data of the Carterette and Anderson to study the transformation produced by the de Leeuw et al. algorithm, the transformation implicit in Tukey's model, and the power transformation suggested by Anscombe and Tukey.

Figure la is a standard plot relating the raw bisection responses to the intensities of the first and second sounds in a pair to be bisected. Each point represents the mean of seventy observations made up of ten replications for each of seven subjects. The columns are equally spaced. Figure lb presents the same data, except the columns are spaced according to their means. Spacing the columns according to their means provides a graphical method for determining whether or not Tukey's model fits the data. Equation 5 implies that the rows should plot as straight lines if Tukey's model fits. If the data are additive, the straight lines should be parallel. If not, they should meet at a common focal point. The intersection of the lines obtained from Equation 5 for any two rows is at \(\beta_j = -1/\lambda \). The focal point of the lines representing the rows is therefore

\[
y = \mu + a_i + (1 + \lambda a_i)(-1/\lambda)
\]

\[
= \mu - 1/\lambda.
\]

Note that the terms in the multiplicative representation given in Equation 2 can be interpreted as deviations from this focal value, as follows:
Figures 1a, b. Raw loudness bisection responses, adapted from data of Carterette and Anderson (1979), plotted two different ways.
Figure 2. Transformations of raw bisection responses to attain additivity.

- Transformation implicit in Tukey single df model
- Power transformation suggested by Anscombe & Tukey (1963)
- Monotone transformation produced by ADDALS program of deLeeuw, et al. (1976)
\[\lambda \mu_{ij} - \lambda \mu + 1 = \lambda (\mu_{ij} - \mu + 1/\lambda), \quad (6) \]

\[1 + \lambda \alpha_i = \lambda (\mu_i - \mu + 1/\lambda), \]

\[1 + \lambda \beta_j = \lambda (\mu_j - \mu + 1/\lambda). \]

Furthermore, the reciprocal of \(\lambda \) is the overall mean of the deviations from the focal value. That is, Tukey's model essentially says that the expected deviation of an observation from the focal value is equal to the product of the mean deviation in that row, times the ratio of the mean column deviation to the overall mean deviation. (The role of rows and columns can obviously be switched.)

The data in Figure 1b fit Tukey's model fairly well. The lines are reasonably straight and seem like they might be converging to a focal point. For this data \(\hat{\mu} = 72.3 \), \(\hat{\lambda} = -0.027 \), and \(\hat{\mu} - 1/\hat{\lambda} = 109.3 \). The estimated focal value has a substantive interpretation. According to Licklider (1951), 110-115 dB is about the point where sound begins to be too intense for comfort, for a person who has not adapted to listening to loud sounds. Sounds this loud give rise to non auditory sensations such as tickle and pain.

Figure 2 shows the effect of three transformations on the raw bisection response data: the ADDALS transformation of de Leeuw, et al. (1976) employed by Carterette and Anderson, the power transformation suggested by Anscombe and Tukey (1963), and the transformation proposed in this paper. The latter two transformations were further transformed by linear regression to obtain comparability with the ADDALS transformation values. This is legitimate because linear transformation has no effect on additivity. The zero and unit of the ADDALS transformation, being arbitrary, were selected by Carterette and Anderson for convenience.
Carterette and Anderson conclude that, on the whole, the ADDALS transformation succeeds in rendering the data additive, though they note some slight but statistically significant nonadditivity remaining in individual analyses of some subjects. Figure 2 suggests that they would have obtained similar results with the other two transformations, which are very close to the ADDALS values except for the lowest three points. The correlations between ADDALS values and the other two transformations are .997 for the transformation implied by Tukey's model and .995 for the power transformation suggested by Anscombe and Tukey (1963). While these high correlations suggest that the results would come out the same, no matter which of the three transformations was employed, it would be wrong to conclude that there are no meaningful differences between the transformations. For reasons to be described presently, the modified log transformation and the power transformation do yield almost literally identical results with data falling in the relatively restricted range of the present data. However, even though these two transformations correlate very highly with the ADDALS transformation, they differ from it systematically, tending to exceed the ADDALS values at the extremes while undershooting them in the middle range. Anderson and Shanteau (1977) emphasize the inadequacy of correlation as a test of agreement between theory and prediction. These data illustrate their point again.

The general monotone transformation differs most markedly from the other two with respect to smoothness. While the overall increasing trend is steady, it is interspersed with minor fits and starts. For example, note the little steps in the curve for values of the transformed response just above 2.00, 4.00, and 5.10, and the little jump that occurs at about 4.80.

