TECHNICAL MEMORANDUM
WSRL-0229-TM

TECHNIQUES FOR THE ANALYSIS OF EXPENDABLE
BATHYTERMOMGRAPH (XBT) DATA WITH APPLICATIONS TO
THE SOUTH-WESTERN PACIFIC OCEAN

P.G. MARSHALLSAY and S.M. BALL

Technical Memoranda are of a tentative nature, representing the views of the
author(s), and do not necessarily carry the authority of the Laboratory.

Approved for Public Release

COPY No. SEPTEMBER 1981
SUMMARY

The expendable bathythermograph is a convenient and inexpensive tool for the measurement of ocean temperature structure. It does not measure salinity, but in many areas of the ocean it is reasonable to use standard temperature-salinity (T-S) curves to infer salinity from temperature measurements. T-S curves constructed from historical Nansen cast data are presented for 10° squares in the South-Western Pacific Ocean, covering the area from 15°S to 45°S, and from 150°E to 180°E. With a knowledge of both temperature and salinity structures a wide range of other parameters may be estimated, the most important of these being density, dynamic height and sound speed. Relationships for the computation of these and other properties of sea water are discussed, and computer programmes presented to calculate profiles of the relevant parameters from XBT data.
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>T-S CURVES FOR THE SOUTH-WESTERN PACIFIC OCEAN</td>
<td>2</td>
</tr>
<tr>
<td>3.</td>
<td>THE PROPERTIES OF A COLUMN OF SEAWATER</td>
<td>4</td>
</tr>
<tr>
<td>3.1</td>
<td>Gravitational acceleration</td>
<td>5</td>
</tr>
<tr>
<td>3.2</td>
<td>The equation of state for seawater</td>
<td>5</td>
</tr>
<tr>
<td>3.3</td>
<td>Pressure</td>
<td>10</td>
</tr>
<tr>
<td>3.4</td>
<td>The speed of sound</td>
<td>10</td>
</tr>
<tr>
<td>3.5</td>
<td>Specific heat</td>
<td>13</td>
</tr>
<tr>
<td>3.6</td>
<td>Dynamic height anomaly</td>
<td>18</td>
</tr>
<tr>
<td>4.</td>
<td>COMPUTER PROGRAMME ORGANISATION</td>
<td>19</td>
</tr>
<tr>
<td>4.1</td>
<td>Plotting options</td>
<td>20</td>
</tr>
<tr>
<td>4.2</td>
<td>Temperature/Depth data input</td>
<td>20</td>
</tr>
<tr>
<td>REFERENCES</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>APPENDIX I</td>
<td>NANSEN CASTS USED TO DERIVE T-S CURVES</td>
<td>26</td>
</tr>
<tr>
<td>APPENDIX II</td>
<td>CUBIC SPLINE COEFFICIENTS FOR THE T-S CURVES</td>
<td>28</td>
</tr>
<tr>
<td>APPENDIX III</td>
<td>DENSITY PROFILES FOR THE SOUTH-WEST PACIFIC OCEAN</td>
<td>31</td>
</tr>
<tr>
<td>APPENDIX IV</td>
<td>TABULATED VALUES OF SOME OCEANOGRAPHIC VARIABLES</td>
<td>32</td>
</tr>
<tr>
<td>IV.1</td>
<td>Salinity = 34 parts/thousand</td>
<td>32</td>
</tr>
<tr>
<td>IV.1.1</td>
<td>Specific volume (cm³.g⁻¹)</td>
<td>32</td>
</tr>
<tr>
<td>IV.1.2</td>
<td>Isothermal compressibility (bar⁻¹.10⁶)</td>
<td>32</td>
</tr>
<tr>
<td>IV.1.3</td>
<td>Thermal expansibility (degrees⁻¹.10⁶)</td>
<td>33</td>
</tr>
<tr>
<td>IV.1.4</td>
<td>Specific heat, C_p (j.g⁻¹.degrees⁻¹)</td>
<td>33</td>
</tr>
<tr>
<td>IV.1.5</td>
<td>Sound speed (m.s⁻¹)</td>
<td>34</td>
</tr>
<tr>
<td>IV.2</td>
<td>Salinity = 35 parts/thousand</td>
<td>34</td>
</tr>
<tr>
<td>IV.2.1</td>
<td>Specific volume (cm³.g⁻¹)</td>
<td>34</td>
</tr>
<tr>
<td>IV.2.2</td>
<td>Isothermal compressibility (bar⁻¹.10⁶)</td>
<td>35</td>
</tr>
<tr>
<td>IV.2.3</td>
<td>Thermal expansibility (degrees⁻¹.10⁶)</td>
<td>35</td>
</tr>
<tr>
<td>IV.2.4</td>
<td>Specific heat, C_p (j.g⁻¹.degrees⁻¹)</td>
<td>36</td>
</tr>
<tr>
<td>IV.2.5</td>
<td>Sound speed (m.s⁻¹)</td>
<td>36</td>
</tr>
<tr>
<td>IV.3</td>
<td>Salinity = 36 parts/thousand</td>
<td>37</td>
</tr>
<tr>
<td>IV.3.1</td>
<td>Specific volume (cm³.g⁻¹)</td>
<td>37</td>
</tr>
<tr>
<td>IV.3.2</td>
<td>Isothermal compressibility (bar⁻¹.10⁶)</td>
<td>37</td>
</tr>
<tr>
<td>IV.3.3</td>
<td>Thermal expansibility (degrees⁻¹.10⁶)</td>
<td>38</td>
</tr>
<tr>
<td>IV.3.4</td>
<td>Specific heat, C_p (j.g⁻¹.degrees⁻¹)</td>
<td>38</td>
</tr>
<tr>
<td>IV.3.5</td>
<td>Sound speed (m.s⁻¹)</td>
<td>39</td>
</tr>
</tbody>
</table>
APPENDIX V LISTING OF A FORTRAN IV PROGRAMME TO PROCESS XBT DATA

V.1 Main programme 40
V.2 Subroutine DSW1 43
V.3 Subroutine DSW1A 44
V.4 Subroutine DSW2 45
V.5 Subroutine PSW1 46
V.6 Function DDER 48
V.7 Subroutine SSSW1 48
V.8 Function SAL 50
V.9 Subroutine PLOT1 52
V.10 Subroutine LNGPLT (additional ENTRY ADDPLT) 54

APPENDIX VI SAMPLE PROGRAMME OUTPUT 57

APPENDIX VII SAMPLE CARD IMAGE INPUT FILE 58

APPENDIX VIII INPUT DATA FORMAT FOR AN XBT DATA POINT RECORD AS USED BY AODC 60

VIII.1 Input record format 60
VIII.2 BT instrument and grid code 62
VIII.3 Digitisation method, interval of digitisation, and Data treatment and storage codes 63

APPENDIX IX HARWELL SUBROUTINES USED BY THE DATA REDUCTION PROGRAMME 64

IX.1 Subroutine TB04AD 64
IX.2 Function T6018D 65
IX.3 Function Q602AD 65
IX.4 Subroutine Q605AD 66

APPENDIX X CALCOMP PLOTTER ROUTINES USED BY THE DATA REDUCTION PROGRAMME 67

X.1 Subroutine PLOTS 67
X.2 Subroutine ENDPLT 67
X.3 Subroutine ENDGR 67
X.4 Subroutine PLOT 67
X.5 Subroutine SYMBOL 68
X.6 Subroutine NUMBER 68
X.7 Subroutine LINE 69

LIST OF FIGURES

1. Locations of Nansen cast stations in the South-West Pacific Ocean
2. Temperature-salinity diagrams for the South-West Pacific Ocean constructed from historical Nansen cast data. The solid curves represent a least-squares cubic spline fit to the data (see text)
3. Temperature profiles constructed from Nansen casts made in the South-West Pacific Ocean. Points pertaining to the mixed layer have been edited out of the data base, and the data for each geographical area pooled
4. Profiles of σ_t versus depth constructed using the temperature profiles of figure 3 and corresponding salinity data. The solid curves represent a least-squares fit of equation (2)
5. XBT programme organisation - an overview
6. A sample "fourplot"
7. A sample "longplot"
8. WMO Code 3333 quadrant and 10° square numbering system
9. Modified Canadian 10° square subdivisions. All subdivisions of 10° squares are numbered identically regardless of quadrant of the globe
1. INTRODUCTION

The oceanographer is frequently confronted with the need to make extensive measurements of large-scale features in a scenario which may undergo significant changes in a relatively short span of time. In this situation the need for near-synoptic information covering the area of interest is obvious, and the delays inherent in the traditional techniques of making Nansen casts, or more recently conductivity-temperature-depth (CTD) surveys, which involve prolonged stoppages on-station may be highly undesirable, if not unacceptable. Against this background the expendable bathythermograph (XBT) has established itself over the past decade or so as an invaluable tool in the conduct of rapid oceanographic surveys, either supplementing or replacing the previously-mentioned techniques. The XBT briefly comprises a low-cost, weighted, finned projectile with a thermistor bead mounted in the nose, together with associated launching equipment and recording instrumentation. The thermistor forms one arm of a bridge, into which it is connected by several hundred meters of lightweight, insulated copper wire, which is spooled out as the projectile falls. The hydrodynamic characteristics of the projectile produce a known rate of descent, so that temperature may be recorded as a continuous function of depth. The value of the technique lies in the fact that measurements may be made in transit, and a given area may thus be surveyed in a considerably lesser time than would otherwise be possible.

A survey conducted using such techniques produces a near-synoptic picture of the temperature structure of the area under investigation. The rapidity and relatively low cost with which such a survey may be performed makes the optimal use of the accruing data as a means of inferring details of the distribution of dynamic height and sound speed, together with other properties of the ocean waters, highly desirable. Estimation of such properties requires however, that the corresponding salinity structures of the areas under study also be known. It has long been recognised that for most of the World's ocean waters a close relationship exists between temperature and salinity, and a number of investigators have examined the possibility of using this relationship to infer salinity from temperature measurements made using bathythermographs (BTs) and XBTs (refs.1 to 3). The results of such studies have been sufficiently encouraging to induce a large number of workers to adopt the use of temperature-salinity (T-S) curves derived either from Nansen or CTD surveys made concurrently with an XBT survey, or in the absence of such measurements, from historical data, as a standard means of processing XBT data to derive estimates of temperature and salinity-dependent oceanographic variables (see for instance, reference 4). Such temperature-salinity relationships tend to be applicable over relatively wide geographical areas, and, with the exception of the topmost tens of metres of the ocean, which are subject to seasonal and shorter term influences, to be substantially independent of depth. In a survey of available historical data for the Pacific Ocean between 20°S and 40°N, considered as being divided into 10° squares, Emery and Wert (ref.5) found the error in estimating dynamic height from temperature measurements augmented by salinities inferred using standard T-S relationships to exceed uncertainties in the measurements accruing from other causes in only about 25% of the areas considered. These they identified as being transition regions between different water masses. Flierl (ref.6) further considered the problem of reducing XBT measurements made in transition zones such as may be found on the boundaries of eddies, and derived a procedure for the processing of such data in conjunction with supplementary topical CTD measurements.
In the present study we address ourselves to the case where the use of standard T-S curves may be regarded as providing the desired accuracy and reliability, and discuss the derivation of profiles of properties of interest using such methods. A series of standard T-S curves for the South-West Pacific Ocean between 15°S and 45°S, and between 150°E and 180°E are developed from historical data, and their implementation as a basis for a computational scheme considered. Relationships for the computation of dynamic height and a variety of seawater properties dependent upon temperature, salinity and pressure are then presented. Finally, a series of computational routines to process XBT data to produce profiles of the previously introduced properties are listed and described.

2. T-S CURVES FOR THE SOUTH-WESTERN PACIFIC OCEAN

For the analysis of XBT data from the Tasman Sea, the area from 15°S to 45°S, and from 150°E to 180°E was divided into 10° squares. The location and labelling of the squares is shown in figure 1. Representative standard T-S curves were then constructed using historic Nansen cast data originating from CS...O and RANRL cruises. The distribution of the available data over the area of interest varied enormously; the region immediately beyond Sydney Harbour was represented by an extremely heavy concentration of data, while the available data for some of the more remote squares was, by comparison, sparse. Approximately twelve Nansen cast profiles were chosen from each square to form a data base for further processing. The representative Nansen casts were selected so as to be more-or-less evenly distributed over their respective areas. In addition, since it was desired to pool all selected data for a particular square without regard to season, wherever possible the casts were selected so that approximately three profiles from each season were available for a given square. Details of the Nansen casts selected are reproduced in Appendix I, and the locations of the casts shown on figure 1.

T-S curves constructed using the pooled Nansen cast data points for each area are reproduced, without identification of the individual soundings, in figure 2. Data points from within the mixed layer had previously been edited out of the data base by hand. The comparatively small size of our data base precluded the possibility of performing any pre-processing quality control of the type used by Emery and Wert (ref.5), and by Pearce and Hamon (ref.7). Nevertheless, the data points selected are seen to define a series of T-S curves which are 'tight' in the sense of reference 2. As expected, scatter is largest at the highest temperatures, corresponding to the upper layers of the ocean.

For computational purposes it is desired that the T-S curves of figure 2 be represented by a series of functions in a manner which is in some sense optimal. In the first instance it was attempted to fit fourth-order polynomials to the data. Here, as in reference 7, it was found impossible to faithfully represent the T-S curves for this geographical area by low-order polynomials. The problems become most evident in the case of those areas such as B1 and C1 in which the T-S curves exhibit a curious 'hook' close to the minimum temperature. In attempting to provide an optimal fit through this section of the data, the polynomial approximations were found to consistently overestimate the deepwater salinity minima. In order to overcome this problem, Pearce and Hamon omitted all points representing temperatures lower than 2.5°C from the polynomial fitting process. We chose instead to retain all data points, and to represent the curves using cubic splines fitted in the least-squares sense. This was done using subroutine
VC03A from the Harwell Subroutine Library (ref. 8). This employs a least-squares cubic-spline fitting algorithm which selects its own level of smoothing, and chooses its own knot points to span the domain over which the function is defined by the available data. The fitted curves correspond to the solid lines in figure 2, and are seen to comprise an excellent representation of the data, particularly at the low temperature end of the domain. The cubic spline coefficients are listed in Appendix II.

Further appreciation for the relevance of the T-S relationships may be gained by considering the temperature structure of an ocean water column. For this purpose the Nansen cast temperature data have been plotted against depth for each area in figure 3. These provide some indication of the depth appropriate to a specific point on the T-S curves. It should be borne in mind however that what is postulated is not an unvarying temperature-depth relationship, but a unique temperature-salinity relationship. Thus, although the water at a given depth within a particular 10° square may show considerable variation, the salinity corresponding to a given temperature may, to a close approximation, be regarded as being specified by the appropriate T-S curve without regard to the depth or time of the year at which the sample was taken. In general, these comments are true for all but the uppermost layers of the ocean. For instance, the T-S relationship for area A1 is seen to be very 'tight' indeed for temperatures below about 20°C. Higher temperatures than this are, on the whole, confined to the uppermost 200 m of the ocean, although it will be noted that at say, 500 m, temperature fluctuations over a 3° span are evident, within a temperature range corresponding to a 'tight' portion of the T-S curve.

The confidence with which the standard T-S curves may be used to reduce data from the uppermost layers of the ocean will depend in part upon the use which is to be made of the results. Thus, A.F. Pearce (personal communication) suggests that, if the results are to be used to estimate dynamic height, then there is little point in attempting to correct the results for surface effects, since the uppermost layers of the ocean contribute little to the dynamic height. Andrews (ref. 3) further regards the salinity obtained from a T-S relationship as comprising a second-order correction to the estimates of the physical properties of seawater. He does however, propose a correction technique for surface effects which may be used if surface salinity has been measured, and which comprises a technique for interpolation between the surface salinity and the deep-sea salinity inferred from a standard T-S curve. Thus, if the depth D is selected as the depth at which the thermal gradient evaluated over a 10 m interval of depth is a maximum, and L is the depth of the mixed layer, defined as the depth at which the temperature has fallen to 98.5% of the average value above that point, then Andrews proposes that the salinity in the upper layers of the ocean may be found according to the equations

\[S(z) = S_0, \quad 0 \leq z \leq L, \quad (1(a)) \]

\[S(z) = (z - L) \frac{S(T(z)) - S_0}{1.5D_m - L} + S_0, \quad L \leq z \leq 1.5D_m, \quad (1(b)) \]
and

\[S(z) = S(T(z)), \quad z \geq 1.5D_m. \] (1(c))

where \(S_0 \) is the surface salinity, which is assumed to remain constant through the mixed layer.

Using the measurements of temperature and salinity from Nansen cast data, the corresponding one-atmosphere densities have also been computed using the equation of state of seawater as derived by Chen and Millero (ref. 9). The data are plotted by area in figure 4, where the one-atmosphere density is expressed in the familiar sigma-t form (ref. 10, 11):

\[\sigma_T = 1000(\rho^0 - 1) \text{ g.cm}^{-3} \cdot 10^{-3} \] (2)

where \(\rho^0 \) is the one-atmosphere expressed in g.cm\(^{-3}\). Andrews (ref. 12) has proposed that the density structure in the Tasman Sea may be approximated by a relationship of the form

\[\sigma_T = \rho_0 + dp[1 - 1/(1 - z/D)] \] (3)

where the parameters \(\rho_0 \), \(dp \) and \(D \) remain to be specified for a given area. Optimum values for these parameters were computed using a nonlinear least-squares function fitting subroutine (VB01AD) from the Harwell Subroutine Library (ref. 8). In order to remove bias introduced by the concentration of data points in the upper layers of the ocean, it was found necessary to weight the data samples according to depth so that the correct behaviour was approached in the deep ocean. Each data point was multiplied by a weighting factor determined as

\[W = 1000(z/5000)^n \] (4)

where the exponent \(n \) was chosen by eye to give the desired behaviour for each area. Values of the parameter so computed, together with the weighting exponents, are listed in Appendix III. The resulting density-depth relationships are shown by the solid curves in figure 4.

3. THE PROPERTIES OF A COLUMN OF SEAWATER

Given that the temperature and salinity profiles for a column of seawater are known, then by invoking suitable relationships it is possible to estimate a large number of the physical properties of the seawater column. A number of such relationships are introduced and discussed in the present section. The intention has been to select relationships which offer a high degree of precision and accuracy and, wherever possible, have wide acceptance among the scientific community. The discussion presupposes the incorporation of the techniques and relationships described into a digital computational scheme. In many places therefore, a degree of sophistication and complexity has been
adopted which would be unacceptable to a user without computing facilities. Tables of the properties of seawater at selected values of temperature, pressure and salinity, computed using the relationships derived below, are given in Appendix IV.

3.1 Gravitational acceleration

The gravitational acceleration at sea-level may be regarded as a function of geographical latitude only, and is given by the expression(ref.13):

$$g_0 = 9.78049(1 + 0.0052884\sin^2\phi - 0.000059\sin^22\phi)$$ (5)

where ϕ is the latitude and g_0 is given in units of m.s$^{-2}$. If z represents depth (in metres) measured positive downwards from the ocean surface, then a correction may be made to account for departure from the ocean surface:

$$g = g_0(1 + 2.26 \times 10^{-7}z)$$ (6)

3.2 The equation of state for seawater

The equation of state for seawater, which expresses specific volume as a function of pressure, salinity and temperature, has been the subject of extensive investigation in recent years. A critical review of past studies, and various forms of the equation of state, is contained in reference 14. At the present time, the introduction of a new standard equation of state is imminent(ref.15), the format of the equation of state following that of previous expressions developed in references 9 and 14. The computation of specific volume given temperature, pressure and salinity may be seen as a three-stage process. Firstly, the density of pure water is computed from the specified temperature. The perturbation to the density introduced by the presence of salinity is then computed. Chen and Millero(ref.14) have pointed out that it is advantageous from the point of view of estuarine and groundwater studies to consider pure water as infinitely diluted seawater in this manner, rather than deriving a one-atmosphere equation of state for seawater having validity over the limited range of salinities which may be encountered in the deep ocean. Finally, the specific volume at pressure may be computed from the density at one atmosphere. In the new equation of state, the second-order bulk secant modulus equation is used for this purpose. That is,

$$K = P\nu^0/(\nu^0 - \nu^P) = K^0 + AP + BP^2$$ (7)

where K is the secant bulk modulus at applied pressure P (bars), K^0 is the secant bulk modulus at one atmosphere ($P=0$), ν^0 is the specific volume ($\text{cm}^3\cdot\text{g}^{-1}$) at atmospheric pressure, and ν^P is the specific volume at pressure P. A and B are adjustable parameters. As of April 1980 (the date of publication of reference 15), the one-atmosphere equation of state remained to be finalised.*

* Note added in press. Since completion of the work reported herein, a new international standard one-atmosphere equation of state for seawater has appeared in the literature. Details will be found in reference 26.
Recommendations for the computation of K^0, A and B in equation (7) had previously been proposed by the Joint Panel on Oceanographic Tables and Standards, these being published in reference 16. This source would appear however, to contain typographical errors, since computations with the expressions contained therein failed to reproduce the results of references 9 and 14 to within the accuracy stated in reference 16. As an interim measure therefore, pending the publication of the new standard equation of state in more positive form, the sound-speed derived equation of state of Chen and Millero (ref. 14) has been adapted. There,

$$K^0 = K^0_w + aS + bS^{1.5} \quad (7(a))$$

$$A = A_w + cS + dS^{1.5} \quad (7(b))$$

$$B = B_w + eS \quad (7(c))$$

where the salinity S is in parts/thousand, and the subscript w refers to pure water. The parameters a, b, c, d and e are temperature dependent and given by,

$$a = 53.751 - 0.4607T + 7.030 \times 10^{-3}T^2 - 5.107 \times 10^{-5}T^3 \quad (8)$$

$$b = 0.2322 - 4.838 \times 10^{-3}T \quad (9)$$

$$c = 4.692 \times 10^{-3} - 8.387 \times 10^{-5}T + 4.68 \times 10^{-7}T^2 \quad (10)$$

$$d = -1.332 \times 10^{-4} \quad (11)$$

$$e = -1.412 \times 10^{-6} + 9.006 \times 10^{-8}T - 1.551 \times 10^{-9}T^2 \quad (12)$$

where T is the temperature in degrees centigrade. The equation of state for pure water derives from the work of Chen, Fine and Millero (ref. 17). The pure water density at specified temperature and atmospheric pressure, and associated pressure correction parameters are computed using,
\[\rho_w^0 = 0.9998395 + 6.7914 \times 10^{-5} T - 9.0894 \times 10^{-6} T^2
+ 1.0171 \times 10^{-7} T^3 - 1.2846 \times 10^{-9} T^4
+ 1.1592 \times 10^{-11} T^5 - 5.0125 \times 10^{-14} T^6 \] (13)

\[K_w^0 = 19652.17 + 148.183 T - 2.2995 T^2 - 0.012810 T^3
- 4.91564 \times 10^{-5} T^4 + 1.03553 \times 10^{-7} T^5 \] (14)

\[A_w = 3.26138 + 5.223 \times 10^{-4} T + 1.324 \times 10^{-4} T^2
- 7.655 \times 10^{-7} T^3 + 8.584 \times 10^{-10} T^4 \] (15)

\[B_w = 7.2061 \times 10^{-5} - 5.8948 \times 10^{-6} T + 8.699 \times 10^{-8} T^2
- 1.010 \times 10^{-9} T^3 + 4.322 \times 10^{-12} T^4 \] (16)

where \(\rho_w^0 \) is the one atmosphere density for pure water (cm\(^3\)g\(^{-1}\)), defining the specific volume,

\[V_w^0 = 1/\rho_w^0 \] (17)

The perturbation to be applied to \(\rho_w^0 \) to evaluate the density of seawater at one atmosphere pressure (\(\rho_w^0 \)) derives from the work of Millero, Gonzalez and Ward (ref. 18).
\[\rho^0 - \rho^0_w = (8.25917 \times 10^{-4} - 4.4490 \times 10^{-6} T + 1.0485 \times 10^{-7} T^2 \]

\[- 1.2580 \times 10^{-9} T^3 + 3.315 \times 10^{-12} T^4 \] \[+ (-6.33761 \times 10^{-6} + 2.8441 \times 10^{-7} T - 1.6871 \times 10^{-8} T^2 \]

\[+ 2.83258 \times 10^{-10} T^3 S^{1.5} + \]

\[(5.4705 \times 10^{-7} - 1.97975 \times 10^{-8} T + 1.6641 \times 10^{-9} T^2 \]

\[- 3.1203 \times 10^{-11} T^3 S^2 \]

(18)

\[V^0 = 1/\rho^0 \]

(19)

The equation of state of seawater contained in equations (7 to 19) may be used to compute specific volume to an accuracy of \((\pm 1 \times 10^{-6} \text{ cm}^3 \cdot \text{g}^{-1})\) over the range of 0 to 40 parts/thousand in salinity, 0 to 40°C and 0 to 1000 bars. In addition, the equation of state can be used to determine isothermal compressibility to an accuracy of \(\pm 0.03 \times 10^{-6} \text{ bar}^{-1}\) and thermal expansibility to an accuracy of \(\pm 2 \times 10^{-6} \text{ degrees}^{-1}\) over the same range of salinity, temperature and pressure.

