EFFECT OF AN ELECTRON BEAM ON THE CURRENT CONVECTIVE INSTABILITY—ETC(U)

Jul 82 P.K. Chatturvedi, S.L. Ossakow

UNCLASSIFIED

NRL-MR-4858
Title: Effect of an Electron Beam on the Current Convective Instability

Authors: P.K. Chaturvedi* and S.L. Ossakow

Abstract:
We consider the possible effects of an electron beam on the current convective instability in a weakly ionized plasma, with application to the diffuse aurora-like situation. A linear instability analysis including these effects is presented.
EFFECT OF AN ELECTRON BEAM ON THE CURRENT CONVECTIVE INSTABILITY

The current convective instability (CCI) has recently been cited as playing a role in the generation of scintillation causing large scale size plasma irregularities in the diffuse aurora [Ossakow and Chaturvedi, 1979; Chaturvedi and Ossakow, 1979; Keskinen et al., 1980; Vickrey et al., 1980; Chaturvedi and Ossakow, 1981; Keskinen and Ossakow, 1982; Rino and Vickrey, 1982]. This instability is caused by a field-aligned current in the presence of a transverse plasma density gradient in a collisional plasma [Kadomtsev and Nedospasov, 1960]. In the diffuse auroral situation, it is generally recognized that a significant part of the observed field-aligned current is carried by the cold ionospheric electron component, drifting relative to ions. It is this electron drift that causes a variety of current driven plasma instabilities in the system, such as the current convective instability. However, a precipitating flux of soft energetic electrons are also present alongside the cold drifting electrons in the medium. In our previous work (Ossakow and Chaturvedi, 1979) only the cold electron drift component was considered. In this note, we have examined the effects of an electron beam (in addition to the cold drifting electron component) along the magnetic field on the current convective instability. It is found that, though the presence of an electron beam modifies the current convective instability growth rate, in the diffuse auroral application, such effects are practically negligible.

We follow the approach outlined in Ossakow and Chaturvedi [1979] in the linear stability analysis. The coordinate system has the magnetic field aligned with the z-axis, as does the cold electron drift v_o. A density gradient along the y-axis and an electron beam of density n_b and velocity v_b are also present. In the following the beam and the cold plasma quantities will be denoted by subscripts b and c respectively. Further, the temperature effects for the cold plasma component are neglected. Our basic equations are

$$\frac{3n_o}{\partial t} + \nabla \cdot (n_o v_o) = 0$$ \hspace{1cm} (1)

$$v_1 = \frac{c}{B_0} E_\perp \times \hat{z} + \frac{v_{1n}}{n_1} \frac{c}{B_0} E_\perp + \frac{e}{m_1} \hat{v}_1 \times E$$ \hspace{1cm} (2)
Most of the symbols have their standard meaning, \(\sigma \) denotes the particle species (\(i \equiv \) ions, \(e \equiv \) electrons), \(n \) is the density, \(\nu_{\text{on}} \) denotes the collision frequency of the species \(\sigma \) with neutrals, \(T_{\text{eb}} \) is the beam electron temperature in energy units and subscripts \(\perp \) and \(z \) represent perpendicular and parallel to the magnetic field respectively, etc. In equations (2)-(4), inertial effects were neglected, Pedersen mobility effects for electrons were also neglected in comparison to the ion Pedersen drift. In the stability analysis, quantities are split into equilibrium and perturbed components, \(f = f_0 + \tilde{f} \) with the perturbed quantities varying as \(\exp(ikr-i\omega t) \). An assumption of quasi-neutrality is made, i.e.,

\[
\tilde{n}_i = \tilde{n}_{eb} + \tilde{n}_{ec}
\]

Following Ossakow and Chaturvedi [1979], one writes for the perturbed electron and ion densities,

\[
\tilde{n}_{ec} = n_{oc} \hat{\phi} \frac{(k^2 \frac{e}{z m v} + i \frac{c}{B_o} k_{xz} \nu_{\perp} \ln n_{oc})}{(-i\omega + ik_{z} v_{o})} \]

\[
\tilde{n}_{eb} = n_{b} \hat{\phi} \frac{(k^2 \frac{e}{z m v} + i \frac{c}{B_o} k_{xz} \nu_{\perp} \ln n_{b})}{(-i\omega + ik_{z} v_{b} + \frac{T_{eb}}{m v ebn})} \]