As noted above, when the ratio of the largest data point to the smallest is not too big, the transformations $y^{1-\lambda}u$ and $\log(\gamma y - \lambda u + 1)$ produce very
similar results with regard to additivity. Tukey (1957) defines a measure of the strength of a transformation which helps to explain why this is so. If z is the transformation, Tukey's measure of strength, as one goes from y_1 to y_2 in the original metric, is

$$S(y_1, y_2) = \frac{\left(\log \frac{dz}{dy} \right)_{y=y_1} - \left(\log \frac{dz}{dy} \right)_{y=y_2}}{\log y_2 - \log y_1}.$$

(7)

The rationale for this measure is a bit subtle; see Tukey (1957) for details. For power transformations y^p the strength is $1-p$, independent of the choice of y_1 and y_2. Also, the strength of the transformation $\log y$ is 1, independent of y_1 and y_2. Hence, the sequence of transformations

$$\ldots, y, y^k, \log y, y^{-k}, y^{-1}, \ldots$$

is equally spaced in terms of this measure. The strength of the more general transformation

$$z = \begin{cases} (y + c)^p, & p \neq 0, \\ \log(y + c), & p = 0, \end{cases}$$

depends on y_1 and y_2. However, power series expansions of $\log \frac{1+x}{1-x}$ applied to Equation 7 show that a good first approximation to the strength is given by

$$S = (1 - p) \frac{y}{y + c},$$

(8)

where y is the midpoint of y_1 and y_2. Applying this approximation to $\log (y - \mu + 1/\lambda)$ at $y = \mu$ yields

$$S = (1 - 0) \frac{\mu}{\mu + (1/\lambda - \mu)}$$

$$= \lambda \mu,$$
which is the same as the strength of the transformation $y^{1-\lambda \mu}$. Thus, it is not surprising that $\log (y - \mu + 1/\lambda)$ and $y^{1-\lambda \mu}$ yield similar results close to the mean of the original data. If the range of the data is not great, one never gets far enough from the mean for the difference in strength to become noteworthy.

Discussion

Researchers sometimes object to the use of transformations because they distort comparative differences between rows as one goes from one column to another. There are two ways one might respond to this objection. One is to note that the original metric chosen to represent the data may be inappropriate, and to insist on its use may cause the investigator to miss significant regularities in his or her data. In such situations, a simple power transformation of the original data, such as the reciprocal or square root, may be as meaningful as the original metric, while leading to more interpretable patterns of results.

A second reply might be that even if the original metric is quite appropriate, the usual statistical analyses applied to the data expressed in this metric might lead to erroneous conclusions. This is particularly so if one detects significant nonadditivity in the original data array, concludes that the differences produced by one factor are inconsistent over levels of the other factor, and leaves it at that. Additivity refers to the invariance of differences between row elements as one goes from column to column in the array. Other invariant relationships might hold, though additivity does not, and seeking a transformation to attain additivity might lead one to notice them. For example, when Tukey's model holds, ratios of intervals between rows are invariant from column to column. Consider any
four rows, and let their row indices be \(i = 1, 2, 3, 4 \). Then it follows from Equation 1 that

\[
\frac{\mu_{1j} - \mu_{2j}}{\mu_{3j} - \mu_{4j}} = \frac{(a_1 - a_2)\lambda j}{(a_3 - a_4)\lambda j} = \frac{a_1 - a_2}{a_3 - a_4} \tag{9}
\]

independent of \(j \). It was noted earlier that appropriate graphical representation of the original data can be useful in determining if Tukey's model holds. If it appears that it holds for a given set of data, it makes sense to apply the transformation implied by the model. Then a more rigorous test of the fit of the model can be carried out by testing the transformed data for additivity.

The force of these replies depends on the simplicity, or nonarbitrariness, of the transformation used, which in turn depends on the details of the situation. Thus, when the transformation proposed in this paper or a simple power transformation will work, they would seem to be preferable to the general monotone transformations. It was noted above that the latter will usually have a lack of smoothness which makes them appear somewhat arbitrary. However, one should not hesitate to employ the more complicated algorithms in situations where the simple approaches fail.

