Technical Report 120

ABSTRACTS OF TAEG PUBLICATIONS
1972-1980

Ann Caramico
James A. Aagard

Training Analysis and Evaluation Group

April 1982

GOVERNMENT RIGHTS IN DATA STATEMENT
Reproduction of this publication in whole or in part is permitted for any purpose of the United States Government.

ALFRED F. SMODE, Ph.D., Director
Training Analysis and Evaluation Group

W. L. MALOY, Ed.D.
Deputy Chief of Naval Education and Training for Educational Development and Research and Development
<table>
<thead>
<tr>
<th>REPORT DOCUMENTATION PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. REPORT NUMBER: Technical Report 120</td>
</tr>
<tr>
<td>2. GOVT ACCESSION NO: AD-A115 886</td>
</tr>
<tr>
<td>3. RECIPIENT'S CATALOG NUMBER:</td>
</tr>
<tr>
<td>5. TYPE OF REPORT & PERIOD COVERED:</td>
</tr>
<tr>
<td>6. PERFORMING ORG. REPORT NUMBER:</td>
</tr>
<tr>
<td>7. AUTHOR(s): Ann Caramico and James A. Aagard</td>
</tr>
<tr>
<td>8. CONTRACT OR GRANT NUMBER(s):</td>
</tr>
<tr>
<td>9. PERFORMING ORGANIZATION NAME AND ADDRESS: Training Analysis and Evaluation Group, Department of the Navy, Orlando, FL 32813</td>
</tr>
<tr>
<td>10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS:</td>
</tr>
<tr>
<td>11. CONTROLLING OFFICE NAME AND ADDRESS:</td>
</tr>
<tr>
<td>12. REPORT DATE: April 1982</td>
</tr>
<tr>
<td>13. NUMBER OF PAGES: 178</td>
</tr>
<tr>
<td>14. MONITORING AGENCY NAME & ADDRESS (IF DIFFERENT FROM CONTROLLING OFFICE):</td>
</tr>
<tr>
<td>15. SECURITY CLASS. (OF THIS REPORT): Unclassified</td>
</tr>
<tr>
<td>16. DISTRIBUTION STATEMENT (OF THIS REPORT): Approved for public release; distribution is unlimited.</td>
</tr>
<tr>
<td>17. DISTRIBUTION STATEMENT (OF THE ABSTRACT ENTERED IN BLOCK 20, IF DIFFERENT FROM REPORT):</td>
</tr>
<tr>
<td>18. SUPPLEMENTARY NOTES:</td>
</tr>
</tbody>
</table>
| 20. ABSTRACT (CONTINUE ON REVERSE SIDE IF NECESSARY AND IDENTIFY BY BLOCK NUMBER): This annotated bibliography contains abstracts of technical reports, memorandums, and notes reporting research conducted by the Training Analysis and Evaluation Group from 1972 through 1980. The bibliography contains four indexes: author, title, keyword, and title by year.
Technical Report 120

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>2</td>
</tr>
<tr>
<td>Abstracts of Technical Reports</td>
<td>3</td>
</tr>
<tr>
<td>Abstracts of Technical Memorandums</td>
<td>59</td>
</tr>
<tr>
<td>Abstracts of Technical Notes</td>
<td>76</td>
</tr>
<tr>
<td>Author Index</td>
<td>82</td>
</tr>
<tr>
<td>Title Index</td>
<td>87</td>
</tr>
<tr>
<td>Keyword Index</td>
<td>100</td>
</tr>
<tr>
<td>Title by Year Index</td>
<td>162</td>
</tr>
</tbody>
</table>

Accession For

<table>
<thead>
<tr>
<th>NTIS GSRA</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTIC IAS</td>
<td></td>
</tr>
<tr>
<td>Unnumbered</td>
<td></td>
</tr>
<tr>
<td>Justification</td>
<td></td>
</tr>
</tbody>
</table>

By

Distribution

Availability Code

A

Avail and/or

Dist

Special
Technical Report 120

INTRODUCTION

The present volume is the first in a series which presents abstracts of documents published by the Training Analysis and Evaluation Group (TAEG). All technical reports, technical memorandums, and technical notes from 1972 to 1980 are listed. The synopsis of the studies in the present report is organized as follows. Abstracts of the technical reports are presented first, arranged consecutively by document number. These are followed by technical memorandums and technical notes, respectively. Presented next are four indexes (author, title, keyword, and title by year).

Documents are identified in the indexes by the number appearing in the left margin of each abstract entry. They are numbered sequentially from 1 to 157.

Abstract citations are organized to include:

- author(s)
- title of report
- report number
- report date
- AD number (if applicable)
- number of pages in the report.

Reports with accessioned document (AD) numbers can be purchased by government agencies and registered contractors from Defense Technical Information Center (DTIC), Cameron Station, Alexandria, VA 22314. Reports are also for sale to the general public from the National Technical Information Service (NTIS), P. O. Box 1553, Springfield, VA 22161. Use the AD number when requesting documents from DTIC or NTIS.

Certain reports have limited distribution and are not listed with DTIC or NTIS. Generally these reports deal with highly specific topics and, thus, interest is limited. In other instances, the sponsoring agency may elect to control the availability of the documentation. If the report does not have an AD number, write to Director, Training Analysis and Evaluation Group, Department of the Navy, Orlando, FL 32813 to ascertain the availability of a desired report.
The objective of this study was to begin developing and testing a method for predicting cost and training effectiveness of possible training programs. To meet this objective, a prototype Training Effectiveness and Cost Effectiveness Prediction (TECEP) Model was developed. It will eventually contain the following elements:

- task description and analysis
- characteristics of student population
- training tasks and training stages
- a method for determining useful media options
- media cost factors
- guidelines for substitution and transfer
- training program of primary media and allowable substitutions
- linear program to optimize for least cost
- a report including economic analysis and recommendations.

The TECEP Model was applied to the TA-4 advanced jet training system to test the usefulness of the Model. The discussion of applying the Model to TA-4 training includes the following:

- a training analysis
- training media mix options
- cost factors for the TA-4 aircraft and training media
- TA-4 training system cost/training effectiveness.

(NOTE: Further development and refinement of the TECEP Model is reflected in TAEG Reports 16 and 23.)

The findings of studies about the cost and training effectiveness of training devices are reviewed. Specific reference is made to those studies which address the relationship among transfer of training, cost, and fidelity of simulation.

This report describes a 688 tactical team training analysis and a plan for effective tactics training. The analysis identifies the need for several major training subsystem capabilities, including:

- fire control equipment operator/fire control subteam training
- sonar operator/sonar subteam training
- coordinated tactical team training
- approach officer/decision making training.

Report is confidential.

An objective of this analysis was to evaluate whether it was feasible to consolidate electronic warfare training. The findings from this analysis indicate that it is both feasible and desirable to consolidate training for operators of air, surface, and subsurface EW equipment. The report contains a proposed curriculum for the consolidated training program and a description of a generalized operator training system. Actions for improving the effectiveness of existing EW training facilities are recommended.
This is the first of a series of reports dealing with P-3 pilot training systems.

This Phase I report covers an evaluation of current P-3 pilot training programs at the replacement squadron level. The report contains detailed discussions concerning training hardware and software that have been supplied to support P-3 pilot training. The report also examines in detail the curriculum, simulation capabilities, and use of P-3 operational flight trainers (Devices 2F69/2F69D). Along with the evaluation of current P-3 pilot training, a survey of present airline pilot training practices was made to find out now applicable these commercial training techniques are to military pilot training.

Remedial actions which might be taken to make immediate improvements in the cost-effectiveness of P-3 pilot training programs are recommended.

The initial findings of a study to determine if it would be feasible and desirable to develop generalized acoustic sensor operator training are described. Air, surface, and subsurface acoustic equipment was studied to identify common characteristics in their functions and displays.

An acoustic system matrix was developed to detect any trends in equipment features. Phase II of this study will describe and specify a common core training system for acoustic sensor operators.

This is the second in a series of reports concerned with improving P-3 aircraft pilot and flight engineer training.

A detailed job task analysis of the P-3 pilot, copilot, and flight engineer positions is presented.

A task analysis identified the behavioral activities of the P-3 flight crew
positions during normal, abnormal, and emergency operation of the P-3 aircraft according to NATOPS procedures.

A training analysis based on the P-3 task data was conducted. Existing synthetic and in-flight training syllabi were modified for school tryout during phase II of the program. The training analysis application contains the method used in translating the task data into a program of instruction.

Ten fundamentally different techniques appropriate for choosing instructional media for proposed Navy training programs were evaluated.

Six professional members of TAEG were assigned as training system designers. Each designer applied the chosen media selection techniques in a sample of seven representative Navy training tasks. The results of applying these techniques were examined by experts who judged how appropriately the media chosen met the task training requirements. These judgments served as the basis of ranking the techniques in terms of their usefulness in designing Navy training programs.

The ratings for the top three ranked techniques were essentially the same. Based on the ratings of these three techniques, none were clearly superior to the others. Because the TAEG technique ranked highest on the measures used, it was selected as the technique to be further developed.

Guidelines for developing TAEG's media selection technique are recommended.

This is an executive summary of an analysis of the training requirements for personnel assigned to electronic warfare (EW) equipment maintenance. Phase I of this study was to determine how feasible it would be to consolidate Navy EW maintenance training. Phase II developed in detail the characteristics of EW maintenance training. Such characteristics are pipeline, curriculum, training media, and instructional strategy. Guidelines for implementing consolidated EW Maintenance Training are given in TAEG Report No. 9-2, Electronic Warfare Maintenance Training Analysis.

The second phase of an analysis of Electronic warfare (EW) training is described. It also prescribes consolidating the Navy-wide pipeline for this type of training. While the initial effort, TAEG Report No. 4, Electronic warfare Training Analysis (1972), deals with the EW operator problem, this study describes how feasible it would be to consolidate Navy EW maintenance training. It develops the characteristics of a consolidated EW maintenance training system. It provides a basis for costing the training system elements which later require going through procurement channels. Finally, it gives management the necessary detailed guidelines to start, design, apply, and manage all the elements of the recommended EW maintenance training system.

This report concerns P-3 aircraft pilot and flight engineer training at the Replacement Squadron level. It presents the results of:

- an evaluation of the training effectiveness of Devices 2F69D, Operational Flight Trainer, and 2C23/A, Cockpit Familiarization Trainer
- a field tryout of an experimental synthetic and flight syllabus for P-3 replacement pilot training
- an economic analysis of the possible savings to be realized from an improved instructional strategy
- a training analysis of the current flight engineer training syllabus.

Also discussed are the requirements for a P-3C flight simulator and the additional tasks that may be trained in this simulator.

This is the first in a series of reports concerned with the Design of Training Systems (DOTS) project. This report gives a summary of the status of the first
phase of a three phase study. Phase I gives a description and analysis of the
current Navy Education and Training System. Phase I also recommends educational
technology innovations for system improvement. It also lists existing computer
based models for simulation efforts. Also presented is a summary of observations
and action items relative to Phase I.

13 Lindahl, W. H., and Gardner, J. H. Application of Simulation to
(78 pages)

The feasibility of applying computer simulation to an individualized
self-paced training system was examined. This report describes the computer
simulation technique as providing training management with quantitative data on
system performance and capabilities which can be used to compare proposed methods,
concepts, or designs. An electronic warfare school which was in the planning stage
provided the opportunity to demonstrate the feasibility and value of the computer
simulation technique as applied to training systems. This study gives the expected
completion times for input rates of 4, 6, and 8 students per day in the proposed
electronic warfare school. The report also gives a program listing, flowchart, and
a sample output of the computer simulation program used.

14 Bellamy, H. J., Duffy, L. R., Elkin, A., Hallman, R. E., and Yanko, R. E.
12-1, 1973, AD 774931. International Business Machines Corporation, Cape
Canaveral, Florida 32920 - Contract No. N61339-73-C-0097 (474 pages)

A functional descriptive model of the current Naval Education and Training
System and idealized approaches oriented toward a 1980 time frame are presented.
Technological gaps and problem areas are presented but no organizational elements
are specified, since the prime areas of interest are the functions performed by
training systems. This report describes the selection and evaluation of candidate
mathematical models to be developed in Phase II. Important features of Volume II
are strategic working assumptions for the 1980s and mathematical models and data
bases.

15 Bellamy, H. J., Branch, K. V., Duffy, L. R., Edison, C. G., Hallman, R. E.,
12-2, 1974. International Business Machines Corporation, Cape Canaveral, Florida
32920 - Contract No. N61339-73-C-0097 (854 pages)

This report contains the following three volumes:

- Volume I (AD#AO04929)--Design of Training Systems (DoTS) Phase II Overview
Volume II (AD#A005414)--Detailed description of Models in the Design of Training Systems

Volume III (AD#A005931)--Program Descriptions, and Operating Procedures for the DOTS three computer based models.

Volume I presents an overview of the DOTS project. It describes the three Design of Training Systems computer based models, a description of their validation process, and the long range implications of developing an operational system according to the DOTS models.

Volume II presents a detailed description of that:
1. Systems Capabilities/Requirements and Resource model
2. Educational Technology Evaluation model

Model logic design input/output parameters, and data base communications are discussed at each level which allows one to analytically evaluate each model's design. In addition, Level I validation scenarios are presented in enough detail to allow them to be duplicated.

Volume III contains the model and data base program descriptions and operating procedures. Flow charts and program listings for the models, applications, and interfaces programs are described in appropriate sections. It also contains a detailed description of the DOTS data base.

The study results and design for an Educational Technology Assessment Model (ETAM) are outlined. ETAM is a training management tool for determining the long-term effects of putting new educational technology techniques into the training environment. This report describes an eight task procedure intended to guide the person assessing a training innovation through the required data collection and analysis. These steps lead to a decision to accept, reject, or continue to study the innovation. Scenarios describe applying the ETAM procedures step by step in assessing an educational innovation.

Other sections of the report include:
1. conclusions and recommendations
. a review of relevant literature
. parts of ETAM that can be computerized
. ETAM validity and utility results.

The phase I findings of a two-phase study are described. Phase I explores the possible applications of using commercial contract training to provide technical training for Navy enlisted personnel. Specifically, phase I studied training capabilities, techniques, and management practices of industrial organizations in both public and private training institutions. Phase II will use the findings of phase I and implement them in selected Navy and Marine Corps training.

In phase I, 12 Navy enlisted ratings at the entry level of skill training were selected to be studied because of their similarity to civilian skills. Technical training aspects of industrial organizations and public and private training institutions were surveyed. An economic analysis of training and a discussion of the Armed Services Procurement Regulation are included.

The findings of a study investigating how feasible it would be to use Computer Managed Instruction (CMI) in the Navy are presented. Three areas were studied: (a) large-scale centralized computer system for all formal Navy training, (b) minicomputers for small, remote Navy classes, and (c) shipboard computers for managing individual training aboard ships.

Specifically, the report includes:

. An overview of CMI
. The state-of-the-art of CMI in the military, government, industry, and education
. The feasibility for CMI of:
 .. minicomputers
 .. shipboard computers
 .. centralized computer center
. an overview of computer languages for CMI
. rationale and criteria for selecting Navy courses for CMI
. an overview of instructional terminals for CMI.