\[
\tilde{v}_{eb} = \frac{c}{B_o} E_{\perp} x z + \frac{cT_{eb}}{eB_o} \nu_{\perp} n_{b} x z - \frac{T_{eb}}{m v ebn} \frac{\partial n_{b}}{\partial z} z - \frac{e}{m v ebn} E_{z} + \nu_{b} \tilde{v}_{z}
\]

\[
\tilde{v}_{ec} = \frac{c}{B_o} E_{\perp} x z - \frac{e}{m v ecn} E_{z} + \nu_{o} \tilde{v}_{z}
\]
and

\[\frac{[i \frac{k}{B} - k_1 v^* v_1 \ln n_{oc} - \frac{e k^2}{m_i v_{in}^2} - \frac{v_{in} c}{m_i v_{in} + \frac{B}{v_{in}^2}}]}{[-i\omega + i k v^\omega_{zi}]} \]

\[\tilde{n}_1 = n_{oc} \Phi \]

(8)

In the above, we have made the electrostatic assumption for the perturbed electric fields, \(\overline{\tilde{E}} = -\tilde{\phi} \). From the set (6)-(8), one readily obtains

\[\omega[B \omega_{z v} - \frac{v_{in} v_{en}}{\Omega e_1} - k z v_0 \omega[-1 - \frac{v_{en} k}{k_1^2} \frac{k}{k_1 v^* v_1 \ln n_{oc}} + \frac{m_e v_{en}}{v_{en} k^2} + \frac{v_{en} v_{in}}{\Omega e_1}]] \]

\[\approx -\frac{n_b}{n_{oc}} \frac{v_{en} k^2}{(\omega - k z v_0)} \frac{v_{en} k}{k_1 v^* v_1 \ln n_{oc}} + \frac{m_e v_{en}}{v_{en} k^2} + \frac{v_{en} v_{in}}{\Omega e_1} \]

(9)

where \(\beta = [1 + (v_{en} m_e/v_{en} m_i)] \). The right hand side of equation (9) contains the effects of an electron beam on the mode driven unstable by the current convective instability, which is described by the left hand side of eq. (9) (i.e., setting \(n_b/n_{oc} = 0 \) one regains the dispersion relation obtained by Ossakow and Chaturvedi, 1979).

As an illustrative example and a special case of interest, we assume the electron beam to be cold \((T_{eb} = 0) \) and uniform \((v^* v_1 \ln n_b = 0) \), One then obtains, from eq. (9),

\[\omega = k z v_0 \frac{[v_{en} k \frac{k}{k_1 v^* v_1 \ln n_{oc}} + m_e v_{en} k^2 + v_{en} v_{in}]}{[k^2 (1 - \frac{n_b}{n_{oc}} v_{en} v_b v_{en}) + \frac{v_{en} v_{in}}{\Omega e_1}]} \]

(10)

so that \((\omega = \omega_R + i\gamma) \)
In deriving equation (10), we further assumed that $\frac{m_e v_{ecn}}{m_i v_{in}} << 1$, $\omega << k_z v_o$, $k_z v_b$. The latter assumption is reasonable, since we are interested in the effects of the beam on the mode which grows due to an absolute instability (without the above assumptions, (9) has two roots, one given by (10) and the other yielding $\omega = k_z v_b$). In the absence of the beam ($n_b = 0$), this relation leads to the one obtained in Ossakow and Chaturvedi [1979]. For a beam such that $n_b/n_{oc} = 10^{-2}$ and $v_b = 3.5 \times 10^8$ cm s$^{-1}$ (corresponding to electron fluxes of energy ~100 eV), one finds that the beam induced contribution in the denominator of eq. (10) is down by ~0(10$^{-5}$) compared to the leading term (where we have used $v_o \sim 1$ km s$^{-1}$). However, one notes that the beam contribution would decrease (enhance) the growth rate somewhat if the electron beam velocity and the electron drift were parallel (anti-parallel).

Allowing for a non-uniform beam one gets

\[
\omega = k_z v_o \frac{\left[-i \frac{v_{ecn} k_z v_{x,z} v_{ln n_{oc}}}{\Omega_e} k_l^2 + m_e v_{ecn} k_z^2 + \frac{v_{ecn} v_{in}}{\Omega_i} \right]}{k_z \sigma + \frac{v_{in} v_{ecn}}{\Omega_i} + 1 \left(\frac{n_b}{n_{oc}} \frac{v_o v_{ecn}}{v_b v_{bn}} \frac{v_{bn}}{\Omega_e} \frac{k_z v_{x,z} v_{ln n_{oc}}}{k_l^2 n_b} \right)}
\]

where $\sigma \equiv 1 + (n_b v_o v_{ecn}/n_{oc} v_b v_{bn})$.