In choosing between the power transformation and the modified logarithmic transformation proposed in this paper one might be guided by substantive considerations. The exponent of the implied power transformation, or the focal point of the modified logarithmic transformation may make theoretical sense. If not, the choice would seem to be a matter of taste. In that case, the author prefers the transformation implicit in the model used to assess the nonadditivity.
References

| 1 | Dr. Jack R. Borsting
Provost & Academic Dean
U.S. Naval Postgraduate School
Monterey, CA 93940 |
|---|---|
| 1 | COMNAV MILPERSCOM (N-6C)
Dept. of Navy
Washington, DC 20370 |
| 1 | Deputy Assistant Secretary of the Navy
(Manpower)
Office of the Assistant Secretary of
the Navy (Manpower, Reserve Affairs,
and Logistics)
Washington, DC 20350 |
| 1 | Dr. Larry Dean, LT, MSC, USN
Psychology Department
Naval Submarine Medical Research Lab
Naval Submarine Base
Groton, CT 06340 |
| 1 | Dr. Richard Elster
Department of Administrative Sciences
Naval Postgraduate School
Monterey, CA 93940 |
| 1 | DR. PAT FEDERICO
NAVY PERSONNEL R&D CENTER
SAN DIEGO, CA 92152 |
| 1 | Mr. Paul Foley
Navy Personnel R&D Center
San Diego, CA 92152 |
| 1 | Dr. John Ford
Navy Personnel R&D Center
San Diego, CA 92152 |
| 1 | MR. GEORGE N. GRAINE
Personnel and Training Analysis Office
Building 200 (200-3)
Washington Navy Yard
Washington, DC 20374 |
| 1 | Dr. Patrick R. Harrison
Psychology Course Director
LEADERSHIP & LAW DEPT. (7b)
DIV. OF PROFESSIONAL DEVELOPMENT
U.S. NAVAL ACADEMY
ANNAPOlis, MD 21402 |
| 1 | CDR Robert S. Kennedy
Head, Human Performance Sciences
Naval Aerospace Medical Research Lab
Box 29407
New Orleans, LA 70189 |
| 1 | Dr. Norman J. Kerr
Chief of Naval Technical Training
Naval Air Station Memphis (75)
Millington, TN 38054 |
| 1 | Dr. Leonard Kroeker
Navy Personnel R&D Center
San Diego, CA 92152 |
| 1 | Dr. Kneale Marshall
Scientific Advisor to DCNO(MPT)
OP01T
Washington DC 20370 |
| 1 | CAPT Richard L. Martin, USN
Prospective Commanding Officer
USS Carl Vinson (CVN-70)
Newport News Shipbuilding and Drydock Co
Newport News, VA 23607 |
| 1 | Dr. James McBride
Navy Personnel R&D Center
San Diego, CA 92152 |
| 1 | Dr. George Moeller
Head, Human Factors Dept.
Naval Submarine Medical Research Lab
Groton, CN 06340 |
| 1 | Dr. William Montague
Navy Personnel R&D Center
San Diego, CA 92152 |
Navy

1 Dr. William Moonan
Code 303
Navy Personnel R&D Center
San Diego, CA 92152

1 Commanding Officer
U.S. Naval Amphibious School
Coronado, CA 92155

1 Library
Naval Health Research Center
P. O. Box 85122
San Diego, CA 92138

1 Naval Medical R&D Command
Code 44
National Naval Medical Center
Bethesda, MD 20014

1 DR. RICHARD J. NIEHAUS
ODASN(E0)
Navy Dept.
Rm. 4E775 Pentagon
Washington, DC 20350

1 Ted M. I. Yellen
Technical Information Office, Code 201
NAVY PERSONNEL R&D CENTER
SAN DIEGO, CA 92152

1 Library, Code P201L
Navy Personnel R&D Center
San Diego, CA 92152

5 Technical Director
Navy Personnel R&D Center
San Diego, CA 92152

1 Director, Navy Personnel R&D Center
Washington Liaison Office
Building 200, 2N
Washington Navy Yard, DC 20374

6 Commanding Officer
Naval Research Laboratory
Code 2627
Washington, DC 20390

Navy

1 Psychologist
ONR Branch Office
Bldg 114, Section D
666 Summer Street
Boston, MA 02210

1 Psychologist
ONR Branch Office
536 S. Clark Street
Chicago, IL 60605

1 Office of Naval Research
Code 200
Arlington, VA 22217

1 Office of Naval Research
Code 437
800 N. Quincy Street
Arlington, VA 22217

5 Personnel & Training Research Programs
(Code 458)
Office of Naval Research
Arlington, VA 22217

1 Psychologist
ONR Branch Office
1030 East Green Street
Pasadena, CA 91101

1 Special Asst. for Education and
Training (OP-01E)
Rm. 2705 Arlington Annex
Washington, DC 20370

1 Office of the Chief of Naval Operations
Research, Development, and Studies Branch
(OP-102)
Washington, DC 20350

1 Long-Range Manpower, Personnel, and
Training Planning Branch (OP-110)
Room G826
Arlington Annex
Washington, DC 20350
Navy