A goal of this study was to define the training problems of the Navy's Electronic Counter Countermeasures (ECCM) system. Another goal was to formulate a plan for developing an effective ECCM training system which will improve the readiness of the Naval Surface Ship Combat Systems. To obtain these goals, the Surface Navy methods and procedures for identifying training and using ECCM (radar) operator personnel were studied. Major radar operator ECCM tasks were identified and their common tasks determined. The analysis findings were used in developing an ECCM training improvement program. The report gives Navy training management guidelines to begin and then manage the major elements of recommended ECCM training improvement programs.

This report presents the Training Effectiveness and Cost Effectiveness Prediction (TECEP) technique. It is a technique for choosing cost-effective instructional delivery systems for training programs. It gives an orderly approach for skilled training system designers to use in making delivery system choices during the training design phase. The basis of this technique is a three-step procedure in which:

. training objectives are classified and organized into groups and appropriate learning strategies are defined for each group
. media capable of supporting these strategies are identified
. the costs of alternative forms of the training are projected.

The most cost-effective delivery system can be chosen with this information. Reference materials provided to assist the training system designer in carrying out this process include:

. a list of 12 types of learning algorithms and the class of learning objectives each supports
separate tables for choosing instructional delivery systems for each algorithm
a cost model for comparing the value of resources required by alternative delivery systems
a Fortran IV program listing of the cost model.

(NOTE: A companion report amplifying the first step of the TECEP technique has been published as TAEG Report No. 23, Learning Guidelines and Algorithms for Twelve Types of Training Objectives.)

An analysis of the current Navy instructor training system is presented. The report makes recommendations for the instructor training program of the 1975-85 period. Discussions and recommendations included in the report are in the areas of:

- instructor selection and assignment
- instructor training school staff
- instructor training curriculum
- instructor evaluation
- instructor effectiveness
- instructor feedback
- instructor course grading
- instructor career structure
- cost effectiveness of Instructor Training School centralization.

Analysis and recommendations are limited to the six formal Instructor Training Schools under the direct curriculum control of CNTECHTRA.
This study assessed the status of tactical team training in the Navy. The study sought to:

- determine the current status of team training in the fleet and to identify deficiencies in practices
- review the findings of the technical literature relevant to improvement of team training practices
- make recommendations regarding the future conduct of team training.

Information was compiled for planning tactical team training. Current practices in team training are discussed in light of the findings of the technical research literature. Recommendations for improving team training operations are presented.

An effective method for obtaining post-formal training feedback information for use in the Navy training system was developed and validated. Continually applying this method will identify the needs which will guide the training improvements necessary to meet changing operational demands. The mail-out questionnaire was validated by showing its results were equivalent to results of personal interviews. Different feedback instruments and procedures for administering them were compared. A companion report (TAEG Report No. 20, 1975) provides detailed instructions for using this feedback questionnaire.

This procedure manual provides detailed instructions to school personnel for constructing and administering a successful feedback questionnaire. It also tells how to use the resulting data to identify and correct training problems. Specific information is provided about:

- the number of questionnaires to mail
The findings of a two-phase study addressing how feasible it would be to use commercial sources to train selected basic skills in the Navy are contained in this report.

It is the second of three reports concerning contract training in the Navy and Marine Corps. The report is made up of two parts. Part I (TAEG Report No. 21-1) demonstrates the usefulness of the commercial contract training concept for the Navy. Part II (TAEG Report No. 21-2) contains useful information for those desiring to implement and manage a VOTEC program.

This report addresses:

- the major issues concerned with source evaluation
- skill analysis and selection
- contractual consideration
- comparative training capability evaluation
- guidelines for analyses necessary for sound management decisions (after beginning procurement action for commercial training services).

The first report (TAEG Report No. 13-1) presented the results of the phase I analysis of the training capabilities of industrial organizations and public and private training institutions.
Technical Report 26

The findings of a two-phase study addressing how feasible it would be to use commercial sources to train selected basic skills in the Navy are presented.

It is the second of three reports concerning contract training in the Navy and Marine Corps. The report is made up of two parts. Part I (TAEG Report No. 21-1) demonstrates the usefulness of the commercial contract training concept for the Navy. Part II (TAEG Report No. 21-2) contains useful information for those desiring to implement and manage a VOTEC program.

This report prescribes a system for conducting commercial VOTEC training on a daily basis. The report describes:

- VOTEC basic concepts
- VOTEC coordination structure
- typical functioning process
- notes on contracting
- typical survey forms
- VOTEC sources of Navy-related instruction.

The first report (TAEG Report No. 13-1) presented the results of the phase I analysis of the training capabilities of industrial organizations and public and private training institutions.

Technical Report 27

Research discussed in this report concerns the findings of a two-phase study addressing how feasible it would be to use commercial sources to train selected basic skills in the Marine Corps.

It is the third of three reports concerning contract training in the Navy and Marine Corps. The report is made up of two parts. Part I (TAEG Report No. 22-1) demonstrates the usefulness of the commercial contract training concept for the Marine Corps. Part II (TAEG Report No. 22-2) contains useful information for those desiring to implement and manage a VOTEC program.
desiring to implement and manage a VOTEC program.

This report addresses:

- the major issues concerned with source evaluation
- skill analysis and selection
- contractual consideration
- comparative training capability evaluation
- guidelines for analyses necessary for sound management decisions (after beginning procurement action for commercial training services).

The first report (TAEG Report No. 13-1) presented the results of the phase I analysis of the training capabilities of industrial organizations and public and private training institutions.

The findings of a two-phase study addressing how feasible it would be to use commercial sources to train selected basic skills in the Marine Corps are presented.

It is the third of three reports concerning contract training in the Navy and Marine Corps. The report is made up of two parts. Part I (TAEG Report No. 22-1) demonstrates the usefulness of the commercial contract training concept for the Marine Corps. Part II (TAEG Report No. 22-2) contains useful information for those desiring to implement and manage a VOTEC program.

This report prescribes a system for conducting commercial VOTEC training on a daily basis. The report describes:

- VOTEC basic concepts
- VOTEC coordination structure
- typical functioning process
- notes on contracting
- typical survey forms
- VOTEC sources of Marine Corps related instruction.
The first report (TAEG Report No. 13-1) presented the results of the Phase I analysis of the training capabilities of industrial organizations and public and private training institutions.

The psychological learning principles applicable to the training of common military job tasks are summarized. It provides guidance for training system designers in defining basic learning events. Training strategies are presented for 11 common classes of training objectives. These classes of objectives are:

- recalling bodies of knowledge
- using verbal information
- rule learning and using
- decision making
- detecting
- classifying
- identifying symbols
- voice communicating
- recalling procedures and positioning movement
- steering and guiding, continuous movement
- performing gross motor skills.

The training strategy for each instructional objective category is made up of three parts:

- a definition of the class and a description of each category's uniqueness
- a set of learning guidelines:
 - consisting of a series of statements which prescribe specific learning elements to be designed into a training system
 - based mostly on learning theory and somewhat on practical experience
 - representing information available for prescribing general solutions for a training category
a learning algorithm:

.. expressed as a flow chart of a sequence (or system) of learning events
.. represents a logical arrangement of the events called for in the
 learning guidelines.

These guidelines and algorithms may be used to guide training system designers in:

- specifying learning events and activities
- selecting instructional delivery vehicles
- designing instructional materials
- evaluating existing instructional materials
- recording field experience for use in improving the guidelines and
 algorithms.

Presented are a series of papers read at the conference on "Military Instructor Training in Transition," held on 15-17 January 1975 at the Naval Training Center, Orlando, Florida. The conference was hosted by the Training Analysis and Evaluation Group of the Chief of Naval Education and Training. The conference brought together people involved in instructor training from the military services, industry, and academia to exchange ideas and to discuss mutual issues, problems, and trends in producing effective instructors. Two major themes were explored during the conference:

- instructor training programs in today's military environment highlighting current practices, trends, constraints, and problems
- innovative concepts and ideas relevant to the long-range planning for instructor training.

Emphasis was given to:

- contributions of man vs. machine presentation of instruction
- examining the humanizing values, the richness and sensitivity resulting from the man in the training loop
- values resulting from machine organization and control of instruction.
This report presents a study of Navy undergraduate pilot training. It contains:

- methodology used to identify pilot training requirements of the post-1975 period
- results of a commonality analysis used to identify general skills required of all pilots and specific skills required by one or more aircraft communities
- system designs for a long-term pilot training system and alternative
- economic analysis of long-range pilot training system and alternatives.

The first of two long-term training system models presented in this report describes an optimized system design. It features an advanced state-of-the-art pilot selection technique. Synthetic trainers are used to predict general flying abilities and future training attrites.

The Naval Postgraduate School, Monterey, California, was tasked by the Training Analysis and Evaluation Group to:

- analyze the functional description of the Naval Education and Training Command (NAVEDTRACOM) from the standpoint of how decisions are made
- review the literature bearing on decision theory as applied to large-scale organizations
- develop a taxonomy of the types of decisions made by managers within the NAVEDTRACOM
- develop criteria for evaluating decisions within the NAVEDTRACOM
- develop recommendations for improving the present decision making process
- develop a description of the optimum method of decision making.
The test and evaluation (T&E) of three mathematical models of the Design of Training System (DOTS) are described. Concerning the T&E approach, the following are described:

- the objectives of the T&E, including:
 - IBM technical team activities
 - activities of the Government T&E team

- supporting tasks to the test and evaluation:
 - test-bed implementation
 - support Navy test and evaluation
 - support documentation
 - T&E results analysis

- test and evaluation of the mathematical models:
 - training at Norfolk FLETRACEN staff
 - training of the T&E team
 - T&E team model analysis
 - functional visits.

In presenting the test and evaluation results, the following were discussed from the T&E final report (published by NPRDC):

- general conclusion
- technical feasibility
- operational feasibility
- financial feasibility
- criticism and recommendations.

Recommendations were given concerning:

- direction of future DOTS' R&D efforts
- possible operational implementation of DOTS type models.
Detailed descriptions of the three Design of Training Systems (DOTS) models and the DOTS data base are contained in this report. This manual contains:

- the Educational Technology Evaluation (ETE) model
- the System Capabilities Requirements and Resources (SCRR) model
- the Training Process Flow (TPF) model
- the DOTS data base.

Each section of the subsystem is subdivided into the following parts:

- a subsystem description
- macro flow
- detailed flows
- program listings.

For each subsystem (the three models and the data base), the following are described:

- control logic
- input/output record formats
- temporary and permanent data files.

The information contained in this volume is intended to be used by programmers who install or modify the DOTS programs.
The purpose of this manual is to familiarize the user of the Design of Training Systems (DOTS) programs with the operation of the three DOTS models and the DOTS data base. This manual contains a system overview and detailed information on the major subsystems:

- the DOTS data base
- the Educational Technology Evaluation (ETE) model
- the System Capabilities Resources and Requirements (SCRR) model
- the Training Process Flow (TPF) model.

Each subsystem section contains:

- a discussion of subsystem architecture
- design assumptions
- input requirements
- output parameters.

Besides the operational procedures for both the data base and the computer subsystems, the following additional procedures are given:

- administrative procedures for the data base
- test of each model's operation (to be used before applying to specific training data).

This report amplifies the concepts, purposes, techniques, and procedures of an economic analysis. It discusses the following aspects of an economic analysis:

- potential difficulties likely to be encountered
- the detailed steps involved.
Presented are the procedures and reasoning for making decisions where the possible outcomes of alternative decisions have multiple valued dimensions. This report extends and heavily relies upon an understanding of the Educational Technology Assessment Model (TAEG Report No. 12-3). This report refers to the multiattribute utility estimating literature. It discusses both theoretical as well as practical considerations faced by decision makers in structuring data before making decisions. Detailed scaling procedures which give guidance in developing an interactive computer-based program of the Educational Technology Assessment Model (ETAM) are presented in section II.

The primary objective of this task was to demonstrate the usefulness of the System Capabilities Requirements and Resources (SCRR) and Training Process Flow (TPF) models to Navy training managers at the activity and functional command level. A secondary objective was to identify possible improvements to the simulation models and data base which could increase their usefulness for training managers. As a result of a field test at COMTRAPAC the following were identified:

- management applications of the models
- improvements for using the simulation models and data base.

The results of a review by an evaluation team made up of participants from the Training Analysis and Evaluation Group, COMTRAPAC, and COMTRAPAC subordinate activities are discussed.

Recommendations were made for improving the use of the models and data base.
Presented in this report is the first phase of a three-phase project concerned with optimizing the Navy's recruit training.

The phases of the recruit training project are:

- Phase I - current assessment and curriculum design
- Phase II - curriculum areas and possible alternate curricula
- Phase III - the selected curriculum and evaluation criteria.

This report is intended to provide a recruit training curriculum which will meet the needs of the Navy's operational fleet after 1980. The proposed curriculum design is based upon analyses of:

- current training (late 1975)
- documented future Navy operational requirements
- statistical information about the typical recruit profile of the 1980s.

The proposed curriculum design uses the systems approach to recruit training to ensure that:

- the resulting curriculum will be responsive to:
 - changing fleet requirements
 - changing recruit profile
- the goals of the recruit training curriculum are met:
 - an initially qualified seaman
 - the most efficient recruit training system that will produce a quality seaman

The results of a study concerned with a possible application of the microfiche medium for onboard training systems are presented. This report evaluates selected microfiche readers according to their ease-of-use. The study:

. evaluated different frame locating mechanisms in the microfiche readers
. determined the ability of Navy enlisted personnel to perform a branching task using these readers
. ranked the readers in order of time required to:
 . locate a microfiche
 . locate and focus a reference frame
 . remove the microfiche.

This manual contains:

. a user-oriented guide for using and applying Design of Training Systems (DOTS) software
. descriptions of programmer-oriented DOTS software.

The major DOTS subsystems addressed include:

. the DOTS data base and maintenance system
. the System Capabilities/Requirements and Resources (SCRR) model
. the Training Process Flow (TPF) model.

The user-oriented sections contain discussions of:

. subsystem architecture
. design assumptions
input requirements
output parameters.

Procedures are provided for:
- preapplication system test
- operational use
- administrative procedures
- operational maintenance procedures.

The programmer-oriented sections present:
- program descriptions
- macro flows
- input/output data formats (where applicable)
- program source code listings for each subsystem (the two models and the data base).

The information contained in the programmer-oriented sections is intended for use by programmers tasked with installing, modifying, or maintaining the DOTS software.

This report:
- summarizes the functional analysis, development, and field test activities of the Training Requirements Analysis Model (TRAM)
- includes final study data on the DOTS Utility Assessment.

Also included in this report are cost and resource data which should be useful in planning follow-on application and model development.
Factors related to the feasibility of centralizing (consolidating) the CNTECHTRA instructor training schools are identified and discussed. The study considers the alternative options of reducing the present six sites to:

- a single school or academy
- two schools
- three schools.

This study is divided into two parts:

- the first part explores:
 - qualitative factors
 - identifying and evaluating the noncost variables relative to the centralization decision
- the second considers economic (cost) factors.

The qualitative analysis:

- identifies 45 variables associated with instructor school functions
- identifies eight variables associated with location factors
- incorporates a summary of comments on various aspects of the centralization concept.

The report provides a "present cost" model based upon resource expenditures for facilities, transportation, labor and equipment. Also included are summaries of requirements using new construction or modified existing structures for centralization.

The overall study was concerned with:
organizing information relevant to the assessment of training effectiveness within a military setting

developing assessment methods suitable for use within the Navy environment.