One gets for the growth rate of the current convective instability ($\omega = \omega_R + i \gamma$),

\[
\gamma = k_z v_o \frac{\left[-i \frac{v_{ecn} k_z v_{x,z} v_{ln n_{oc}}}{\Omega_e} k_l^2 + \frac{v_{in} v_{ecn}}{\Omega_i} - \delta^2 \left(m_e k_z^2 v_{ecn} + v_{ecn} v_{in} \right) \right]}{\left[\left(k_z^2 + \frac{v_{in} v_{ecn}}{\Omega_i} \right)^2 + \delta^2 \right]^2}
\]

(11a)
where \(\delta = n_b v_b \left(n_{\text{oc}} v_{\text{oc}} n_b \right) \) denotes the effects of beam non-uniformity. We now see that the beam effects are more complex than before on the growth rate of the CCI, and their contributions to reduce or increase the growth rate would depend on, in addition to the relative sense between beam velocity and the drift direction, the direction of the beam density gradient. However, for diffuse aurora situations, a beam with parameters, \(n_b/n_{\text{oc}} \sim 10^{-2} \), and \(v_b \sim 3 \times 10^8 \text{ cm s}^{-1} \), these contributions are down by a factor of \(\sim 0(10^{-5}) \) for equal beam density and cold background density gradients (where we have used \(v_o \sim 1 \text{ km s}^{-1} \)). Therefore, beam effects appear to be much too small to have any practical implications on the growth rate of the CCI.

In conclusion, we find that the soft precipitating fluxes of electrons (\(\sim 100 \text{ eV} \)) may have little effect on the large scale size (\(\sim 1 \text{ km} \)) slow processes like the current convective instability induced structures for the diffuse auroral situation. However, in calculating growth rates or stability thresholds from say (10a) with even \(n_b = 0 \) one must notice that it is \(v_o \) (i.e., the cold current velocity) that enters the growth rate. Since magnetometers infer total parallel (to \(\mathbf{B}_o \)) current from their measurements (T. Potemra, private communication, 1981), one must be able to separate (or assess) the warm parallel current contribution from (to) the total current. Letting the total parallel current be proportional to \(v_o \) (\(J_z = n v_o z \)) can lead to an underestimate of \(v_o \) when \(v_o \) and \(v_b \) are anti-parallel.
ACKNOWLEDGMENTS

This research was supported by the Defense Nuclear Agency and the Office of Naval Research. We wish to thank Dr. E. Fremouw of Physical Dynamics, Inc. for raising the question of (at a dinner during the 1981 Scotland IAGA Meeting) what happens to the current convective instability when a warm electron beam is present and so precipitating this study.

REFERENCES

GEOPHYSICAL INSTITUTE
UNIVERSITY OF ALASKA
FAIRBANKS, AK 99701

ATTN T. MEAGHER

GEOPHYSICAL INSTITUTE
KAMAN TEMPO-CENTER FOR ADVANCED STUDIES
816 STATE STREET (P.O DRAWER QQ)
SANTA BARBARA, CA 93102

ATTN T. MEAGHER

GTE SYLVANIA, INC.
ELECTRONICS SYSTEMS GRP-EASTERN DIV
77 A STREET
NEEDHAM, MA 02194

ATTN N. HARRIS

HSS, INC.
2 ALFRED CIRCLE
BEDFORD, MA 01730

ATTN JOHN W. OLSON

HSS, INC.
2 ALFRED CIRCLE
BEDFORD, MA 01730

ATTN JOHN W. OLSON

ILLINOIS, UNIVERSITY OF
107 COBLE HALL
150 DAVENPORT HOUSE
CHAMPAIGN, IL 61820

ATTN R. FEHR

INSTITUTE FOR DEFENSE ANALYSES
400 ARMY-NAVY DRIVE
ARLINGTON, VA 22202

ATTN D. CLARK

INSTITUT FOR TELEGRAPH CORPORATION
500 WASHINGTON AVENUE
NUTLEY, NJ 07110

ATTN P. WALDRON

INSTITUT FOR TELEGRAPH CORPORATION
500 WASHINGTON AVENUE
NUTLEY, NJ 07110

ATTN P. WALDRON

JAYCOK
11011 TORREYANA ROAD
P.O. BOX 83154
SAN DIEGO, CA 92138

ATTN D. CLARK

JOHNS HOPKINS UNIVERSITY
APPLIED PHYSICS LABORATORY
JONHS HOPKINS ROAD
LAURAL, MD 20810

ATTN W. OLSON

JOHNS HOPKINS UNIVERSITY
APPLIED PHYSICS LABORATORY
JONHS HOPKINS ROAD
LAURAL, MD 20810

ATTN W. OLSON

KAMAN SCIENCES CORP
P.O. BOX 7663
COLORADO SPRINGS, CO 80933
IONOSPHERIC MODELING DISTRIBUTION LIST
(UNCLASSIFIED ONLY)