1 Head, Manpower Training and Reserves
 Section (Op-964D)
 Room 4A478, The Pentagon
 Washington, DC 20350

1 Captain Donald F. Parker, USN
 Commanding Officer
 Navy Personnel R&D Center
 San Diego, CA 92152

1 LT Frank C. Petho, MSC, USN (Ph.D)
 Code L51
 Naval Aerospace Medical Research Laborat
 Pensacola, FL 32508

1 The Principal Deputy Assistant
 Secretary of the Navy (MRA&L)
 4E780, The Pentagon
 Washington, DC 20350

1 Director, Research & Analysis Division
 Plans and Policy Department
 Navy Recruiting Command
 4015 Wilson Boulevard
 Arlington, VA 22203

1 Dr. Bernard Rimland (O3B)
 Navy Personnel R&D Center
 San Diego, CA 92152

1 Mr. Arnold Rubenstein
 Naval Personnel Support Technology
 Naval Material Command (O8T244)
 Room 1044, Crystal Plaza #5
 2221 Jefferson Davis Highway
 Arlington, VA 20360

1 Dr. Worth Scanland
 Chief of Naval Education and Training
 Code N-5
 NAS, Pensacola, FL 32508

1 Dr. Robert G. Smith
 Office of Chief of Naval Operations
 OP-987H
 Washington, DC 20350

Navy

1 Dr. Alfred F. Smode
 Training Analysis & Evaluation Group
 (TAEG)
 Dept. of the Navy
 Orlando, FL 32813

1 Dr. Richard Sorensen
 Navy Personnel R&D Center
 San Diego, CA 92152

1 Dr. Ronald Weitzman
 Code 54 WZ
 Department of Administrative Sciences
 U. S. Naval Postgraduate School
 Monterey, CA 93940

1 DR. H.M. WEST III (OP-01)
 Head, Program Development Branch(OP-120)
 ARLINGTON ANNEX
 WASHINGTON, DC 20350

1 Dr. Robert Wisher
 Code 309
 Navy Personnel R&D Center
 San Diego, CA 92152

1 DR. MARTIN F. WISKOFF
 NAVY PERSONNEL R&D CENTER
 SAN DIEGO, CA 92152
Army

1 Technical Director
U.S. Army Research Institute for the Behavioral and Social Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

1 DR. RALPH DUSEK
U.S. ARMY RESEARCH INSTITUTE
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333

1 Dr. Myron Fischl
U.S. Army Research Institute for the Social and Behavioral Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Col Frank Hart
Army Research Institute for the Behavioral & Social Sciences
5001 Eisenhower Blvd.
Alexandria, VA 22333

1 DR. JAMES L. RANEY
U.S. ARMY RESEARCH INSTITUTE
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333

1 Mr. Robert Ross
U.S. Army Research Institute for the Social and Behavioral Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Robert Sasmor
U.S. Army Research Institute for the Behavioral and Social Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Frederick Steinheiser
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Air Force