The isothermal compressibility, which finds application in the determination of seawater density from in situ measurements, and in the determination of sound speed (ref.19), is defined as,

\[\beta \equiv -\frac{1}{V^0} \frac{\partial V^0}{\partial P} \]

(20)

and may be determined from equation (7):

\[\beta = \frac{V^0(K^0 - BP^2)}{V^0(K^0 + AP + BP^2)^2} \]

(21)

Similarly, the expansibility of seawater,
\[\alpha = \frac{1}{\nu_P \frac{\partial V}{\partial T}} \frac{P(\partial V/\partial T)^0}{V^P (K^0 + AP + BP^2)} \]

\[+ pV^0 \frac{(\partial K^0/\partial T)_P + P(\partial A/\partial T)_P + P^2(\partial B/\partial T)_P}{V^P (K^0 + AP + BP^2)^2} \]

wherein the derivatives,

\[(\partial V/\partial T)^0 = -(V^0)^2 (\partial p/\partial T)^0 \] \hspace{1cm} (23a)

\[(\partial p/\partial T)^0 = 6.7914 \times 10^{-5} - 1.81788 \times 10^{-5} T \]

\[+ 3.0513 \times 10^{-7} T^2 - 5.1384 \times 10^{-9} T^3 \]

\[+ 5.796 \times 10^{-11} T^4 - 3.0075 \times 10^{-13} T^5 \]

\[+ (-4.4490 \times 10^{-6} + 2.097 \times 10^{-7} T\]

\[- 3.774 \times 10^{-9} T^2 + 1.326 \times 10^{-11} T^3 \]

\[+ (2.8441 \times 10^{-7} - 3.3742 \times 10^{-8} T \]

\[+ 8.49774 \times 10^{-10} T^2) S^{1.5} + (-1.97975 \times 10^{-8} \]

\[+ 3.3282 \times 10^{-9} T - 9.3609 \times 10^{-11} T^2) S^2 \] \hspace{1cm} (23b)
\[
\frac{\partial K}{\partial T}_p = 148.183 - 4.5999T + 3.843 \times 10^{-2}T^2 - 1.966256 \times 10^{-4}T^3 + 5.17765 \times 10^{-7}T^4 + (-0.4607 + 1.406 \times 10^{-2}T - 1.5321 \times 10^{-4}T^2)S + (-4.838 \times 10^{-3})S^{1.5}
\]

\((\partial A/\partial T)_p = 5.223 \times 10^{-4} + 2.648 \times 10^{-4}T - 2.2965 \times 10^{-6}T^2 + 3.4336 \times 10^{-9}T^3 + (-8.387 \times 10^{-5} + 9.36 \times 10^{-7}T)S \) \((23(c)) \)

\((\partial B/\partial T)_p = -5.8948 \times 10^{-6} + 1.7398 \times 10^{-7}T - 3.03 \times 10^{-9}T^2 + 1.7288 \times 10^{-11}T^3 + (9.006 \times 10^{-8} - 3.102 \times 10^{-9}T)S \) \((23(e)) \)

3.3 Pressure

Employing the customary units as detailed in Sections 3.1 and 3.2 above, the pressure at depth \(Z \) (metres), measured positive downwards, may be found by the relationship,

\[
P = 10^{-2} \int_0^Z gpdz
\]

Using the one-atmosphere density profile computed using equations (13) and (18) as a first approximation to \(\rho \), a cubic spline is fitted through the recorded values of the product \(g(z)\rho(z) \) using the Harwell Subroutine TB04AD(ref.8). The cubic spline is integrated between the surface and the appropriate depths using Harwell Subroutine QG02AD to give a first approximation to the pressure profile using equation (24). Most recent estimates of the density and pressure profiles are then used to iteratively update one another.

3.4 The speed of sound

The speed of sound \(U \), in a compressible medium is defined by the equation,

\[
1/U^2 = (\partial p/\partial \rho)_\theta = -1/V^2(\partial V/\partial \rho)_\theta
\]

\((25) \)
where θ is the entropy. By expanding the right-hand side of equation (25), this may be rewritten as (ref. 20),

\[
\frac{1}{U^2} = -\frac{1}{V^2} \left[\frac{\partial V}{\partial P} T + T' \frac{\partial V}{\partial T} \frac{\partial T'}{\partial P} \frac{1}{C} \right]
\]

(26)

where, in this context, T' is understood to refer to absolute temperature. C is the specific heat at constant pressure, and \(\beta = -\frac{1}{V} \frac{\partial V}{\partial P} \) is the isothermal compressibility previously introduced (Section 3.2). Equation (26) then, comprises a unique relationship between sound speed, the equation of state and the specific heat, and forms the basis for methods of deriving the equation of state of water based on sound speed measurements. In equation (26), the first term is the dominant term, the thermodynamic term forming a second-order correction (ref. 20). In this and the next section, expressions for the speed of sound in seawater, and the specific heat are presented.

The form of the relationship equation (26) establishes the desirability of achieving a level of consistency between the equation of state of seawater used in a particular study, and the sound speed equation. For this reason, the sound speed equation of Chen and Millero (ref. 20) has been adopted in the present study, this forming the basis upon which their equation of state (ref. 14) was derived. The sound speed equation consists of relationships for the speed of sound in pure water, and for the perturbations introduced by the presence of salinity. The composite system of equations is valid, as is the equation of state, over a range of 0 to 40 parts/thousand in salinity, 0 to 40°C, and 0 to 1000 bars in pressure. In the following, sound velocities are measured in m.s\(^{-1}\), other variables being described in terms of their conventional units.

For pure water, the speed of sound is expressed as a function of temperature and pressure,

\[
U_w = 1402.388 + 5.03711 T - 5.80852 \times 10^{-2} T^2
\]

\[
+ 3.3420 \times 10^{-4} T^3 - 1.47800 \times 10^{-6} T^4 + 3.1464 \times 10^{-9} T^5 + (0.153563 + 6.8982 \times 10^{-4} T - 8.1788 \times 10^{-6} T^2
\]

\[
+ 1.3621 \times 10^{-7} T^3 - 6.1185 \times 10^{-10} T^4)P + (3.1260 \times 10^{-9} - 1.7107 \times 10^{-6} T + 2.5974 \times 10^{-8} T^2
\]

\[
- 2.5335 \times 10^{-10} T^3 + 1.0405 \times 10^{-12} T^4)P^2 + (-9.7729 \times 10^{-9} + 3.8504 \times 10^{-10} T - 2.3643 \times 10^{-12} T^2)P^3
\]

(27)
At atmospheric pressure, the differential between the speed of sound in pure water, and that in seawater is given by,

\[
U_w - U_w^0 = (1.389 - 1.262 \times 10^{-2} + 7.164 \times 10^{-5} T^2 \\
+ 2.006 \times 10^{-6} T^3 - 3.21 \times 10^{-8} T^4) S + \\
(-1.922 \times 10^{-2} - 4.42 \times 10^{-5} T) S^{1.5} + 1.727 \times 10^{-3} S^2
\]

(28)

From the above, the speed of sound in seawater under pressure may be found using the relationship,

\[
(U_p^{1.5} - U_p^{1.5}) - (U^0 - U_w^0) = A_p S + B_p S^{1.5} + C_p S^2
\]

(29)

where

\[
A_p = (9.4742 \times 10^{-5} - 1.2580 \times 10^{-5} T - 6.4885 \times 10^{-8} T^2 \\
+ 1.0507 \times 10^{-8} T^3 - 2.0122 \times 10^{-10} T^4) p + \\
(-3.9064 \times 10^{-7} + 9.1041 \times 10^{-9} T \\
- 1.6002 \times 10^{-10} T^2 + 7.988 \times 10^{-12} T^3) p^2 + \\
(1.100 \times 10^{-10} + 6.649 \times 10^{-12} T \\
- 3.389 \times 10^{-13} T^2) p^3
\]

(29a)

\[
B_p = (7.3637 \times 10^{-5} + 1.7945 \times 10^{-7} T) p
\]

(29b)

\[
C_p = -7.9836 \times 10^{-6} p
\]

(29c)

Finally, it should be mentioned that the work of Kroebel(ref.14, Annex 4) indicates that the presence of suspended particles may be a significant additional factor in the determination of sound speed under operational conditions.
3.5 Specific heat

The specific heat of seawater is of importance, not only on account of its connection with the equation of state, and the sound speed equation, but in its own right, as a vital component in the thermodynamic make-up of the oceanic environment. As such, it is especially important in the computation of adiabatic lapse rates (ref. 16, 20). While a number of investigations of the specific heat of seawater at atmospheric pressure have been performed (refs. 22, 23), there are in existence no measurements of the specific heat of seawater at elevated pressures (ref. 16). If however, the heat capacity can be evaluated at atmospheric pressure for specified temperature and salinity, then the specific heat at elevated pressure can be computed using the theoretical relationship (ref. 24),

\[C_p = C^0_p - T' \int (\partial^2 V / \partial T^2)_p \, dp \]

(30)

where in this equation, \(T' \) is understood to be the absolute temperature.

Millero, Perron and Desnoyers (ref. 23) give a relationship for the specific heat of seawater at atmospheric pressure,

\[C^0_p = C^0_{pw} + A_{cp} S + B_{cp} S^{1.5} \]

(31)

where \(C^0_p \) is the specific heat (J.g\(^{-1}\).deg\(^{-1}\)) of seawater, and \(C^0_{pw} \) is the specific heat of pure water at the same temperature, which may be found from,

\[C^0_{pw} = 4.2174 - 3.720283 \times 10^{-3} T + 1.412855 \times 10^{-4} T^2 \]

\[- 2.654387 \times 10^{-6} T^3 + 2.093236 \times 10^{-8} T^4 \]

(31(a))

and the temperature dependent parameters \(A_{cp} \) and \(B_{cp} \) are given by,

\[A_{cp} = -7.644 \times 10^{-3} + 1.0727 \times 10^{-4} T - 1.38 \times 10^{-6} T^2 \]

(31(b))

\[B_{cp} = 1.77 \times 10^{-4} - 4.08 \times 10^{-6} T + 5.35 \times 10^{-8} T^2 \]

(31(c))

The pressure-dependent term of equation (30) may be derived from the equation of state of seawater (Section 3.2). That is, if we let,

\[P \]

\[I_2 = \int (\partial^2 V / \partial T^2)_p \, dp, \]

0
then, equation (30) may be rewritten as,

\[C_p = C_p^0 - 0.1(T + 273.15)I_2 \]

(32)

where,

\[I_2 = P(\partial^2 V/\partial T^2)^0 + A_1 I_{11} + B_1 I_{22} + B_2 I_{23} + B_3 I_{23} \]

\[+ C_1 I_{31} + C_2 I_{32} + C_3 I_{33} + C_4 I_{34} + C_5 I_{35} \]

(33)

If we let

\[X = K^0 + AP + BP^2 \]

(34(a))

and

\[q = 4K^0B - A^2 \]

(34(b))

then the integrals represented by the \(I \) terms above may be evaluated as follows:

\[I_{10} = \int_0^P \frac{dP}{X} = 2[\tan^{-1}((2BP+A)/\sqrt{q}) - \tan^{-1}[A/\sqrt{q}]]/\sqrt{q}, \]

(q>0)

\[= \log[(2BP + A - \sqrt{-q})(A + \sqrt{-q})/(2BP + A + \sqrt{-q})(A - \sqrt{-q})]/\sqrt{-q}, \]

(q<0)

(34(c))

\[I_{11} = \int_0^P \frac{P}{X}dP = \frac{1}{2B} \ln(X/K^0) - \frac{A I_{10}}{2B} \]

(34(d))

\[I_{20} = \int_0^P \frac{dP}{X^2} = (2BP+A)/qX - A/qK^0 + 2BI_{10}/q \]

(34(e))
\[I_{21} = \int_0^P \frac{p}{x^2} \, dp = -\left(\frac{1}{X} - 1/K^0\right)/2B - \frac{A}{2B} I_{120} \]

\[(34(f)) \]

\[I_{22} = \int_0^P \frac{p^2}{x^2} \, dp = -\frac{p}{BX} + \frac{K^0}{B} I_{120} \]

\[(34(g)) \]

\[I_{23} = \int_0^P \frac{p^3}{x^2} \, dp = \frac{1}{B} I_{111} - \frac{K^0}{B} I_{121} - \frac{A}{B} I_{122} \]

\[(34(i)) \]

\[I_{30} = \int_0^P \frac{dp}{X^5} = \frac{2BP+A}{2qX^2} - \frac{A}{2q(K^0)^2} + \frac{3B}{q} I_{120} \]

\[(34(j)) \]

\[I_{31} = \int_0^P \frac{p}{X^5} \, dp = -(1/X^2 - 1/(K^0)^2)/4B - \frac{A}{2B} I_{130} \]

\[(34(k)) \]

\[I_{32} = \int_0^P \frac{p^2}{X^3} \, dp = -\frac{p}{3BX^2} - \frac{A}{3B} I_{131} + \frac{K^0}{3B} I_{130} \]

\[(34(l)) \]

\[I_{33} = \int_0^P \frac{p^3}{X^3} \, dp = -\frac{p^2}{2BX^2} + \frac{K^0}{B} I_{131} \]

\[(34(m)) \]

\[I_{34} = \int_0^P \frac{p^4}{X^3} \, dp = -\frac{p^3}{3BX^2} + \frac{A}{B} I_{133} + \frac{3K^0}{B} I_{132} \]

\[(34(m)) \]
The coefficients in equation (34) are

\[A_1 = -\left(\frac{\partial^2 V}{\partial T^2}\right)^0 \]

(35(a))

\[B_1 = 2\left(\frac{\partial V}{\partial T}\right)^0 \left(\frac{\partial K^0}{\partial T}\right)_p + V^0 \left(\frac{\partial^2 K^0}{\partial T^2}\right)_p \]

(35(b))

\[B_2 = 2\left(\frac{\partial V}{\partial T}\right)^0 \left(\frac{\partial A}{\partial T}\right)_p + V^0 \left(\frac{\partial^2 A}{\partial T^2}\right)_p \]

(35(c))

\[B_3 = 2\left(\frac{\partial V}{\partial T}\right)^0 \left(\frac{\partial B}{\partial T}\right)_p + V^0 \left(\frac{\partial^2 B}{\partial T^2}\right)_p \]

(35(d))

\[C_1 = -2V^0 \left(\frac{\partial K^0}{\partial T}\right)^2 \]

(35(e))

\[C_2 = -4V^0 \left(\frac{\partial K^0}{\partial T}\right)_p \left(\frac{\partial A}{\partial T}\right)_p \]

(35(f))

\[C_3 = -4V^0 \left(\frac{\partial K^0}{\partial T}\right)_p \left(\frac{\partial B}{\partial T}\right)_p - 2V^0 \left(\frac{\partial A}{\partial T}\right)^2 \]

(35(g))

\[C_4 = -4V^0 \left(\frac{\partial A}{\partial T}\right)_p \left(\frac{\partial B}{\partial T}\right)_p \]

(35(h))

\[C_5 = -2V^0 \left(\frac{\partial B}{\partial T}\right)^2 \]

(35(i))

In the above, \(V^0 \) and the parameter \(K^0 \), \(A \) and \(B \) are given by equations (7) to (19). The first derivatives are computed according to
equations (23(a)) to 23(d)), and the second derivatives may be found using,

\[
(\frac{\partial^2 V}{\partial T^2})^0 = -(V^0)^2(\frac{\partial^2 \rho}{\partial T^2})^0 + 2(V^0)^3[(\frac{\partial \rho}{\partial T})^0]^2 \tag{36(a)}
\]

\[
(\frac{\partial^2 \rho}{\partial T^2})^0 = -1.81788 \times 10^{-5} + 6.1026 \times 10^{-7}T - 1.54152 \times 10^{-8}T^2 + 2.3184 \times 10^{-10}T^3 - 1.50375 \times 10^{-12}T^4 + (2.097 \times 10^{-7} - 7.548 \times 10^{-9}T + 3.978 \times 10^{-11}T^2)S + (-3.3742 \times 10^{-8} + 1.699548 \times 10^{-9}T)S^{1.5} + (3.3282 \times 10^{-9} - 1.87218 \times 10^{-10}T)S^2 \tag{36(b)}
\]

\[
(\frac{\partial^2 K^0}{\partial T^2})_P = -4.5999 + 7.686 \times 10^{-2}T - 5.898768 \times 10^{-4}T^2 + 2.07106 \times 10^{-6}T^3 + (1.406 \times 10^{-2} - 3.0642 \times 10^{-4}T)S \tag{36(c)}
\]

\[
(\frac{\partial^2 A}{\partial T^2})_P = 2.648 \times 10^{-4} - 4.593 \times 10^{-6}T + 1.03008 \times 10^{-8}T^2 + 9.36 \times 10^{-7}S \tag{36(d)}
\]

\[
(\frac{\partial^2 B}{\partial T^2})_P = 1.7398 \times 10^{-7} - 6.06 \times 10^{-9}T + 5.1864 \times 10^{-11}T^2 - 3.102 \times 10^{-9}S \tag{36(e)}
\]

Computer evaluation of \(I_2 \) using equations (34) and (36) becomes inaccurate if \(|B|\) becomes too small. As a check on the accuracy of the evaluation of
12, this integral was evaluated numerically. That is, the expression

\[(\partial^2 V/\partial T^2)_p = (\partial^2 V/\partial T^2)_0 - P(\partial V/\partial T)_0/X + PV_0 X_1/X^2 \]

\[+ PV_0 X_2/X^3 - 2PV_0 X_1/X^3 \]

(37(a))

where

\[X_2 = (\partial K^0/\partial T)_p + P(\partial A/\partial T)_p + P^2(\partial B/\partial T)_p \]

(37(b))

and

\[X_3 = (\partial^2 K^0/\partial T^2)_p + P(\partial^2 A/\partial T^2)_p + P^2(\partial^2 B/\partial T^2)_p \]

(37(c))

was integrated between the limits of 0 and P using an adaptive quadrature routine (Harwell subroutine QA05AD). Using double precision, the results computed using the two approaches were found to agree to five figures provided \(|B| \leq 5 \times 10^{-6}\). The approach adopted for the computation of specific heat is a hybrid one; when \(|B| \geq 5 \times 10^{-6}\), \(I_2\) is evaluated analytically, while for \(|B| < 5 \times 10^{-6}\) the numerical scheme described above is used.

Even assuming that \(I_2\) can be determined precisely, in the absence of measurements of specific heat of seawater at elevated pressures, and as a result of the shortage of measurements at one atmosphere also, the precision with which equations (29) and (30) may be used to estimate the specific heat of seawater remains in some doubt. Millero (ref. 16, p 14) however, comments on accuracy of the one-atmosphere relationship for specific heat (equation (30)), and feels that it is sufficiently accurate for the computation of lapse rates, but possibly not for the definition of entropy. He states furthermore, that measurements of specific heat of pure water at elevated pressures do confirm the validity of using the thermodynamic relationship (equation (29)) to predict values at elevated pressures.

3.6 Dynamic height anomaly

Dynamic height anomaly provides a measure of the mass distribution in an ocean water column, its theoretical significance and use in the computation of geostrophic currents being described in most texts on oceanography (reference 13, chap 8; reference 14, chap 7). Dynamic height anomaly is defined as

\[\Delta h = \int \delta dP \]

(38)
where P_0 is the pressure at the ocean surface ($P_0=0$), and P is the pressure at depth. δ is the specific volume anomaly,

$$\delta = V(S,T,P) - V(35,0,P)$$

which provides a measure of the departure of the specific volume of the ocean from that of a "standard ocean" having salinity $S=35$ parts/thousand, temperature $T=0^\circ C$, and pressure P. In the appended computational package the integration of equation (39) is performed by fitting a cubic spline to $\delta=f(P)$ using the Harwell library subroutine TB04BD, and integrating the resulting piecewise-cubic polynomial using the Harwell subroutine QG02AD.

One of the fundamental problems associated with the computation of ocean currents using dynamic height anomaly is that of establishing the absolute current values; the dynamic method provides relative currents at different depths only. As an extension of the dynamic method* one may seek a regression of D_{z_1/z_2} on T_{z_1/z_2} where z_2 is an assumed level of no motion, and z_1 is some depth less than z_2; D_{z_1/z_2} is the dynamic height anomaly between z_1 and z_2, T_{z_1/z_2} being the temperature difference over this depth increment. Now, if z_2 is a level of no motion, it follows that within a certain geographical area T_{z_2} will be approximately constant, and we may alternatively seek a regression of D_{z_1/z_2} on T_{z_1}. Provided z_2-z_1 is sufficiently small, it is reasonable to expect that D_{z_1/z_2} will correlate closely with T_{z_1}. Historically, for the East Australian Current area, z_2 is set at 1300 m while, in the interests of accuracy, z_1 should not be taken as less than 450 m. An attempt to measure the regression of $D_{450/1300}$ on T_{450} was made during the present study, but the available data base proved too small to allow reliable relationships to be computed. Pearce and Hamon (ref.7) have, however, provided regression curves giving partial coverage of the area under consideration. An example of the use of such relationships is given by reference 25.

4. COMPUTER PROGRAMME ORGANISATION

A computer programme has been written to compute and plot the parameters discussed in the preceding section for a series of XBT profiles. The programme is of a modular form comprising a number of separate routines which be used independently if so desired. The programme has been written to run on the IBM 370/3033 computer at DRCS and provide graphical output on a CALCOMP 12-inch plotter. ANSI standard FORTRAN IV has been used throughout, but the package calls on subroutines from two external libraries. Subroutines from the Harwell Subroutine Library have been used to fit cubic splines to data points and to perform interpolation and quadrature using the fitted curves.

* As pointed out by a referee, this method was originally suggested by S. Godfrey (CSIRO).
and for numerical quadrature. If this library is unavailable it is a straightforward matter to replace these subroutines with suitable equivalents. To facilitate this procedure, details of the calls to the subroutines used are contained in Appendix IX. In addition, a number of CALCOMP plotter subroutines are used, and since these may not be available for use with another installation, details of the appropriate calls are given in Appendix X. An overview of the programme appears in figure 5, and a programme listing presented in Appendix V.

For each XBT profile processed the programme produces a title block containing environmental data, followed by a listing in tabular form of the computed oceanographic parameters associated with the XBT profile. A sample output is presented in Appendix VI. In addition the programme optionally produces graphical output of two types. The first type of plot (figure 6; hereafter referred to as a 'fourplot') shows temperature/depth, salinity/depth, sound speed/depth and sigma-t/depth profiles for a specified XBT drop. In the second type of plot (figure 7; hereafter referred to as a 'longplot'), temperature/depth or sound speed/depth profiles for a sequence of XBT's are plotted.

4.1 Plotting options

The selection of the plotting options is made by means of a list-directed record input on logical unit 5. The various options are specified by four integer variables as follows:

First integer = 1 to produce fourplots,
second integer = 1 for shallow XBT (T-4) type,
 = 2 for deep XBT (T-7) type,
third integer = 1 if any continuous longplots are required,
fourth integer = 1 if a temperature longplot is required,
 = 2 if a sound-speed longplot is required,
 = 3 if both temperature and sound-speed longplots are required.

Hence, a plot option record of 1,1,1,1 would cause a fourplot and a longplot of temperature versus depth to be plotted with the depth axis scaled for T-4 type XBT's. A blank record read on logical unit 5 will suppress plotter output. If any longplots are required, a temporary work file must be allocated to logical unit 3.

4.2 Temperature/Depth data input

The programme is written to accept data from a card image file input on logical unit 2. The following data format has been in use within Marine Sciences Composite (MSC) at DCRS since 1975. All XBT data gathered by MSC and stored on the IBM 370/3033 have been written in this format, and have been validated and calibrated. A card image file to process a series of XBT profiles using the appended programme should be written in the following format:
RECORD 1: Contains the number of XBT profiles to follow in 110 format, left justified.

RECORD 2: A 36 character record (9A4), left justified, containing the cruise title.