The study is reported in two volumes. Volume I reviews current military training evaluation programs.

The following aspects of the assessment of training effectiveness for each of the military services are described:

- evaluation philosophy
- documentation
- current practices.

Volume II examines specific problems in conducting evaluation programs in the Navy. More specifically, this volume:

- provides guidance for the conduct of training effectiveness assessments
- describes and evaluates a variety of suitable objective techniques.

The overall study was concerned with:

- organizing information relevant to the assessment of training effectiveness within a military setting
- developing assessment methods suitable for use within the Navy environment.

The study is reported in two volumes. Volume I reviews current military training evaluation.

Volume II examines specific problems in conducting evaluation programs in the Navy. More specifically, this volume:

- identified and evaluated factors which affected establishing and conducting training effectiveness assessment (TEA) efforts within the Navy
- clarified and provided technical background information concerning training evaluation concepts and procedures
examined and evaluated various methods for obtaining data for TEA

developed recommendations for conducting TEA in the Navy.

The analysis, design, and development activities associated with the Educational Technology Assessment Model (ETAM) are summarized.

Volume I contains:

- relevant background information
- results of prior studies leading to the finalized ETAM procedures and computerized routines
- a comparison of the manual versus the automated approach
- data base structures
- the ETAM program flow.

Volume II includes:

- study results of indexing innovations
- assigning taxonomic descriptors to courses, job/tasks, and instructional vehicles
- program documentation of ETAM
- ETAM Range-of-Effect
- bibliographic references
- additional information supporting the ETAM design.
This report discusses ship handling and ship handling training by:

- identifying the training requirements for a ship handler
- developing the concept for a career structured training system which incorporates these requirements.

This study:

- identified the elements of knowledge and skill required of a competent ship handler
- defined the personal characteristics inherent in all ship handlers
- determined the environmental and human factors which contributed to Navy and Merchant Marine accidents
- investigated wake damage and replenishment at sea
- listed deficiencies of existing training and training devices
- identified training areas which seemed to need further study.

A new training system was proposed based on:

- analysis of knowledge and skill elements
- causative factors
- existing training.

Additional training aids and devices are proposed in this report.

The results of a study which evaluated a new P-3 operational flight trainer (OFT) in VP-30 are presented. The effectiveness of Device 2F87F as a substitute for training using both Device 2F69D OFT and the P-3 aircraft was examined. The performance of Undergraduate Pilot Training (UPT) graduates was compared for those
trained under the 2F87F OFT and those trained using the 2F69D OFT and P-3 aircraft. The intent was to discover the potential of the new OFT as a substitute method for training aircraft tasks. This study also appraised the familiarization/instrument phase of the simulator training syllabus developed by VP-30 for replacement pilot training.

A sampling of current practices in substitution simulator training for in-flight training is provided. The study was undertaken to obtain a useful understanding of current substitution practices and to determine the availability of this information. Simulation substitution practices are presented for general, commercial, and military aviation. Efficiency and effectiveness of flight simulation are presented for the following comparisons:

- training category
- student experience
- user class
- simulator capability
- type of aircraft
- curriculum feature.

Finally, limitations of current simulator substitution data are discussed.

Preliminary research was conducted to understand the conditions, constraints, and parameters that could influence the design, preparation, and conduct of a CMI by satellite demonstration. Another purpose was to explore what communication systems would be available to become operational should the demonstration indicate this is desirable. Eight basic areas of research undertaken during the feasibility study were to determine:

- whether learning is as effective when CMI is delivered to remote sites as CMI is in learning centers
whether the attitudes of students, trainers and key remote site personnel support CMI delivered to remote sites

whether CMI is as economical when delivered to remote sites as compared to learning centers

personnel requirements

personnel training requirements

organization and management structure requirements

remote site space requirements and operational procedures to effectively use CMI training support

equipment, maintenance, spare parts, and logistics requirements.

The results of a study which recommends reducing the Navy Officer Candidate School (OCS) program from 19 weeks to 16 weeks with minimum decrease in the quality of the graduate officer are described. To achieve the mandated reduction in training time, the study makes recommendations in the following areas:

appropriate curriculum by topic

hours per topic

recruitment/selection

pre-entry briefing of officer candidates

leadership training

use of rifles in training

pass-in-review exercise

physical training

shipboard experience.

The report:

provides an overview of the military services and Coast Guard officer acquisition systems
Technical Report 120

Technical Reports

- compares the Navy OCS program to other military service OCS programs
- compares OCS officer acquisition programs to other Navy initial officer acquisition programs
- describes the Navy OCS in detail
- discusses the relationships of OCS to the follow-on schools.

A final section of the report discusses issues affecting the Navy officer accession training process.

A guide to directives and instructions concerning the operation and maintenance of weapon systems/equipment training is contained in this report. Also, the guide provides orientation and guidance to:

- novices in managing systems/equipment
- CNET Training Plan Officers
- all personnel in the Naval Education and Training Command (NAVEDTRACOM).

This report integrates information and references dealing with:

- Navy system/equipment acquisition process
- Department of Defense Planning, Programming and Budgeting System

It is a guide to:

- Defense System and Equipment Training Management in the NAVEDTRACOM
- information, references, and instructions relating to CNET's defense system/equipment training responsibilities.
Technical Report 120
Technical Reports

The purpose of this study is to determine the amount and pattern of attrition in Navy class "A" schools. The specific objectives of the Navy are:

1. identify those factors associated with academic attrition
2. determine the overall and course-specific costs of academic attrition
3. suggest corrective courses of action for monitoring, controlling, or reducing academic attrition.

The major variables that were identified as contributing to attrition are:

1. academic attrition
2. nonacademic attrition
3. qualified inputs
4. unqualified inputs
5. cost per equivalent graduate.

This study evaluated the effectiveness of using microfiche versus traditional paper copy as an instructional medium in Navy technical training. These media were compared in terms of:

1. the effects of the medium on:
 1a. time to complete an instructional course
 1b. examination error rate
 1c. training as a function of trainee aptitude.
2. trainee attitudes about using microfiche
3. costs of alternative media.
The cost effectiveness of instructional support delivered at job sites directed and controlled by a centralized Computer Managed Instruction (CMI) System was evaluated.

The specific objectives of the effort were to determine:

- whether learning is as effective when CMI is delivered to remote sites as CMI is in learning centers
- whether the attitudes of students, trainers and key remote site personnel support CMI delivered to remote sites
- whether CMI is as economical when delivered to remote sites as compared to learning centers
- personnel requirements
- personnel training requirements
- organization and management structure requirements
- remote site space requirements and operational procedures to effectively use CMI training support
- equipment, maintenance, spare parts, and logistics requirements.

The tasks described in this report include:

- developing an economic rationale
- designing and developing a research plan and a demonstration plan
- specifying tasking requirements
- developing a demonstration master plan
- developing data collection instruments.

This report:

- analyzed the procedures and functions required for publishing Navy training materials
- described the best suited and most cost-effective man/machine system to meet those requirements

The current CNET publishing system is described and analyzed in terms of:

- authoring
- composing
- encoding
- typesetting
- editing
- printing
- illustrating
- platemaking.

Possible hardware elements for accomplishing these functions are described. Five alternative systems to the current one are defined as the:

- Word Processor Based System
- Advanced Word Processor Based System
- Advanced Word Processor Based System with a Typesetter
- Text Editor Based System
- Text Editor Based System with Graphic Scanner.

A cost analysis of the publishing system alternatives is presented.

The feasibility of developing data based classification categories for Naval technical training courses was determined. A procedure identified (or selected), demonstrated, and documented methods for classifying training courses on various descriptive bases.

A method for finding homogeneous groups of courses within the broader Naval training categories of "A" and "C" is presented. A computer based clustering algorithm was used on data from a sample of over 400 Navy enlisted technical training courses. Data on courses were obtained from:

- existing training management information data bases
- a course description survey developed for this study.

This report:

- documents the essential components of scheduling training at the Fleet Anti-Submarine Warfare Training Center, Pacific
- provides results of an initial effort to automate the current manual scheduling process
- demonstrates the proposed automated process.

Recommendations for additional study efforts related to the development of an automated optimal scheduling system are presented.

This report addresses the Fleet requirements of Navy apprentice training after 1980. This study of apprentice training was carried out by:

- determining the current status of the program
identifying existing problems and recommending solutions

suggesting organizational alternatives for placing apprentice training in the Navy training system.

The training effectiveness of Device 2F87F was investigated by examining factors that influence device use. Specifically, the study examined:

- performance of a group trained in the aircraft only compared with a matched group trained in a simulator and the aircraft
- the value of training trials as indices of student performance and device effectiveness
- correlation of performance in Device 2F87F with performance in the P-3 aircraft
- effect of undergraduate pilot training (UPT) performance on later performance in the Fleet Readiness Squadron (FRS).

In this study the following was considered:

- the number of in-flight hours without training in Device 2F87F needed to complete the Familiarization/Instrument phase of FRS
- transfer effectiveness ratios for Device 2F87F
- benefits of landing practice using Device 2F87F
- correlation between UPT performance (flight grades and flight hours) and FRS performance.

The basic steps in doing an economic analysis are outlined. This document is designed for mid-level managers and analysts who make resource allocation decisions. The techniques proposed are intended for short-run operational problems such as:
Technical Report 120

Technical Reports

- equipment acquisition
- contracting
- consolidating training activities
- reorganizing training activities.

The development of the Navy Consolidated Electronic Warfare (EW) Operator Training program is described. The report focuses on developing the overall EW operator training system which involved:

- the integration of instructional technology
- simulation technology in the design of the training system.

In addition, TAEG's responsibilities in managing this program are presented.

The current and future application of computers in electronic equipment maintenance training devices was surveyed. Emphasis was placed on examining computer software simulation techniques. These techniques generated simulation of:

- electronic equipment front panel operations characteristics
- internal circuit static operating characteristics
- internal circuit dynamic operating characteristics.

The relevant literature in electronic equipment maintenance training devices was organized and reviewed. A bibliography of relevant literature is included in this report.
This report describes AUTHOR, a computer program for the automated authoring of program text designed to teach symbol recognition. This report emphasizes computer aided authoring with alphanumeric symbols and memory aids. Sample texts are provided which represent various levels of off-line editing. These texts indicate the full range of authoring automation. This report describes the following:

- design of the instructional materials
- computer system description
- computer program architecture.

An operator's handbook (Volume I) and program listing (Volume II) describing AUTHOR are contained in this report. AUTHOR is an automated authoring computer program which produces programmed texts designed to teach symbol recognition. Volume I (AD No. A059572) contains the following sections:

- preparing the AUTHOR workbook
- using the WANG computer
- creating and maintaining the subject matter data base
- creating and maintaining the programmed text (learning module)
- optional features of the AUTHOR system.

Volume II (AD No. A061611) contains the following sections:

- AUTHOR system initializing program
- formal display program
- data base maintenance programs
- learning module maintenance programs
formal data subprograms
formal listings
compressing program source code.

This is a guide for creating mnemonics for technical materials. The mnemonic techniques described in this report can be used as learning aids in:

- programmed instruction
- technical manuals
- lesson plans for classroom instruction.

This guidebook provides a means for determining:

- when to use mnemonics
- how to choose an appropriate type of mnemonic
- how to create the mnemonic.

The guidebook should be particularly useful to Navy curriculum developers carrying out the guidelines in NAVEDTRA 106A.

This study analyzed the current resource requirement request (RRR) process and recommended ways to improve it. The RRR is the process by which the Chief of Naval Education and Training (CNET) gets funds for resource requirements. The following were studied and discussed in this report:

- make a model of the RRR initiation and staffing processes within a CNET functional command
- diagram RRR staffing within CNET and their interactions with the originating functional command
. identify steps in the RRR POM process that can be simplified or eliminated
. determine CNET staffing needs for the process of submitting RRRs
. develop possible ways for improving the RRR/POM process.

This report addresses:

. selecting, training, and making the best use of the Navy Recruit Company Commanders
. optimizing the use of the Company Commanders to meet the needs of Navy recruit training in the post-1980s.

The report reviewed the Navy's Company Commander program in the following areas:

. mission and organization
. selection criteria and procedures
. career benefits and incentives
. training approach and content
. duties and functions.

Finally, this report provides:

. a comparison between the Navy Company Commander program and similar programs of the other military services
. a proposed standardized recruit training instructor school curriculum.

This report examined:
the effectiveness of Device 2F87F to train the final part of the P-3 landing task

the need for specific objectives concerning cockpit motion to be in the training curriculum

the frequency of motion sickness in the simulator with the cockpit motion system off and the visual system operating.

The analysis studied the following factors in P-3 landing practice:

- overall flight hours
- flight hours to landing proficiency
- P-3 landings needed
- transfer effectiveness ratios
- qualifying students based on their undergraduate pilot training
- frequency of motion sickness.

Three methods of obtaining training feedback data from the fleet are compared:

- a mail-out questionnaire
- a structured interview procedure
- a job knowledge test.

The report evaluates the three different methods of gathering feedback with respect to:

- the relative merits of each
- optimum circumstances for using each.

An integrated career structured training program for shiphandling training was developed. In this training development, major training aids/devices were identified as follows:

- a career structured shiphandling training unit
- a full bridge mission simulator
- a new small craft training device.

Also included in the report are:

- shiphandling training unit lesson topics
- a functional specification for a full-mission shiphandling bridge simulator
- a concept design for a small craft training device.

The objectives of this study were to:

- evaluate the instructional effectiveness of materials designed according to NAVEDTRA 106A
- demonstrate if it would be feasible to produce effective instructional materials using computer-aided authoring routines.

The following types of instructional material were compared:

- the traditional materials (study guide pages and flash cards)
- a guided practice handbook
- a mnemonics only handbook
- a guided practice with mnemonics handbook.
The purpose of this study was to design:

- a Navy recruit training system to meet the needs of the Navy during the 1980s
- an optimized recruit training curriculum
- a revised standard organization to support the curriculum
- an implementation plan.

The curriculum design provides a four phase modularized curriculum addressing:

- administrative processing and training preparedness
- military training
- Navy training
- detachment and transfer training.

A mechanism was developed for considering alternatives to the optimal curriculum in the event that changes would be needed.

Supplement I (AD No. A068536) published as a separate document, contains a complete set of topic worksheet summaries. It is for the use of staff personnel concerned with developing curriculum outlines and lesson plans.

A cost management control procedure to assist Navy managers in making decisions about surface ship acquisition programs was developed. The objectives of this study were to:

- develop and illustrate a cost management control procedure. This procedure would be used in commercially developed initial training programs to centralize the collection, storage, and control of cost data.
develop an instrument for collecting cost data which is compatible with:

- existing training requirements directives
- proposed cost management control procedures.

identify and examine the major noncost management considerations that would affect using the proposed cost procedures.

This study refines and uses the TAEG developed data reduction techniques to extend the attrition data base. The objectives of the study were:

- identify those factors associated with academic attrition
- determine the overall and course specific costs of academic attrition
- identify the extent and pattern of attrition in A1 and A3 courses
- suggest corrective courses of action to monitor, control, and reduce academic attrition.

The major variables studied included:

- academic attrition
- nonacademic attrition
- qualified vs. unqualified personnel inputs
- cost per graduate.

The objectives of this study were to:

- describe the implementing of Instructional Systems Development (ISD) in the Naval Education and Training Command from an organizational point of view
- evaluate the organizational aspects of implementing ISD
identify areas which need to be improved and recommend a proposed organization for future Instructional Program Development Centers

explore alternatives for implementing ISD in the future.