1 Air Force Human Resources Lab
AFHRL/MPD
Brooks AFB, TX 78235

1 Air University Library
AUL/LSE 76/443
Maxwell AFB, AL 36112

1 DR. T. E. COTTERMAN
AFHRL/ASR
WRIGHT PATTERSON AFB
OHIO 45433

1 Dr. Philip De Leo
AFHRL/TT
Lowry AFB, CO 80230

1 Dr. Genevieve Haddad
Program Manager
Life Sciences Directorate
AFOSR
Bolling AFB, DC 20332

1 Dr. Ross L. Morgan (AFHRL/LR)
Wright -Patterson AFB
Ohio 45433

1 Research and Measurement Division
Research Branch, AFMPC/MPCYPR
Randolph AFB, TX 78148

1 Dr. Malcolm Ree
AFHRL/MP
Brooks AFB, TX 78235

1 Dr. Marty Rockway (AFHRL/TT)
Lowry AFB
Colorado 80230

1 Dr. Frank Schufletowski
U.S. Air Force
ATC/XPID
Randolph AFB, TX 78148

1 Jack A. Thorpe, Maj., USAF
Naval War College
Providence, RI 02846
<table>
<thead>
<tr>
<th>Air Force</th>
<th>Marines</th>
</tr>
</thead>
</table>
| 1 Brian K. Waters, Lt Col, USAF
Air War College (EDV)
Maxwell AFB, AL 36112 | 1 H. William Greenup
Education Advisor (E031)
Education Center, MCDEC
Quantico, VA 22134 |
| 1 Director, Office of Manpower Utilization
HQ, Marine Corps (MPU)
BCB, Bldg. 2009
Quantico, VA 22134 | 1 Headquarters, U. S. Marine Corps
Code MPI-20
Washington, DC 20380 |
| 1 Special Assistant for Marine
Corps Matters
Code 100M
Office of Naval Research
800 N. Quincy St.
Arlington, VA 22217 | 1 Major Michael L. Patrow, USMC
Headquarters, Marine Corps
(Code MPI-20)
Washington, DC 20380 |
| 1 DR. A.L. SLAFKOSKY
SCIENTIFIC ADVISOR (CODE RD-1)
HQ, U.S. MARINE CORPS
WASHINGTON, DC 20380 |
CoastGuard

1 Mr. Thomas A. Warm
 U. S. Coast Guard Institute
 P. O. Substation 18
 Oklahoma City, OK 73169

Other DoD

12 Defense Documentation Center
 Cameron Station, Bldg. 5
 Alexandria, VA 22314
 Attn: TC

1 Dr. Craig I. Fields
 Advanced Research Projects Agency
 1400 Wilson Blvd.
 Arlington, VA 22209

1 Dr. Dexter Fletcher
 ADVANCED RESEARCH PROJECTS AGENCY
 1400 WILSON BLVD.
 ARLINGTON, VA 22209

1 Dr. William Graham
 Testing Directorate
 MEPCOM/MEPCT-P
 Ft. Sheridan, IL 60037

1 Director, Research and Data
 OASD(MRA&L)
 3B919, The Pentagon
 Washington, DC 20301

1 Military Assistant for Training and
 Personnel Technology
 Office of the Under Secretary of Defense for Research & Engineering
 Room 3D129, The Pentagon
 Washington, DC 20301