RECORD 3:

<table>
<thead>
<tr>
<th>Element</th>
<th>Starting column</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day</td>
<td>1</td>
<td>A2</td>
</tr>
<tr>
<td>Month</td>
<td>4</td>
<td>A2</td>
</tr>
<tr>
<td>Year</td>
<td>7</td>
<td>A2</td>
</tr>
<tr>
<td>Time</td>
<td>12</td>
<td>A2</td>
</tr>
<tr>
<td>Longitude, °E</td>
<td>20</td>
<td>F7.2</td>
</tr>
<tr>
<td>Latitude, °S</td>
<td>38</td>
<td>F7.2</td>
</tr>
</tbody>
</table>

RECORD 4:

<table>
<thead>
<tr>
<th>Element</th>
<th>Starting column</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sonic Depth, M.</td>
<td>2</td>
<td>A5</td>
</tr>
<tr>
<td>Wet Temperature, °C</td>
<td>17</td>
<td>A4</td>
</tr>
<tr>
<td>Dry Temperature, °C</td>
<td>26</td>
<td>A4</td>
</tr>
<tr>
<td>Wind Direction</td>
<td>36</td>
<td>A3</td>
</tr>
<tr>
<td>Wind Speed, knots</td>
<td>39</td>
<td>A3</td>
</tr>
<tr>
<td>Barometric Pressure, mb.</td>
<td>49</td>
<td>A6</td>
</tr>
</tbody>
</table>

RECORD 5:

<table>
<thead>
<tr>
<th>Element</th>
<th>Starting column</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profile Number</td>
<td>1</td>
<td>I3</td>
</tr>
<tr>
<td>No. of Depth/ Temperature readings (L)</td>
<td>4</td>
<td>I5</td>
</tr>
</tbody>
</table>

RECORDS 6 to end of profile:

Contain a sequence of L pairs of depth and temperature readings in the order D(1),T(1),D(2),T(2),...,D(L),T(L) packed in 12F6.2 format in 80 character records.

Records 2 to 6+ are repeated for each profile in the batch.

A sample input file of this type is included in Appendix VII.

The above input format is applicable only to data originating from Marine Sciences Composite; users wishing to process data from other sources must make the appropriate changes to the programme input. Details of the standard format adopted by the Australian Oceanographic Data Centre for storage of XBT data within their current data base are given in Appendix VIII. Note that the AODC format does not store certain components of the environmental data which are stored by MSC; in order to
utilise the output format used by the existing programme it is only necessary to extract cruise title and positional information together with depth and temperature figures from the input records. Note also that temperature and depth data supplied by AODC will also require correction for offset; the necessary calibration information is supplied by the parameters CALDEP and CALTEM in the input records.
REFERENCES

<table>
<thead>
<tr>
<th>No.</th>
<th>Author</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Stommel, H.S.</td>
<td>"Note on the use of the T-S correlation for dynamic height anomaly computations".</td>
</tr>
<tr>
<td>2</td>
<td>Emery, W.J.</td>
<td>"Dynamic height from temperature profiles".</td>
</tr>
<tr>
<td>3</td>
<td>Andrews, J.C.</td>
<td>"The bathythermograph as a tool in gathering synoptic thermohaline data".</td>
</tr>
<tr>
<td>4</td>
<td>Andrews, J.C.</td>
<td>"Eddy structure and the West Australian Current".</td>
</tr>
<tr>
<td>5</td>
<td>Emery, W.J. and Wert, R.T.</td>
<td>"Temperature-salinity curves in the Pacific and their application to dynamic height computation".</td>
</tr>
<tr>
<td>6</td>
<td>Flierl, G.R.</td>
<td>Correcting expendable bathythermograph (XBT) data for salinity effects to compute dynamic heights in Gulf Stream rings".</td>
</tr>
<tr>
<td>7</td>
<td>Pearce, A.F. and Hamon, B.V.</td>
<td>"Mean temperature-salinity curves for the Tasman Sea".</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unpublished preliminary report, CSIRO Division of Fisheries and Oceanography (1979)</td>
</tr>
<tr>
<td>8</td>
<td>Hopper, M.J.</td>
<td>"Harwell Subroutine Library: A catalogue of subroutines (1979)".</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UKAEA Harwell, AERE-R9185 (1979)</td>
</tr>
<tr>
<td>9</td>
<td>Chen, C.-T. and Millero, F.J.</td>
<td>"The specific volume of seawater at high pressures".</td>
</tr>
<tr>
<td>No.</td>
<td>Author</td>
<td>Title</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>No.</td>
<td>Author</td>
<td>Title</td>
</tr>
<tr>
<td>-----</td>
<td>-------------------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
Appendix 1: Nansen Casts Used to Derive T-S Curves

<table>
<thead>
<tr>
<th>CAST IDENT.</th>
<th>SOURCE</th>
<th>CRUISE NO.</th>
<th>CRUISE CODE</th>
<th>CAST DATE</th>
<th>LATITUDE</th>
<th>LONGITUDE</th>
<th>DEPTH</th>
<th>DATA NO. DEGREES</th>
<th>DEGREES</th>
<th>M.</th>
<th>PTS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>RANRL S4/3</td>
<td></td>
<td></td>
<td></td>
<td>19/07/68</td>
<td>18.00 S</td>
<td>152.35 E</td>
<td>1756 23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSIRO G1/62</td>
<td></td>
<td></td>
<td></td>
<td>18/01/62</td>
<td>18.62 S</td>
<td>155.97 E</td>
<td>1981 18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSIRO G1/62</td>
<td></td>
<td></td>
<td></td>
<td>19/01/62</td>
<td>18.33 S</td>
<td>157.72 E</td>
<td>3450 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSIRO G1/62</td>
<td></td>
<td></td>
<td></td>
<td>20/01/62</td>
<td>22.97 S</td>
<td>156.95 E</td>
<td>1983 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSIRO G1/62</td>
<td></td>
<td></td>
<td></td>
<td>20/01/62</td>
<td>22.90 S</td>
<td>158.70 E</td>
<td>2465 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSIRO G1/62</td>
<td></td>
<td></td>
<td></td>
<td>27/01/62</td>
<td>24.67 S</td>
<td>158.33 E</td>
<td>2428 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSIRO G1/62</td>
<td></td>
<td></td>
<td></td>
<td>28/02/62</td>
<td>24.70 S</td>
<td>155.37 E</td>
<td>1956 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RANRL S4/3</td>
<td></td>
<td></td>
<td></td>
<td>13/07/68</td>
<td>25.00 S</td>
<td>154.00 E</td>
<td>1928 24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RANRL S4/3</td>
<td></td>
<td></td>
<td></td>
<td>14/07/68</td>
<td>25.12 S</td>
<td>157.00 E</td>
<td>1871 23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RANRL S4/3</td>
<td></td>
<td></td>
<td></td>
<td>15/07/68</td>
<td>22.92 S</td>
<td>154.95 E</td>
<td>1977 21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RANRL S4/3</td>
<td></td>
<td></td>
<td></td>
<td>16/07/68</td>
<td>20.75 S</td>
<td>153.50 E</td>
<td>1564 22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RANRL S4/3</td>
<td></td>
<td></td>
<td></td>
<td>17/07/68</td>
<td>20.67 S</td>
<td>157.03 E</td>
<td>1796 23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSIRO G3/63</td>
<td></td>
<td></td>
<td></td>
<td>16/08/63</td>
<td>24.07 S</td>
<td>169.30 E</td>
<td>1500 13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSIRO G1/60</td>
<td></td>
<td></td>
<td></td>
<td>22/02/60</td>
<td>18.17 S</td>
<td>167.43 E</td>
<td>4410 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSIRO G1/60</td>
<td></td>
<td></td>
<td></td>
<td>22/02/60</td>
<td>15.00 S</td>
<td>163.01 E</td>
<td>4280 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSIRO G1/60</td>
<td></td>
<td></td>
<td></td>
<td>22/02/60</td>
<td>17.20 S</td>
<td>163.62 E</td>
<td>3307 18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSIRO G1/60</td>
<td></td>
<td></td>
<td></td>
<td>24/02/60</td>
<td>20.52 S</td>
<td>169.02 E</td>
<td>2421 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSIRO G1/60</td>
<td></td>
<td></td>
<td></td>
<td>25/02/60</td>
<td>21.98 S</td>
<td>167.63 E</td>
<td>1775 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSIRO G2/60</td>
<td></td>
<td></td>
<td></td>
<td>24/03/60</td>
<td>23.32 S</td>
<td>165.05 E</td>
<td>3312 19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSIRO G2/60</td>
<td></td>
<td></td>
<td></td>
<td>24/03/60</td>
<td>21.53 S</td>
<td>163.72 E</td>
<td>3410 19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSIRO G2/60</td>
<td></td>
<td></td>
<td></td>
<td>25/03/60</td>
<td>17.92 S</td>
<td>161.17 E</td>
<td>2875 19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSIRO G2/60</td>
<td></td>
<td></td>
<td></td>
<td>26/03/60</td>
<td>15.93 S</td>
<td>160.80 E</td>
<td>4193 22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSIRO G1/62</td>
<td></td>
<td></td>
<td></td>
<td>26/01/62</td>
<td>24.62 S</td>
<td>166.42 E</td>
<td>2743 17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSIRO G1/62</td>
<td></td>
<td></td>
<td></td>
<td>27/01/62</td>
<td>24.55 S</td>
<td>160.37 E</td>
<td>1700 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSIRO G1/60</td>
<td></td>
<td></td>
<td></td>
<td>17/02/66</td>
<td>17.55 S</td>
<td>176.12 E</td>
<td>2500 17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSIRO G3/63</td>
<td></td>
<td></td>
<td></td>
<td>14/08/63</td>
<td>19.27 S</td>
<td>176.60 E</td>
<td>1968 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSIRO G3/63</td>
<td></td>
<td></td>
<td></td>
<td>15/08/63</td>
<td>20.38 S</td>
<td>174.85 E</td>
<td>2320 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSIRO G3/63</td>
<td></td>
<td></td>
<td></td>
<td>15/08/63</td>
<td>21.70 S</td>
<td>172.85 E</td>
<td>1972 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSIRO G3/63</td>
<td></td>
<td></td>
<td></td>
<td>16/08/63</td>
<td>22.88 S</td>
<td>171.07 E</td>
<td>2000 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSIRO G3/63</td>
<td></td>
<td></td>
<td></td>
<td>16/08/63</td>
<td>24.07 S</td>
<td>169.30 E</td>
<td>1500 13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSIRO G1/60</td>
<td></td>
<td></td>
<td></td>
<td>10/02/60</td>
<td>24.07 S</td>
<td>175.52 E</td>
<td>4273 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSIRO G1/60</td>
<td></td>
<td></td>
<td></td>
<td>11/02/60</td>
<td>22.75 S</td>
<td>175.97 E</td>
<td>3855 19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSIRO G1/60</td>
<td></td>
<td></td>
<td></td>
<td>11/02/60</td>
<td>21.32 S</td>
<td>176.05 E</td>
<td>2000 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSIRO G1/60</td>
<td></td>
<td></td>
<td></td>
<td>11/02/60</td>
<td>20.78 S</td>
<td>176.33 E</td>
<td>2785 17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSIRO G1/60</td>
<td></td>
<td></td>
<td></td>
<td>12/02/62</td>
<td>19.13 S</td>
<td>176.80 E</td>
<td>2977 17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSIRO G1/60</td>
<td></td>
<td></td>
<td></td>
<td>17/02/60</td>
<td>16.68 S</td>
<td>174.48 E</td>
<td>2500 17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSIRO G1/60</td>
<td></td>
<td></td>
<td></td>
<td>18/02/60</td>
<td>16.78 S</td>
<td>172.90 E</td>
<td>2425 17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSIRO G6/64</td>
<td></td>
<td></td>
<td></td>
<td>18/09/64</td>
<td>31.82 S</td>
<td>157.90 E</td>
<td>1500 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RANRL S4/3</td>
<td></td>
<td></td>
<td></td>
<td>11/07/68</td>
<td>29.17 S</td>
<td>158.03 E</td>
<td>1914 24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSIRO G1/62</td>
<td></td>
<td></td>
<td></td>
<td>30/01/62</td>
<td>27.33 S</td>
<td>156.58 E</td>
<td>3365 17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSIRO G6/64</td>
<td></td>
<td></td>
<td></td>
<td>22/09/64</td>
<td>34.93 S</td>
<td>151.40 E</td>
<td>1500 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSIRO G1/60</td>
<td></td>
<td></td>
<td></td>
<td>04/02/60</td>
<td>33.88 S</td>
<td>159.88 E</td>
<td>1948 17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSIRO G3/64</td>
<td></td>
<td></td>
<td></td>
<td>21/03/64</td>
<td>34.95 S</td>
<td>154.25 E</td>
<td>1424 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSIRO G4/63</td>
<td></td>
<td></td>
<td></td>
<td>11/09/63</td>
<td>33.03 S</td>
<td>155.15 E</td>
<td>1463 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSIRO G2/60</td>
<td></td>
<td></td>
<td></td>
<td>19/03/60</td>
<td>30.40 S</td>
<td>156.53 E</td>
<td>4419 19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSIRO G1/64</td>
<td></td>
<td></td>
<td></td>
<td>20/01/64</td>
<td>31.03 S</td>
<td>153.50 E</td>
<td>1500 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSIRO G1/64</td>
<td></td>
<td></td>
<td></td>
<td>20/01/64</td>
<td>28.58 S</td>
<td>154.15 E</td>
<td>1500 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSIRO G1/62</td>
<td></td>
<td></td>
<td></td>
<td>27/01/62</td>
<td>24.55 S</td>
<td>160.37 E</td>
<td>7000 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RANRL S4/3</td>
<td></td>
<td></td>
<td></td>
<td>12/07/68</td>
<td>27.17 S</td>
<td>154.00 E</td>
<td>1591 22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX II CUBIC SPLINE COEFFICIENTS FOR THE T-S CURVES

A cubic spline fitting procedure fits a piecewise cubic polynomial to a set of data points, the polynomial coefficients pertaining to adjacent segments being constrained to ensure continuity of the function and the first two derivatives at the knot points. Two entirely equivalent schemes may be used to specify the cubic spline. In the first place, the polynomial coefficients may be stated. Alternatively, the knot points together with the values of the function and its first derivative at the knot points may be specified. In keeping with the practice adopted by the Harwell Subroutine Library (ref.8), we use the latter scheme.

AREA A1

<table>
<thead>
<tr>
<th>T</th>
<th>S</th>
<th>dS/dT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.739999</td>
<td>34.726685</td>
<td>-0.11545753</td>
</tr>
<tr>
<td>3.448748</td>
<td>34.551025</td>
<td>-0.082896233</td>
</tr>
<tr>
<td>5.157498</td>
<td>34.463531</td>
<td>-0.014968872</td>
</tr>
<tr>
<td>6.866272</td>
<td>34.503052</td>
<td>0.058553696</td>
</tr>
<tr>
<td>8.574969</td>
<td>34.642029</td>
<td>0.094157219</td>
</tr>
<tr>
<td>10.283745</td>
<td>34.806015</td>
<td>0.096733093</td>
</tr>
<tr>
<td>11.992493</td>
<td>34.975433</td>
<td>0.10424614</td>
</tr>
<tr>
<td>15.409996</td>
<td>35.352448</td>
<td>0.10685921</td>
</tr>
<tr>
<td>18.827484</td>
<td>35.620544</td>
<td>0.03498351</td>
</tr>
<tr>
<td>22.244995</td>
<td>35.566254</td>
<td>-0.05754977</td>
</tr>
<tr>
<td>25.662491</td>
<td>35.252518</td>
<td>-0.12745190</td>
</tr>
<tr>
<td>29.080002</td>
<td>34.667648</td>
<td>-0.22149563</td>
</tr>
</tbody>
</table>

AREA A2

<table>
<thead>
<tr>
<th>T</th>
<th>S</th>
<th>dS/dT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.779997</td>
<td>34.699966</td>
<td>-0.084634781</td>
</tr>
<tr>
<td>5.199996</td>
<td>34.441177</td>
<td>-0.023357391</td>
</tr>
<tr>
<td>8.619951</td>
<td>34.607269</td>
<td>0.096752167</td>
</tr>
<tr>
<td>12.039993</td>
<td>34.980515</td>
<td>0.10944939</td>
</tr>
<tr>
<td>15.459999</td>
<td>35.330429</td>
<td>0.099792480</td>
</tr>
<tr>
<td>18.879990</td>
<td>35.642120</td>
<td>0.071731567</td>
</tr>
<tr>
<td>22.299888</td>
<td>35.758163</td>
<td>-0.011492729</td>
</tr>
<tr>
<td>25.719886</td>
<td>35.500107</td>
<td>-0.15031433</td>
</tr>
<tr>
<td>29.139999</td>
<td>34.654861</td>
<td>-0.35505390</td>
</tr>
</tbody>
</table>
AREA A3

<table>
<thead>
<tr>
<th>T</th>
<th>S</th>
<th>dS/dT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8500004</td>
<td>34.682465</td>
<td>-0.090103149</td>
</tr>
<tr>
<td>3.493787</td>
<td>34.517578</td>
<td>-0.097715378</td>
</tr>
<tr>
<td>5.137479</td>
<td>34.406326</td>
<td>-0.022984505</td>
</tr>
<tr>
<td>6.781262</td>
<td>34.443558</td>
<td>0.054557800</td>
</tr>
<tr>
<td>8.4249954</td>
<td>34.561661</td>
<td>0.088250160</td>
</tr>
<tr>
<td>10.068741</td>
<td>34.729767</td>
<td>0.11484337</td>
</tr>
<tr>
<td>11.712494</td>
<td>34.925735</td>
<td>0.11683750</td>
</tr>
<tr>
<td>14.999992</td>
<td>35.267654</td>
<td>0.096542358</td>
</tr>
<tr>
<td>18.287476</td>
<td>35.553070</td>
<td>0.069462776</td>
</tr>
<tr>
<td>21.574982</td>
<td>35.674911</td>
<td>-0.0027217865</td>
</tr>
<tr>
<td>24.862488</td>
<td>35.487518</td>
<td>-0.11839390</td>
</tr>
<tr>
<td>28.149994</td>
<td>34.840240</td>
<td>-0.28538132</td>
</tr>
</tbody>
</table>

AREA B1

<table>
<thead>
<tr>
<th>T</th>
<th>S</th>
<th>dS/dT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.189996</td>
<td>34.720779</td>
<td>0.11289215</td>
</tr>
<tr>
<td>2.7418736</td>
<td>34.626480</td>
<td>-0.12562466</td>
</tr>
<tr>
<td>4.2937479</td>
<td>34.494614</td>
<td>-0.047614098</td>
</tr>
<tr>
<td>5.8456221</td>
<td>34.472565</td>
<td>0.018503189</td>
</tr>
<tr>
<td>7.3974972</td>
<td>34.548004</td>
<td>0.076808929</td>
</tr>
<tr>
<td>10.501244</td>
<td>34.888580</td>
<td>0.12305641</td>
</tr>
<tr>
<td>13.604996</td>
<td>35.243362</td>
<td>0.10305786</td>
</tr>
<tr>
<td>16.708740</td>
<td>35.510086</td>
<td>0.065424919</td>
</tr>
<tr>
<td>19.812500</td>
<td>35.633240</td>
<td>0.012089729</td>
</tr>
<tr>
<td>22.916245</td>
<td>35.589767</td>
<td>-0.036752701</td>
</tr>
<tr>
<td>26.020004</td>
<td>35.443451</td>
<td>-0.048524857</td>
</tr>
</tbody>
</table>

AREA B2

<table>
<thead>
<tr>
<th>T</th>
<th>S</th>
<th>dS/dT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.899996</td>
<td>34.687988</td>
<td>-0.072339058</td>
</tr>
<tr>
<td>4.9149990</td>
<td>34.472916</td>
<td>-0.028326035</td>
</tr>
<tr>
<td>7.9299994</td>
<td>34.588760</td>
<td>0.086900711</td>
</tr>
<tr>
<td>10.944992</td>
<td>34.911652</td>
<td>0.11726761</td>
</tr>
<tr>
<td>13.959999</td>
<td>35.253723</td>
<td>0.10568237</td>
</tr>
<tr>
<td>16.974991</td>
<td>35.530823</td>
<td>0.076093674</td>
</tr>
<tr>
<td>19.989990</td>
<td>35.700470</td>
<td>0.034471512</td>
</tr>
<tr>
<td>23.004990</td>
<td>35.715652</td>
<td>-0.030061722</td>
</tr>
<tr>
<td>26.020004</td>
<td>35.457870</td>
<td>-0.15561867</td>
</tr>
</tbody>
</table>
 AREA B3

<table>
<thead>
<tr>
<th>T</th>
<th>S</th>
<th>dS/dT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8500004</td>
<td>34.691071</td>
<td>-0.13153839</td>
</tr>
<tr>
<td>7.8174982</td>
<td>34.583099</td>
<td>0.075304031</td>
</tr>
<tr>
<td>13.784996</td>
<td>35.247391</td>
<td>0.11000633</td>
</tr>
<tr>
<td>19.752487</td>
<td>35.713013</td>
<td>0.052697182</td>
</tr>
<tr>
<td>25.720001</td>
<td>35.447403</td>
<td>-0.22023773</td>
</tr>
</tbody>
</table>

 AREA C1

<table>
<thead>
<tr>
<th>T</th>
<th>S</th>
<th>dS/dT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1099997</td>
<td>34.728088</td>
<td>0.044359207</td>
</tr>
<tr>
<td>3.5224981</td>
<td>35.538361</td>
<td>-0.10148716</td>
</tr>
<tr>
<td>5.9349666</td>
<td>34.459381</td>
<td>0.027439117</td>
</tr>
<tr>
<td>8.3474884</td>
<td>34.632278</td>
<td>0.10853386</td>
</tr>
<tr>
<td>10.759995</td>
<td>34.937805</td>
<td>0.13336277</td>
</tr>
<tr>
<td>13.172493</td>
<td>35.236908</td>
<td>0.10989761</td>
</tr>
<tr>
<td>15.584999</td>
<td>35.452240</td>
<td>0.066784859</td>
</tr>
<tr>
<td>17.997498</td>
<td>35.554504</td>
<td>0.017894745</td>
</tr>
<tr>
<td>20.410004</td>
<td>35.544281</td>
<td>-0.023929596</td>
</tr>
</tbody>
</table>

 AREA C2

<table>
<thead>
<tr>
<th>T</th>
<th>S</th>
<th>dS/dT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1099997</td>
<td>34.742035</td>
<td>-0.027276993</td>
</tr>
<tr>
<td>4.0724974</td>
<td>34.507553</td>
<td>-0.065916061</td>
</tr>
<tr>
<td>7.0349951</td>
<td>34.523254</td>
<td>0.069396019</td>
</tr>
<tr>
<td>9.9974899</td>
<td>34.843521</td>
<td>0.12857723</td>
</tr>
<tr>
<td>12.959991</td>
<td>35.205383</td>
<td>0.10705471</td>
</tr>
<tr>
<td>15.922493</td>
<td>35.453888</td>
<td>0.061277390</td>
</tr>
<tr>
<td>18.884995</td>
<td>35.580109</td>
<td>0.027302742</td>
</tr>
<tr>
<td>21.847488</td>
<td>35.633163</td>
<td>0.011056900</td>
</tr>
<tr>
<td>24.809998</td>
<td>35.646423</td>
<td>-0.0043754578</td>
</tr>
</tbody>
</table>
APPENDIX III DENSITY PROFILES FOR THE SOUTH-WEST PACIFIC OCEAN

<table>
<thead>
<tr>
<th>Area</th>
<th>ρ_0</th>
<th>δp</th>
<th>D</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>20.5735321</td>
<td>7.50903416</td>
<td>112.234772</td>
<td>2.3</td>
</tr>
<tr>
<td>A2</td>
<td>20.4653168</td>
<td>7.52306175</td>
<td>94.4050293</td>
<td>1.6</td>
</tr>
<tr>
<td>A3</td>
<td>20.3182220</td>
<td>7.69532871</td>
<td>98.7615967</td>
<td>1.5</td>
</tr>
<tr>
<td>B1</td>
<td>23.7737579</td>
<td>4.32316494</td>
<td>220.479477</td>
<td>2.5</td>
</tr>
<tr>
<td>B2</td>
<td>23.0042877</td>
<td>5.02893066</td>
<td>168.771622</td>
<td>2.6</td>
</tr>
<tr>
<td>B3</td>
<td>23.6899109</td>
<td>4.32462502</td>
<td>194.871521</td>
<td>2.5</td>
</tr>
<tr>
<td>C1</td>
<td>25.4123688</td>
<td>2.72107410</td>
<td>417.001221</td>
<td>2.5</td>
</tr>
<tr>
<td>C2</td>
<td>25.1103363</td>
<td>2.98020172</td>
<td>328.343506</td>
<td>2.5</td>
</tr>
</tbody>
</table>
APPENDIX IV