This study produced a draft OPNAV instruction. The instruction will provide for the efficient and effective acquisition, evaluation, and acceptance of training devices acquired with RDT&E funds. The specific objectives of this study were:

- identify current factors in all services concerning acquiring, evaluating, and accepting training devices
- develop a system for classifying training devices which can be used to evaluate them
- prepare, coordinate, and revise a proposed OPNAV instruction.

The Automated Course Scheduling System (ACSS) was developed to relieve Naval training personnel from the necessity of using the labor-intensive manual scheduling process. It would also provide the capability of studying all possible schedules to achieve better use of school resources.

The objectives of this study were to:

- describe the structure of the ACSS and its elements along with the logic within each element
- provide a user's guide to familiarize Navy training personnel with the use of the ACSS
- document the programming details of the ACSS.

A CNET Automated Budget System (CABS) developed by the Training Analysis and Evaluation Group for the Chief of Naval Education and Training (CNET) is described.

It presents:
. a guide for Naval Education and Training Command personnel using the CABS in the annual budget preparation process
. step-by-step procedures using the WANG 2200 VP computer software
. guidelines for automating and integrating the most critical CNET budget items.

A conceptual model for a Navy enlisted career plan is presented. The Aviation Electrician's Mate (AE) rating was used as an example of this conceptual model.

Features of the proposed AE plan include:
. clearly defined professional levels
. a trackable career plan
. periodic integrated training.

This report describes three studies which were conducted to investigate the:
. relationship between attrition and personality characteristics of Navy and Air Force recruits
. development of performance problems during basic recruit training.
Anxiety, curiosity, anger, and social attitudes were measured in Navy and Air Force recruits who were:

- high risks for attrition
- likely to develop academic or disciplinary problems during basic training.

This report presents feedback information concerning Mess Management Specialist (MS) "A" School training. Presented in this report are data concerning:

- how relevant MS "A" School training was for graduates' fleet job assignments
- how well MS "A" School graduates perform job tasks after MS training.

Also, a part of this report discusses:

- how equivalent are feedback data obtained from Naval Education and Training Command school sources vs. fleet sources
- how comparable are feedback data obtained from sea vs. shore environments.

83 Swope, W. M., Yelvington, Cynthia, and Corey, J. M. Incremental Costing Model for Use with the CNET Per Capita Course Costing Data Base: System I. Technical Report 77, 1979, AD A081759. (105 pages)

An incremental costing model was developed. The model was designed to estimate the marginal cost for courses in the Chief of Naval Education and Training Per Capita Cost to Train Data System. The model provides the capability to:

- determine the changes in costs as the number of average on-board students changes
- calculate cost changes at the course, division, department, and activity level
- consider time as it relates to the ratio of fixed to variable costs
- allow for direct cost inputs for cost changes
estimate cost changes as a result of incrementing or decrementing the training load

consider training capacities when estimating cost changes which result from changing the training load

be programmed on a minicomputer and integrated with the existing Per Capita Cost Data System. This is done so that it can give timely estimates of cost changes resulting from expected changes in course training levels.

This study was conducted to:

- determine the current status of individualized instruction in the Navy and other military services
- identify the factors influencing its effectiveness
- identify present or potential problem areas
- recommend strategies/policies to improve individualized instruction in Navy technical training.

Specific recommendations are discussed in the following areas:

- management information systems
- training of instructors and managers
- terminology
- student-instructor incentives
- cost benefit analyses
- further study requirements.

This report describes the:

- development of a Navy-relevant remedial reading workbook
- evaluation of the workbook in the Navy's remedial reading program
- compatibility of the workbook with the Academic Remedial Training curriculum.

The entire workbook is contained in the appendix.

A user-oriented, predictive computer model of the Consolidated Navy Electronic Warfare School's (CNEWS) student flow was developed.

The purpose of this study was to:

- define the modeling problem
- determine the types of data required for modeling
- collect the required data
- develop a document necessary to prepare a procurement package for developing and testing of the model(s) to be developed.

The overall model objectives are to give planners the means to determine:

- the maximum, minimum, and average expected times-to-train for each type of student
- the trade-offs involved in selecting one type of curriculum structure over
A final objective of the model is to make it compatible with the Navy's CMI computer system (Honeywell 66/4400).

Selecting, training, and maximizing the use of officers assigned to the Navy Recruit Training Commands (RTCs) is addressed in this report.

This study examines:

- the current orienting and indoctrinating programs for Navy RTC officers
- how these programs compare with similar activities in the other military services
- the best training and orienting of officers assigned to Navy RTC divisions.

The objectives of this study are to:

- develop recommendations for selecting and maximizing the use of officers assigned to the RTCs
- develop a comprehensive orienting and indoctrinating program for officers newly assigned to the RTCs
- prepare a proposed topic curriculum outline for training the officers assigned to the RTCs.

Major current and anticipated problems in three primary areas of Navy fire fighting training are identified:

- management of training
- shortfalls in required training
Technical Report 120

Technical Reports

- improper or inefficient training.

The data obtained were organized to determine:

- the extent to which fire fighting training is achieving its goals
- the need for additional training requirements
- management considerations for improving training.

Described in this report is a computer readability editing system (CRES) to improve the ease of comprehending Navy technical manuals and training materials. The following aspects of CRES are described:

- development of CRES
 - system hardware
 - software features of the system
 - readability formula
 - common word list
 - supplementary technical word list
 - word substitution lists
 - editing process

- test of the CRES
 - test passages
 - evaluation of CRES features
 - readability formula
 - common word list
 - word substitution lists.

Traditional and innovative learning procedures that can be used in Navy schools and in onboard training were evaluated. This study compares the following
learning procedures:

- the type of lesson material now being used in Navy schools
- a job aid being called for in some recent Department of Defense contracts

This study compared the effectiveness of three types of handbooks used in learning to perform procedural tasks:

- the traditional narrative presentation
- the job performance aid
- the learning aid.

An improved and expanded version of the CNET Automated Budget System (CABS) that was described in TAEG Report No. 73 is described. This document describes the automating and integrating of the following CNET budget exhibits:

- expense elements
- base operations
- travel
- inflation
- band increments
- civilian personnel
- reimbursable
- human goals
- military end strength
- current year unfunded requirements
- audiovisual.
This report is intended to be a guide for Naval Education and Training Command personnel in preparing the annual O&MN budget.

Problems that Hispanics face during recruit training primarily because of English language deficiencies are discussed in this document. The study considered the following:

- ethnic background
- education level
- language proficiency skills
- recruit academic performance
- attrition
- costs and potential benefits of establishing an English language training program.

The long-term effects of simulator training at the Fleet Readiness Squadron on later performance in operational squadrons were examined. This report presents:

- operational performance data suitable for measurement of training effectiveness
- the advantages of simulator trained pilots over nonsimulator trained pilots.

A System for Computer Automated Typesetting (SCAT) which inserts special graphic symbols in programmed instructional materials is described. This report presents:
. an overview of the SCAT
. component requirements of SCAT
. SCAT flow chart
. examples of SCAT input data
. composed SCAT textstream
. typeset output from using SCAT
. technical approach used in developing SCAT
. rationale used in the software decisions in developing SCAT
. factors impacting on the automated preparation of computer authored programmed instructions through the typesetting process
. a glossary to aid communications between the SCAT user and the typographer.

This report presents a study of:

. computer based instruction (CBI), specifically:
 . . major categories of CBI
 . . trends in CBI
 . . an economic projection of CBI developments
 . . four CBI alternatives
 . . an assessment of these alternatives in terms of key system characteristics

. initiatives for improvement of Navy instructional management in the 1985 to 1995 time frame.

Described in this report is a study which:

- developed a selection model for predicting signalman performance in sending and receiving Morse code
- evaluated several training strategies to promote the learning of Morse code.

The study was designed to:

- identify specific nonverbal factors which may account for the different performance of various aptitude groups in receiving visual Morse code
- validate selection tests being used to assign signalmen.

Presented are the results of a study in which interactive instructional television training programs for electronic warfare (EW) signal recognition training were developed. The report describes:

- the delivery medium selected
- rationale for use of the video media to be applied in EW training
- the video system selected for the Consolidated Navy EW School (CNEWS)
- progress in implementing previous EW TAEG reports (TAEG Report No. 4, 1972 and TAEG Report No. 56, 1978) and planning associated with each.

Summarized in this final report is a study which assessed how feasible and desirable it would be to obtain training feedback information from petty officers attending advanced schools within the Naval Education and Training Command.
This report summarizes six previous TAEG reports which provided evaluation data on the following ratings: Aviation Machinist's Mate, Machinery Repairman, Engineman, Mess Management Specialist, Aviation Electronics Technician, Aviation Fire Control Technician, Aviation Antisubmarine Warfare Technician, Fire Control Technician.

The report also contains:

- an evaluation of the method developed for collecting feedback data
- recommendations and procedures for future use of the method.

This report updates TAEG Report No. 15, Surface Navy ECCM Training Analysis, published in April 1975.

The report provides an update of:

- the current status of surface Navy ECCM training
- training devices and aids
- fleet ECCM readiness
- recommendations for improving ECCM readiness.

A method to determine the proficiency of Fleet Replacement Squadron student aviators is proposed in this report. The Computer Aided Training Evaluation Scheduling (CATES) system is a computer managed method to prescribe training programs based on individual student performance.

The report describes the:

- problems encountered in determining proficient task performance of students
- conceptual development of the CATES system as a method that may be used to determine proficiency.

This report presents the results of a situational analysis of the Navy Training Plan (NTP) process. The report describes the:

- NTP process
 - generating training requirements
 - generating the training plan
 - forecasting and managing the training plan
- purpose of the NTP
 - user requirements
 - case study: the Consolidated Navy Electronics Warfare Training Plan
 - deficiencies in the NTP process.

The intention of this report is to aid in the designing of training systems by communicating and clarifying basic ideas about describing job tasks and their analysis. This report presents:

- two fundamental data collection approaches discussed in terms of their advantages and disadvantages
- behavioral approaches or analytic basis for analysis
- integration of collecting data and formulating behavioral objectives
- selected current efforts in Navy training task analysis.

This study investigated and summarized trends taking place in managing training in selected industrial organizations. This study addressed the following aspects of training industry:
corporate education and training policy
management emphasis on training forecasting and planning
cost of personnel and the training budget
shortages of skilled personnel
advances in technology
manpower training investment
management position concerning employee development in today's labor force
personnel and training management information system
corporate training management
corporate training staff
corporate subelement management and staff.

Approaches for using the system development operational test and evaluation (OT&E) phase to obtain data for developing follow-on and replacement training were explored. This report describes a method to provide data to CNET on the adequacy and suitability of contractor-conducted training. This method provided CNET with the capability to assess the impact a new weapon system has on training. On the other hand, this method would provide COMOPTEVFOR with CNET's training expertise.

This report contains a proposed CNET instruction establishing policies and procedures for CNET Functional Commanders. It asks them to provide assistance during the training evaluation phase of OT&E.

The purpose of this study was to evaluate the proposed 1200 PSI simulator, Device 19E22. More specifically, this study investigated the:
probability that the training device would meet the training objectives
Technical Report 120
Technical Memorandums

Cost to produce a device that would meet the training objectives.

This report describes the Acquisition Cost Estimating Using Simulation (ACLS) model developed by the Training Analysis and Evaluation Group. This report provides a technique for incorporating uncertainty and risk into the acquisition cost estimating procedure. The estimates are presented as a range of values, encompassing engineering, manufacturing, and logistic support estimates. This memorandum shows how feasible the technique is to use and presents some of its limitations.

A cost analysis of the electronic warfare (EW) operator training system in the Navy is provided. More specifically, this report provides:

- amplifying data of the original EW operator training system. (The original cost data was obtained in 1972.)
- a life cycle cost analysis of the EW operator training system. This analysis is based on 1975 data as presented in the Navy Consolidated Electronic Warfare Training Plan.

This report presents an integrated cost analysis of all data obtained by TALO to date on the EW operator training system.

Presented in this document is a preliminary cost analysis of the Instructional Systems Development (ISD) plan. It represents a quick reaction cost analysis of the expected investment return when implementing the ISD model in the Naval Education and Training Command. Primary emphasis focused on the following:

- savings when the ISD concept has been implemented
- payback that can be realized with the use of ISD.

Personnel resource indices were formulated. The objectives of this study were:

- develop a set of manpower use indices which would give CNET information required in personnel management
- develop manpower use indices using data gathered from existing reporting systems.

These indices are intended to provide management with information to assist in managing personnel.

This memorandum:

- discusses the difficulties encountered in using direct, indirect, fixed, and variable resource cost categories
- presents a set of definitions which attempts to remove the ambiguities associated with their use.

Swope, W. M., and Cordell, C. C. A Study to Develop Management Indices for the Chief of Naval Education and Training, Phase II: Capital Resources Indices. Technical Memorandum 76-2, 1976. (49 pages)

Capital resource indices were developed by:

- separating the budget capital resources from the investment capital resources
- using data gathered from existing reporting systems
- making sure they were compatible with the personnel indices developed by TAEG (TAEG Technical Memorandum 75-7).

This reporting developed a set of management indices covering the use of capital resources. The indices will provide:
a set of tools which can be used to identify inefficiencies that exist in the use of training resources

useful information for the decision maker in establishing policy, planning long-range training, and managing resources.

The purpose of this report is to provide:

a user's guide for the Training Requirements Analysis Model (TRAM) in the interactive mode

necessary information to generate the TRAM database.

Summarized in this report are the results of a field test conducted to determine the usefulness of the Individualized Training Simulation System (ITSS) to Naval training. This report describes the following aspects of the ITSS field test:

the ITSS was reviewed to determine how applicable it was to current problems in course development and management

the ITSS was modified to include the capabilities necessary to apply it to the BE&E School

the modified ITSS was reviewed by field test users

an aggregate entity flow model of the BE&E School was constructed

the model was applied to the problem of projecting school throughput for different course group and learning module distributions

a preliminary assessment of applying the model is presented.

This technical memorandum presents:

. the Systems Capabilities/Requirements and Resources (SCRR) model description
. a detailed explanation of the functional flow of the model
. the assumptions used both in the design and application of the model
. description of the input parameters
. detailed discussion of the output parameters with sample listings and sensitivity analysis descriptions.

The results of a quick reaction analysis are presented. It explored whether it would be desirable and cost effective to develop an automated education and training record for all active Navy personnel. This report describes the following aspects of the Navy Campus for Achievement (NCFA) Automated Data System (AuS):

. current user/operator/management opinion
. present NCFA ADS
. Army experience and status
. potential implications of Navy-wide educational training AuS.

A full-scale automated data processing system analysis and design proposal is included.
The objective of this study was to determine the costs and benefits to be derived from implementing the instructional systems development process. The following were discussed relevant to the approach:

- rationale
- nonquantifiable benefits
- assumptions and data source
- analytical model.

A technique for prioritizing items in the Chief of Naval Education and Training's annual Program Objective Memoranda (POM) submissions was developed. Major Navy commands annually submit POMs which recommend items to be budgeted within their command. Two features of this report were:

- examining existing techniques and practices for prioritizing POM submissions
- presenting a Budget Item Prioritization (BIP) technique developed by the TAEG based on existing techniques for human decision making modeling.