PLEASE DISTRIBUTE ONE COPY TO EACH OF THE FOLLOWING PEOPLE:

NAVAL RESEARCH LABORATORY
WASHINGTON, D.C. 20375
DR. P. HANGE - CODE 4101
DR. R. MEIER - CODE 4141
DR. E. SZUSZCZEWICZ - CODE 4187
DR. J. GOODMAN - CODE 4180
Dr. R. RODRIGUEZ - CODE 4187

A.F. GEOPHYSICS LABORATORY
L.G. HANSCOM FIELD
BEDFORD, MA 01730
DR. T. ELKINS
DR. W. SWIDER
MRS. R. SAGALYN
DR. J.M. FORBES
DR. T.J. KENESHEA
DR. J. AARONS
DR. H. CARLSON
DR. J. JASPERSE

CORNELL UNIVERSITY
ITHACA, NY 14850
DR. W.E. SWARTZ
DR. R. SUDAN
DR. D. FARLEY
DR. M. KELLEY

HARVARD UNIVERSITY
HARVARD SQUARE
CAMBRIDGE, MA 02138
DR. M.B. McELROY
DR. R. LINDZEN

INSTITUTE FOR DEFENSE ANALYSIS
400 ARMY/NAVY DRIVE
ARLINGTON, VA 22202
DR. E. BAUER

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PLASMA FUSION CENTER
LIBRARY, NW16-262
CAMBRIDGE, MA 02139

NAVAIR
WASHINGTON, D.C. 20360
DR. T. ELKINS

NAVSEA
WASHINGTON, D.C. 20375
DR. W.E. SWARTZ

NOAA
WASHINGTON, D.C. 20375
DR. R. SUDAN

OFFICE OF NAVAL RESEARCH
WASHINGTON, D.C. 20375
DR. T. ELKINS

OFTECH
CHELMSFORD, MA 01824
MRS. R. SAGALYN

 Processed by: 4000067
Processed on: 04/10/75
Page #: 15
Number of Words: 1083
Number of Lines: 29

15
PRINCETON UNIVERSITY
PLASMA PHYSICS LABORATORY
PRINCETON, NJ 08540
DR. F. PERKINS

SCIENCE APPLICATIONS, INC.
1150 PROSPECT PLAZA
LA JOLLA, CA 92037
DR. D.A. HAMLIN
DR. L. LINSON
DR. E. FRIEIAN

STANFORD UNIVERSITY
STANFORD, CA 94305
DR. P.N. BANKS

U.S. ARMY ABERDEEN RESEARCH
AND DEVELOPMENT CENTER
BALLISTIC RESEARCH LABORATORY
ABERDEEN, MD
DR. J. HEIMERL

UNIVERSITY OF CALIFORNIA,
BERKELEY
BERKELEY, CA 94720
DR. M. HUDSON

UNIVERSITY OF CALIFORNIA
LOS ALAMOS SCIENTIFIC LABORATORY
J-10, MS-564
LOS ALAMOS, NM 87545
M. PONGRATZ
D. SIMONS
G. BARASCH
L. DUNCAN
F. BERNHARDT

UNIVERSITY OF CALIFORNIA,
LOS ANGELES
405 HILLGARD AVENUE
LOS ANGELES, CA 90024
DR. F.V. CORONITI
DR. C. KENNEL
DR. A.Y. WORI

UNIVERSITY OF MARYLAND
COLLEGE PARK, MD 20740
DR. K. PAPADOPOULOS
DR. E. OTT

UNIVERSITY OF PITTSBURGH
PITTSBURGH, PA 15213
DR. N. ZABUSKY
DR. M. BIONDI
DR. E. OVERMAN

UTAH STATE UNIVERSITY
4TH AND 8TH STREETS
LOGAN, UTAH 84322
DR. R. HARRIS
DR. K. BAKER
DR. R. SCHUNK