TABULATED VALUES OF SOME OCEANOGRAPHIC VARIABLES

IV.1 Salinity = 34 parts/thousand

IV.1.1 Specific volume (cm³·g⁻¹)

<table>
<thead>
<tr>
<th>P</th>
<th>0°C</th>
<th>5°C</th>
<th>10°C</th>
<th>15°C</th>
<th>20°C</th>
<th>25°C</th>
<th>30°C</th>
<th>35°C</th>
<th>40°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.973429</td>
<td>.973822</td>
<td>.974496</td>
<td>.975419</td>
<td>.976563</td>
<td>.977912</td>
<td>.979452</td>
<td>.981172</td>
<td>.983064</td>
</tr>
<tr>
<td>100</td>
<td>.968977</td>
<td>.969488</td>
<td>.970256</td>
<td>.971252</td>
<td>.972452</td>
<td>.973841</td>
<td>.975409</td>
<td>.977144</td>
<td>.979040</td>
</tr>
<tr>
<td>200</td>
<td>.964662</td>
<td>.965283</td>
<td>.966139</td>
<td>.967204</td>
<td>.968457</td>
<td>.969884</td>
<td>.971478</td>
<td>.973228</td>
<td>.975129</td>
</tr>
<tr>
<td>300</td>
<td>.960477</td>
<td>.961202</td>
<td>.962140</td>
<td>.963270</td>
<td>.964572</td>
<td>.966036</td>
<td>.967654</td>
<td>.969419</td>
<td>.971325</td>
</tr>
<tr>
<td>400</td>
<td>.956417</td>
<td>.957239</td>
<td>.958254</td>
<td>.959444</td>
<td>.960793</td>
<td>.962292</td>
<td>.963934</td>
<td>.965712</td>
<td>.967623</td>
</tr>
<tr>
<td>500</td>
<td>.952476</td>
<td>.953388</td>
<td>.954476</td>
<td>.955723</td>
<td>.957116</td>
<td>.958647</td>
<td>.960311</td>
<td>.962103</td>
<td>.964018</td>
</tr>
<tr>
<td>600</td>
<td>.948651</td>
<td>.949646</td>
<td>.950801</td>
<td>.952101</td>
<td>.953535</td>
<td>.955097</td>
<td>.956782</td>
<td>.958586</td>
<td>.960506</td>
</tr>
<tr>
<td>700</td>
<td>.944935</td>
<td>.946008</td>
<td>.947226</td>
<td>.948576</td>
<td>.950048</td>
<td>.951639</td>
<td>.953343</td>
<td>.955158</td>
<td>.957081</td>
</tr>
<tr>
<td>800</td>
<td>.941325</td>
<td>.942470</td>
<td>.943746</td>
<td>.945142</td>
<td>.946651</td>
<td>.948267</td>
<td>.949990</td>
<td>.951816</td>
<td>.953742</td>
</tr>
<tr>
<td>900</td>
<td>.937816</td>
<td>.939028</td>
<td>.940358</td>
<td>.941797</td>
<td>.943339</td>
<td>.944980</td>
<td>.946719</td>
<td>.948554</td>
<td>.950482</td>
</tr>
<tr>
<td>1000</td>
<td>.934405</td>
<td>.935678</td>
<td>.937057</td>
<td>.938536</td>
<td>.940109</td>
<td>.941773</td>
<td>.943527</td>
<td>.945370</td>
<td>.947300</td>
</tr>
</tbody>
</table>

IV.1.2 Isothermal compressibility (bar⁻¹·10⁶)

<table>
<thead>
<tr>
<th>P</th>
<th>0°C</th>
<th>5°C</th>
<th>10°C</th>
<th>15°C</th>
<th>20°C</th>
<th>25°C</th>
<th>30°C</th>
<th>35°C</th>
<th>40°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>46.46</td>
<td>45.18</td>
<td>44.16</td>
<td>43.35</td>
<td>42.71</td>
<td>42.23</td>
<td>41.88</td>
<td>41.65</td>
<td>41.52</td>
</tr>
<tr>
<td>100</td>
<td>45.23</td>
<td>44.02</td>
<td>43.05</td>
<td>42.28</td>
<td>41.67</td>
<td>41.21</td>
<td>40.87</td>
<td>40.64</td>
<td>40.51</td>
</tr>
<tr>
<td>200</td>
<td>44.05</td>
<td>42.91</td>
<td>41.99</td>
<td>41.26</td>
<td>40.68</td>
<td>40.23</td>
<td>39.90</td>
<td>39.68</td>
<td>39.55</td>
</tr>
<tr>
<td>300</td>
<td>42.91</td>
<td>41.84</td>
<td>40.97</td>
<td>40.27</td>
<td>39.72</td>
<td>39.29</td>
<td>38.97</td>
<td>38.76</td>
<td>38.63</td>
</tr>
<tr>
<td>400</td>
<td>41.82</td>
<td>40.81</td>
<td>39.98</td>
<td>39.32</td>
<td>38.79</td>
<td>38.39</td>
<td>38.08</td>
<td>37.87</td>
<td>37.75</td>
</tr>
<tr>
<td>500</td>
<td>40.76</td>
<td>39.81</td>
<td>39.03</td>
<td>38.41</td>
<td>37.91</td>
<td>37.52</td>
<td>37.23</td>
<td>37.03</td>
<td>36.91</td>
</tr>
<tr>
<td>600</td>
<td>39.74</td>
<td>38.85</td>
<td>38.12</td>
<td>37.53</td>
<td>37.05</td>
<td>36.68</td>
<td>36.41</td>
<td>36.22</td>
<td>36.10</td>
</tr>
<tr>
<td>700</td>
<td>38.76</td>
<td>37.92</td>
<td>37.23</td>
<td>36.68</td>
<td>36.23</td>
<td>35.88</td>
<td>35.62</td>
<td>35.44</td>
<td>35.33</td>
</tr>
<tr>
<td>800</td>
<td>37.80</td>
<td>37.03</td>
<td>36.38</td>
<td>35.86</td>
<td>35.43</td>
<td>35.10</td>
<td>34.86</td>
<td>34.69</td>
<td>34.59</td>
</tr>
<tr>
<td>900</td>
<td>36.89</td>
<td>36.16</td>
<td>35.56</td>
<td>35.06</td>
<td>34.67</td>
<td>34.36</td>
<td>34.13</td>
<td>33.97</td>
<td>33.88</td>
</tr>
<tr>
<td>1000</td>
<td>36.00</td>
<td>35.32</td>
<td>34.76</td>
<td>34.30</td>
<td>33.93</td>
<td>33.64</td>
<td>33.42</td>
<td>33.28</td>
<td>33.20</td>
</tr>
</tbody>
</table>
IV.1.3 Thermal expansibility (degrees⁻¹.10⁶)

<table>
<thead>
<tr>
<th>P</th>
<th>0°C</th>
<th>5°C</th>
<th>10°C</th>
<th>15°C</th>
<th>20°C</th>
<th>25°C</th>
<th>30°C</th>
<th>35°C</th>
<th>40°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>48.53</td>
<td>110.95</td>
<td>164.88</td>
<td>212.63</td>
<td>255.89</td>
<td>295.82</td>
<td>333.15</td>
<td>368.36</td>
<td>401.68</td>
</tr>
<tr>
<td>100</td>
<td>76.12</td>
<td>133.16</td>
<td>182.65</td>
<td>226.69</td>
<td>266.78</td>
<td>303.95</td>
<td>338.86</td>
<td>371.88</td>
<td>403.22</td>
</tr>
<tr>
<td>200</td>
<td>102.14</td>
<td>154.17</td>
<td>199.54</td>
<td>240.10</td>
<td>277.21</td>
<td>311.80</td>
<td>344.42</td>
<td>375.39</td>
<td>404.85</td>
</tr>
<tr>
<td>300</td>
<td>126.65</td>
<td>174.04</td>
<td>215.56</td>
<td>252.87</td>
<td>287.19</td>
<td>319.34</td>
<td>349.81</td>
<td>378.84</td>
<td>406.52</td>
</tr>
<tr>
<td>400</td>
<td>149.70</td>
<td>192.80</td>
<td>230.73</td>
<td>265.01</td>
<td>296.71</td>
<td>326.57</td>
<td>355.01</td>
<td>382.20</td>
<td>408.20</td>
</tr>
<tr>
<td>500</td>
<td>171.34</td>
<td>210.48</td>
<td>245.09</td>
<td>276.52</td>
<td>305.78</td>
<td>333.49</td>
<td>359.99</td>
<td>385.44</td>
<td>409.84</td>
</tr>
<tr>
<td>600</td>
<td>191.63</td>
<td>227.12</td>
<td>258.64</td>
<td>287.44</td>
<td>314.39</td>
<td>340.07</td>
<td>364.76</td>
<td>388.55</td>
<td>411.43</td>
</tr>
<tr>
<td>700</td>
<td>210.62</td>
<td>242.75</td>
<td>271.41</td>
<td>297.75</td>
<td>322.55</td>
<td>346.32</td>
<td>369.28</td>
<td>391.50</td>
<td>412.91</td>
</tr>
<tr>
<td>800</td>
<td>228.33</td>
<td>257.39</td>
<td>283.43</td>
<td>307.47</td>
<td>330.26</td>
<td>352.22</td>
<td>373.56</td>
<td>394.27</td>
<td>414.28</td>
</tr>
<tr>
<td>900</td>
<td>244.83</td>
<td>271.09</td>
<td>294.70</td>
<td>316.62</td>
<td>337.52</td>
<td>357.78</td>
<td>377.56</td>
<td>396.84</td>
<td>415.50</td>
</tr>
<tr>
<td>1000</td>
<td>260.15</td>
<td>283.86</td>
<td>305.25</td>
<td>325.20</td>
<td>344.33</td>
<td>362.99</td>
<td>381.30</td>
<td>399.20</td>
<td>416.55</td>
</tr>
</tbody>
</table>

IV.1.4 Specific heat, \(C_p \) (j.g⁻¹.degrees⁻¹)

<table>
<thead>
<tr>
<th>P</th>
<th>0°C</th>
<th>5°C</th>
<th>10°C</th>
<th>15°C</th>
<th>20°C</th>
<th>25°C</th>
<th>30°C</th>
<th>35°C</th>
<th>40°C</th>
</tr>
</thead>
</table>
IV.1 Sound speed (m.s⁻¹)

<table>
<thead>
<tr>
<th>P</th>
<th>0°C</th>
<th>5°C</th>
<th>10°C</th>
<th>15°C</th>
<th>20°C</th>
<th>25°C</th>
<th>30°C</th>
<th>35°C</th>
<th>40°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1447.80</td>
<td>1447.80</td>
<td>1447.80</td>
<td>1447.80</td>
<td>1447.80</td>
<td>1447.80</td>
<td>1447.80</td>
<td>1447.80</td>
<td>1447.80</td>
</tr>
<tr>
<td>100</td>
<td>1464.19</td>
<td>1464.19</td>
<td>1464.19</td>
<td>1464.19</td>
<td>1464.19</td>
<td>1464.19</td>
<td>1464.19</td>
<td>1464.19</td>
<td>1464.19</td>
</tr>
<tr>
<td>200</td>
<td>1480.90</td>
<td>1480.90</td>
<td>1480.90</td>
<td>1480.90</td>
<td>1480.90</td>
<td>1480.90</td>
<td>1480.90</td>
<td>1480.90</td>
<td>1480.90</td>
</tr>
<tr>
<td>300</td>
<td>1497.90</td>
<td>1497.90</td>
<td>1497.90</td>
<td>1497.90</td>
<td>1497.90</td>
<td>1497.90</td>
<td>1497.90</td>
<td>1497.90</td>
<td>1497.90</td>
</tr>
<tr>
<td>400</td>
<td>1515.15</td>
<td>1515.15</td>
<td>1515.15</td>
<td>1515.15</td>
<td>1515.15</td>
<td>1515.15</td>
<td>1515.15</td>
<td>1515.15</td>
<td>1515.15</td>
</tr>
<tr>
<td>600</td>
<td>1550.26</td>
<td>1550.26</td>
<td>1550.26</td>
<td>1550.26</td>
<td>1550.26</td>
<td>1550.26</td>
<td>1550.26</td>
<td>1550.26</td>
<td>1550.26</td>
</tr>
<tr>
<td>700</td>
<td>1568.05</td>
<td>1568.05</td>
<td>1568.05</td>
<td>1568.05</td>
<td>1568.05</td>
<td>1568.05</td>
<td>1568.05</td>
<td>1568.05</td>
<td>1568.05</td>
</tr>
<tr>
<td>800</td>
<td>1585.94</td>
<td>1585.94</td>
<td>1585.94</td>
<td>1585.94</td>
<td>1585.94</td>
<td>1585.94</td>
<td>1585.94</td>
<td>1585.94</td>
<td>1585.94</td>
</tr>
<tr>
<td>900</td>
<td>1603.90</td>
<td>1603.90</td>
<td>1603.90</td>
<td>1603.90</td>
<td>1603.90</td>
<td>1603.90</td>
<td>1603.90</td>
<td>1603.90</td>
<td>1603.90</td>
</tr>
<tr>
<td>1000</td>
<td>1621.90</td>
<td>1621.90</td>
<td>1621.90</td>
<td>1621.90</td>
<td>1621.90</td>
<td>1621.90</td>
<td>1621.90</td>
<td>1621.90</td>
<td>1621.90</td>
</tr>
</tbody>
</table>

IV.2 Salinity = 35 parts/thousand

IV.2.1 Specific volume (cm³.g⁻¹)

<table>
<thead>
<tr>
<th>P</th>
<th>0°C</th>
<th>5°C</th>
<th>10°C</th>
<th>15°C</th>
<th>20°C</th>
<th>25°C</th>
<th>30°C</th>
<th>35°C</th>
<th>40°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.972664</td>
<td>0.973070</td>
<td>0.973755</td>
<td>0.974685</td>
<td>0.975835</td>
<td>0.977189</td>
<td>0.978733</td>
<td>0.980456</td>
<td>0.982350</td>
</tr>
<tr>
<td>100</td>
<td>0.968227</td>
<td>0.968750</td>
<td>0.969527</td>
<td>0.970530</td>
<td>0.971735</td>
<td>0.973130</td>
<td>0.974700</td>
<td>0.976438</td>
<td>0.978336</td>
</tr>
<tr>
<td>200</td>
<td>0.963926</td>
<td>0.964558</td>
<td>0.965423</td>
<td>0.966494</td>
<td>0.967751</td>
<td>0.969183</td>
<td>0.970779</td>
<td>0.972532</td>
<td>0.974435</td>
</tr>
<tr>
<td>300</td>
<td>0.959755</td>
<td>0.960489</td>
<td>0.961436</td>
<td>0.962570</td>
<td>0.963877</td>
<td>0.965345</td>
<td>0.966965</td>
<td>0.968732</td>
<td>0.970640</td>
</tr>
<tr>
<td>400</td>
<td>0.955707</td>
<td>0.956538</td>
<td>0.957560</td>
<td>0.958755</td>
<td>0.960108</td>
<td>0.961610</td>
<td>0.963254</td>
<td>0.965035</td>
<td>0.966947</td>
</tr>
<tr>
<td>500</td>
<td>0.951779</td>
<td>0.952699</td>
<td>0.953793</td>
<td>0.955044</td>
<td>0.956440</td>
<td>0.957974</td>
<td>0.959640</td>
<td>0.961434</td>
<td>0.963350</td>
</tr>
<tr>
<td>600</td>
<td>0.947965</td>
<td>0.948968</td>
<td>0.950128</td>
<td>0.951433</td>
<td>0.952869</td>
<td>0.954434</td>
<td>0.956120</td>
<td>0.957925</td>
<td>0.959846</td>
</tr>
<tr>
<td>700</td>
<td>0.944261</td>
<td>0.945340</td>
<td>0.946563</td>
<td>0.947916</td>
<td>0.949391</td>
<td>0.950984</td>
<td>0.952689</td>
<td>0.954506</td>
<td>0.956430</td>
</tr>
<tr>
<td>800</td>
<td>0.940661</td>
<td>0.941812</td>
<td>0.943093</td>
<td>0.944492</td>
<td>0.946002</td>
<td>0.947620</td>
<td>0.949344</td>
<td>0.951170</td>
<td>0.953097</td>
</tr>
<tr>
<td>900</td>
<td>0.937163</td>
<td>0.938379</td>
<td>0.939713</td>
<td>0.941155</td>
<td>0.942698</td>
<td>0.944341</td>
<td>0.946080</td>
<td>0.947916</td>
<td>0.949845</td>
</tr>
<tr>
<td>1000</td>
<td>0.933761</td>
<td>0.935038</td>
<td>0.936421</td>
<td>0.937902</td>
<td>0.939476</td>
<td>0.941141</td>
<td>0.942896</td>
<td>0.944739</td>
<td>0.946670</td>
</tr>
</tbody>
</table>
IV.2.2 Isothermal compressibility (bar$^{-1}$.106)

<table>
<thead>
<tr>
<th>P</th>
<th>0°C</th>
<th>5°C</th>
<th>10°C</th>
<th>15°C</th>
<th>20°C</th>
<th>25°C</th>
<th>30°C</th>
<th>35°C</th>
<th>40°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>46.34</td>
<td>45.07</td>
<td>44.06</td>
<td>43.25</td>
<td>42.62</td>
<td>42.14</td>
<td>41.80</td>
<td>41.57</td>
<td>41.45</td>
</tr>
<tr>
<td>100</td>
<td>45.11</td>
<td>43.92</td>
<td>42.96</td>
<td>42.19</td>
<td>41.59</td>
<td>41.17</td>
<td>40.59</td>
<td>40.15</td>
<td>39.83</td>
</tr>
<tr>
<td>200</td>
<td>43.94</td>
<td>42.81</td>
<td>41.90</td>
<td>41.17</td>
<td>40.59</td>
<td>40.15</td>
<td>39.83</td>
<td>39.61</td>
<td>39.48</td>
</tr>
<tr>
<td>300</td>
<td>42.81</td>
<td>41.74</td>
<td>40.88</td>
<td>40.19</td>
<td>39.64</td>
<td>39.22</td>
<td>38.90</td>
<td>38.69</td>
<td>38.56</td>
</tr>
<tr>
<td>400</td>
<td>41.72</td>
<td>40.71</td>
<td>39.90</td>
<td>39.24</td>
<td>38.72</td>
<td>38.32</td>
<td>38.02</td>
<td>37.81</td>
<td>37.69</td>
</tr>
<tr>
<td>500</td>
<td>40.66</td>
<td>39.72</td>
<td>38.95</td>
<td>38.33</td>
<td>37.83</td>
<td>37.45</td>
<td>37.16</td>
<td>36.96</td>
<td>36.85</td>
</tr>
<tr>
<td>600</td>
<td>39.65</td>
<td>38.76</td>
<td>38.04</td>
<td>37.45</td>
<td>36.98</td>
<td>36.62</td>
<td>36.34</td>
<td>36.16</td>
<td>36.04</td>
</tr>
<tr>
<td>700</td>
<td>38.67</td>
<td>37.84</td>
<td>37.16</td>
<td>36.61</td>
<td>36.16</td>
<td>35.82</td>
<td>35.56</td>
<td>35.38</td>
<td>35.27</td>
</tr>
<tr>
<td>800</td>
<td>37.72</td>
<td>36.95</td>
<td>36.31</td>
<td>35.79</td>
<td>35.37</td>
<td>35.04</td>
<td>34.80</td>
<td>34.63</td>
<td>34.54</td>
</tr>
<tr>
<td>900</td>
<td>36.81</td>
<td>36.09</td>
<td>35.49</td>
<td>35.00</td>
<td>34.61</td>
<td>34.30</td>
<td>34.07</td>
<td>33.92</td>
<td>33.83</td>
</tr>
<tr>
<td>1000</td>
<td>35.93</td>
<td>35.25</td>
<td>34.70</td>
<td>34.24</td>
<td>33.87</td>
<td>33.58</td>
<td>33.37</td>
<td>33.23</td>
<td>33.15</td>
</tr>
</tbody>
</table>

IV.2.3 Thermal expansibility (degrees$^{-1}$.106)

<table>
<thead>
<tr>
<th>P</th>
<th>0°C</th>
<th>5°C</th>
<th>10°C</th>
<th>15°C</th>
<th>20°C</th>
<th>25°C</th>
<th>30°C</th>
<th>35°C</th>
<th>40°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>51.71</td>
<td>113.46</td>
<td>166.85</td>
<td>214.18</td>
<td>257.13</td>
<td>296.84</td>
<td>334.05</td>
<td>369.20</td>
<td>402.54</td>
</tr>
<tr>
<td>100</td>
<td>79.05</td>
<td>135.47</td>
<td>184.47</td>
<td>228.12</td>
<td>267.92</td>
<td>304.89</td>
<td>339.69</td>
<td>372.68</td>
<td>404.04</td>
</tr>
<tr>
<td>200</td>
<td>104.84</td>
<td>156.30</td>
<td>201.21</td>
<td>241.41</td>
<td>278.26</td>
<td>312.67</td>
<td>345.19</td>
<td>376.13</td>
<td>405.63</td>
</tr>
<tr>
<td>300</td>
<td>129.12</td>
<td>176.00</td>
<td>217.09</td>
<td>254.07</td>
<td>288.15</td>
<td>320.14</td>
<td>350.52</td>
<td>379.53</td>
<td>407.27</td>
</tr>
<tr>
<td>400</td>
<td>151.97</td>
<td>194.59</td>
<td>232.13</td>
<td>266.10</td>
<td>297.58</td>
<td>327.30</td>
<td>355.66</td>
<td>382.85</td>
<td>408.90</td>
</tr>
<tr>
<td>500</td>
<td>173.42</td>
<td>212.12</td>
<td>246.36</td>
<td>277.52</td>
<td>306.57</td>
<td>334.15</td>
<td>360.60</td>
<td>386.05</td>
<td>410.51</td>
</tr>
<tr>
<td>600</td>
<td>193.54</td>
<td>228.61</td>
<td>259.80</td>
<td>288.33</td>
<td>315.10</td>
<td>340.66</td>
<td>365.30</td>
<td>389.11</td>
<td>412.05</td>
</tr>
<tr>
<td>700</td>
<td>212.36</td>
<td>244.11</td>
<td>272.47</td>
<td>298.56</td>
<td>323.19</td>
<td>346.85</td>
<td>369.78</td>
<td>392.01</td>
<td>413.50</td>
</tr>
<tr>
<td>800</td>
<td>229.93</td>
<td>258.64</td>
<td>284.38</td>
<td>308.20</td>
<td>330.82</td>
<td>352.69</td>
<td>373.99</td>
<td>394.74</td>
<td>414.82</td>
</tr>
<tr>
<td>900</td>
<td>246.30</td>
<td>272.22</td>
<td>295.56</td>
<td>317.27</td>
<td>338.02</td>
<td>358.19</td>
<td>377.95</td>
<td>397.26</td>
<td>415.99</td>
</tr>
<tr>
<td>1000</td>
<td>261.51</td>
<td>284.90</td>
<td>306.03</td>
<td>325.78</td>
<td>344.77</td>
<td>363.35</td>
<td>381.63</td>
<td>399.57</td>
<td>417.00</td>
</tr>
</tbody>
</table>
IV.2.4 Specific heat, \(C_p \) (j.g\(^{-1}\).degrees\(^{-1}\))

<table>
<thead>
<tr>
<th>P</th>
<th>0°C</th>
<th>5°C</th>
<th>10°C</th>
<th>15°C</th>
<th>20°C</th>
<th>25°C</th>
<th>30°C</th>
<th>35°C</th>
<th>40°C</th>
</tr>
</thead>
</table>

IV.2.5 Sound speed (m.s\(^{-1}\))