This study:

- demonstrated the sound/microfiche as a substitute for sound/slides in a technical training environment
- sampled the attitudes and recommendations of instructors and trainees about this medium
- made cost comparisons between alternative audio/visual systems.

Establishing a dialogue between personnel of the Naval Technical Information Presentation Program (NTIPP) and the Naval Education and Training Command (NAVEDTRACOM) concerning designing technical manuals was the intention of this memorandum. The NTIPP is a Chief of Naval Material/Systems Command program to improve maintenance handbooks and other types of technical data provided with Navy equipment. The following issues are presented as being of mutual interest to both commands:

- developing maintenance handbooks to better support:
 - classroom training
 - factory training
 - onboard training
- reducing the cost of producing training manuals.

This memorandum describes a Foreign Military Training Management Information System (FMTMIS) developed by the Training Analysis and Evaluation Group. The FMTMIS is a management information system which schedules courses and tracks the progress of foreign students who attend U.S. Navy schools. The report presents user information on how to edit, sort, and print student and course data.

The purpose of this study was to determine if it would be feasible for the Navy to provide all or part of precommissioning training. The objectives of this study were to:

- evaluate the cost and training effectiveness of the Combat Systems Maintenance Management Training (CSMTT) course given to the USS Texas (CGN-39) crew
- formulate an approach to decide whether all or part of the CGN-39 CSMMI course could be used cost effectively in Navy precommissioning training.

This study reassessed the economic impact of five fully funded and staffed Instructional Program Development Centers. The following were discussed relevant to the approach:

. rationale
. nonquantifiable benefits
. assumptions and data sources
. analytical model.

A previous TAEG report on this subject is TAEG Technical Memorandum 76-7.

123 Hall, E. R., Denton, Carol F., and Papetti, C. J. Description of Selected Training Appraisal Programs Within the Naval Education and Training Command. Technical Memorandum 77-7, 1977. (57 pages)

The effectiveness of different types of training appraisal programs within the Naval Education and Training Command was compared and analyzed. This report discusses the following aspects of training appraisal documentation and practices:

. curriculum data
. appraisal systems
. internal evaluation
. external evaluation
. feedback to fleet.

The feasibility of developing a Training and Education Record System (TERS) was investigated. The TERS would be a consolidated source of training and education information for all Navy personnel. This report discusses the following
Technical Report 120
Technical Memorandums

topics:

- current sources of training/education information
- current uses of training/education information
- perceived benefit and use of TERS
- organizational interest in developing TERS.

Information concerning the value of Aviation Electrician's Mate (AE) "A" School training is presented. More specifically, this report sought to determine:

- how well the AE "A" School prepares the student for specific requirements of his job
- whether all of the AE "A" School training given is necessary for the AE's job.

This memorandum presents information concerning the value of Boiler Technician (BT) "A" School (1200 PSI) training. More specifically, this report sought to determine:

- how well the BT "A" School prepares the student for specific requirements of his job
- whether all of the BT "A" School training given is necessary for the BT's job.

The findings and recommendations of an analysis of the Electronic Warfare (EW) School's media needs are provided. The objectives of the study were:

- relate the basic tasks of EW to selecting appropriate instructional
strategies

. recommend a specific course to develop and procure media
. recommend a way to obtain cost-effective instructional media.

The objective of this study was to develop an immediately useful cost model which could be used to compute the fees foreign governments should pay for Navy course curricula. The following topics are discussed:

. the costing model
. estimates of coefficients for interim model
. modifying the interim cost model in the future.

The alternatives available to "C" schools in meeting their requirement to use the Instructional Systems Development manual (NAVEDTRA 106A) were determined. More specific objectives of this study were to:

. assess how practical NAVEDTRA 106A is for revising "C" school curricula
. identify the resources now being used to revise "C" school courses
. determine the type of documents needed to support implementing the concepts and procedures of NAVEDTRA 106A in the Navy "C" schools
. identify the resources needed to implement NAVEDTRA 106A in the "C" schools.

This study developed and organized relevant data to determine how feasible it would be to consolidate A-6E aircrew and enlisted replacement training. The report discusses the following topics concerning consolidating A-6E aircrew and enlisted replacement training:

- training environment and facilities
- analysis of training requirements
- personnel support requirements for consolidating Navy and Marine Fleet Readiness Training
- aircraft requirements
- Fleet Replacement Aviation Maintenance Personnel (FRAMP) Program
- cost estimates associated with consolidating replacement pilot and bombadier/navigator training.

Information concerning the job performance of recent Aviation Machinist's Mate (AD) A1 graduates is presented in this report. The information was collected from petty officers who were currently students at instructor training or "C" School. Specifically, this report sought to:

- determine how well the AD A1 course prepares the student for specific job requirements
- describe job performance problem areas in enough detail to promote:
 - identifying problems that should be addressed in the course curriculum
 - prioritizing the problems for applying training remediation resources
 - developing specific curriculum improvements.

A separately bound volume, Supplement I, to this report contains complete summaries of all feedback data collected. Also, copies of worksheets used by subject matter specialists to evaluate the quality and usefulness of the feedback data are presented in the supplement.

This memorandum presents information concerning the value of the Machinery Repairman (MR) A course. More specifically, this report sought to:

- determine how well the MR-A course prepares the student for specific requirements of his job
- describe job performance problem areas in enough detail to promote:
 - identifying training problems that should be discussed during on-the-job training
 - developing specific curriculum improvements
- determine whether all of the MR-A course training given is necessary for the MR's job.

Presented in this memorandum is information concerning the job performance of recent Engineman (EN) Class A students. The information was collected from petty officers who were currently students at instructor training or "C" School. Specifically, this report sought to:

- determine how well the EN-A course prepares the student for specific job requirements
- describe job performance problem areas in enough detail to promote:
 - identifying problems that should be addressed in the course curriculum
 - prioritizing the problems for applying training remediation resources
 - developing specific curriculum improvements.

A separately bound volume, Supplement I, to this report contains complete summaries of all feedback data collected. Also, copies of worksheets used by subject matter specialists to evaluate the quality and usefulness of the feedback data are presented in the supplement.
134 Trotta, C. M. Military Service Reporting System. Technical Memorandum 79-6, 1979, AD A077051. (123 pages)

The automated Military Service Reporting System (MILSERV) developed by the Training Analysis and Evaluation Group is described in this document. The system is intended to be used by the Chief of Naval Education and Training Code N-6 and the functional commands who are required to submit data for this report to CHIC. NAVCOMPT Form 2182, Military Service Report, is used for data submission. The MILSERV software is a package of seven programs:

- system start-up
- data merge
- activity file edit/print
- checklist print
- data base initialization/edit
- data entry verification
- summary report print.

This study examined how feasible it would be to collect incremental costing information by surveying cost accounting centers. The objectives of the study were:

- compare the alternative cost concepts of total, average, and incremental costs
- demonstrate that incremental cost is the appropriate alternative to use for managerial decision making
- demonstrate the use of the method in a typical training environment.

72

This report is an economic analysis of alternative test input systems in the existing Navy Computer Managed Instruction system. The two options selected for detailed economic analysis were to:

. continue with an optical scanning vendor with a renewed rental/maintenance contract
. adopt, modify, and implement an electronic test input system which functionally replaces the present OPSCAN-17 system.

This document describes the Landing Signal Officer Information, Status, and Tracking System (LISTS) developed by TAEG to monitor LSO training. The report presents the following aspects of LISTS:

. an overview
. major system options
. an operating guide.

This is a user's manual for the incremental costing model developed for use with the CNET per capita course costing data base. This manual outlines how to use the computer programs which are made up of:

. programs needed for preparing and updating the various files necessary to operate the cost model
. the cost model program itself
. a program to print selected fields of the per capita data base.

Information concerning the value of Avionics Technician (AV) "A" School training is presented in this report. More specifically, this report sought to determine:

- how well the AV "A" School prepares the student for specific requirements of his job
- whether all of the AV "A" School training given is necessary for the AV's job.

This memorandum presents information concerning the job performance of recent Fire Control Technician (FT) "A" School course graduates. The information was collected from petty officers who were currently students at instructor training or "C" School. Specifically, this report sought to:

- determine how well the FT "A" School prepares the student for specific job requirements
- describe job performance problem areas in enough detail to promote:
 - identifying problems that should be addressed in the course curriculum
 - prioritizing the problems for applying training remediation resources
 - developing specific curriculum improvements.

Described in this memorandum is the automated Resource Authorization System (RAS) developed by the Training Analysis and Evaluation Group (TAEG). The system is intended to be used by the Chief of Naval Education and Training and the functional commands who issue resource authorization and expense limitations. The RAS software is a package of eight programs:

- activity file edit/print program
- NAVCOMPT Form 2168 Edit Program
reasoning the Resource Authorization
printing worksheets
printing the change file
standard remarks program
printing the NAVCOMPT forms 2168 issued
editing the change file.

This study determined if Navy authors of instructional material could create effective memory aids to use in rote learning of this material. The report describes the following topics:

- developing two training booklets incorporating memory aids
 - Aids to Navigation
 - Proper Use of Sound Powered Phones
- testing these booklets in a classroom setting.

The results of evaluating the short- and long-term impact of a suggested change to the NROTC core curriculum are presented in this report.

The following objectives were used to guide the study:

1. assess the impact of the proposed curriculum on NROTC accession patterns and graduate performance during Navy follow-on training
2. identify academic knowledges that support acquiring professional/military skills in the NROTC program and in Navy follow-on training
3. design a management information system that collects, stores, and analyzes the data needed for the study.

This is a paper delivered at the annual meeting of the American Educational Research Association in San Francisco, April 8-12, 1979. The paper describes the computer-aided authoring technique for generating symbol learning materials. Three related issues are discussed:

1. the training effectiveness of computer authored materials
2. the cost-effectiveness of computer authored materials
3. what can reasonably be expected from computer authoring.

This paper offers a theoretical explanation of why the current foreign military training pricing policies do not meet the results required by Congress. The following four alternative policies for pricing foreign military training are discussed and evaluated:

1. average cost pricing
Technical Report 120

Technical Notes

- marginal cost pricing
- maximum revenue pricing
- pricing for other social, economic or political objectives.

Guidelines for CNET training activities to use in developing task statements for feedback questionnaires are provided. The following general guidelines are discussed:

- use short abbreviations cautiously
- use short words and phrases
- begin the task statement with a present tense action verb
- make each task statement specific
- make each task statement a complete sentence
- use simple statements without qualifiers
- use comparable modifiers for significant tasks for greater specificity
- avoid stating tasks that are obviously too specific or trivial
- avoid listing tasks that are too general
- avoid redundancy and unnecessary qualifier phrases.

This is an invited paper presented at the conference, "50 Years of Flight Simulation," sponsored by the Royal Aeronautical Society and the American Institute of Aeronautics and Astronautics, London, England, 23-25 April 1979. The theme of the paper is that flight simulators can be employed efficiently and effectively in military flight training. A three year experimental program is described which demonstrates the value of the simulator as a substitute environment for learning P-3 aircraft tasks. An account of the major facet of the program is provided dealing with the receipt and integration of the flight
simulator into the ongoing Fleet Replacement Squadron (FRS) training. The intent of the program was to:

- determine the potential of the 2F87F simulator as a substitute environment for learning aircraft tasks
- integrate the new simulator into the fleet replacement pilot training program
- reduce in-flight training time in qualifying pilots for assignment to operational P-3 squadrons.

Described in this report is an organizational analysis of the Naval Training Center, Orlando, Public Works Department. The objectives of the study were:

- describe how the Public Works Department operates
- identify this department's functional needs
- analyze the department's current resource support and identify additional needs
- identify the trends in the department's operation and personnel and project their impact
- recommend options to increase the effectiveness/efficiency of the department's operations
- analyze the management information systems currently used to determine how adequately they meet the department's needs.

This study analyzed the organization, operations, and functions of the Naval Training Center, Orlando, Security Department. The objectives of the study were:

- determine the efficiency of current operations based on directives, instructions, standards and other policy documents
Technical Report 120

Technical Notes

- identify deficiencies in current operations as measured against existing policies and standards
- identify and quantify those changes in management, policy, and resources needed to remedy existing deficiencies.

Cost estimates for rewriting U.S. Navy training courses for use by the Royal Saudi Naval Forces is provided. This report also:

- makes explicit the process of producing this type of cost estimate
- points out the problems that influence the validity of these estimates.

This is a paper delivered at the annual meeting of the American Educational Research Association in Boston, April 7-11, 1980. This report describes a remedial reading workbook to be used in the Navy's remedial reading program. More specifically, this paper describes the following aspects of the remedial reading workbook:

- development of the workbook
- evaluation of the workbook
- outcomes to date.

152 Cordell, C. C., and Nutter, R. V. Review of Fundamental Technical Subject (FTS) Units at Surface Warfare Officers School Command (SWOSCOLCOM). Technical Note 2-80, 1980. (14 pages)

This technical note presents the results of a review of the fundamental technical subject (FTS) units at the Surface Warfare Officers School Command (SWOSCOLCOM). The study reviewed the content of the FTS units and how applicable they were to actual course material in the department head course. The following aspects of the FTS curriculum were reviewed:

- student population
Technical Report 120

Technical Notes

grade analysis
unit analysis.

A Navy-wide training program addressing the authority of officers and petty officers in the U.S. Navy is presented. The objectives of this study were to develop a:

program reemphasizing and clarifying the authority of Naval officers and petty officers and the traditional concept of military authority, responsibility, and accountability

stand alone instructional package to be administered to petty officers by their command Master Chief that reflects the needs of individual command requirements.

The instructional package was also designed so that the executive officer could adapt it for the instruction of officers.

An analysis of maintenance task data for the NATO Seasparrow Missile System is presented. The data were obtained using a task inventory of Fire Control Technician (FT) and Gunner's Mate (GM) tasks in using the Seasparrow missile hardware. The data analysis provides information to evaluate the training relevance and adequacy of the FTs and GMs assigned to the Seasparrow Missile.

This report integrates sources of information and data bases dealing with education and training in the military, academia, government, and commercial areas. It gives the location, content, and means of access to these sources of information. This directory arranges the data sources in the following way:

- title directory

This is a paper delivered at the annual meeting of the Mid-South Educational Research Association in New Orleans, November 1980. The paper discusses the problems that Hispanics face during recruit training primarily because of English language deficiencies. The report considered the following:

- ethnic background
- educational level
- language proficiency skills
- recruit academic performance
- attrition.