1 MAJOR Wayne Sellman, USAF
 Office of the Assistant Secretary of Defense (MRA&L)
 3B930 The Pentagon
 Washington, DC 20301
<table>
<thead>
<tr>
<th>Civil Govt</th>
<th>Civil Govt</th>
</tr>
</thead>
</table>
| 1 Dr. Lorraine D. Eyde
Personnel R&D Center
Office of Personnel Management of USA
1900 E Street NW
Washington, D.C. 20415 | 1 Dr. H. Wallace Sinaiko
Program Director
Manpower Research and Advisory Services
Smithsonian Institution
801 North Pitt Street
Alexandria, VA 22314 |
| 1 Mr. James M. Ferstl
Bureau of Training
U.S. Civil Service Commission
Washington, D.C. 20415 | 1 Dr. Vern W. Urry
Personnel R&D Center
Office of Personnel Management
1900 E Street NW
Washington, DC 20415 |
| 1 Jerry Lehnus
REGIONAL PSYCHOLOGIST
U.S. Office of Personnel Management
230 S. Dearborn Street
CHICAGO, IL 60604 | 1 Dr. Frank Withrow
U.S. Office of Education
400 Maryland Ave. SW
Washington, DC 20202 |
| 1 Dr. Joseph I. Lipson
SEDR W-638
National Science Foundation
Washington, DC 20550 | 1 Dr. Joseph L. Young, Director
Memory & Cognitive Processes
National Science Foundation
Washington, DC 20550 |
| 1 Dr. John Mays
National Institute of Education
1200 19th Street NW
Washington, DC 20208 | 1 Dr. Andrew R. Molnar
Science Education Dev. and Research
National Science Foundation
Washington, DC 20550 |
| 1 William J. McLaurin
Rm. 301, Internal Revenue Service
2221 Jefferson Davis Highway
Arlington, VA 22202 | 1 Personnel R&D Center
Office of Personnel Management
1900 E Street NW
Washington, DC 20415 |
<table>
<thead>
<tr>
<th>Non Govt</th>
<th>Non Govt</th>
</tr>
</thead>
</table>
| 1 Dr. Erling R. Andersen
Department of Statistics
Studiestraede 6
1455 Copenhagen
DENMARK | 1 Dr. Robert Brennan
American College Testing Programs
P. O. Box 168
Iowa City, IA 52240 |
| 1 psychological research unit
Dept. of Defense (Army Office)
Campbell Park Offices
Canberra
ACT 2600, Australia | 1 Dr. Bruce Buchanan
Department of Computer Science
Stanford University
Stanford, CA 94305 |
| 1 Dr. Robert Brennan
American College Testing Programs
P. O. Box 168
Iowa City, IA 52240 | 1 Dr. C. Victor Bunderson
WICAT INC.
UNIVERSITY PLAZA, SUITE 10
1160 SO. STATE ST.
OREM, UT 84057 |
| 1 Dr. R. A. Avner
University of Illinois
Computer-Based Educational Research Lab
Urbana, IL 61801 | 1 Dr. Anthony Cancelli
School of Education
University of Arizona
Tuscon, AZ 85721 |
| 1 Ms. Carole A. Bagley
Minnesota Educational Computing
Consortium
2354 Hidden Valley Lane
Stillwater, MN 55082 | 1 Dr. John B. Carroll
Psychometric Lab
Univ. of No. Carolina
Davie Hall 013A
Chapel Hill, NC 27514 |
| 1 Mr Avron Barr
Department of Computer Science
Stanford University
Stanford, CA 94305 | 1 Charles Myers Library
Livingstone House
Livingstone Road
Stratford
London E15 2LJ
ENGLAND |
| 1 Dr. Isaac Bejar
Educational Testing Service
Princeton, NJ 08450 | 1 Dr. William Clancey
Department of Computer Science
Stanford University
Stanford, CA 94305 |
| 1 Dr. John Bergan
School of Education
University of Arizona
Tuscon AZ 85721 | 1 Dr. Norman Cliff
Dept. of Psychology
Univ. of So. California
University Park
Los Angeles, CA 90007 |
| 1 DezWP's im Streitkraefteamt
Postfach 20 50 03
D-5300 Bonn
WEST GERMANY | 1 Dewar's im Streitkraefteamt
Postfach 20 50 03
D-5300 Bonn
WEST GERMANY |
| 1 Dr. Kenneth Bowles
Institute for Information Sciences
University of California at San Diego
La Jolla, CA 92037 | 1 Dr. Kenneth Bowles
Institute for Information Sciences
University of California at San Diego
La Jolla, CA 92037 |
1 Dr. William E. Coffman
Director, Iowa Testing Programs
334 Lindquist Center
University of Iowa
Iowa City, IA 52242

1 Dr. Allan M. Collins
Bolt Beranek & Newman, Inc.
50 Moulton Street
Cambridge, MA 02139

1 Dr. Meredith P. Crawford
American Psychological Association
1200 17th Street, N.W.
Washington, DC 20036

1 ERIC Facility-Acquisitions
4833 Rugby Avenue
Bethesda, MD 20014

1 Dr. Leonard Feldt
Lindquist Center for Measurement
University of Iowa
Iowa City, IA 52242

1 Dr. Richard L. Ferguson
The American College Testing Program
P.O. Box 168
Iowa City, IA 52240

1 Dr. Victor Fields
Dept. of Psychology
Montgomery College
Rockville, MD 20850

1 Univ. Prof. Dr. Gerhard Fischer
Liebiggasse 5/3
A 1010 Vienna
AUSTRIA

1 Professor Donald Fitzgerald
University of New England
Armidale, New South Wales 2351
AUSTRALIA

1 DR. JOHN D. FOLLEY JR.
APPLIED SCIENCES ASSOCIATES INC
VALENCIA, PA 16059

1 Dr. John R. Frederiksen
Bolt Beranek & Newman
50 Moulton Street
Cambridge, MA 02138

1 Dr. Robert Glaser
LRDC
UNIVERSITY OF PITTSBURGH
3939 O'HARA STREET
PITTSBURGH, PA 15213

1 Dr. Daniel Gopher
Industrial & Management Engineering
Technion-Israel Institute of Technology
Haifa
ISRAEL

1 Dr. Ross Green
CTB/McGraw Hill
Del Monte Research Park
Monterey, CA 93940

1 Dr. James G. Greeno
LRDC
UNIVERSITY OF PITTSBURGH
3939 O'HARA STREET
PITTSBURGH, PA 15213

1 Dr. Ron Hambleton
School of Education
University of Massachusetts
Amherst, MA 01002

1 Dr. Chester Harris
School of Education
University of California
Santa Barbara, CA 93106

1 Dr. Dustin H. Heuston
Wicot, Inc.
Box 986
Orem, UT 84057

1 Dr. Lloyd Humphreys
Department of Psychology
University of Illinois
Champaign, IL 61820
Dr. Steven Hunka
Department of Education
University of Alberta
Edmonton, Alberta
CANADA