<table>
<thead>
<tr>
<th>P</th>
<th>0°C</th>
<th>5°C</th>
<th>10°C</th>
<th>15°C</th>
<th>20°C</th>
<th>25°C</th>
<th>30°C</th>
<th>35°C</th>
<th>40°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1465.54</td>
<td>1465.54</td>
<td>1465.54</td>
<td>1465.54</td>
<td>1465.54</td>
<td>1465.54</td>
<td>1465.54</td>
<td>1465.54</td>
<td>1465.54</td>
</tr>
<tr>
<td>200</td>
<td>1482.26</td>
<td>1482.26</td>
<td>1482.26</td>
<td>1482.26</td>
<td>1482.26</td>
<td>1482.26</td>
<td>1482.26</td>
<td>1482.26</td>
<td>1482.26</td>
</tr>
<tr>
<td>300</td>
<td>1499.27</td>
<td>1499.27</td>
<td>1499.27</td>
<td>1499.27</td>
<td>1499.27</td>
<td>1499.27</td>
<td>1499.27</td>
<td>1499.27</td>
<td>1499.27</td>
</tr>
<tr>
<td>400</td>
<td>1516.51</td>
<td>1516.51</td>
<td>1516.51</td>
<td>1516.51</td>
<td>1516.51</td>
<td>1516.51</td>
<td>1516.51</td>
<td>1516.51</td>
<td>1516.51</td>
</tr>
<tr>
<td>500</td>
<td>1533.97</td>
<td>1533.97</td>
<td>1533.97</td>
<td>1533.97</td>
<td>1533.97</td>
<td>1533.97</td>
<td>1533.97</td>
<td>1533.97</td>
<td>1533.97</td>
</tr>
<tr>
<td>600</td>
<td>1551.60</td>
<td>1551.60</td>
<td>1551.60</td>
<td>1551.60</td>
<td>1551.60</td>
<td>1551.60</td>
<td>1551.60</td>
<td>1551.60</td>
<td>1551.60</td>
</tr>
<tr>
<td>700</td>
<td>1569.37</td>
<td>1569.37</td>
<td>1569.37</td>
<td>1569.37</td>
<td>1569.37</td>
<td>1569.37</td>
<td>1569.37</td>
<td>1569.37</td>
<td>1569.37</td>
</tr>
<tr>
<td>800</td>
<td>1587.24</td>
<td>1587.24</td>
<td>1587.24</td>
<td>1587.24</td>
<td>1587.24</td>
<td>1587.24</td>
<td>1587.24</td>
<td>1587.24</td>
<td>1587.24</td>
</tr>
<tr>
<td>900</td>
<td>1605.18</td>
<td>1605.18</td>
<td>1605.18</td>
<td>1605.18</td>
<td>1605.18</td>
<td>1605.18</td>
<td>1605.18</td>
<td>1605.18</td>
<td>1605.18</td>
</tr>
<tr>
<td>1000</td>
<td>1623.15</td>
<td>1623.15</td>
<td>1623.15</td>
<td>1623.15</td>
<td>1623.15</td>
<td>1623.15</td>
<td>1623.15</td>
<td>1623.15</td>
<td>1623.15</td>
</tr>
</tbody>
</table>
IV.3.1 Specific Volume (cm3.g$^{-1}$)

<table>
<thead>
<tr>
<th>P</th>
<th>0°C</th>
<th>5°C</th>
<th>10°C</th>
<th>15°C</th>
<th>20°C</th>
<th>25°C</th>
<th>30°C</th>
<th>35°C</th>
<th>40°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.971900</td>
<td>0.972320</td>
<td>0.973015</td>
<td>0.973953</td>
<td>0.975109</td>
<td>0.976647</td>
<td>0.978013</td>
<td>0.979739</td>
<td>0.981637</td>
</tr>
<tr>
<td>100</td>
<td>0.967478</td>
<td>0.968014</td>
<td>0.968800</td>
<td>0.969810</td>
<td>0.971021</td>
<td>0.972418</td>
<td>0.973991</td>
<td>0.975732</td>
<td>0.977634</td>
</tr>
<tr>
<td>200</td>
<td>0.963190</td>
<td>0.963835</td>
<td>0.964708</td>
<td>0.965785</td>
<td>0.967047</td>
<td>0.968482</td>
<td>0.970080</td>
<td>0.971836</td>
<td>0.973742</td>
</tr>
<tr>
<td>300</td>
<td>0.959033</td>
<td>0.959779</td>
<td>0.960732</td>
<td>0.961872</td>
<td>0.963183</td>
<td>0.964654</td>
<td>0.966276</td>
<td>0.968046</td>
<td>0.969956</td>
</tr>
<tr>
<td>400</td>
<td>0.954998</td>
<td>0.955839</td>
<td>0.956868</td>
<td>0.958068</td>
<td>0.959425</td>
<td>0.960929</td>
<td>0.962574</td>
<td>0.964357</td>
<td>0.966272</td>
</tr>
<tr>
<td>500</td>
<td>0.951082</td>
<td>0.952011</td>
<td>0.953111</td>
<td>0.954367</td>
<td>0.955766</td>
<td>0.957302</td>
<td>0.958969</td>
<td>0.960764</td>
<td>0.962684</td>
</tr>
<tr>
<td>600</td>
<td>0.947280</td>
<td>0.948291</td>
<td>0.949457</td>
<td>0.950765</td>
<td>0.952205</td>
<td>0.953770</td>
<td>0.955457</td>
<td>0.957264</td>
<td>0.959187</td>
</tr>
<tr>
<td>700</td>
<td>0.943587</td>
<td>0.944674</td>
<td>0.945901</td>
<td>0.947258</td>
<td>0.948735</td>
<td>0.950328</td>
<td>0.952035</td>
<td>0.953852</td>
<td>0.955779</td>
</tr>
<tr>
<td>800</td>
<td>0.939998</td>
<td>0.941156</td>
<td>0.942440</td>
<td>0.943842</td>
<td>0.945354</td>
<td>0.946973</td>
<td>0.948697</td>
<td>0.950525</td>
<td>0.952454</td>
</tr>
<tr>
<td>900</td>
<td>0.936509</td>
<td>0.937732</td>
<td>0.939069</td>
<td>0.940513</td>
<td>0.942059</td>
<td>0.943702</td>
<td>0.945441</td>
<td>0.947278</td>
<td>0.949209</td>
</tr>
<tr>
<td>1000</td>
<td>0.933117</td>
<td>0.934400</td>
<td>0.935786</td>
<td>0.937269</td>
<td>0.938844</td>
<td>0.940509</td>
<td>0.942264</td>
<td>0.944108</td>
<td>0.946040</td>
</tr>
</tbody>
</table>

IV.3.2 Isothermal Compressibility (bar$^{-1}$.106)

<table>
<thead>
<tr>
<th>P</th>
<th>0°C</th>
<th>5°C</th>
<th>10°C</th>
<th>15°C</th>
<th>20°C</th>
<th>25°C</th>
<th>30°C</th>
<th>35°C</th>
<th>40°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>46.22</td>
<td>44.96</td>
<td>43.96</td>
<td>43.16</td>
<td>42.54</td>
<td>42.06</td>
<td>41.72</td>
<td>41.49</td>
<td>41.37</td>
</tr>
<tr>
<td>100</td>
<td>45.00</td>
<td>43.82</td>
<td>42.86</td>
<td>42.10</td>
<td>41.50</td>
<td>41.05</td>
<td>40.72</td>
<td>40.49</td>
<td>40.37</td>
</tr>
<tr>
<td>200</td>
<td>43.83</td>
<td>42.71</td>
<td>41.81</td>
<td>41.08</td>
<td>40.51</td>
<td>40.08</td>
<td>39.75</td>
<td>39.54</td>
<td>39.41</td>
</tr>
<tr>
<td>300</td>
<td>42.70</td>
<td>41.65</td>
<td>40.79</td>
<td>40.11</td>
<td>39.56</td>
<td>39.14</td>
<td>38.83</td>
<td>38.62</td>
<td>38.50</td>
</tr>
<tr>
<td>400</td>
<td>41.61</td>
<td>40.62</td>
<td>39.81</td>
<td>39.16</td>
<td>38.65</td>
<td>38.25</td>
<td>37.95</td>
<td>37.74</td>
<td>37.62</td>
</tr>
<tr>
<td>500</td>
<td>40.57</td>
<td>39.63</td>
<td>38.87</td>
<td>38.25</td>
<td>37.76</td>
<td>37.38</td>
<td>37.10</td>
<td>36.90</td>
<td>36.79</td>
</tr>
<tr>
<td>600</td>
<td>39.56</td>
<td>38.68</td>
<td>37.96</td>
<td>37.38</td>
<td>36.91</td>
<td>36.55</td>
<td>36.28</td>
<td>36.10</td>
<td>35.99</td>
</tr>
<tr>
<td>700</td>
<td>38.58</td>
<td>37.76</td>
<td>37.08</td>
<td>36.54</td>
<td>36.10</td>
<td>35.75</td>
<td>35.50</td>
<td>35.32</td>
<td>35.22</td>
</tr>
<tr>
<td>800</td>
<td>37.64</td>
<td>36.87</td>
<td>36.24</td>
<td>35.72</td>
<td>35.31</td>
<td>34.98</td>
<td>34.74</td>
<td>34.58</td>
<td>34.48</td>
</tr>
<tr>
<td>900</td>
<td>36.73</td>
<td>36.01</td>
<td>35.42</td>
<td>34.94</td>
<td>34.55</td>
<td>34.24</td>
<td>34.02</td>
<td>33.86</td>
<td>33.78</td>
</tr>
<tr>
<td>1000</td>
<td>35.85</td>
<td>35.19</td>
<td>34.63</td>
<td>34.18</td>
<td>33.81</td>
<td>33.53</td>
<td>33.32</td>
<td>33.18</td>
<td>33.10</td>
</tr>
</tbody>
</table>
IV.3.3 Thermal expansibility (degrees·10^{-6})

<table>
<thead>
<tr>
<th>P</th>
<th>0°C</th>
<th>5°C</th>
<th>10°C</th>
<th>15°C</th>
<th>20°C</th>
<th>25°C</th>
<th>30°C</th>
<th>35°C</th>
<th>40°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>54.89</td>
<td>115.96</td>
<td>168.80</td>
<td>215.71</td>
<td>258.35</td>
<td>297.85</td>
<td>334.94</td>
<td>370.06</td>
<td>403.43</td>
</tr>
<tr>
<td>100</td>
<td>81.98</td>
<td>137.78</td>
<td>186.27</td>
<td>229.53</td>
<td>269.04</td>
<td>305.83</td>
<td>340.53</td>
<td>373.49</td>
<td>404.90</td>
</tr>
<tr>
<td>200</td>
<td>107.54</td>
<td>158.43</td>
<td>202.86</td>
<td>242.70</td>
<td>279.29</td>
<td>313.53</td>
<td>345.97</td>
<td>376.90</td>
<td>406.45</td>
</tr>
<tr>
<td>300</td>
<td>131.60</td>
<td>177.95</td>
<td>218.61</td>
<td>255.25</td>
<td>289.09</td>
<td>320.93</td>
<td>351.24</td>
<td>380.25</td>
<td>408.05</td>
</tr>
<tr>
<td>400</td>
<td>154.24</td>
<td>196.38</td>
<td>233.52</td>
<td>267.18</td>
<td>298.44</td>
<td>328.02</td>
<td>356.32</td>
<td>383.52</td>
<td>409.64</td>
</tr>
<tr>
<td>500</td>
<td>175.51</td>
<td>213.75</td>
<td>247.63</td>
<td>278.50</td>
<td>307.35</td>
<td>334.80</td>
<td>361.20</td>
<td>386.67</td>
<td>411.21</td>
</tr>
<tr>
<td>600</td>
<td>195.45</td>
<td>230.11</td>
<td>260.95</td>
<td>289.22</td>
<td>315.80</td>
<td>341.25</td>
<td>365.85</td>
<td>389.69</td>
<td>412.71</td>
</tr>
<tr>
<td>700</td>
<td>214.11</td>
<td>245.47</td>
<td>273.51</td>
<td>299.35</td>
<td>323.81</td>
<td>347.37</td>
<td>370.27</td>
<td>392.54</td>
<td>414.11</td>
</tr>
<tr>
<td>800</td>
<td>231.54</td>
<td>259.88</td>
<td>285.32</td>
<td>308.91</td>
<td>331.38</td>
<td>353.16</td>
<td>374.44</td>
<td>395.22</td>
<td>415.39</td>
</tr>
<tr>
<td>900</td>
<td>247.78</td>
<td>273.36</td>
<td>296.41</td>
<td>317.91</td>
<td>338.51</td>
<td>358.60</td>
<td>378.34</td>
<td>397.69</td>
<td>416.52</td>
</tr>
<tr>
<td>1000</td>
<td>262.87</td>
<td>285.94</td>
<td>306.80</td>
<td>326.34</td>
<td>345.20</td>
<td>363.70</td>
<td>381.97</td>
<td>399.95</td>
<td>417.48</td>
</tr>
</tbody>
</table>

IV.3.4 Specific heat, C_p (j·g^{-1}·degrees^{-1})

<table>
<thead>
<tr>
<th>P</th>
<th>0°C</th>
<th>5°C</th>
<th>10°C</th>
<th>15°C</th>
<th>20°C</th>
<th>25°C</th>
<th>30°C</th>
<th>35°C</th>
<th>40°C</th>
</tr>
</thead>
</table>
IV.3.5 Sound speed (m.s\(^{-1}\))

<table>
<thead>
<tr>
<th>P (bar)</th>
<th>0°C</th>
<th>5°C</th>
<th>10°C</th>
<th>15°C</th>
<th>20°C</th>
<th>25°C</th>
<th>30°C</th>
<th>35°C</th>
<th>40°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1450.48</td>
<td>1450.48</td>
<td>1450.48</td>
<td>1450.48</td>
<td>1450.48</td>
<td>1450.48</td>
<td>1450.48</td>
<td>1450.48</td>
<td>1450.48</td>
</tr>
<tr>
<td>100</td>
<td>1466.90</td>
<td>1466.90</td>
<td>1466.90</td>
<td>1466.90</td>
<td>1466.90</td>
<td>1466.90</td>
<td>1466.90</td>
<td>1466.90</td>
<td>1466.90</td>
</tr>
<tr>
<td>200</td>
<td>1483.63</td>
<td>1483.63</td>
<td>1483.63</td>
<td>1483.63</td>
<td>1483.63</td>
<td>1483.63</td>
<td>1483.63</td>
<td>1483.63</td>
<td>1483.63</td>
</tr>
<tr>
<td>300</td>
<td>1500.63</td>
<td>1500.63</td>
<td>1500.63</td>
<td>1500.63</td>
<td>1500.63</td>
<td>1500.63</td>
<td>1500.63</td>
<td>1500.63</td>
<td>1500.63</td>
</tr>
<tr>
<td>400</td>
<td>1517.87</td>
<td>1517.87</td>
<td>1517.87</td>
<td>1517.87</td>
<td>1517.87</td>
<td>1517.87</td>
<td>1517.87</td>
<td>1517.87</td>
<td>1517.87</td>
</tr>
<tr>
<td>500</td>
<td>1535.32</td>
<td>1535.32</td>
<td>1535.32</td>
<td>1535.32</td>
<td>1535.32</td>
<td>1535.32</td>
<td>1535.32</td>
<td>1535.32</td>
<td>1535.32</td>
</tr>
<tr>
<td>600</td>
<td>1552.93</td>
<td>1552.93</td>
<td>1552.93</td>
<td>1552.93</td>
<td>1552.93</td>
<td>1552.93</td>
<td>1552.93</td>
<td>1552.93</td>
<td>1552.93</td>
</tr>
<tr>
<td>700</td>
<td>1570.68</td>
<td>1570.68</td>
<td>1570.68</td>
<td>1570.68</td>
<td>1570.68</td>
<td>1570.68</td>
<td>1570.68</td>
<td>1570.68</td>
<td>1570.68</td>
</tr>
<tr>
<td>800</td>
<td>1588.53</td>
<td>1588.53</td>
<td>1588.53</td>
<td>1588.53</td>
<td>1588.53</td>
<td>1588.53</td>
<td>1588.53</td>
<td>1588.53</td>
<td>1588.53</td>
</tr>
<tr>
<td>900</td>
<td>1606.45</td>
<td>1606.45</td>
<td>1606.45</td>
<td>1606.45</td>
<td>1606.45</td>
<td>1606.45</td>
<td>1606.45</td>
<td>1606.45</td>
<td>1606.45</td>
</tr>
<tr>
<td>1000</td>
<td>1624.40</td>
<td>1624.40</td>
<td>1624.40</td>
<td>1624.40</td>
<td>1624.40</td>
<td>1624.40</td>
<td>1624.40</td>
<td>1624.40</td>
<td>1624.40</td>
</tr>
</tbody>
</table>
APPENDIX \ LISTING OF A FORTRAN IV PROGRAMME TO PROCESS XBT DATA

V.1 Main programme

C XBT.PROFILE.FORT. A PROGRAMME TO CARRY OUT PRE-PROCESSING OF
C XBT DATA.
C
C THE STANDARD OUTPUT FROM THIS PROGRAMME IS A TABLE OF
C SIGNIFICANT OCEANOGRAPHIC PARAMETERS.
C PLOTTING OPTIONS ARE SELECTED FROM STANDARD INPUT DEVICE
C XBT DATA IS ASSUMED AVAILABLE FROM LOGICAL UNIT 2
C IF LNGPLT IS SELECTED A DATASET IS ASSUMED AVAILABLE ON LOGICAL UNIT 3
C FOR WRITING DATA IN PREPARATION FOR PLOTTING.
REAL*8 KO(110),A(110),B(110),DER(110),W(330),X8(110),Y8(110)
REAL*4 CRUISE(9),SDEP(2),BPRESS(2),SV(2),UPI(2),LAT,
1 LONG,VP(110),TITLE1(5),TITLE2(5)
REAL*4 2(110),T(110),S(110),DHA(110),DELTA(110),RHO(110),KP(110),
1 SIGMAT(110),ALPHA(110),BETA(110),V(110),P(110),G(110),VO(110),
2 CP(110)
DATA TITLE1/'TEMP','ERAT','URE ','- DE','G. C'/
DATA TITLE2/'SOUN','D SP','EED ','M/S ','/,
1 'SV(1),SV(2)/0.,1480./,UPI(1),UPI(2)/10.,
2 20./
C ************
C CHOOSE PLOT OPTIONS
C ************
C
READ(5,*) IPLT,ISCALE,ILPLT,ITYP
WRITE(6,350) IPLT,ISCALE,ILPLT,ITYP
C
C IPLT = 1 PLOT SQUARE PLOT
C ISCALE = 1 FOR SHALLOW SQUARE PLOT
C = 2 FOR DEEP SQUARE PLOT
C ILPLT = 1 WRITES OUTPUT TO DISC READY FOR LONG PLOT
C ITYP = 1 TEMPERATURE LONG PLOT
C = 2 VELOCITY LONG PLOT
C = 3 BOTH LONG PLOTS
C READ HOW MANY XBTS IN BATCH
READ(2,10) MANY
10 FORMAT(I10)
C LOOP ON ENTIRE PROGRAM 'MANY' TIMES
DO 90 MM=1,MANY
READ(2,190)(CRUISE(I),I=1,9)
READ(2,200)DY,XMTH,YR,TIME,LONG,LAT
READ(2,240)SDEP(1),SDEP(2),WETT,DRYT,WDIR,WSP,BPRESS(1),
Z
BPRESS(2)
READ(2,250)IJ,L
IF(ILPLT .EQ.1) WRITE(3,250)IJ,L
C EVALUATE SURFACE VALUE OF GRAVITATIONAL ACCELERATION
RLAT = 0.0174532925*LAT
GO = 9.78049*(1.0 + 0.0052884*(SIN(RLAT))**2 - 0.0000059*
1 (SIN(2.0*RLAT))**2)
C Z STORED POSITIVE DOWNWARDS
C READ IN TEMPERATURE PROFILE.
 READ(2,320)(Z(I),T(I),I=1,L)
C COMPUTE SALINITY AND SIGMA-T PROFILES.
C COMMENCE LOOP ON I.
 DO 20 I=1,L
C EVALUATE LOCAL VALUE OF GRAVITATIONAL ACCELERATION.
 G(I) = GO*(1.0 + 2.26E-07*Z(I))
C COMPUTE SALINITY (PARTS/THOUSAND).
 S(I) = SAL(LAT,LONG,T(I))
 CALL DSWI(S(I),T(I),VO(I),RHO(I),SIGMAT(I))
 CALL DSWIA(S(I),T(I),KO(I),A(I),B(I))
C AS AN INITIAL APPROXIMATION, SET SPECIFIC VOLUME UNDER PRESSURE EQUAL
C TO VALUE AT ATMOSPHERIC PRESSURE.
 VP(I) = VO(I)
C CONVERT Z AND RHO TO DOUBLE PRECISION
 Y8(I) = DBLE(Z(I))
 X8(I) = DBLE(RHO(I))
C END OF LOOP ON I.
20 CONTINUE
C COMMENCE ITERATION TO CORRECT FOR PRESSURE BY FITTING CUBIC SPLINE
C TO CURRENT DENSITY ESTIMATES.
 P(1) = 0.0
30 CONTINUE
 CALL TB04AD(L,Y8,X8,DER,W)
 IF (W(1).EQ.0) WRITE(6,40)
40 FORMAT(' UNSUCCESSFUL RETURN FROM TB04A. ')
 DV = 0.0
 DO 50 J=2,L
C LOOP ON DATA POINTS TO COMPUTE PRESSURES AND SUBSEQUENTLY DENSITY
C CORRECTIONS (INDEX J).
 P(J) = 1.0E-02*G(J)*QG02AD(0.0,Y8(J),L,Y8,X8,DER)
 CALL DSW2(P(J),VO(J),KO(J),A(J),B(J),KP(J),VN,BETA(J))
 IF (ABS(VN-VP(J)).GT.DV) DV = ABS(VN-VP(J))
 VP(J) = VN
 RHO(J) = 1.0/VP(J)
 X8(I) = DBLE(RHO(J))
C END OF LOOP ON J.
50 CONTINUE
C CHECK WHETHER FURTHER ITERATIONS ARE REQUIRED.
 IF (DV.GT.1.0E-08) GO TO 30
C EVALUATE SPECIFIC VOLUME ANOMALY.
C SAL AT 35PPT TEMP AT 0DEG
 CALL DSW1(35.,0.,VOF,RHOF,STF)
 CALL DSW1A(35.,0.,KOF,AF,BF)
 DO 60 I=1,L
 CALL DSW2(P(I),VOF,KOF,AF,BF,KPF,V2,BETAF)
C COMPUTE SPECIFIC VOLUME ANOMALY.
C END OF LOOP ON I.
 DELTA(I) =VP(I)- V2
C COMPUTE SOUND SPEED FROM TEMP,SAL, AND PRESSURE.
 CALL SSSW1(P(I),S(I),T(I),V(I))
C COMPUTE EXPANSIBILITY AND SPECIFIC HEAT.
 CALL PSWI(S(I),T(I),P(I),VO(I),VP(I),KO(I),A(I),B(I),ALPHA(I),
 CP(I))
C CONVERT P AND DELTA TO DOUBLE PRECISION
 Y8(I) = DBLE(P(I))
X8(1) = DBLE(DELTA(1))

CONTINUE

C FIT A CUBIC SPLINE TO SPECIFIC VOLUME ANOMALY VS. PRESSURE.
CALL TB04AD(L,X8,DELTA,DER,W)
IF (W(I).EQ.1.0) WRITE(6,40)

C EVALUATE DYNAMIC HEIGHT ANOMALY, REFERRED TO THE SURFACE.
DO 70 I=1,L
 DHA(I) = 10.*QG02AD(0.0,Y8(I),L,Y8,X8,DER)
70 CONTINUE

C OUTPUT PROFILE.
WRITE(6,220)(CRUISE(I),I=1,9)
WRITE(6,160) IJ
WRITE(6,170)
WRITE(6,180)
WRITE(6,210) DY,XMTH,YR,TIME,LONG,LAT
WRITE(6,170)
WRITE(6,230)
WRITE(6,260) SDEP(1),SDEP(2),WETT,DRYT,WDIR,WSP,BPRESS(1),BPRESS(2)
WRITE(6,170)
WRITE(6,300)
WRITE(6,310)
WRITE(6,270)
WRITE(6,170)
DO 80 I=1,L
 ALPHA(I) = ALPHA(I) * 1E06
 BETA(I) = BETA(I) * 1E06
 WRITE(6,330) Z(I),T(I),S(I),DHA(I),DELTA(I),RHO(I),SIGMAT(I),ALPHA(I),BETA(I),V(I),P(I),CP(I)
80 CONTINUE

IF (ILPLT.EQ.1)
 WRITE(3,340) Z(I),T(I),S(I),DHA(I),DELTA(I),RHO(I),SIGMAT(I),ALPHA(I),BETA(I),V(I),P(I),CP(I)
 IF (ITYP.EQ.1) CALL PLOT1(Z,T,S,SIGMAT,V,L,I,J,ISCALE)
 IF (ILPLT.EQ.1) GO TO 150
 IF (ITYP.EQ.2) GO TO 120
 IF (ITYP.EQ.3 .AND. IN.EQ.1) GO TO 110
 IF (ITYP.EQ.3 .AND. IN.EQ.2) GO TO 120
 IF (ITYP.EQ.1) CALL LNGPLT(ZV,UPV,TITLE1,T,Z,L,
 IF (ITYP.EQ.2) GO TO 110
 IF (ITYP.EQ.2) GO TO 120
 IF (ITYP.EQ.3 .AND. IN.EQ.1) GO TO 110
 IF (ITYP.EQ.3 .AND. IN.EQ.2) GO TO 120
 IF (IK.EQ.1) CALL LNGPLT(ZV,UPV,TITLE1,T,Z,L,
 IF (IK.EQ.1) CALL ADDPLT(T,Z,L,I,J,IK)
 GO TO 130
 IF (IK.EQ.1) CALL LNGPLT(ZV,UPV,TITLE2,V,Z,L,
1