This is a paper delivered at the annual meeting of the Mid-South Educational Research Association in New Orleans, November 1980. The paper reports the results of a numerical skills workbook field test conducted with Navy recruits in Orlando, Florida. Information is presented about:

- subjects
- data sources
- implementation procedures
- results
- developmental activities.
Aagard, J. A.:
29, 45, 64, 66, 67, 89, 105, 129

Braby, R.:
1, 6, 20, 29, 64, 66, 90, 119, 142, 144

Brakka, L. T.:
55

Branch, K. V.:
15, 34, 35, 41, 42, 112

Browning, R. F.:
5, 7, 11, 31, 48, 60, 69, 93, 130

Copeland, D. R.:
5, 17, 25, 26, 27, 28, 39, 59, 68, 73, 87, 103, 149, 153

Corde11, C. C.:
39, 47, 71, 74, 77, 88, 104, 105, 108, 109, 110, 111, 121, 152

Corey, J. M.:
83, 84, 128, 135, 150

Curry, T. F., Jr.:
17, 25, 26, 27, 28, 43, 51, 59, 68, 85, 87, 151

Dean, Carol F.:
17

Denton, Carol F.:
70, 82, 123, 125, 126, 132

Ainsworth, J. S.:
72

Ashcroft, Nancy:
92, 156

Barker, L. R.:
81

Baudhuin, E. S.:
50, 55

Bauer, L. R.:
4

Beagles, C. A.:
153

Bellamy, H. J.:
14, 15, 34, 35, 113

Bellomy, Susan G.:
44

Boudreaux, A. J., II:
3, 6

Bowman, H. L.:
157
AUTHOR Index

Diehl, A. E.: 31, 49

Duffy, L. R.: 14, 15, 16, 37, 38, 42, 46

Duren, B. G.: 101

Dyer, F. W.: 23, 24

Edison, C. G.: 15

Elkin, A.: 14

Gardner, J. H.: 13, 86

Gates, Susan C.: 17, 25, 26, 27, 28

Glauque, W. C.: 32

Guitard, C. R.: 64, 65, 91, 137, 155

Hall, E. R.: 22, 44, 45, 57, 70, 82, 98, 123, 125, 126, 131, 132, 133, 139, 140, 146

Hallman, R. E.: 14, 15, 33

Heidt, E. A.: 51, 71, 74, 77, 84, 143

Heller, G. H.: 138

Henris, J. B.: 3

Henry, J. M.: 20, 25, 26, 27, 28, 39, 59, 68, 73, 80

Hohman, G. W.: 3, 6

Hoyt, Margaret H.: 55

Hughes, H., Jr.: 98, 131, 133, 139, 140, 146, 153
Technical Report 120

AUTHOR Index

Ingle, H. T.:
50

Keeler, F. L.:
40, 56, 94

Keiser, B. E.:
50, 55

Kennelly, Della M.:
55

Kerr, N. J.:
157

Kincaid, J. P.:
66, 85, 89, 92, 142, 151, 156

Lam, Karen D.:
21, 30, 44

Lane, W. P.:
4

Lauber, J. K.:
5, 7

Lin, B. W.:
58, 78

Lindahl, W. H.:
12, 13, 58, 114

Loomis, H. W.:
101

Mac Keraghan, L. R.:
9, 10, 62, 86, 101

Martin, J.:
142

McDaniel, W. C.:
93, 100, 157

McElvenny, B. J.:
4

McNaney, T. W.:
12

Mew, Dorothy V.:
23, 24, 39, 59, 68, 73, 84, 96

Micheli, G. S.:
1, 2, 18, 80, 84, 95

Middleton, M. G.:

Miller, H.:
51, 121

Miller, R. B.:
16, 37, 46
Technical Report 120

AUTHOR Index

Moore, E. O., Jr.: 4, 9, 10, 52, 63, 104, 105, 107

Morris, C. L., Jr.: 1, 17, 95, 136, 149

Nutter, R. V.: 5, 17, 25, 26, 27, 28, 47, 71, 74, 77, 88, 103, 105, 121, 152

O'Hara, J. W.: 89

Okraski, H. C.: 1, 12, 105, 106

Papetti, C. J.: 18, 21, 43, 53, 75, 123, 150, 155

Park, C. S.: 86

Parrish, W. F., Jr.: 20, 64, 105, 106, 108, 115, 116, 120

Pearson, T. E.: 4, 9, 10, 19, 62, 63, 86, 97, 99, 107, 117

Platt, W. A.: 127

Polcyn, K. A.: 50, 55

Polino, Anne M.: 90

Rizzo, W. A.: 22, 40, 54, 117, 118

Rogers, G. H.: 3

Rudwick, B. H.: 50, 55

Ryan, L. E.: 11, 23, 24, 48, 49, 60, 69

Salas, E.: 92, 142, 156

Scott, P. G.: 5, 7, 11, 31, 48, 60, 69, 93, 130

Smode, A. F.: 30, 48, 147

Spielberger, C. D.: 81
Technical Report 120

AUTHOR Index

Staley, J. D.: 34, 35, 41, 42, 46, 112

Stubbs, W. B.: 4, 9, 10, 19, 62, 97, 99, 127

Trotta, C. M.: 134, 141

Woods, W. E.: 50

Yanko, R. E.: 14, 15, 34, 35, 41, 42, 114

Yelvington, Cynthia: 83

Zajkowski, M. M.: 70, 84, 129, 143, 155
Academic Attrition from Navy Technical Training Class "A" School Courses ... 50

Acquisition Cost Estimating Using Simulation 100

Alternative System Designs for Navy Undergraduate Pilot Training, Post 1975 .. 31

Analysis of Base Operations Support Functions, Naval Training Center, Orlando: Public Works Department 148

Analysis of Base Operations Support Functions, Naval Training Center, Orlando: Security Department 149

Analysis of Commercial Contract Training 17

Analysis of Commercial Contract Training for the Marine Corps (Phase II) 27

Analysis of Commercial Contract Training for the Navy (Phase II) 25

Analysis of Software Simulation in Computer-Based Electronic Equipment Maintenance Trainers 63

Analysis of the Transfer of Training, Substitution, and Fidelity of Simulation of Training Equipment 2

Application of Linear Programming to the Naval Education and Training Command 114

Application of Random Access Video Programs in Navy Electronic Warfare Training 97
Application of Simulation to Individualized Self-Paced Training 13
Assessment of Hispanic Recruits Who Speak English As a Second Language 92
Assessment of Individualized Instruction in Navy Technical Training 84
Assessment of Surface Navy ECCM Training, 1975 to 1980 99
Assessment of U.S. Navy Tactical Team Training 22
Authority of Officers and Petty Officers of the United States Navy (Onboard Instructional Package) 153
Automated Course Scheduling System for Naval Training 78
Automated Publishing System for the Naval Education and Training Command 56
Aviation Electrician's Mate "A" School Training Assessment Data 125
Boiler Technician "A" School (1200 PSI) Training Assessment Data 126
CNET Automated Budget System (CABS) 79
CNET Automated Budget System (CABS) II 91
Centralized Instructor Training for Naval Technical Training 43
Commercial Contract Training, Marine Corps Area VOTEC Support Center (AVSC) Guidelines .. 28
Technical Report 120

TITLE Index

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Contract Training, Navy Area VOTEC Support Center (AVSC) Guidelines</td>
<td>26</td>
</tr>
<tr>
<td>Comparative Assessment of Three Methods of Collecting Training Feedback Information</td>
<td>70</td>
</tr>
<tr>
<td>Computer Aided Training Evaluation and Scheduling (CATES) System: Assessing Flight Task Proficiency</td>
<td>100</td>
</tr>
<tr>
<td>Computer Based Instructional Systems--1985 to 1995</td>
<td>95</td>
</tr>
<tr>
<td>Computer Managed Instruction at Remote Sites by Satellite: Phase I: A Feasibility Study</td>
<td>50</td>
</tr>
<tr>
<td>Computer Managed Instruction at Remote Sites; Phases II-III, A Demonstration Design</td>
<td>55</td>
</tr>
<tr>
<td>Computer Managed Instruction in Navy Training</td>
<td>18</td>
</tr>
<tr>
<td>Computer-Aided Authoring System (AUTHOR) User's Guide</td>
<td>65</td>
</tr>
<tr>
<td>Computer-Aided Authoring of Instructional Materials</td>
<td>144</td>
</tr>
<tr>
<td>Computer-Aided Authoring of Programmed Instruction for Teaching Symbol Recognition</td>
<td>64</td>
</tr>
<tr>
<td>Conceptual Model for a Navy Enlisted Career Plan</td>
<td>80</td>
</tr>
<tr>
<td>Consolidated Electronic Warfare Operator Training System Cost Analysis</td>
<td>107</td>
</tr>
<tr>
<td>Cost Estimate for Royal Saudi Naval Forces, Level II Course Materials</td>
<td>150</td>
</tr>
</tbody>
</table>
Technical Report 120

TITLE Index

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost Management Control Procedure for Initial Training in Surface Ship Acquisition Programs</td>
<td>74</td>
</tr>
<tr>
<td>Cost/Benefit Analysis of the Instructional Systems Development Implementation Plan (FY 77 to FY 82)</td>
<td>116</td>
</tr>
<tr>
<td>Cost/Benefit Analysis of the Instructional Systems Development Plan</td>
<td>122</td>
</tr>
<tr>
<td>Current Simulator Substitution Practices in Flight Training</td>
<td>49</td>
</tr>
<tr>
<td>DOTS Utility Assessment: The Training Process Flow and System Capabilities/Requirements and Resources Models Operating in the TRAPAC Environment</td>
<td>38</td>
</tr>
<tr>
<td>Decision Analysis and Its Application to the Naval Education and Training Command</td>
<td>32</td>
</tr>
<tr>
<td>Demonstration and Evaluation of a Microfiche-Based Audio/Visual System</td>
<td>118</td>
</tr>
<tr>
<td>Demonstration of a Methodology for Classifying Naval Training Courses</td>
<td>57</td>
</tr>
<tr>
<td>Description of Selected Training Appraisal Programs Within the Naval Education and Training Command</td>
<td>123</td>
</tr>
<tr>
<td>Design of Training Systems Phase I Summary Report</td>
<td>12</td>
</tr>
<tr>
<td>Design of Training Systems Phase II Report</td>
<td>15</td>
</tr>
<tr>
<td>Design of Training Systems Phase II-A Report. An Educational Technology Assessment Model (ETAM)</td>
<td>16</td>
</tr>
</tbody>
</table>
Design of Training Systems Phase III Report 33
Design of Training Systems Phase IV Report 42
Design of Training Systems Program Maintenance Manual: Data Base, ETE, SCRR, and TPF Models .. 34
Design of Training Systems Training Requirements Analysis Model User's Guide and Program Documentation ... 112
Design of Training Systems, Application of the Individualized Training Simulation System (ITSS) at the Basic Electricity and Electronics (BE&E) School, San Diego, CA ... 113
Design of Training Systems, Phase I Report, Volumes I and II 14
Design of Training Systems, Computerization of the Educational Technology Assessment Model (ETAM) ... 46
Design of Training Systems: The Development of Scaling Procedures 37
Design of a Shiphandling Training System 71
Development and Evaluation of a Remedial Reading Workbook for Navy Training ... 85
Technical Report 120
TITLE Index

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development and Test of a Computer Readability Editing System (CRES)</td>
<td>89</td>
</tr>
<tr>
<td>Development of the Navy Consolidated Electronic Warfare Operator Curriculum</td>
<td>62</td>
</tr>
<tr>
<td>Directory of Sources of Information and Data Bases on Education and Training</td>
<td>155</td>
</tr>
<tr>
<td>Economic Analysis of Selected CMI Test Input Alternatives</td>
<td>136</td>
</tr>
<tr>
<td>Economic Analysis of the Instructional Systems Development Plan</td>
<td>108</td>
</tr>
<tr>
<td>Effects of Simulator Landing Practice and the Contribution of Motion Simulation to P-3 Pilot Training</td>
<td>69</td>
</tr>
<tr>
<td>Electronic Warfare Maintenance Training Analysis</td>
<td>10</td>
</tr>
<tr>
<td>Electronic Warfare Maintenance Training Analysis Executive Summary</td>
<td>9</td>
</tr>
<tr>
<td>Electronic Warfare Training Analysis</td>
<td>4</td>
</tr>
<tr>
<td>Evaluation of Aviation Machinist's Mate (AD) Al Course</td>
<td>131</td>
</tr>
<tr>
<td>Evaluation of Avionics Technician Class Al Course</td>
<td>139</td>
</tr>
<tr>
<td>Evaluation of Engineman (EN) Class "A" Course</td>
<td>133</td>
</tr>
<tr>
<td>Evaluation of Fire Control Technician Class "A" Phase I Course</td>
<td>140</td>
</tr>
<tr>
<td>Evaluation of Machinery Repairman (MR) A School</td>
<td>132</td>
</tr>
</tbody>
</table>
Technical Report 120

TITLE Index

Evaluation of Mess Management Specialist (MS) "A" School Training by Advanced MS NAVEDTRACOM Students and by Fleet MS Personnel 62

Evaluation of Microfiche Reader Types for Use with Programmed Instruction ... 44

Evaluation of Microfiche as an Instructional Medium in a Technical Training Environment ... 34

Evaluation of Ten Techniques for Choosing Instructional Media 5

Evaluation of the 1200 PSI Simulator .. 105

Feasibility of Consolidating USN/USMC A-6E Aircrew and Enlisted Training Within Existing USN Fleet Readiness Squadrons 130

Field Test of Guidelines for the Development of Memory Aids in Technical Training ... 142

Flight Hour Reductions in Fleet Replacement Pilot Training Through Simulation ... 147

Foreign Military Sales--Average Cost Pricing or Marginal Cost Pricing--A Theoretical Perspective ... 145

Foreign Military Training Management Information System 120

Guidebook for Economic Analysis in the Naval Education and Training Command ... 61

Guidelines for Preparing Feedback Questionnaire Task Statements 140

93
Heuristic Approach for the Scheduling of Navy Training Courses 58

Hispanic Recruits in the Navy: An Assessment of Their Skills in English as a Second Language .. 156

Implementation of Instructional Systems Development in Navy "C" Schools: A Needs Analysis ... 129

Incremental Costing Method for Resource Allocation in Navy Training 135

Incremental Costing Model for Use with the CNET Per Capita Course Costing Data Base: System I ... 83

Institutionalization of Instructional System Development (ISD) in the Naval Education and Training Command: An Organizational Analysis 76

Instructor Training ... 21

Interim Cost Model for Estimating Development Costs of Existing Curricula in NAVEDTRACOM ... 128

Job-Related Reading Material: A Navy-Relevant Remedial Reading Workbook 151

Landing Signal Officer (LSO) Information, Status, and Tracking System (LISTS) ... 137

Learning Guidelines and Algorithms for Types of Training Objectives 29

Learning of Procedures in Navy Technical Training: An Evaluation of Strategies and Formats ... 90

Media Analysis of Electronic Warfare Training in Support of the Consolidated Navy Electronic Warfare Training Development Program ... 127

Method for Obtaining Post Formal Training Feedback: Development and Validation .. 23

Military Instructor Training in Transition. Proceedings of an Inter-Service Conference .. 30

Military Service Reporting System ... 134

NATO Seasparrow Missile System: Analysis of Maintenance Task Data .. 154

Navy Campus for Achievement Automated Data System—A Brief Review and Proposal for Analysis and Design ... 115

Navy Recruit Training Optimization, Post 1980. Phase I: Current Assessment and Concept for the Future .. 39

Navy-Wide Training and Education Record System (TERS): a Feasibility and Interest Assessment Study .. 124