Dr. Charlies Lewis
Faculteit Sociale Wetenschappen
Rijksuniversiteit Groningen
Oude Boteringestraat
Groningen
NETHERLANDS

Dr. Michael Levine
210 Education Building
University of Illinois
Champaign, IL 61820

Dr. Michael Levine
210 Education Building
University of Illinois
Champaign, IL 61820

Dr. Charles Lewis
Faculteit Sociale Wetenschappen
Rijksuniversiteit Groningen
Oude Boteringestraat
Groningen
NETHERLANDS

Dr. Robert Linn
College of Education
University of Illinois
Urbana, IL 61801

Dr. Robert Linn
College of Education
University of Illinois
Urbana, IL 61801

Dr. Earl Hunt
Dept. of Psychology
University of Washington
Seattle, WA 98105

Dr. Frederick M. Lord
Educational Testing Service
Princeton, NJ 08540

Dr. Frederick M. Lord
Educational Testing Service
Princeton, NJ 08540

Dr. Huynh Huynh
College of Education
University of South Carolina
Columbia, SC 29208

Dr. Huynh Huynh
College of Education
University of South Carolina
Columbia, SC 29208

Journal Supplement Abstract Service
American Psychological Association
1200 17th Street N.W.
Washington, DC 20036

Journal Supplement Abstract Service
American Psychological Association
1200 17th Street N.W.
Washington, DC 20036

Dr. Robert Linn
College of Education
University of Illinois
Urbana, IL 61801

Dr. Robert Linn
College of Education
University of Illinois
Urbana, IL 61801

Dr. Douglas H. Jones
Rm T-255
Educational Testing Service
Princeton, NJ 08450

Dr. Gary Marco
Educational Testing Service
Princeton, NJ 08450

Dr. Gary Marco
Educational Testing Service
Princeton, NJ 08450

Dr. Kay Inaba
21116 VANDOWN ST
CANOGA PARK, CA 91303

Dr. Kay Inaba
21116 VANDOWN ST
CANOGA PARK, CA 91303

Dr. James Lumbrden
Department of Psychology
University of Western Australia
Nedlands W.A. 6009
AUSTRALIA

Dr. James Lumbrden
Department of Psychology
University of Western Australia
Nedlands W.A. 6009
AUSTRALIA

Dr. James Lumbrden
Department of Psychology
University of Western Australia
Nedlands W.A. 6009
AUSTRALIA

Dr. Scott Maxwell
Department of Psychology
University of Houston
Houston, TX 77004

Dr. Scott Maxwell
Department of Psychology
University of Houston
Houston, TX 77004

Professor John A. Keats
University of Newcastle
AUSTRALIA 2308

Professor John A. Keats
University of Newcastle
AUSTRALIA 2308

Professor Jason Millman
Department of Education
Stone Hall
Cornell University
Ithaca, NY 14853

Professor Jason Millman
Department of Education
Stone Hall
Cornell University
Ithaca, NY 14853

Dr. Wilson A. Judd
McDonnell-Douglas
Astronautics Co.-St. Louis
P.O. Box 30204
Lowry AFB, CO 80230

Professor Samuel T. Mayo
Loyola University of Chicago
320 North Michigan Avenue
Chicago, IL 60611

Professor Samuel T. Mayo
Loyola University of Chicago
320 North Michigan Avenue
Chicago, IL 60611

One Dr. Scott Maxwell
Department of Psychology
University of Houston
Houston, TX 77004

One Dr. Scott Maxwell
Department of Psychology
University of Houston
Houston, TX 77004

Professor Jason Millman
Department of Education
Stone Hall
Cornell University
Ithaca, NY 14853

Professor Jason Millman
Department of Education
Stone Hall
Cornell University
Ithaca, NY 14853