IJ,IK,MANY)
130 CONTINUE
140 CONTINUE
CALL ENDGR
150 STOP
160 FORMAT(47X,'XBT NUMBER',I3)
170 FORMAT(1H0)
180 FORMAT(32X,'DATE',7X,'TIME',6X,'LONGITUDE',8X,'LATITUDE')
190 FORMAT(9A4)
200 FORMAT(A2,1X,A2,1X,A2,3X,A4,4X,F7.2,11X,F6.2)
210 FORMAT(30X,2(A2,'/'),A2,5X,A4,5X,F6.2,' DEG.E',6X,F5.2,' DEG.S')
220 FORMAT(1H1,37X,9A4)
230 FORMAT(17X,'SONIC DEPTH',7X,'AIR TEMPERATURE(DEG.C)',11X,'WIND',
Z12X,'ATMOS.PRESS')
240 FORMAT(1X,A3,A2,10X,A4,5X,A4,6X,A3,A3,9X,A4,A2)
250 FORMAT(13,15)
260 FORMAT(13,15)
270 FORMAT('--
--')
280 FORMAT(62X,'/1000',6X,'DEG.C',5X,'BAR',24X,'J/G/DEG')
290 FORMAT(F6.0,F5.2,F5.2,F6.3,F8.6,F8.6,F7.3,
Z5X,F5.1,F5.2,F5.2,F5.2,F5.2,F5.2,F6.4)
300 FORMAT(F6.0,F5.2,F5.2,F6.3,F8.6,F8.6,F7.3,
Z5X,F5.1,F5.2,F5.2,F7.1,F6.4)
310 FORMAT(' IPLT = ',I2,' ISCALE = ',I2,' ILPLT = ',I2,' ITYP = ',
Z12)
320 FORMAT(F6.0,F5.2,44X,F7.2)
END

V.2 Subroutine DSW1

SUBROUTINE DSW1(S,T,V0,RO,SIGMAT)
C A SUBROUTINE TO DETERMINE THE SPECIFIC VOLUME OF SEAWATER AT
C ATMOSPHERIC PRESSURE AND SPECIFIED SALINITY AND TEMPERATURE USING THE
C SOUND-SPEED DERIVED EQUATION OF STATE OF CHEN AND MILLERO (1).
C INPUT PARAMETERS:
C S REAL*4. SALINITY (PARTS/THOUSAND).
C T REAL*4. TEMPERATURE (DEGREES CENTIGRADE).
C V0 REAL*4. SPECIFIC VOLUME OF SEAWATER (CM**3/G) AT ATMOSPHERIC
C PRESSURE AND SPECIFIED SALINITY AND TEMPERATURE.
C RO REAL*4. CORRESPONDING DENSITY (G/CM**3).
C SIGMAT REAL*4. CORRESPONDING VALUE OF SIGMA-T ((G/CM**3)*10**-3).
C REFERENCE:

C REAL*8 A0,A1,A2,A3,A4,A5,A6
C REAL*8 B0,B1,B2,B3,B4
C REAL*8 C0,C1,C2,C3
C REAL*8 D0,D1,D2,D3
C REAL*8 CT,D0,D1,D2
C DATA A0,A1,A2,A3,A4,A5,A6/0.9998395,6.7914D-05,-9.0894D-06, C 1.0171D-07,-1.2846D-09,1.1592D-11,-5.0125D-14/
C DATA B0,B1,B2,B3,B4/8.25917D-04,-4.4490D-06,1.0485D-07, C -1.2580D-09,3.315D-12/
C DATA C0,C1,C2,C3/-6.33761D-06,2.8441D-07,-1.6871D-08,-3.1203D-11/
C DATA D0,D1,D2,D3/5.4705D-07,1.0/RO = AT + S*(BT + CT*SQRT(S) + DT*S)

C DETERMINE THE CORRESPONDING VALUES OF SIGMA-T AND SPECIFIC VOLUME.
C SIGMAT = 1000.0*(RO - 1.0)
C VO = 1.0/RO
C RETURN
C END

V.3 Subroutine DSW1A

SUBROUTINE DSW1A(S,T,K0,A,B)
C A SUBROUTINE TO DETERMINE THE PRESSURE CORRECTION COEFFICIENTS FOR THE C SPECIFIC VOLUME OF SEAWATER AT SPECIFIED SALINITY AND TEMPERATURE C USING THE SOUND-SPEED DERIVED EQUATION OF STATE OF CHEN AND MILLERO C (1).
C INPUT PARAMETERS:
C S REAL*4. SALINITY (PARTS/THOUSAND).
C T REAL*4. TEMPERATURE (DEGREES CENTIGRADE).
C OUTPUT PARAMETERS:
C KG,A,B REAL*8. PRESSURE CORRECTION COEFFICIENTS (SEE REFERENCE 1).
C REFERENCES:
C REAL*8 KWO,KW1,KW2,KW3,KW4,KW5
C REAL*8 AWO,AW1,AW2,AW3,AW4
C REAL*8 BW0,BW1,BW2,BW3,BW4
C REAL*8 AS0,AS1,AS2,AS3
C REAL*8 BS0,BS1
C REAL*8 CS0,CS1,CS2
C REAL*8 DS
C REAL*8 ES0,ES1,ES2
C REAL*8 K0,A,B,KW,AW,BW,AS,BS,CS,ES
DATA KW0,KW1,KW2,KW3,KW4,KW5/19652.17,148.183,-2.29995,1.281D-02,1.956D-04,4.322D-12/
DATA AW0,AW1,AW2,AW3,AW4/3.26138,5.223D-04,1.324D-04,-7.655D-07,8.584D-10/
DATA BW0,BW1,BW2,BW3,BW4/7.2061D-05,-5.8948D-06,8.699D-08,-1.010D-09,4.322D-12/
DATA AS0,AS1,AS2,AS3/-53.751,-0.4607,7.030D-03,-5.107D-05/
DATA BS0,BS1/-0.2322,-4.838D-03/
DATA CS0,CS1,CS2/-4.692D-03,-8.387D-05,4.68D-07/
DATA DS/-1.332D-04/
DATA ES0,ES1,ES2/-1.412D-06,9.006D-08,-1.551D-09/

C EVALUATE THE PRESSURE CORRECTION COEFFICIENTS.
AS = AS0 + T*(AS1 + T*(AS2 + T*AS3))
BS = BS0 + T*BS1
CS = CS0 + T*(CS1 + T*CS2)
ES = ES0 + T*(ES1 + T*ES2)
KW = KW0 + T*(KW1 + T*(KW2 + T*(KW3 + T*(KW4 + T*KW5))))
AW = AW0 + T*(AW1 + T*(AW2 + T*(AW3 + T*AW4)))
BW = BW0 + T*(BW1 + T*(BW2 + T*(BW3 + T*BW4)))
S32 = S*SQRT(S)
KO = KW + AS*S + BS*S32
A = AW + CS*S + DS*S32
B = BW + ES*S
RETURN
END

V.4 Subroutine DSW2

SUBROUTINE DSW2(P,V0,KO,A,B,KP,VP,BETA)
C A SUBROUTINE TO DETERMINE THE SPECIFIC VOLUME AND ISOThERMAL
C COMPRESSIBILITY OF SEAWATER AT A SPECIFIED PRESSURE, TEMPERATURE AND
C SALINITY. IT IS ASSUMED THAT PREVIOUS CALLS TO DSW1 AND DSWIA HAVE
C BEEN MADE, AND THAT THE SPECIFIC VOLUME AT ONE ATMOSPHERE PRESSURE,
C AND THE PRESSURE CORRECTION COEFFICIENTS HAVE BEEN COMPUTED.
C INPUT PARAMETERS:
C P REAL*4. PRESSURE (BARS).
C V0 REAL*4. SPECIFIC VOLUME OF SEAWATER (CM**3/G) AT ONE ATMOSPHERE
C PRESSURE.
C KO,A,B REAL*8. PRESSURE CORRECTION COEFFICIENTS (SEE REFERENCE 1).
C OUTPUT PARAMETERS:
C KP REAL*4. SECANT BULK MODULUS (BARS) AT SPECIFIED TEMPERATURE,
C PRESSURE AND SALINITY.
C VP REAL*4. SPECIFIC VOLUME OF SEAWATER (CM**3/G) CORRECTED FOR THE
C EFFECT OF PRESSURE.
C BETA REAL*4. ISOTHERMAL COMPRESSIBILITY OF SEAWATER (BAR**-1).
C REFERENCE:
C (1) CHEN, C.-T., AND MILLERO, F.J. 1978. THE EQUATION OF STATE OF
C SEAWATER DETERMINED FROM SOUND SPEEDS. J. MAR. RES., VOL. 36,
C 657-691.
C
KP REAL*4
KO,A,B REAL*8

C COMPUTE THE SECANT BULK MODULUS.
\[KP = K_0 + P^2(A + P^2B) \]

C COMPUTE THE SPECIFIC VOLUME OF SEAWATER AT ELEVATED PRESSURE.
\[VP = V_0^2(1.0 - P/KP) \]

C COMPUTE THE ISOTHERMAL COMPRESSIBILITY OF SEAWATER.
\[\beta = V_0^2(K_0 - B^2P^2)/(VP^2KP^2KP) \]

RETURN

END

V.5 Subroutine PSWI

SUBROUTINE PSWI(S,T,P,VO,VP,K0,A,B,ALPHA,CP)
C A SUBROUTINE TO COMPUTE THE EXPANSIBILITY AND CONSTANT-PRESSURE
C SPECIFIC HEAT OF SEAWATER AT SPECIFIED TEMPERATURE, PRESSURE AND
C SALINITY. IT IS ASSUMED THAT PRIOR CALLS HAVE BEEN MADE TO SUBRoutines
C DSW1, DSW1A AND DSW2 TO COMPUTE THE SPECIFIC VOLUME OF SEAWATER AT
C ATMOSPHERIC PRESSURE AND AT PRESSURE P, AND THE PRESSURE CORRECTION
C COEFFICIENTS K0, A AND B.
C
INPUT PARAMETERS:
C S REAL*4. SALINITY (PARTS/THOUSAND).
C T REAL*4. TEMPERATURE (DEGREES CENTIGRADE).
C P REAL*4. PRESSURE (BARS).
C VO REAL*4. SPECIFIC VOLUME OF SEAWATER (CM^3/G) AT SPECIFIED
C SALINITY AND TEMPERATURE AND ATMOSPHERIC PRESSURE.
C VP REAL*4. SPECIFIC VOLUME OF SEAWATER (CM^3/G) AT SPECIFIED
C TEMPERATURE, PRESSURE AND SALINITY.
C K0,A,B REAL*8. PRESSURE CORRECTION COEFFICIENTS (SEE REFERENCE 1).
C
OUTPUT PARAMETERS:
C ALPHA REAL*4. EXPANSIBILITY OF SEAWATER (DEGREES CENTIGRADE*^-1) AT
C SPECIFIED SALINITY, TEMPERATURE AND PRESSURE.
C CP REAL*4. CONSTANT PRESSURE SPECIFIC HEAT OF SEAWATER
C (J.G^*-1.DEG^*-1) AT SPECIFIED SALINITY, TEMPERATURE AND
C PRESSURE.
C REFERENCE:
C (1) CHEN, C.-T., AND MILLERO, F.J. 1978. THE EQUATION OF STATE OF
C SEAWATER DETERMINED FROM SOUND SPEEDS. J. MAR. RES., VOL. 36,
C 657-691.
C
REAL*8 DRDT,DVDT,DKDT,DADT,D2DT,X,D2RDT2,D2VDT2,D2KDT2,D2ADT2,
1 D2BDT2,CPWO,ACP,BCP,CP0,Q,110,111,120,121,122,123,130,131,132,
2 133,134,135,A1,B1,B2,B3,C1,C2,C3,C4,C5,12,DSQ,ABP2,KB2AS,K0,A,B,
3 TBPA,DSQ,QK0,KSQ,QSK,KOD,AD,BD,PD,AERR,RERR,ERROR
REAL*8 DDER
COMMON/PSWIA/KOD,AD,BD,DVDT,D2VDT2,DKDT,D2KDT2,DADT,D2ADT2,
1 DBDT,D2BDT2
EXTERNAL DDER
KOD = K0
AD = A
BD = B
PD = P
AERR = 1.0D-06
RERR = 1.0D-06
C EVALUATE FIRST-ORDER PARTIAL DERIVATIVES.
\[DRDT = 6.7914D-05 + T^2(-1.81788D-05 + T^2(3.0513D-07 + \]
\[
\begin{align*}
1 & \quad T^2 \cdot T^2(5.796\cdot11 - T^2\cdot3.0075D\cdot13)) + \\
2 & \quad S^2 \cdot 4.440D\cdot06 + T^2(2.097D\cdot07 + T^2(-3.774D\cdot09 + T^2\cdot1.326D\cdot11)) + \\
3 & \quad \text{SQRT(S)}(2.8441D\cdot07 + T^2(-3.3742D\cdot08 + T^2\cdot8.49774D\cdot10)) + \\
4 & \quad S^2\cdot(1.97975D\cdot08 + T^2(3.3282D\cdot09 - T^2\cdot9.3609D\cdot11)) \quad \text{DVT} = \quad -V^2V^2\text{DRTD} \\
& \quad \text{DKDT} = 1.48183D\cdot02 + T^2(-4.5999D\cdot00 + T^2\cdot3.843D\cdot02) + \\
2 & \quad T^2(1.406D\cdot02 - T^2\cdot1.5321D\cdot04) - 4.838D\cdot03\text{SQRT(S)} \\
& \quad \text{DADT} = 5.223D\cdot04 + T^2(2.648D\cdot04 + T^2(-2.986D\cdot06 + T^2\cdot3.4336D\cdot09)) + \\
1 & \quad T^2(-8.887D\cdot05 + T^2\cdot9.36D\cdot07) \\
& \quad \text{DBDT} = -5.8948D\cdot06 + T^2(1.7398D\cdot07 + T^2\cdot(-3.03D\cdot09 + \\
1 & \quad T^2\cdot1.7288D\cdot11) + S^2(9.006D\cdot08 - T^2\cdot3.102D\cdot09) \\
\text{C COMPUTE EXPANSIBILITY.} \\
& \quad X = K^2 + P^2(A + P^2B) \\
& \quad \text{ALPHA} = \text{DVT}/V^2 + P^2\text{DVT}/(V^2X) + P^2V^2(\text{DKDT} + P^2(\text{DADT} + \\
1 & \quad P^2\text{DBDT}))/\text{(V^2X)} \\
\text{C EVALUATE SECOND-ORDER PARTIAL DERIVATIVES.} \\
& \quad D2RDT^2 = -1.81788D\cdot05 + T^2(-6.1026D\cdot07 + T^2\cdot(1.54152D\cdot08 + \\
1 & \quad T^2\cdot2.3184D\cdot10 - T^2\cdot1.50375D\cdot12)) + S^2(2.097D\cdot07 + T^2\cdot(-7.548D\cdot09 + \\
1 & \quad T^2\cdot1.978D\cdot10) + S^2\cdot(2.8441D\cdot07 - T^2(-7.3742D\cdot08 + T^2\cdot1.699548D\cdot09) + \\
3 & \quad S^2\cdot(-3.3282D\cdot09 - T^2\cdot1.87218D\cdot10)) \\
& \quad D2VDT^2 = \text{V}^2\cdot(-D2RDT^2 + 2.0\cdotV^2\cdot\text{DRT}\cdot\text{DRT} \\
& \quad D2KDT^2 = -4.5999 + T^2(7.686D\cdot02 + T^2\cdot(-5.898768D\cdot04 + \\
1 & \quad T^2\cdot2.07106D\cdot06)) + S^2(1.406D\cdot02 - T^2\cdot3.0642D\cdot04) \\
& \quad D2ADT^2 = 2.648D\cdot04 + T^2(-4.593D\cdot06 + T^2\cdot1.03008D\cdot08) + S^2\cdot9.36D\cdot07 \\
& \quad D2BDT^2 = 1.7398D\cdot07 + T^2(-6.06D\cdot09 + T^2\cdot5.1864D\cdot11) - S^2\cdot3.102D\cdot09 \\
\text{C COMPUTE SPECIFIC HEAT OF SEAWATER AT ATMOSPHERIC PRESSURE.} \\
& \quad CPWO = 4.2174D\cdot00 + T^2(-3.720283D\cdot03 + T^2\cdot(1.412855D\cdot04 + \\
1 & \quad T^2\cdot2.654387D\cdot06)) + S^2(-7.644D\cdot03 + T^2\cdot(0.38D\cdot06) \\
& \quad BCP = 1.77D\cdot04 + T^2(-4.08D\cdot06 + T^2\cdot5.35D\cdot08) \\
& \quad BCP = CPWO + S^2(ACP + \text{SQRT(S)}^2\cdotBCP) \\
\text{C EVALUATE INTEGRAL IN THE SPECIFIC HEAT EQUATION.} \\
& \quad \text{IF (DABS(B).LT.0.5D-05) GO TO 1} \\
& \quad \text{Q} = 4.0^*K^2B - A^2A \\
& \quad \text{TPBA} = 2.0^*B^2P + A \\
& \quad \text{IF (Q.GT.0.0D+00) DSQ = DSQRT(Q)} \\
& \quad \text{IF (Q.LT.0.0D+00) DSQ = DSQRT(-Q)} \\
& \quad QX = Q^2X \\
& \quad QKO = Q^2KO \\
& \quad XSQ = X^2X \\
& \quad KOSQ = K^2Q^2 \\
& \quad \text{IF (Q.GT.0.0D+00) I10 = 2.0^*\text{DATAN(TBPA/DSQ) - DATAN(A/DSQ))/DSQ}} \\
& \quad \text{IF (Q.LT.0.0D+00) I10 = DLOG((TBPA - DSQ)^2(A + DSQ)/(TBPA + DSQ))} \\
1 & \quad (A - DSQ))/DSQ \\
& \quad I20 = \text{TBPA/QX} - A/QKO + 2.0^*B^2I10/Q \\
1 & \quad I11 = 0.5^*\text{DLOG(X/KO)/B} - 0.5^*A^2I10/B \\
1 & \quad I21 = -0.5^*(1.0/X - 1.0/KO)/B - 0.5^*A^2I20/B \\
1 & \quad I22 = (-P/X + KO^2I20)/B \\
1 & \quad I23 = (I11 - KO^2I21 - A^2I22)/B \\
1 & \quad I30 = (0.5^*(TBPA/XSQ - A/KOSQ) + 3.0^*B^2I20)/Q \\
1 & \quad I31 = (-0.25^*(1.0/XSQ - 1.0/KOSQ) - 0.5^*A^2I30)/B \\
1 & \quad I32 = (-P/XSQ - A^2I31 + KO^2I30)/(3.0^*B) \\
1 & \quad I33 = (-0.5^*P^2/XSQ + KO^2I31)/B \\
1 & \quad I34 = (-P^2/XSQ + A^2I33 + 3.0^*KO^2I32)/B \\
1 & \quad I35 = (I23 - KO^2I33 - A^2I34)/B
\end{align*}
\]
C EVALUATE COEFFICIENTS.

A1 = -D2VDT2
A2 = 2.0*DVDT*DADT + V0*D2ADT2
A3 = 2.0*DVDT*DBDT + V0*D2BDT2
A1 = -2.0*V0*DKDT*DKDT
A2 = -4.0*V0*DADT*DKDT
A3 = -4.0*V0*DBDT*DKDT - 2.0*V0*DADT*DADT
A4 = -4.0*V0*DADT*DBDT
A5 = -2.0*V0*DBDT*DBDT

C COMPUTE SPECIFIC HEAT.

1 C2*I32 + C3*I33 + C4*I34 + C5*I35
GO TO 2
1 CALL QA05AD(12,DDER,0.0D+00,PD,AERR,RERR,1,ERROR,IFLAG)
IF (IFLAG.GT.3) WRITE(6,601) IFLAG
601 FORMAT(' POSSIBLE ERROR IN INTEGRAL EVALUATION, IFLAG = ',12)
2 CP = CP0 - 0.1*(T + 273.15)**12
RETURN
END

V.6 Function DDER

DOUBLE PRECISION FUNCTION DDER(P)
C A FUNCTION TO EVALUATE THE SECOND DERIVATIVE OF SPECIFIC VOLUME
C WITH RESPECT TO TEMPERATURE AT A SPECIFIED PRESSURE, P.
C
IMPLICIT REAL*8(A-H,O-Z)
COMMON/PSW1A/K0,A,B,DVDT,D2VDT2,DKDT,D2KDT2,DADT,D2ADT2,
1 DBDT,D2BDT2
REAL*8 K0
X = K0 + P*(A + P*B)
DS1 = DKDT + P*(DADT + P*DBDT)
DS2 = D2KDT2 + P*(D2ADT2 + P*D2BDT2)
DDER = D2VDT2 + (-P*D2VDT2 + P*((2.0*DVDT*DS1 + V0*DS2) -
1 2.0*V0*DS1*DS1/X))/X
RETURN
END

V.7 Subroutine SSSW1

SUBROUTINE SSSW1(P,S,T,U)
C A SUBROUTINE TO COMPUTE THE SPEED OF SOUND IN SEAWATER AT SPECIFIED
C PRESSURE, SALINITY AND TEMPERATURE. THE RELATIONSHIP OF CHEN AND
C MILLERO (1) IS USED.
C INPUT PARAMETERS:
C P REAL*4. PRESSURE (BARS).
C S REAL*4. SALINITY (PARTS/THOUSAND).
C T REAL*4. TEMPERATURE (DEGREES CENTIGRADE).
C OUTPUT PARAMETER:
C U REAL*4. SPEED OF SOUND (M/SEC) AT SPECIFIED PRESSURE, SALINITY AND
C TEMPERATURE.
C REFERENCE:
C (1) CHEN, C.-T., AND MILLERO, F.J. 1977. SPEED OF SOUND IN SEAWATER
C
REAL*8 AHO,AH1,AH2,AH3,AH4,AH5
REAL*8 BHO,BH1,BH2,BH3,BH4
REAL*8 CHO,CH1,CH2,CH3,CH4
REAL*8 DHO,DH1,DH2
REAL*8 A10,AD1,AD2,AD3,AD4
REAL*8 BDO,BD1
REAL*8 A10,A11,A12,A13,A14
REAL*8 A20,A21,A22,A23
REAL*8 A30,A31,A32
REAL*8 BO,B1
REAL*8 C0
REAL*8 AH,BH,CH,DH,AD,BD,CD,A1,A2,A3,A,B,C,UPH2O,UD
DATA AHO,AH1,AH2,AH3,AH4,AH5/1402.388,5.03711,-5.80852D-02,
 -3.3420D-04,-1.47800D-08,3.1464D-09/
DATA BHO,BH1,BH2,BH3,BH4/5.153563,6.8982D-04,-8.1788D-06,
 -2.1382D-07,-6.1185D-10/
DATA CHO,CH1,CH2,CH3,CH4/3.1260D-05,-1.7107D-06,2.5974D-08,
 -2.5335D-10,1.0405D-12/
DATA DHO,DH1,DH2/9.7729D-09,3.8504D-11,-2.3643D-12/
DATA ADO,AD1,AD2,AD3,AD4/1.389,-1.262D-03,7.164D-05,2.006D-06,
 -3.21D-08/
DATA BDO,BD1/1.9222D-02,-4.42D-05/
DATA CD/1.727D-03/
DATA A10,A11,A12,A13,A14/9.4742D-05,-1.2580D-05,-6.4885D-08,
 -1.7107D-06,2.5974D-08/
DATA A20,A21,A22,A23/-3.9064D-07,9.1041D-09,-1.6002D-10,7.988D-12/
DATA A30,A31,A32/1.10OD-10,6.649D-12,-3.389D-13/
DATA BO,B1/7.3637D-05,1.7945D-07/
DATA C0/-7.9836D-06/
C COMPUTE THE SPEED OF SOUND IN PURE WATER AT THE DESIGNATED TEMPERATURE
C AND PRESSURE.
AH = AHO + T*(AH1 + T*(AH2 + T*(AH3 + T*(AH4 + T*(AH5)))))
BH = BHO + T*(BH1 + T*(BH2 + T*(BH3 + T*(BH4))))
CH = CHO + T*(CH1 + T*(CH2 + T*(CH3 + T*(CH4))))
DH = DHO + T*(DH1 + T*(DH2))
UPH2O = AH + P*(BH + P*(CH + P*(DH)))
C COMPUTE THE DIFFERENTIAL BETWEEN THE SPEED OF SOUND IN SEAWATER AND
C IN PURE WATER AT THE DESIGNATED TEMPERATURE AND PRESSURE.
AD = ADO + T*(AD1 + T*(AD2 + T*(AD3 + T*(AD4))))
BD = BDO + T*BD1
UD = S*(AD + BD*SQRT(S) + CD*S)
C COMPUTE THE SPEED OF SOUND IN SEAWATER AT DESIGNATED TEMPERATURE,
C PRESSURE AND SALINITY.
A1 = A10 + T*(A11 + T*(A12 + T*(A13 + T*(A14))))
A2 = A20 + T*(A21 + T*(A22 + T*(A23)))
A3 = A30 + T*(A31 + T*(A32))
A = P*(A1 + P*(A2 + P*(A3))
B = P*(B0 + T*B1)
C = C0*P
U = S*(A + B*SQRT(S) + C*S) + UD + UPH2O
RETURN
END
V.8 Function SAL.