Numerical Skills of Navy Students: An Evaluation of a Skill Development Workbook .. 157
Officer Candidate School Curriculum Optimization 51
Operational Performance of P-3 Pilots as a Function of Variations in Fleet Readiness Training ... 93
Personnel Attrition from Navy Enlisted Initial Technical Training 75
Plan for the Evaluation of a Revised Core Curriculum for the Naval Reserve Officers Training Corps .. 143
Precommissioning Training .. 121
Prediction of Performance in Navy Signalman Class "A" School 96
Primer on Economic Analysis for Naval Training Systems 36
Procedures for Questionnaire Development and Use in Navy Training Feedback ... 24
Proposed OPNAV Instruction for Test and Evaluation of Navy Training Devices Procured Under RDT&E Funding 77
Relationship of Personality Characteristics to Attrition and Performance Problems of Navy and Air Force Recruits ... 81
Resource Authorization System .. 141
Review of Fire Fighting Training in the Naval Education and Training Command ... 88
Review of Fundamental Technical Subject (FTS) Units at Surface Warfare Officers School Command (SWOSCOLCOM) 152
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSN Tactical Team Training System (U)</td>
<td>3</td>
</tr>
<tr>
<td>Selection and Training of Navy Recruit Company Commanders</td>
<td>68</td>
</tr>
<tr>
<td>Selection, Training, and Utilization of Navy Recruit Training Command Officers</td>
<td>87</td>
</tr>
<tr>
<td>Ship Handling and Ship Handling Training</td>
<td>47</td>
</tr>
<tr>
<td>Staff Study on Cost and Training Effectiveness of Proposed Training Systems</td>
<td>1</td>
</tr>
<tr>
<td>Structured Interview Methodology for Collecting Training Feedback Information</td>
<td>90</td>
</tr>
<tr>
<td>Student Flow Simulation Model for Navy Consolidated Electronic Warfare Training</td>
<td>86</td>
</tr>
<tr>
<td>Study to Develop Management Indices for CNET, Phase I--Personnel Indices</td>
<td>109</td>
</tr>
<tr>
<td>Study to Develop Management Indices for the Chief of Naval Education and Training, Phase II: Capital Resources Indices</td>
<td>111</td>
</tr>
<tr>
<td>Study to Improve the Resource Requirements Request (RRR) Process in the NAVEDTRACOM</td>
<td>57</td>
</tr>
<tr>
<td>Surface Navy ECCM Training Analysis</td>
<td>19</td>
</tr>
<tr>
<td>Symbol Learning in Navy Technical Training: An Evaluation of Strategies and Mnemonics</td>
<td>72</td>
</tr>
<tr>
<td>System for Computer Automated Typesetting (SCAT) of Computer Authored Texts</td>
<td>94</td>
</tr>
</tbody>
</table>
Task Analysis of Pilot, Copilot, and Flight Engineer Positions for the P-3 Aircraft .. 7

Task Description and Analysis for Training System Design 102

Technique for Achieving Budget Item Prioritization 117

Technique for Choosing Cost-Effective Instructional Delivery Systems 20

Training Analysis of P-3 Replacement Pilot Training 5

Training Analysis of P-3 Replacement Pilot and Flight Engineer Training 11

Training Effectiveness Assessment: Volume I, Current Military Training Evaluation Programs ... 44

Training Effectiveness Assessment: Volume II, Problems, Concepts, and Evaluation Alternatives ... 45

Training Effectiveness Evaluation of Device 2F87F, P-3C Operational Flight Trainer ... 48

Training Program Forecast Model: A Situational Analysis 101

Training Requirements for the Naval Technical Information Presentation Program: A Needs Assessment ... 119

Training Resource Classifications: Direct-Indirect and Fixed-Variable Cost Categories ... 110

Trends in Industrial Training Management .. 103
Use of Mnemonics in Training Materials: A Guide for Technical Writers 66

Use of the Operational Evaluation in the Development of Training Systems:
Generalizations Derived from a Case Study . 104

User's Manual for the Incremental Costing Model Developed for Use with the
CNET Per Capita Course Costing Data Base . 138

Utilization of Device 2F87F OFT to Achieve Flight Hour Reductions in P-3
Fleet Replacement Pilot Training . 60
KEYWORD Index

(Reference number refers to number appearing in left margin of abstract entries)

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>"A" School Training Evaluation</td>
<td>82</td>
</tr>
<tr>
<td>ASVAB Scores for Apprentice Training</td>
<td>59</td>
</tr>
<tr>
<td>1200 PSI Simulator Advantages</td>
<td>105</td>
</tr>
<tr>
<td>Academic Attrition</td>
<td>53, 75</td>
</tr>
<tr>
<td>1200 PSI Simulator Cost Analysis</td>
<td>105</td>
</tr>
<tr>
<td>Academic Attrition Analysis</td>
<td>53</td>
</tr>
<tr>
<td>1200 PSI Simulator Evaluation</td>
<td>105</td>
</tr>
<tr>
<td>Academic Basic Numerical Skills Improvement</td>
<td>157</td>
</tr>
<tr>
<td>1200 PSI Simulator Use</td>
<td>105</td>
</tr>
<tr>
<td>Academic Basic Skills</td>
<td>157</td>
</tr>
<tr>
<td>A-6E Aircrew Training Environment and Facilities</td>
<td>130</td>
</tr>
<tr>
<td>Academic Basic Skills as Navy Apprentice Training</td>
<td>157</td>
</tr>
<tr>
<td>A-6E Aircrew Training Requirements</td>
<td>130</td>
</tr>
<tr>
<td>Academic Remedial Training Curriculum (Navy)</td>
<td>151</td>
</tr>
<tr>
<td>A-6E Aircrew Training--Aircraft Requirements</td>
<td>130</td>
</tr>
<tr>
<td>Academic Remedial Training Program (Navy)</td>
<td>151</td>
</tr>
<tr>
<td>A-6E Aircrew Training--Cost Estimates of Consolidating</td>
<td>130</td>
</tr>
<tr>
<td>Accountability of Naval Officers</td>
<td>153</td>
</tr>
<tr>
<td>A-6E Aircrew Training--Feasibility of Consolidating</td>
<td>130</td>
</tr>
<tr>
<td>Accountability of Naval Petty Officers</td>
<td>153</td>
</tr>
<tr>
<td>Keyword</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Acoustic Equipment Commonality Analysis</td>
<td>6</td>
</tr>
<tr>
<td>Acoustic Sensor Equipment Functions and Characteristics</td>
<td>6</td>
</tr>
<tr>
<td>Acquisition Cost Estimates</td>
<td>106</td>
</tr>
<tr>
<td>Acquisition Cost Estimating Procedure</td>
<td>106</td>
</tr>
<tr>
<td>Acquisition Cost Risk</td>
<td>106</td>
</tr>
<tr>
<td>Acquisition Cost Uncertainty</td>
<td>106</td>
</tr>
<tr>
<td>Adult Basic Education (Test of)</td>
<td>157</td>
</tr>
<tr>
<td>Air Force Military Training Instructor Program</td>
<td>68</td>
</tr>
<tr>
<td>Air Force Training Evaluation</td>
<td>44</td>
</tr>
<tr>
<td>Aircraft Flight Task Learning</td>
<td>147</td>
</tr>
<tr>
<td>Aircraft Simulation</td>
<td>49</td>
</tr>
<tr>
<td>Airman Apprentice Training</td>
<td>59</td>
</tr>
<tr>
<td>Alternative Identification</td>
<td>61</td>
</tr>
<tr>
<td>Alternative Test Input Systems</td>
<td>136</td>
</tr>
<tr>
<td>Alternative Training Medium</td>
<td>54</td>
</tr>
<tr>
<td>Alternatives in Economic Analysis</td>
<td>36</td>
</tr>
<tr>
<td>Appraisal Practices</td>
<td>123</td>
</tr>
<tr>
<td>Apprentice Training</td>
<td>39</td>
</tr>
<tr>
<td>Aptitude Effects in Using Microfiche</td>
<td>54</td>
</tr>
<tr>
<td>Armed Services Procurement Regulation Contracts</td>
<td>17, 25, 26, 27, 28</td>
</tr>
<tr>
<td>Armed Services Vocational Aptitude Battery (ASVAB)</td>
<td>96, 157</td>
</tr>
</tbody>
</table>
Army Drill Sergeant Program 68

Attrition in Signalman "A" School 96

Army Training Evaluation 44

Attrition of Military Recruits 81

Army Training and Evaluation Program 44

Authoring 56

Attitude Development 73

Authority of Naval Officers 153

Attitudes About Using Microfiche 54

Authority of Naval Petty Officers 153

Attitudes Toward Centralized Instructor Training 43

Automated Authoring 64, 65

Attrition 53

Automated Authoring Hardware 64

Attrition Control 75

Automated Authoring Software 64, 65

Attrition Cost 53

Automated Authoring of Instructional Materials 94

Attrition Monitoring 75

Automated Budget Process 79, 91

Attrition Reduction 75

Automated Budget System Computer Software 79, 91
Automated Budget System User's Guide 79, 91

Automated Course Scheduling System 78

Automated Course Scheduling System Data Base 78

Automated Course Scheduling User's Guide 78

Automated Data Processing Requirements 115

Automated Data System 115

Automated Design Software 63

Automated Education and Training Record 115, 124

Automated Publishing System 56

Automated Scheduling System 58

Automated/Automatic Data Processing 67

Average Cost Adjustments 63

Average Cost Pricing 145

Aviation Electrician's Mate Job Task Inventory 80

Aviation Electrician's Mate "A" School Training 125

Aviation Electrician's Mate "A" School Training--Value of 125

Aviation Electrician's Mate Career Training 80

Aviation Electrician's Mate Job Requirements 125

Aviation Electrician's Mate Job Task Inventory 125
Aviation Electrician's Mate Rating Description

Aviation Electrician's Mate Rating Functional Description for Enlisted Personnel

Aviation Machinist's Mate "A" School Training--Value of

Aviation Machinist's Mate Al Training

Aviation Machinist's Mate Job Task Inventory

Aviation Machinist's Mate's Job Requirements

Avionics Technician "A" School Training

Avionics Technician "A" School Training--Value of

Avionics Technician's Job Requirements

Avionics Technician's Job Task Inventory

Base Operations Support Functions (Analysis of)

Basic Academic Skills

Basic Military Training

Basic Navy Training

Basic Training

Basic VOTEC Concepts

Behavioral Objectives

Behavioral Objectives in Training System Design

Benefit Analysis
Technical Report 120

KEYWORD Index

Benefit Evaluation Criteria 36

Billet Savings 108

Boiler Technician "A" School Training 126

Boiler Technician "A" School Training--Value of 126

Boiler Technician's Job Requirements 126

Boiler Technician's Job Task Inventory 126

Budget Analysis 36

Budget Item Prioritization 117

Budget Preparation 79, 91

Budget Prioritization 117

Budget Program Element Training Categories 57

Budgetary Cost Data 107

CANTRAC Training Categories 57

CMI Costs 18

CMI Test Input Alternatives--Economic Analysis 136

CMI Test Input Device Requirements 136

CMI Test Input Systems 136

CNET Automated Budget System 79, 91

CNET Personnel Resource Use Model 109

Candidate Mathematical Models 14

Capital Flow Resources 111
Technical Report 120

KEYWORD Index

<table>
<thead>
<tr>
<th>Capital Management Indices</th>
<th>Career Plan Model for Enlisted Personnel</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>80</td>
</tr>
<tr>
<td>Capital Resource Indices</td>
<td>Career Skill Levels for Enlisted Personnel</td>
</tr>
<tr>
<td>111</td>
<td>80</td>
</tr>
<tr>
<td>Capital Resource Use</td>
<td>Categories of Training Tasks</td>
</tr>
<tr>
<td>111</td>
<td>29</td>
</tr>
<tr>
<td>Capital Resources Model</td>
<td>Centralized Computer</td>
</tr>
<tr>
<td>111</td>
<td>18</td>
</tr>
<tr>
<td>Capital Stock Resources</td>
<td>Centralized Instructor Resources</td>
</tr>
<tr>
<td>111</td>
<td>43</td>
</tr>
<tr>
<td>Card-Sort Procedures</td>
<td>Centralized Instructor Training</td>
</tr>
<tr>
<td>23</td>
<td>30</td>
</tr>
<tr>
<td>Career Data Consolidation for Enlisted Personnel</td>
<td>Centralized Instructor Training Location</td>
</tr>
<tr>
<td>80</td>
<td>43</td>
</tr>
<tr>
<td>Career Goals and Objectives for Enlisted Personnel</td>
<td>Centralized Instructor Training Questionnaire</td>
</tr>
<tr>
<td>80</td>
<td>43</td>
</tr>
<tr>
<td>Career Level Training for Enlisted Personnel</td>
<td>Centralizing Instructional Systems Development</td>
</tr>
<tr>
<td>80</td>
<td>116, 122</td>
</tr>
<tr>
<td>Career Plan Guidelines for Enlisted Personnel</td>
<td>Characteristics of a Ship Handler</td>
</tr>
<tr>
<td>80</td>
<td>47</td>
</tr>
</tbody>
</table>
Classification 57
Classification Categories 57
Classifying Methodology 57
Classroom Instructional Aids 142
Classroom Training Materials 119
Clustering Strategies 57
Coast Guard Company Commander Program 68
Color Microfiche 118
Combat Systems Maintenance Management Training 121
Combat Systems Training 121
Commercial Aviation Substitution Practices 49
Commercial Pilot Training 5
Commercial Remedial Reading Materials 85
Common Core Training 6, 9, 10
Commonality Analysis 31
Communications Satellite 50
Communications System Alternatives 50
Company Commanders 39
Complex Decisions 37
Composing 56
Computer Aided Authoring (AUTHOR) 64, 72, 94
Computer Aided Authoring of Instructional Materials 144
<table>
<thead>
<tr>
<th>Computer Aided Design</th>
<th>Computer Based Instruction Alternatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>95</td>
</tr>
<tr>
<td>Computer Aided Instruction</td>
<td>Computer Based Instruction Economic</td>
</tr>
<tr>
<td>84</td>
<td>Projection</td>
</tr>
<tr>
<td>Computer Aided Training Evaluation and</td>
<td>95</td>
</tr>
<tr>
<td>Scheduling (CATES) System</td>
<td>Computer Based Instruction Trends</td>
</tr>
<tr>
<td>100</td>
<td>95</td>
</tr>
<tr>
<td>Computer Assisted Instruction</td>
<td>Computer Based Instructional Delivery</td>
</tr>
<tr>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>Computer Assisted Instruction Systems</td>
<td>Computer Based Instructional Delivery</td>
</tr>
<tr>
<td>63</td>
<td>System Trends</td>
</tr>
<tr>
<td>Computer Authored Texts</td>
<td>95</td>
</tr>
<tr>
<td>94</td>
<td>Computer Based Instructional Delivery</td>
</tr>
<tr>
<td>Computer Automated Typesetting</td>
<td>Management System</td>
</tr>
<tr>
<td>94</td>
<td>95</td>
</tr>
<tr>
<td>Computer Based Course Scheduling System</td>
<td>Computer Based Instructional Management</td>
</tr>
<tr>
<td>78</td>
<td>Trends</td>
</tr>
<tr>
<td>Computer Based Electronic Equipment</td>
<td>95</td>
</tr>
<tr>
<td>Maintenance Simulator</td>
<td>Computer Based Instructional Systems</td>
</tr>
<tr>
<td>63</td>
<td>95</td>
</tr>
<tr>
<td>Computer Based Instruction</td>
<td>Computer Based Mathematical Models</td>
</tr>
<tr>
<td>95</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Computer Based Methods</td>
</tr>
</tbody>
</table>
Technical Report 120