American Psychological Association
1200 17th Street N.W.
Washington, DC 20036

American Psychological Association
1200 17th Street N.W.
Washington, DC 20036

Dr. Mazie Knerr
Litton-Mellonics
Box 1286
Springfield, VA 22151

Dr. Mazie Knerr
Litton-Mellonics
Box 1286
Springfield, VA 22151

Dr. Alan Lesgold
Learning R&D Center
University of Pittsburgh
Pittsburgh, PA 15260

Dr. Alan Lesgold
Learning R&D Center
University of Pittsburgh
Pittsburgh, PA 15260
1 Dr. Melvin R. Novick
 356 Lindquist Center for Measurement
 University of Iowa
 Iowa City, IA 52242

1 Mr. Luigi Petruullo
 2431 N. Edgewood Street
 Arlington, VA 22207

1 Dr. Diane M. Ramsey-Klee
 R-K Research & System Design
 3947 Ridgmont Drive
 Malibu, CA 90265

1 Minrat M. L. Rauch
 P II 4
 Bundesministerium der Verteidigung
 Postfach 1328
 D-53 Bonn 1, Germany

1 Dr. Mark D. Reckase
 Educational Psychology Dept.
 University of Missouri-Columbia
 4 Hill Hall
 Columbia, MO 65211

1 Dr. Andrew M. Rose
 American Institutes for Research
 1055 Thomas Jefferson St. NW
 Washington, DC 20007

1 Dr. Leonard L. Rosenbaum, Chairman
 Department of Psychology
 Montgomery College
 Rockville, MD 20850

1 Dr. Ernst Z. Rothkopf
 Bell Laboratories
 600 Mountain Avenue
 Murray Hill, NJ 07974

1 Dr. Lawrence Rudner
 403 Elm Avenue
 Takoma Park, MD 20012

1 Dr. David Rumelhart
 Center for Human Information Processing
 Univ. of California, San Diego
 La Jolla, CA 92037
1 DR. ALBERT STEVENS
BOLT BERANEK & NEWMAN, INC.
50 Moulton Street
Cambridge, MA 02139

1 Mr. William Stobie
McDonnell-Douglas
Astronautics Co.
P. O. Box 30204
Chico, CA 95926

1 DR. PATRICK SUPPE
INSTITUTE FOR MATHEMATICAL STUDIES IN
THE SOCIAL SCIENCES
STANFORD UNIVERSITY
STANFORD, CA 94305

1 Dr. Hariharan Swaminathan
Laboratory of Psychometric and
Evaluation Research
School of Education
University of Massachusetts
Amherst, MA 01003

1 Dr. Brad Symson
Psychometric Research Group
Educational Testing Service
Princeton, NJ 08541

1 Dr. Kikumi Tatsuoka
Computer Based Education Research
Laboratory
252 Engineering Research Laboratory
University of Illinois
Urbana, IL 61801

1 Dr. David Thissen
Department of Psychology
University of Kansas
Lawrence, KS 66044

1 Graduate School of Industrial
Administration
Carnegie-Mellon University
Pittsburgh, PA 15213
Attn: Dr. G. Thompson

1 Dr. Walt W. Tornow
Control Data Corporation
Corporate Personnel Research
P. O. Box 6 - HUNN
Minneapolis, MN 55440

1 Dr. Robert Tsutakawa
Department of Statistics
University of Missouri
Columbia, MO 65201

1 Dr. Howard Wainer
Bureau of Social Science Research
1990 M Street, N. W.
Washington, DC 20036

1 DR. THOMAS WALLSTEN
PSYCHOMETRIC LABORATORY
davie Hall 0174
UNIVERSITY OF NORTH CAROL
CHAPEL HILL, NC 27514

1 Dr. David J. Weiss
N660 Elliott Hall
University of Minnesota
75 E. River Road
Minneapolis, MN 55455

1 DR. GERSHON WELTMAN
PERCEPTRONICS INC.
5271 variel Ave.
woodland hills, CA 91367

1 DR. SUSAN E. WHITELY
PSYCHOLOGY DEPARTMENT
UNIVERSITY OF KANSAS
LAURENCE, KANSAS 66044

1 Wolfgang Wildgrube
Streitkraefteamt
Box 20 50 03
D-5300 Bonn 2
WEST GERMANY

1 Dr. Karl Zinn
Center for research on Learning
and Teaching
University of Michigan
Ann Arbor, MI 48104