FUNCTION SAL(LAT4, LONG4, T4)
C A FUNCTION TO COMPUTE THE SALINITY CORRESPONDING TO A GIVEN
C TEMPERATURE IN A SPECIFIC GEOGRAPHICAL LOCATION USING A STANDARD T-S
C CURVE.
C PARAMETERS PASSED:
C LAT4 REAL*4. LATITUDE (DEGREES).
C LONG4 REAL*4. LONGITUDE (DEGREES).
C T4 REAL*4. TEMPERATURE (DEGREES CENTIGRADE).
C IMPLICIT REAL*8 (A-H,O-Z)
REAL*4 LAT4,LONG4,T4
REAL*8 XN(8,12),FN(8,12),GN(8,12),X(12),F(12),G(12),LAT,LONG
INTEGER*4 NP(8)
DATA NP(1),NP(2),NP(3),NP(4),NP(5),NP(6),NP(7),NP(8)/
1 12,9,12,11,9,5,9,9/
DATA XN(1,1),XN(1,2),XN(1,3),XN(1,4),XN(1,5),XN(1,6),XN(1,7),
1 XN(1,8),XN(1,9),XN(1,10),XN(1,11),XN(1,12)/1.7399998,3.4487486,
2 5.1574984,6.8622472,8.5749969,10.283745,11.992493,13.609996,
3 18.827484,22.546995,25.662491,29.080002/
DATA FN(1,1),FN(1,2),FN(1,3),FN(1,4),FN(1,5),FN(1,6),FN(1,7),
1 FN(1,8),FN(1,9),FN(1,10),FN(1,11),FN(1,12)/34.726685,34.551025,
2 34.463531,34.503052,34.642029,34.806015,34.975433,35.352448,
3 35.620544,35.566284,35.252518,34.667648/
DATA GN(1,1),GN(1,2),GN(1,3),GN(1,4),GN(1,5),GN(1,6),GN(1,7),
1 GN(1,8),GN(1,9),GN(1,10),GN(1,11),GN(1,12)/-0.11545753,
2 -0.082896233,-0.014968872,0.058553696,0.094157219,0.096733093,
3 0.10424614,0.10685921,-0.05754977,-0.12745190,0.10424614/
DATA FN(2,1),FN(2,2),FN(2,3),FN(2,4),FN(2,5),FN(2,6),FN(2,7),
1 FN(2,8),FN(2,9),FN(2,10),FN(2,11),FN(2,12)/34.699966,34.441177,
2 34.607269,34.980515,34.654861/
DATA GN(2,1),GN(2,2),GN(2,3),GN(2,4),GN(2,5),GN(2,6),GN(2,7),
1 GN(2,8),GN(2,9),GN(2,10),GN(2,11),GN(2,12)/-0.084634781,-0.023357391,0.096752167,
2 0.10944939,0.099792480,0.071731567,-0.011492729,-0.15031433,
3 -0.35505390/
DATA FN(3,1),FN(3,2),FN(3,3),FN(3,4),FN(3,5),FN(3,6),FN(3,7),
1 FN(3,8),FN(3,9),FN(3,10),FN(3,11),FN(3,12)/1.8500004,3.4937487,
2 5.1374979,6.7812462,8.4249954,10.068741,11.712494,14.999992,
3 18.287476,21.574982,24.862488,28.149994/
DATA FN(4,1),FN(4,2),FN(4,3),FN(4,4),FN(4,5),FN(4,6),FN(4,7),
1 FN(4,8),FN(4,9),FN(4,10),FN(4,11),FN(4,12)/34.682465,34.517578,
2 34.406326,34.443558,34.561661,34.729767,34.925735,35.267654,
3 35.553070,35.674911,35.487518,34.840240/
DATA GN(3,1),GN(3,2),GN(3,3),GN(3,4),GN(3,5),GN(3,6),GN(3,7),
1 GN(3,8),GN(3,9),GN(3,10),GN(3,11),GN(3,12)/-0.090103149,
2 -0.09715378,-0.022984505,0.054557800,0.088250160,0.11484337,
3 0.11683750,0.096542358,0.096462776,-0.0027217865,-0.11839390,
4 -0.28538132/
DATA FN(4,1),FN(4,2),FN(4,3),FN(4,4),FN(4,5),FN(4,6),FN(4,7),
1 FN(4,8),FN(4,9),FN(4,10),FN(4,11)/1.1899996,2.7418737,4.2937479,
DATA FN(4,1),FN(4,2),FN(4,3),FN(4,4),FN(4,5),FN(4,6),FN(4,7),
1 FN(4,8),FN(4,9),FN(4,10),FN(4,11) / .720779, .34. .626480, .34. .494614,
3 .34. .47. .54. .58004, .4. .888580, .35. .243162, .35. .510086, .35. .633240,
1 .35. .589924, .35. .46. .41516/
DATA GN(4,1),GN(4,2),GN(4,3),GN(4,4),GN(4,5),GN(4,6),GN(4,7),
1 GN(4,8),GN(4,9),GN(4,10),GN(4,11) / .11289215, .-0.12562466,
2 -.0.0476140998, .0.018503189, .0.076808929, .0.13205641, .0.10305786,
3 .0.065424919, .0.012089729, -.0.048524857/
DATA XN(5,1),XN(5,2),XN(5,3),XN(5,4),XN(5,5),XN(5,6),XN(5,7),
1 XN(5,8),XN(5,9) / .1.89999996, .9.1499990, .7.9299994, .10.944992,
2 .13. .959999916. .97999990, .23, .0049990, .26. .2000004/
DATA FN(5,1),FN(5,2),FN(5,3),FN(5,4),FN(5,5),FN(5,6),FN(5,7),
1 FN(5,8),FN(5,9) / .34. .587988. ,34. .472916, .34. .588760, .34. .911652,
2 .35. .257124, .35. .508241, .35. .700470, .35. .715652, .35. .457870/
DATA GN(5,1),GN(5,2),GN(5,3),GN(5,4),GN(5,5),GN(5,6),GN(5,7),
1 GN(5,8),GN(5,9) / -.0.072339058, -.0.028326035, .0.086900711, .0.11726761,
2 .0.10568237, .0.07693674, .0.34471512, -.0.30061722, -.0.15561867/
DATA XN(6,1),XN(6,2),XN(6,3),XN(6,4),XN(6,5),XN(6,6),XN(6,7),
1 XN(6,8),XN(6,9) / .1.8500004, .7.8174982, .13. .784996, .19.752487, .25. .7200001/
DATA FN(6,1),FN(6,2),FN(6,3),FN(6,4),FN(6,5),FN(6,6),FN(6,7),
1 FN(6,8),FN(6,9) / .34. .5899990, .34. .691071, .34. .5830999,
2 .35. .247391, .35. .713013, .35. .447403 /
DATA GN(6,1),GN(6,2),GN(6,3),GN(6,4),GN(6,5),GN(6,6),GN(6,7),
1 GN(6,8),GN(6,9) / -.0.07304031, .0.11000641, .0.052697182, -.0.2202373 /
DATA XN(7,1),XN(7,2),XN(7,3),XN(7,4),XN(7,5),XN(7,6),XN(7,7),
1 XN(7,8),XN(7,9) / .1.1099997, .1.5224981, .5.9349966, .8.3474884,
2 .10.7599995, .13. .1724913, .15. .5849999, .17. .9974998, .20. .4100004/
DATA FN(7,1),FN(7,2),FN(7,3),FN(7,4),FN(7,5),FN(7,6),FN(7,7),
1 FN(7,8),FN(7,9) / .34. .728088, .34. .538361, .34. .459381, .34. .632278,
2 .34. .937805, .35. .236908, .45. .22240, .35. .554504, .35. .544281 /
DATA GN(7,1),GN(7,2),GN(7,3),GN(7,4),GN(7,5),GN(7,6),GN(7,7),
1 GN(7,8),GN(7,9) / -.0.04459207, -.0.10148716, .0.027439117, .0.10853386,
2 .0.1336277, .1.0989761, .0.066784859, .0.017894745, -.0.023929596/
DATA XN(8,1),XN(8,2),XN(8,3),XN(8,4),XN(8,5),XN(8,6),XN(8,7),
1 XN(8,8),XN(8,9) / .1.1099997, .4. .0724974, .7.0349951, .9.9974899,
2 .12. .9599991, .15. .922460, .18. .8849955, .21. .847488, .24. .8099998/
DATA FN(8,1),FN(8,2),FN(8,3),FN(8,4),FN(8,5),FN(8,6),FN(8,7),
1 FN(8,8),FN(8,9) / .34. .720435, .34. .507553, .34. .523254, .34. .843521,
2 .35. .205383, .35. .45. .8888, .55. .80109, .35. .633163, .35. .646423 /
DATA GN(8,1),GN(8,2),GN(8,3),GN(8,4),GN(8,5),GN(8,6),GN(8,7),
1 GN(8,8),GN(8,9) / -.0.027267993, -.0.065916061, .0.069396019,
2 .0.12857723, .0.1070547, .0.061277390, .0.027302472, .0.011056900,
3 -.0.0043754578/
LAT = DBLE(LAT4)
LONG = DBLE(LONG4)
T = DBLE(T4)
IF (LAT.LE.25. .AND. LONG.LE.160.) J = 1
IF (LAT.LE.25. .AND. LONG.GT.160. .AND. LONG.LE.170.) J = 2
IF (LAT.LE.25. .AND. LONG.LE.170.) J = 3
IF (LAT.GT.25. .AND. LAT.LE.35. .AND. LONG.LE.160.) J=4
IF (LAT.GT.25. .AND. LAT.LE.35. .AND. LONG.GT.160. .AND. LONG.LE.170.) J
1 J = 5
IF (LAT.GT.25. .AND. LAT.LE.35. .AND. LONG.GT.170.) J = 6
IF (LAT.GT.35. .AND. LONG.LE.160. .AND. LONG.LE.170.) J = 8
N = NP(J)
DO 1 I=1,N
 X(I) = XN(J,I)
 F(I) = FN(J,I)
 G(I) = GN(J,I)
1 IF (T.GE.X(1).AND.T.LE.X(N)) GO TO 2
 IF (T.LT.X(1)) SAL = F(I) + (T - X(1))*G(I)
 IF (T.GT.X(N)) SAL = F(N) + (T - X(N))*G(N)
 RETURN
2 SAL = TG01BD(-1,N,X,F,G,T)
 RETURN
END

V.9 Subroutine PLOT1

SUBROUTINE PLOT1(DEPTH, TEMP, SAL, SIGT, VELOC, L, IJ, ISCALE)

DIMENSION DEPTH(200), TEMP(200), SAL(200), SIGT(200), VELOC(200),
 T(200), S(200), V(200), Z1(5), Z2(5), ZP(5)

DATA Z1/'500', '375', '250', '125', '0' /,
 Z2/'1000', '750', '500', '250', '0' /
CALL PLOTS(IBUF, NO, NUM)
IF(ISCALE.EQ.2) GO TO 20
10 DO 1 I=1,5
 ZP(I) = Z1(I)
 GO TO 40
20 DO 30 I=1,5
30 ZP(I) = Z2(I)
40 CONTINUE
 DEPTH(L+1)=0.
 DEPTH(L+2) = 125.* FLOAT(ISCALE)
 TEMP(L+1)=0.
 TEMP(L+2)=10.
 SAL(L+1)=34.0
 SAL(L+2)=0.6666667
 SIGT(L+1)=23.
 SIGT(L+2)=1.3333333
 VELOC(L+1)=1480.
 VELOC(L+2)=26.6666667
 CALL PLOT(0.,8.25,22)
 CALL PLOT(11.65,0.,22)
 CALL PLOT(0.,-8.25,22)
 CALL PLOT(-11.65,0.,22)
 CALL PLOT(1.,1.0,23)
 K=1
 CALL PLOT(0.,3.,2)
 CALL PLOT(-0.05,3.,2)
 CALL SYMBOL(-0.1,2.9,.105,90.,2)
 CALL PLOT(0.,2.,3)
 CALL PLOT(-0.05,2.,2)
 CALL SYMBOL(-0.1,1.9,.105,90.,2)
 CALL PLOT(0.,1.,3)
 CALL PLOT(-0.05,1.,2)
 CALL SYMBOL(-0.1,0.9,.105,90.,2)
 CALL PLOT(0.,0.,3)
CALL PLOT (-0.05,0.,2)
CALL SYMBOL(-0.1,-0.05,.105,2H00,90.,2)
CALL SYMBOL(-0.3,0.72,.105,15HTEMPERATURE (C),90.,15)
CALL PLOT(0.,0.,3)

50 CALL PLOT(4.,0.,2)
CALL PLOT(4.,-0.05,2)
CALL SYMBOL(4.20,-0.1,.105,ZP(1),180.,4)
CALL PLOT(3.,0.,3)
CALL PLOT(3.,-0.05,2)
CALL SYMBOL(3.20,-0.1,.105,ZP(2),180.,4)
CALL PLOT(2.,0.,3)
CALL PLOT(2.,-0.05,2)
CALL SYMBOL(2.15,-0.1,.105,ZP(3),180.,4)
CALL PLOT(1.,0.,3)
CALL PLOT(1.,-0.05,2)
CALL SYMBOL(1.15,-0.1,.105,ZP(4),180.,4)
CALL PLOT(0.,0.,3)
CALL PLOT(0.,-0.05,2)
CALL SYMBOL(+0.05,-0.1,.105,ZP(5),180.,4)
CALL SYMBOL(2.47,-0.30,.105,9HDEPTH (M),180.,9)

60 CALL LINE(DEPTH,TEMP,L,1,0,0)
CALL PLOT (0.,3.9,23)
CALL PLOT (0.,3.,2)
CALL PLOT (-0.05,3.,2)
CALL SYMBOL(-0.1,2.9,.105,2H36,90.,2)
CALL PLOT(0.,2.25,3)
CALL PLOT(-0.05,2.25,2)
CALL SYMBOL(-0.1,2.15,.105,4H35.5,90.,4)
CALL PLOT(0.,1.5,3)
CALL PLOT(-0.05,1.5,2)
CALL SYMBOL(-0.1,1.4,.105,2H35,90.,2)
CALL PLOT(0.,0.75,3)
CALL PLOT(-0.05,0.75,2)
CALL SYMBOL(-0.1,0.65,.105,4H34.5,90.,4)
CALL PLOT(0.,0.,3)
CALL PLOT(-0.05,0.,2)
CALL SYMBOL(-0.1,-0.10,.105,2H34,90.,2)
CALL SYMBOL(-0.3,0.77,.105,14HSALINITY (PPT),90.,14)
CALL PLOT (0.,0.,3)
K=K+1

GO TO (60,70,80,90),K

70 CONTINUE
CALL LINE (DEPTH,SAL,L,1,0,0)
CALL PLOT (5.,0.,23)
CALL PLOT(0.,3.,2)
CALL PLOT(-0.05,3.,2)
CALL SYMBOL(-0.1,2.9,.105,2H27,90.,2)
CALL PLOT(0.,2.25,3)
CALL PLOT(-0.05,2.25,2)
CALL SYMBOL(-0.1,2.15,.105,2H26,90.,2)
CALL PLOT(0.,1.5,3)
CALL PLOT(-0.05,1.5,2)
CALL SYMBOL(-0.1,1.4,.105,2H25,90.,2)
CALL PLOT(0.,0.75,3)
CALL PLOT(-0.05,0.75,2)
CALL SYMBOL(-0.1,0.65,.105,2H24,90.,2)

GO TO 50
CALL PLOT(0.,0.,3)
CALL PLOT(-.05,0.,2)
CALL SYMBOL(-0.1,-0.05,.105,2H23,90.,2)
CALL SYMBOL(-0.3,1.13,.105,7HSIGMA-T,90.,7)
CALL PLOT(0.,0.,23)
K=K+1
GO TO 50

80 CONTINUE
CALL LINE(DEPTH,SIGT,L,1,0,0)
CALL PLOT(0.,-3.9,23)
CALL PLOT(0.,3.,2)
CALL PLOT(-0.05,3.,2)
CALL SYMBOL(-0.1,2.8,.105,4H1560,90.,4)
CALL PLOT(0.,2.25,3)
CALL PLOT(-0.05,2.25,2)
CALL SYMBOL(-0.1,2.15,.105,4H1540,90.,4)
CALL PLOT(0.,1.5,3)
CALL PLOT(-0.05,1.5,2)
CALL SYMBOL(-0.1,1.3,.105,4H1520,90.,4)
CALL PLOT(0.,.75,3)
CALL PLOT(-0.05,.75,2)
CALL SYMBOL(-0.1,0.55,.105,4H1500,90.,4)
CALL PLOT(0.,0.,3)
CALL PLOT(-0.05,0.,2)
CALL SYMBOL(-0.1,-0.20,.105,4H1480,90.,4)
CALL SYMBOL(-0.3,0.5,.105,20HSOUND VELOCITY (M/S),90.,20)
CALL PLOT(0.,0.,3)
K=K+1
GO TO 50

90 CALL LINE(DEPTH,VELOC,L,1,0,0)
CALL PLOT(5.,.75,21,17HCONSECUTIVE NO.,90.,17)
AIJ=DFLOAT(IJ)
CALL NUMBER(5.,.999.,21,4AIJ,90.,-1)
CALL ENDPLT
RETURN
END

V.10 Subroutine LNGPLT (additional ENTRY ADDPLT)

SUBROUTINE LNGPLT(SV,UPI,XTITLE,YARRAY,L,IJ,ICALL,MANY)
REAL*4 XTITLE(5),YTITLE(4),XARRAY(150),YARRAY(150)
DATA YTITLE/'DEPT','H - ','METR','ES '/
IF (ICALL.EQ.1) CALL PLOTS(IBUF,NO,NUM)
C
C DESIGNATES ORIGIN
C
CALL PLOT(1. , 9. ,23)
C
C PLOT VERTICAL SCALE
C
CALL PLOT(-0.1 , 0. ,2)
CALL PLOT(0. , 0. ,2)
CALL PLOT(0., -0.5, 2)
CALL PLOT(0., -0.5, 2)
X = 0.
Y = -1.
DO 10 I = 1, 8
 CALL PLOT(X,Y,2)
 X = -0.1
 CALL PLOT(X,Y,2)
 X = 0
 CALL PLOT(X,Y,2)
 Y = Y-0.5
 CALL PLOT(X,Y,2)
 X = -0.05
 CALL PLOT(X,Y,2)
 X = 0
 CALL PLOT(X,Y,2)
 Y = Y-0.5
10 CONTINUE
CALL PLOT(X,Y,2)
X = -0.1
 CALL PLOT(X,Y,2)
C
C PRINT VERTICAL TITLE
C
 CALL SYMBOL(-0.85,-5.48,0.14,YTITLE,90.,16)
C
C PLOT NUMBERS ON VERTICAL SCALE.
C PLOT NUMBERS SUB-Routine CALLS 'PLOT SYMBOL' AND REFERS TO
C X & Y ERRORS AS BEING IN PLOT SYMBOL.
C
 FPN = 0.
 CALL NUMBER(-0.34,-0.07,0.14,FN,0.,-1)
 IFPN = FPN+100.
C
C RE-DEFINE Y AS ZERO
C
 Y = 0
 DO 20 I = 1, 9
 Y = Y-1
 FPN = IFPN
 CALL NUMBER(-0.62,Y,0.14,FPN,0.,-1)
 IFPN = IFPN+100
20 CONTINUE
C
C PLOT HORIZONTAL SCALE
C
 CALL PLOT(0.,0.,3)
 CALL PLOT(0.,0.1,2)
 CALL PLOT(0.,0.,2)
 X = 0.
 Y = 0.
 DO 30 I = 1, 3
 X = X+1.0
 CALL PLOT(X,Y,2)
 Y = Y+0.1
 CALL PLOT(X,Y,2)
 Y = Y-0.1
30 CALL PLOT(X,Y,2)
C PRINT HORIZONTAL TITLE
C
 CALL PLOT(0.,0.,3)
 CALL SYMBOL(0.1,0.75,0.14,XTITLE,0.,20)
C
C PLOT NUMBERS ON HORIZONTAL SCALE. ONLY THE START VALUE
C AND THE NEXT THREE VALUES ARE REQUIRED.
C
 ISV = SV
 IUPI = UPI
 IFPN = ISV-IUPI
 DO 40 I = 1,4
 XI = I-1
 IFPN = IFPN+IUPI
 IF(IFPN.GE.0.AND.IFPN.LT.10) XM = XI-0.07
 IF(IFPN.GE.10.AND.IFPN.LT.100) XM = XI-0.14
 IF(IFPN.GE.100.AND.IFPN.LT.1000) XM = XI-0.21
 IF(IFPN.GE.1000.AND.IFPN.LT.10000) XM = XI-0.28
 FPN = IFPN
40 CALL NUMBER(XM,0.2,0.14,FPN,0.,-1)
C
C MOVE X ORIGIN PROGRESSIVELY TO THE RIGHT AND EXTEND X GRID
C
ENTRY ADDPLT(XARRAY,YARRAY,L,NIJ,ICALL) IF(ICALL.EQ.1) GO TO 50
 CALL PLOT(0.5,0.0,23)
 CALL PLOT(2.5,0.0,3)
 CALL PLOT(3.0,0.0,2)
 CALL PLOT(3.0,0.1,2)
C
C TO PLOT EACH TRACE.
C
50 XARRAY(L+1) = SV
 XARRAY(L+2) = UPI
 YARRAY(L+1) = 0.
 YARRAY(L+2) = -100.
 CALL LINE(XARRAY,YARRAY,L,1,0,0)
C
C TO PLOT A SERIAL NO. AT THE END OF EACH TRACE
C
 FIJ = IJ
 X = (XARRAY(L)-SV)/UPI
 Y = YARRAY(L)/(-100.)-0.24
 IF(FIJ.GE.0.AND.FIJ.LT.10) X = X-0.07
 IF(FIJ.GE.10.AND.FIJ.LT.100) X = X-0.14
 IF(FIJ.GE.100.AND.FIJ.LT.1000) X = X-0.21
 CALL NUMBER(X,Y,0.14,FIJ,0.,-1)
 IF (ICALL.EQ.MANY) CALL ENDP LT
RETURN
END
APPENDIX VII

SAMPLE CARD IMAGE INPUT FILE

<table>
<thead>
<tr>
<th>WSRRL CRUISE TASMAN SEA MP1/79/D1</th>
<th>08/03/79</th>
<th>1600</th>
<th>152.36 DEG E</th>
<th>33.64 DEG S</th>
</tr>
</thead>
<tbody>
<tr>
<td>657. M</td>
<td>WET</td>
<td>17.8</td>
<td>DIR 190</td>
<td>12 KNOTS</td>
</tr>
<tr>
<td>1018.1 MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 96</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WSRRL CRUISE TASMAN SEA MP1/79/D1</th>
<th>08/03/79</th>
<th>1600</th>
<th>152.36 DEG E</th>
<th>33.64 DEG S</th>
</tr>
</thead>
<tbody>
<tr>
<td>2848. M</td>
<td>WET</td>
<td>17.8</td>
<td>DIR 150</td>
<td>12 KNOTS</td>
</tr>
<tr>
<td>1016.3 MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 96</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td>Column 1</td>
<td>Column 2</td>
<td>Column 3</td>
<td>Column 4</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>500.00</td>
<td>9.06510.00</td>
<td>8.93520.00</td>
<td>8.82530.00</td>
<td>8.71540.00</td>
</tr>
<tr>
<td>560.00</td>
<td>8.39570.00</td>
<td>8.29580.00</td>
<td>8.18590.00</td>
<td>8.07600.00</td>
</tr>
<tr>
<td>620.00</td>
<td>7.78630.00</td>
<td>7.69640.00</td>
<td>7.59650.00</td>
<td>7.50660.00</td>
</tr>
<tr>
<td>680.00</td>
<td>7.22690.00</td>
<td>7.12700.00</td>
<td>7.03710.00</td>
<td>6.96720.00</td>
</tr>
<tr>
<td>740.00</td>
<td>6.76750.00</td>
<td>6.70760.00</td>
<td>6.63770.00</td>
<td>6.57780.00</td>
</tr>
<tr>
<td>800.00</td>
<td>6.38810.00</td>
<td>6.31820.00</td>
<td>6.25830.00</td>
<td>6.19840.00</td>
</tr>
</tbody>
</table>
APPENDIX VIII INPUT DATA FORMAT FOR AN XBT DATA POINT RECORD AS USED BY AODC

VIII.1 Input record format

<table>
<thead>
<tr>
<th>Element Name and Level</th>
<th>Position Byte Nos</th>
<th>Number of Bytes</th>
<th>Usage and Meaning of Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>FILE I.D.</td>
<td>1-2</td>
<td>2</td>
<td>File I.D. Always 17</td>
</tr>
<tr>
<td>QUADRT¹</td>
<td>3</td>
<td>1</td>
<td>WMO 3333</td>
</tr>
<tr>
<td>TEN SQ¹</td>
<td>3</td>
<td>3</td>
<td>Ten Degree Square (WMO)</td>
</tr>
<tr>
<td>FIVE SQ¹</td>
<td>7</td>
<td>1</td>
<td>Five Degree Square</td>
</tr>
<tr>
<td>TWO SQ¹</td>
<td>8-9</td>
<td>2</td>
<td>Two Degree Square</td>
</tr>
<tr>
<td>ONE SQ¹</td>
<td>10-11</td>
<td>2</td>
<td>One Degree Square</td>
</tr>
<tr>
<td>DATE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YEAR</td>
<td>12-15</td>
<td>4</td>
<td>Prefix '19'</td>
</tr>
<tr>
<td>MONTH</td>
<td>16-17</td>
<td>2</td>
<td>01-12</td>
</tr>
<tr>
<td>DAY</td>
<td>18-19</td>
<td>2</td>
<td>01-31</td>
</tr>
<tr>
<td>TIME</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOUR</td>
<td>20-21</td>
<td>2</td>
<td>00-23</td>
</tr>
<tr>
<td>MIN</td>
<td>22-23</td>
<td>2</td>
<td>00-59</td>
</tr>
<tr>
<td>REF. I.D.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNTRY</td>
<td>24-26</td>
<td>3</td>
<td>NODC CODES</td>
</tr>
<tr>
<td>REF. NO</td>
<td>27-31</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CONSEC</td>
<td>32-34</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SHIP</td>
<td>35-40</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>LATITUDE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAT. DEG</td>
<td>41-42</td>
<td>2</td>
<td>00-90</td>
</tr>
<tr>
<td>LAT. MIN</td>
<td>43-44</td>
<td>2</td>
<td>00-59</td>
</tr>
<tr>
<td>LAT. HEM</td>
<td>45</td>
<td>1</td>
<td>N or S</td>
</tr>
<tr>
<td>LONGITUDE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LONG DEG</td>
<td>46-48</td>
<td>3</td>
<td>000-179</td>
</tr>
<tr>
<td>DATA ITEM</td>
<td>CODES</td>
<td>LENGTH</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>LONG MIN</td>
<td>49-50</td>
<td>2</td>
<td>Char(2) 00-59</td>
</tr>
<tr>
<td>LONG HEM</td>
<td>51</td>
<td>1</td>
<td>Char(1) E or W</td>
</tr>
<tr>
<td>Bottom Codes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOTTOM</td>
<td>52</td>
<td>1</td>
<td>Char(1) B = probe hit bottom, blank = did not</td>
</tr>
<tr>
<td>DIGMTH²</td>
<td>53-54</td>
<td>2</td>
<td>Char(2) Method of digitisation</td>
</tr>
<tr>
<td>INTER²</td>
<td>55-56</td>
<td>2</td>
<td>Char(2) Interval of digitisation</td>
</tr>
<tr>
<td>TRESTO²</td>
<td>57-58</td>
<td>2</td>
<td>Char(2) Method of treatment & storage of initial points.</td>
</tr>
<tr>
<td>Operator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INIT</td>
<td>59-61</td>
<td>3</td>
<td>Char(3) Operator's Initials</td>
</tr>
<tr>
<td>TRIAL</td>
<td>62</td>
<td>1</td>
<td>Char(1) Number of attempts at digitising trace.</td>
</tr>
<tr>
<td>CALDEP</td>
<td>63-65</td>
<td>3</td>
<td>Char(3) Depth of calibration tick in Units of analogue grid. Negative depth value for calibration tick above surface, Positive depth value for calibration tick below surface.</td>
</tr>
<tr>
<td>CALTEM</td>
<td>66-68</td>
<td>3</td>
<td>Char(3) Temperature of calibration tick in units of analogue grid. 16.7° is nil-calibration value.</td>
</tr>
<tr>
<td>Instrument</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INSTRUMENT</td>
<td>69</td>
<td>1</td>
<td>Char(1) 1=XBT, 2=HXBT, 3=SXBT, 4=AXBT</td>
</tr>
<tr>
<td>GRID/³</td>
<td>70</td>
<td>1</td>
<td>Char(1) Grid codes of instrument 1-9.</td>
</tr>
<tr>
<td>ORIG CR NO</td>
<td>71-78</td>
<td>8</td>
<td>Char(8) Originators cruise number.</td>
</tr>
<tr>
<td>DNP</td>
<td>79</td>
<td>1</td>
<td>Char(1) Declared National Program</td>
</tr>
<tr>
<td>SKIP</td>
<td>80</td>
<td>1</td>
<td>Char(1) Blank</td>
</tr>
<tr>
<td>LENGTH</td>
<td>81-84</td>
<td>4</td>
<td>Char(4) Number of temperature values.</td>
</tr>
<tr>
<td>Depth & Temp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SURTEM</td>
<td>85-88</td>
<td>4</td>
<td>Char(4) Temperature at zero depth.</td>
</tr>
<tr>
<td>DEPTH 1</td>
<td>89-92</td>
<td>4</td>
<td>Char(4) First depth to whole metres.</td>
</tr>
<tr>
<td>TEMP 1</td>
<td>93-96</td>
<td>4</td>
<td>Char(4) Temp at first depth.</td>
</tr>
<tr>
<td>DEPTH 2</td>
<td>97-100</td>
<td>4</td>
<td>Char(4) Second depth.</td>
</tr>
<tr>
<td>TEMP 2</td>
<td>101</td>
<td>4</td>
<td>Char(4) Temperature at second depth.</td>
</tr>
</tbody>
</table>
DEPTH (N) 4 Char(4) Last depth Position = (N-1) + 85
TEMP (N) 4 Char(4) Last temperature Position = (N-1) + 89

Notes:

1. The location of an XBT station on the Earth’s surface is identified within a 10° square using the WMO Code 3333 quadrant and 10° square numbering system. Under this system, position is designated by a four-digit number; the first digit identifies the quadrant of the globe (figure 8), and may take values of 1(NE), 3(SE), 5(SW) or 7(NW); the second digit is the tens digit of the latitude of the station; the third and fourth digits are the hundreds and tens digits of degrees of longitude. Position within a 10° square is identified using the modified Canadian subdivision systems; subdivisions of 5-, 2-, and 1-degree squares are coded as shown in figure 9.

2. See Section VIII.3 for codes.

3. See Section VIII.2 for codes.

VIII.2 BT instrument and grid code

<table>
<thead>
<tr>
<th>Instrument and grid</th>
<th>Instrument code</th>
<th>Grid code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shipboard XBT</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2500 foot (Ft & F)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>750 metre (M & C)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>1500 foot (Ft & F)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>450 metre (M & C)</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>1830 metre (M & C)</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Helicopter XBT</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Submarine XBT</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Airborne XBT (AXBT)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1000 (Ft & F)</td>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>
VIII.3 Digitisation method, interval of digitisation, and Data treatment and storage codes

I DIGITISATION METHOD
 a. Manual 01
 b. A-D conversion from original 02
 c. A-D conversion from copies 03
 d. Optical scanning 04
 e. Direct digital output 05

II INTERVAL OF DIGITISATION
 A. Fixed interval
 a. $1 \text{m}; and \leq 0.1^\circ \text{C} 01$
 b. $>1 \text{m} \text{but} \leq 3 \text{m}; and \leq 0.1^\circ \text{C} 02$
 c. $>3 \text{m} \text{but} \leq 6 \text{m}; and \leq 0.1^\circ \text{C} 03$
 d. $>6 \text{m}; and \leq 0.1^\circ \text{C} 04$
 e. $1 \text{m}; and \leq 0.2^\circ \text{C} 11$
 f. $>1 \text{m} \text{but} \leq 3 \text{m}; and \leq 0.2^\circ \text{C} 12$
 g. $>3 \text{m} \text{but} \leq 6 \text{m}; and \leq 0.2^\circ \text{C} 13$
 B. Variable (flexure points)
 a. Manually determined 31
 b. Statistically determined 32
 c. Physically determined 33
 C. Combination of fixed and variable
 a. Every 3 ft to 900 ft then flexure points below 900 ft

III TREATMENT AND STORAGE OF DIGITISED DATA
 A. Single digitisation.
 a. No treatment, stored as digitised 01
 DATA COMPRESSION resulting in
 b. Fit within 0.05^\circ \text{C} 02
 c. Fit within 0.1^\circ \text{C} 03
 d. Fit within 0.2^\circ \text{C} 04
 e. Fit within 0.3^\circ \text{C} 05
 f. Fit within 0.7^\circ \text{C} 06
 B. Dual digitisation and averaging
 a. No treatment, stored as digitised 21
 DATA COMPRESSION after averaging
 b. Fit within 0.05^\circ \text{C} 22
 c. Fit within 0.1^\circ \text{C} 23
 d. Fit within 0.2^\circ \text{C} 24
 e. Fit within 0.3^\circ \text{C} 25
 f. Fit within 0.5^\circ \text{C} 26
 C. Data points at fixed intervals or selected intervals retained
 and stored 27
APPENDIX IX HARWELL SUBROUTINES USED BY THE DATA REDUCTION PROGRAMME

The XBT data reduction programme uses various subroutines from the Harwell Subroutine Library for spline fitting, and for interpolation and quadrature using cubic spline fits. The following excerpts from the Harwell Subroutine Library User's Manual describe the functions and argument lists for the subroutines used.

IX.1 Subroutine TBO4AD

1. Purpose

Given function values \(f_1, f_2, \ldots, f_n \) at points \(x_1 \leq x_2 \leq \ldots \leq x_n \) which need not be equally spaced, this routine finds a cubic spline \(S(x) \) that interpolates the function values, i.e.

\[
S(x_i) = f_i, \quad i=1,2,\ldots,n
\]

where \(S(x) \) has knots at the points \(x_1, x_2, \ldots, x_n \). The extra two degrees-of-freedom for such an interpolation are taken up by forcing the third derivative of \(S(x) \) at the points \(x_2 \) and \(x_{n-1} \) to be continuous. \(S(x) \) is defined on return from the routine by \(n \) knots \(x_i \), its values \(f_i \) at the knots, and the values \(d_i \) of its first derivatives at the knots.

2. Argument list

```
SUBROUTINE TBO4AD(N,X,F,D,W)
```

The arguments \(N \), \(X \) and \(F \) must be set by the user before calling TBO4AD.

- \(N \) is INTEGER*4 and should be set to \(n \), the number of points.
- \(X \) is a REAL*8 array of length at least \(N \) containing the points \(x_i \), \(i=1,\ldots,n \) (which are also the knots). These must be ordered such that \(x_1 \leq x_2 \leq \ldots \leq x_n \). If this condition is not fulfilled, \(W(1) \) is set to 1 and a diagnostic message is printed by the routine.
- \(F \) is a REAL*8 array of length at least \(N \) which must contain the function values, \(f_1, f_2, \ldots, f_n \).
- \(D \) is a REAL*8 array of length at least \(N \) in which the routine puts the values of the first derivatives of the spline \(S(x) \) at the knots \(x_i \).
- \(W \) is a REAL*8 array of length at least \(3N \) used by the routine as workspace. \(W(1) \) is set to zero on a successful return and to 1 on a failure.
IX.2 Function TGO1BD

1. Purpose

Given a cubic spline in terms of its knots, values and first derivative at the knots, this function calculates the value of the spline at any other point.

If the point at which the value is required lies outside the interval between the first and last knots, the value of the spline is set to zero.

2. Argument list

DOUBLE PRECISION FUNCTION TGO1BD(I,N,X,F,D,X)

where N, X, F, and D take the values returned by TB04AD, and

X is REAL*8, and is the point at which the value of the spline is required.

I is INTEGER*4, and is a parameter which enables the function to make use of known information ie if I>0, then the function will assume that it has been entered previously with a smaller value of X (this reduces the number of knot intervals to be searched for X). If I<0, the function searches the whole range for X.

IX.3 Function QGO2AD

1. Purpose

Given a cubic spline S(x) defined by knots x_i, function values, S_i = S(x_i) and derivative values g_i = dS(x_i)/dx, i=1,2,...,n, n≧2, and given integration limits a and b the routine will evaluate

\[Q = \int_{a}^{b} S(x) dx \]

The routine is not restricted to splines, and may be used with any piecewise cubic with continuous first derivative defined by its values and first derivative values at the joins.

2. Argument list

DOUBLE PRECISION FUNCTION QGO2AD(A,B,N,X,F,D)

where N, X, F, and D take the values returned by TB04AD, and

A, B are REAL*8, and must be set by the user to the lower and upper limits of region of integration respectively. If either A or B is outside the range of the knots, the integral is calculated on the assumption
that $S(x)=0$ for $x<x_I$ and $x>x_I$. If $A>B$ the sign of the integral is appropriately modified.

IX.4 Subroutine QG05AD

1. Purpose

To evaluate the definite integral

$$ I(a,b; f) = \int_{a}^{b} f(t) \, dt $$

where $f(t)$ is defined by a user-supplied subroutine, to specified accuracy.

2. Argument list

SUBROUTINE QA05AD(VAL,FUNC,A,B,AERR,RERR,LEVEL,ERROR,IFLAG)

VAL is a REAL*8 variable in which the value of $I(a,b; f)$ is returned.

FUNC is the name of a user-supplied function subprogramme to evaluate $f(t)$ for any value of t in the range $[A,B]$. Its only argument is the value of t, which is passed in REAL*8; the value is also returned in REAL*8.

A,B are REAL*8 input arguments giving the lower and upper limits of integration.

AERR are REAL*8 input arguments specifying the required accuracy as $RERR \max(AERR,RERR*ABS(VAL))$.

LEVEL is an INTEGER*4 input argument specifying what printed output (if any) is required from the subroutine. LEVEL=1 specifies no output.

ERROR is a REAL*8 output argument in which the subroutine returns an estimated upper bound on the error achieved.

IFLAG is an INTEGER*4 output argument indicating what difficulties were encountered, if any. Values of IFLAG up to 3 indicate that VAL should be accepted as the result (subject to value of ERROR); the result may well be good even if IFLAG is 4 or 5.
APPENDIX X CALCOMP PLOTTER ROUTINES USED BY THE DATA REDUCTION PROGRAMME

The data reduction programme calls on various CALCOMP plotter subroutines. The purpose and arguments of these are described below. All dimensions given are in inches.

X.1 Subroutine PLOTS

1. Purpose

 Initiates plotting of a logical segment.

2. Argument list

 CALL PLOTS(IBUF,NO,NUM)

 IBUF, NO, and NUM are INTEGER*4 dummy variables.

X.2 Subroutine ENDPLT

1. Purpose

 Ends a logical segment. The new segment will start with the pen in the
 standard initial position and at the new logical origin.

2. Argument list

 CALL ENDPLT

X.3 Subroutine ENDGR

1. Purpose

 Ends plotting on the current device.

2. Argument list

 CALL ENDGR

X.4 Subroutine PLOT

1. Purpose

 Moves the pen to a specified position.
2. Argument list

CALL PLOT(X,Y,NPEN)

X,Y are REAL*4, and contain the logical coordinates of the next pen position.

NPEN is INTEGER*4 and is the signed sum of two positive integers, N and K.
I: N=2, the pen is down during movement.
II: N=3, the pen is down during movement.
Normally K=0.
If K=20, the logical origin is re-located at (X,Y) after movement.
If NPEN=999, the plot file is ended.

X.5 Subroutine SYMBOL

1. Purpose

Writes symbols and characters.

2. Argument list

CALL SYMBOL(X,Y,SIZE,TEXT,THETA,N)

X,Y are REAL*4, and define the logical coordinates of the lower left-hand corner of the first character to be drawn.

SIZE is REAL*4 and specifies the character height. It is recommended that this be a multiple of 0.07.

TEXT may be either REAL*4 or INTEGER*4, and contains a string of characters to be written.

THETA is REAL*4, and is the angle (in degrees) of orientation of the character string in TEXT with respect to the positive x axis.

N is INTEGER*4, and is the number of characters to be written.

X.6 Subroutine NUMBER

1. Purpose

Writes a floating point number.

2. Argument list

CALL NUMBER(X,Y,SIZE,FPN,THETA,N)

X, Y, SIZE and THETA are as for SYMBOL (see above).

FPN is REAL*4, and is the floating point number to be written.
N is INTEGER*4, and specifies the precision required. FPN is rounded to this precision.
If N is positive, it is the number of digits to the right of the decimal point.
If N is zero, the integer portion and decimal point are drawn.
If N is -1, only the integer portion is drawn.
If N is less than -1, ±N±-l digits are truncated from the integer portion.

X.7 Subroutine LINE

1. Purpose
Draws a line through a set of coordinates.

2. Argument List

CALL LINE(X,Y,N,INC,LINTYP,INTEQ)

X,Y are REAL*4 arrays, and contain the x- and y-coordinates of the data points in the first N locations. X(N+2) contains a scaling factor, DELTAV (number of units per inch on the x-axis), and X(N+1) contains FIRSTY, a suitably rounded approximation to the first value to be plotted. The contents of Y(N+1) and Y(N+2) are similarly defined.

N is INTEGER*4, and is the number of data points in X or Y.

INC is INTEGER*4, and is the increment of successive data points in the X and Y arrays to be plotted.

LINTYP is INTEGER*4, and controls the type of line; ±LINTYP± is the frequency of plotted symbols. eg if ±LINTYP±=4 a symbol (specified by INTEQ) is plotted every 4th data point.
If LINTYP=0, symbols are plotted.
If LINTYP is positive, a straight line connects the data points.
If LINTYP is negative, only symbols are drawn.

INTEQ is INTEGER*4, and specifies a special symbol to be drawn at the data points.
Figure 1. Locations of Nansen cast stations in the South-West Pacific Ocean.
Figure 2. Temperature-salinity diagrams for the South-West Pacific Ocean constructed from historical Nansen cast data. The solid curves represent a least-squares cubic spline fit to the data (see text).
Figure 2 (Contd.).
Figure 3. Temperature profiles constructed from Nansen casts made in the South-West Pacific Ocean. Points pertaining to the mixed layer have been edited out of the data base, and the data for each geographical area pooled.
Figure 3 (Cont'd.).
Figure 4. Profiles of σ_T versus depth constructed using the temperature profiles of figure 3 and corresponding salinity data. The solid curves represent a least-squares fit of equation (2).
Figure 5. XBT programme organisation - an overview
CONSECUTIVE NO 2

Figure 6. A sample "fourplot"
Figure 7. A sample "longplot"
Figure 8. WMO Code 3333 quadrant and 10° square numbering system

Figure 9. Modified Canadian 10° square subdivisions. All subdivisions of 10° squares are numbered identically regardless of quadrant of the globe
EXTERNAL

In United Kingdom

Defence Science Representative, London

British Lending Library Division, Boston Spa York

In United States of America

Counsellor, Defence Science, Washington

National Technical Information Services, Springfield VA 22151

Engineering Societies Library, New York NY 10017

Data Courier Inc, Louisville Ky 40202

In Malaysia

The Director, Defence Research Centre, Malaysia

In Australia

Chief Defence Scientist

Deputy Chief Defence Scientist

Superintendent, Science and Technology Programmes

Director, Joint Intelligence Organisation (DSTI)

Document Exchange Centre

Defence Information Services Branch (for microfilming)

Document Exchange Centre

Defence Information Services Branch for:

United Kingdom, Ministry of Defence, Defence Research Information Centre (DRIC)

United States, Defense Technical Information Center

Canada, Department of National Defence, Defence Science Information Service

New Zealand, Ministry of Defence

Australian National Library
Director General, Army Development (NSO), Russell Offices
for ABCA Standardisation Officers

UK ABCA representative, Canberra 27
US ABCA representative, Canberra 28
Canada ABCA representative, Canberra 29
NZ ABCA representative, Canberra 30

Director, Industry Development, Regional Office, Adelaide 31
Defence Library, Campbell Park 32
Library, Aeronautical Research Laboratories 33
Library, Material Research Laboratories 34
Navy Scientific Adviser 35
Air Force Scientific Adviser 36

Library, RAN Research Laboratory 37
(Attention: Superintendent) 38
(Attention: Dr C.S. Nilsson) 39

Australian Oceanographic Data Centre 40
(Attention: Mr B.J. Searle) 41
(Attention: Lt Cdr D. Fraser) 42

CSIRO Division of Oceanography 43
(Attention: Dr A.D. McEwan) 44
(Attention: Dr A.F. Pearce) 45

Australian Institute of Marine Science 46
(Attention: Dr J.C. Andrews) 47

The Flinders University of South Australia 48
(Attention: Prof G.W. Lennon) 49

The University of Newcastle 50
(Attention: Prof R.A. Antonia) 51

C.J. Abell and Co Pty Ltd 52
(Attention: Dr C.J. Abell) 53

WITHIN DRCS

Chief Superintendent, Weapons Systems Research Laboratory 54
Superintendent, Weapon Systems Division 55
Superintendent, Communications and Electronic Engineering
Division 56
Senior Principal Research Scientist, Marine Studies Composite 57
Principal Officer, Underwater Detection Group 52
Principal Officer, Signal Processing and Classification Group 53
Principal Officer, Underwater Sonar Engineering Group 54
Principal Officer, Sea Experiments Group 55
Principal Officer, Sonar Trials Group 56
Dr D.A. Gray, Signal Processing and Classification Group 57
Dr G. Gartrell, ARDU 58
Dr A.L. Carpenter, Underwater Detection Group 59
Dr D.G. Cartwright, Surveillance Systems Group 60
Dr D.J. Kewley, Underwater Detection Group 61
DRCS Library 62 - 63
Authors 64 - 67
Spares 68 - 72
TECHNIQUES FOR THE ANALYSIS OF EXPENDABLE BATHYTERMOMAPH (XBT) DATA WITH APPLICATIONS TO THE SOUTH-WESTERN PACIFIC OCEAN

Personal Author(s):
P.G. Marshallsay
S.M. Ball

Document Date: September 1981

Total Number of Pages: 80
Number of References: 25

Corporate Author(s):
Weapons Systems Research Laboratory

Document Series and Number:
WSRL-0229-TM

Imprint (Publishing organisation):
Defence Research Centre Salisbury

Release Limitations (of the document):
Approved for Public Release
The expendable bathythermograph is a convenient and inexpensive tool for the measurement of ocean temperature structure. It does not measure salinity, but in many areas of the ocean it is reasonable to use standard temperature-salinity (T-S) curves to infer salinity from temperature measurements. T-S curves constructed from historical Nansen cast data are presented for 10° squares in the South-Western Pacific Ocean, covering the area from 15°S to 45°S, and from 150°E to 180°E. With a knowledge of both temperature and salinity structures a wide range of other parameters may be estimated, the most important of these being density, dynamic height and sound speed. Relationships for the computation of these and other properties of sea water are discussed, and computer programmes presented to calculate profiles of the relevant parameters from XBT data.
The official documents produced by the Laboratories of the Defence Research Centre Salisbury are issued in one of five categories: Reports, Technical Reports, Technical Memoranda, Manuals and Specifications. The purpose of the latter two categories is self-evident, with the other three categories being used for the following purposes:

- **Reports**: documents prepared for managerial purposes.
- **Technical Reports**: records of scientific and technical work of a permanent value intended for other scientists and technologists working in the field.
- **Technical Memoranda**: intended primarily for disseminating information within the DSTO. They are usually tentative in nature and reflect the personal views of the author.