KEYWORD Index

<table>
<thead>
<tr>
<th>Computer Based Model</th>
<th>Computer Readability Editing System Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>37, 42, 113</td>
<td>89</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Computer Based Simulation Models</th>
<th>Computer Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>86</td>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Computer Based Training</th>
<th>Computer Simulation Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Computer Language for CMI</th>
<th>Computer Software Simulation Techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>63</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Computer Managed Instruction (CMI)</th>
<th>Computer System Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>18, 50, 55, 84, 95</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Computer Managed Instruction for Electronic Warfare</th>
<th>Computer-Aided Authoring Data Base</th>
</tr>
</thead>
<tbody>
<tr>
<td>127</td>
<td>65</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Computer Readability Editing System</th>
<th>Computer-Aided Authoring Expectations</th>
</tr>
</thead>
<tbody>
<tr>
<td>89</td>
<td>144</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Computer Readability Editing System Development</th>
<th>Computer-Aided Authoring System</th>
</tr>
</thead>
<tbody>
<tr>
<td>89</td>
<td>65, 144</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Computer Readability Editing System Hardware</th>
<th>Computer-Aided Authoring System Hardware</th>
</tr>
</thead>
<tbody>
<tr>
<td>89</td>
<td>144</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Computer Readability Editing System Test Passages</th>
<th>Computer-Aided Authoring Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>89</td>
<td>144</td>
</tr>
</tbody>
</table>
Technical Report 120

KEYWORD Index

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer-Aided Authoring User's Workbook</td>
<td>65</td>
</tr>
<tr>
<td>Computerized Mathematical Model</td>
<td>41</td>
</tr>
<tr>
<td>Computerized Mathematical Models</td>
<td>16, 33, 34, 35, 38, 42, 46, 112, 113, 114</td>
</tr>
<tr>
<td>Consolidated A-6E Aircrew Training</td>
<td>130</td>
</tr>
<tr>
<td>Consolidated Electronic Warfare Maintenance Training</td>
<td>9, 10</td>
</tr>
<tr>
<td>Consolidated Electronic Warfare Operator Training System</td>
<td>62, 107</td>
</tr>
<tr>
<td>Consolidated Electronic Warfare Training</td>
<td>4</td>
</tr>
<tr>
<td>Consolidated Electronic Warfare Training Feasibility</td>
<td>9, 10</td>
</tr>
<tr>
<td>Consolidated Navy EW Training Plan</td>
<td>62</td>
</tr>
<tr>
<td>Consolidated Navy Electronic Warfare Training</td>
<td>127</td>
</tr>
<tr>
<td>Constructionman Apprentice Training</td>
<td>59</td>
</tr>
<tr>
<td>Continuous Movement</td>
<td>29</td>
</tr>
<tr>
<td>Contract Training</td>
<td>17, 25, 26, 27, 28</td>
</tr>
<tr>
<td>Contract Training Capability</td>
<td>17</td>
</tr>
<tr>
<td>Contract Training Coordination and Responsibilities</td>
<td>26, 28</td>
</tr>
<tr>
<td>Contract Training Evaluation</td>
<td>17, 25, 27</td>
</tr>
<tr>
<td>Contract Training Process</td>
<td>26, 28</td>
</tr>
<tr>
<td>Contract Training Sources</td>
<td>26, 28</td>
</tr>
<tr>
<td>Contract Training Survey Forms</td>
<td>26, 28</td>
</tr>
<tr>
<td>Contractor Cost Proposal Evaluations</td>
<td>74</td>
</tr>
</tbody>
</table>
KEYWORD Index

Contractual Requirements and Forms
26, 28

Control Card Source Listings
46

Coordinated Tactical Team Training System
3

Correlation Among UPT, FRS, and Flight Performance
60

Cost Analysis

Cost Analysis (Life Cycle)
107

Cost Analysis Data
107

Cost Benefit Analysis
16, 36, 46

Cost Changes
83

Cost Computer Program
20

Cost Data
74

Cost Effective CMI Test Input System
136

Cost Effectiveness
1, 2, 8, 20

Cost Effectiveness Training
50, 55

Cost Effectiveness of Computer-Aided Authoring
144

Cost Estimate
20

Cost Estimate Value Range
106

Cost Estimate for Saudi Naval Course Materials
150

Cost Estimates of Alternative Test Input Options
136

Cost Estimating
106

Cost Estimating (Acquisition)
106
Technical Report 120

KEYWORD Index

Cost Estimating Using Simulation
Cost of Attrition
106 75

Cost Estimation
Cost of Combat Systems Training
74 121

Cost Management Control Procedure
Cost of Microfiche vs. Sound/Slide
74 118

Cost Model
Cost of Training
20, 83 75

Cost Model (Future Changes)
Cost-Effective Analysis
128 36

Cost Model (Interim)
Cost-Effective Instructional Media
128 127

Cost Pricing (Average vs. Marginal)
Cost/Utilization Model
145 1

Cost Reduction
Costing Model Coefficients (Estimates of)
108 128

Cost Reduction of Training Manuals
Costs
119 36

Cost Savings Estimation
Costs of Developing Navy Curricula
15 128

Cost and Benefit Comparisons
Costs of Developing Navy Training Courses
61 128

112
KEYWORD Index

<table>
<thead>
<tr>
<th>Cost of Developing Technical Training Data</th>
<th>128</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costs of Developing Training Materials</td>
<td>128</td>
</tr>
<tr>
<td>Costs of Training Media</td>
<td>54</td>
</tr>
<tr>
<td>Course Costing Data Base (Per Capita)</td>
<td>138</td>
</tr>
<tr>
<td>Course Description Process Management</td>
<td>57</td>
</tr>
<tr>
<td>Course Description Survey</td>
<td>57</td>
</tr>
<tr>
<td>Course Development Costs</td>
<td>128</td>
</tr>
<tr>
<td>Course Material Cost Estimate (Saudi Navy)</td>
<td>150</td>
</tr>
<tr>
<td>Course Requirements</td>
<td>58</td>
</tr>
<tr>
<td>Course Revision Resources in Navy "C" Schools</td>
<td>129</td>
</tr>
</tbody>
</table>

Course Scheduling System
58

Course Waiver Effect
75

Cumulative Costs
108

Current Military Evaluation Training
44

Curriculum Changes
24

Curriculum Content Review (FTS)
152

Curriculum Design
39, 62, 73

Curriculum Development
62

Curriculum Development Application
62

Curriculum Review
131, 132, 133, 139, 140

Curriculum Revision
131, 132, 133, 139, 140
Technical Report 120

KEYWORD Index

Curriculum Topics 51

DOD Planning, Programming and Budgeting System 52

DOTS 33

DOTS Data Base 34, 35, 41, 42

DOTS Financial Feasibility 33

DOTS Model and Data Base Improvements 38, 42

DOTS Operational Feasibility 33

DOTS Program Maintenance Manual 34, 41

DOTS Technical Feasibility 33

DOTS User's Manual 35, 41

Data Base 15, 16, 38

Data Collection Instruments 70

Data Collection Techniques 102

Data Collection by Interview 102

Data Collection by Questionnaire 102

Data Equivalence Analyses 70

Decision Analysis 16, 32, 37, 46

Decision Evaluation Criteria 32

Decision Making 29, 37

Decision Making Models 117

Decision Making Process 32

Decision Theory 32
Technical Report 120

KEYWORD Index

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decision Trees</td>
<td>16, 37, 46</td>
</tr>
<tr>
<td>Decrement RRR Process</td>
<td>67</td>
</tr>
<tr>
<td>Defense System/Equipment Management</td>
<td>52</td>
</tr>
<tr>
<td>Defense System/Equipment Training</td>
<td>52</td>
</tr>
<tr>
<td>Demonstration Communication Systems</td>
<td>50, 55</td>
</tr>
<tr>
<td>Descriptive Functional Model</td>
<td>14</td>
</tr>
<tr>
<td>Design of Instructional Materials</td>
<td>64</td>
</tr>
<tr>
<td>Design of Training Systems (DOTS)</td>
<td>12, 34</td>
</tr>
<tr>
<td>Design of Training Systems Data Base</td>
<td>15</td>
</tr>
<tr>
<td>Designing and Creating Instructional Materials</td>
<td>94</td>
</tr>
<tr>
<td>Detection</td>
<td>29</td>
</tr>
<tr>
<td>Device 10H1 Generalized EW Operator Trainer</td>
<td>86</td>
</tr>
<tr>
<td>Device 2C23 Cockpit Familiarization Trainer</td>
<td>60</td>
</tr>
<tr>
<td>Device 2C23A Cockpit Familiarization Trainer</td>
<td>69</td>
</tr>
<tr>
<td>Device 2C45 Cockpit Procedures Trainer</td>
<td>60, 69</td>
</tr>
<tr>
<td>Device 2F69D Operational Flight Trainer</td>
<td>60</td>
</tr>
<tr>
<td>Device 2F87F Operational Flight Trainer</td>
<td>48, 60, 69, 93</td>
</tr>
<tr>
<td>Device 2F87F Training Effectiveness</td>
<td>60, 69</td>
</tr>
<tr>
<td>Direct Cost</td>
<td>110</td>
</tr>
<tr>
<td>Directory of Education and Training Data Bases</td>
<td>155</td>
</tr>
<tr>
<td>Key Term</td>
<td>Page(s)</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td>Directory of Education and Training Information Sources</td>
<td>155</td>
</tr>
<tr>
<td>ETAM Development</td>
<td>46</td>
</tr>
<tr>
<td>ETAM Objectives</td>
<td>46</td>
</tr>
<tr>
<td>ETAM Requirements</td>
<td>46</td>
</tr>
<tr>
<td>EW Job Analysis</td>
<td>62</td>
</tr>
<tr>
<td>EW Mission Scenarios</td>
<td>62</td>
</tr>
<tr>
<td>EW Operator Curriculum</td>
<td>86</td>
</tr>
<tr>
<td>EW Operator Curriculum Developments (Off-Line)</td>
<td>62</td>
</tr>
<tr>
<td>EW Operator Technical Subsystem</td>
<td>62</td>
</tr>
<tr>
<td>EW Training Pipeline</td>
<td>62</td>
</tr>
<tr>
<td>Economic Analysis</td>
<td>1, 11, 31, 36, 48, 50, 61</td>
</tr>
<tr>
<td>Economic Analysis Assumptions</td>
<td>36</td>
</tr>
</tbody>
</table>
Technical Report 120

KEYWORD Index

Economic Analysis Guidebook 61

Economic Analysis Time Frame 61

Economic Analysis of Centralized Instructor Training 43

Economic Analysis of Implementing ISD 116, 122

Economic Analysis of Training 17, 27

Economic Basis for COMISAT 55

Editing 56

Education Record System 124

Education and Training Data Bases (Directory of) 155

Education and Training Data Source Abstracts 155

Education and Training Information Keyword Directory 155

Education and Training Information Sources (Directory of) 155

Education and Training Information Title Directory 155

Education and Training Management Information Directory 155

Educational Technology 16, 37, 46

Educational Technology Assessment Model 16, 37, 46

Educational Technology Evaluation Model 33, 34, 35

Educational Technology Innovations 12

Electronic Counter-Countermeasures (ECCM) 19

117
Technical Report 120

KEYWORD Index

Electronic Counter-Countermeasures (ECCM) Training 99

Electronic Equipment Simulation Software 63

Electronic Test Input System 136

Electronic Warfare Maintenance Training 9, 10

Electronic Warfare Media Development and Procurement 127

Electronic Warfare Media Recommendations 127

Electronic Warfare Operator Curriculum 62

Electronic Warfare Operator Tasks 62

Electronic Warfare Operator Training 62

Electronic Warfare Operator Training System 107

Electronic Warfare Operator Training System Cost Analysis 107

Electronic Warfare School Media Analysis 127

Electronic Warfare Signal Recognition Training 97

Electronic Warfare Student Tracks 86

Electronic Warfare Training Consolidation 62

Elements of Ship Handling 47

Employee Development 103

Encoding 56

Engineering Cost Estimates 106
<table>
<thead>
<tr>
<th>Keyword</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineman "A" School Job Requirements</td>
<td>133</td>
</tr>
<tr>
<td>Evaluation Data Gathering Options</td>
<td>45</td>
</tr>
<tr>
<td>Engineman "A" School Training</td>
<td>133</td>
</tr>
<tr>
<td>Evaluation Method Selection</td>
<td>45</td>
</tr>
<tr>
<td>Engineman "A" School Training--Value of</td>
<td>133</td>
</tr>
<tr>
<td>Evaluation Methods</td>
<td>44, 45, 70</td>
</tr>
<tr>
<td>Engineman Job Task Inventory</td>
<td>133</td>
</tr>
<tr>
<td>Evaluation Methods Correlational Analyses</td>
<td>70</td>
</tr>
<tr>
<td>English as a Second Language</td>
<td>92, 156</td>
</tr>
<tr>
<td>Evaluation Model</td>
<td>15</td>
</tr>
<tr>
<td>Environment Factors in Accidents</td>
<td>47</td>
</tr>
<tr>
<td>Evaluation Plans</td>
<td>45</td>
</tr>
<tr>
<td>Equipment Commonality</td>
<td>4, 9, 10</td>
</tr>
<tr>
<td>Evaluation of DOTS Applications</td>
<td>38, 42</td>
</tr>
<tr>
<td>Equipment or Facilities Elimination</td>
<td>61</td>
</tr>
<tr>
<td>Evaluation of Mess Management Specialist "A" School Training</td>
<td>82</td>
</tr>
<tr>
<td>Estimating Navy Course Development Costs</td>
<td>128</td>
</tr>
<tr>
<td>Evaluation of Recruit Training</td>
<td>39</td>
</tr>
<tr>
<td>Evaluating Microfiche in Training</td>
<td>118</td>
</tr>
<tr>
<td>Evaluation of Training Information</td>
<td>98, 131, 132, 133, 139, 140</td>
</tr>
<tr>
<td>Evaluation Attitudes</td>
<td>45</td>
</tr>
<tr>
<td>Executive Computer Sequences</td>
<td>46</td>
</tr>
</tbody>
</table>
Technical Report 120

KEYWORD Index

Factory Training Materials 119

Familiarization/Instrument Training 48

Feedback 22

Feedback Data Collection Methods 70

Feedback Data from Fleet vs. Schools 82

Feedback Data from Sea vs. Shore 82

Feedback Evaluation 44

Feedback Evaluation Training Effectiveness 45

Feedback Information Collection 146

Feedback Methods 23, 24

Feedback Questionnaire Manual 24

Feedback Questionnaire Preparation 146

Feedback Questionnaire Task Statement Guidelines 146

Feedback Technique Training Evaluation 23

Feedback for Mess Management Specialist School Training 82

Feedback to Fleet 123

Fidelity of Simulation 2

File Formats 46

Financial Analysis 16, 46

Fire Control Technician "A" School Training 140

Fire Control Technician "A" School Training--Value of 140
Technical Report 120
KEYWORD Index

Fire Control Technician "C" School Training 154

Fire Control Technician Curricula 19, 99

Fire Control Technician Training Adequacy 154

Fire Control Technician Training Relevancy 154

Fire Control Technician's Job Requirements 140

Fire Control Technician's Job Task Inventory 140

Fire Fighting Environmental Influences 88

Fire Fighting Equipment Maintenance Training 88

Fire Fighting Maintenance Training Requirements 88

Fire Fighting Personnel Training Requirements 88

Fire Fighting School Survey 88

Fire Fighting Training 86

Fire Fighting Training Courses 88

Fire Fighting Training Management Influences 88

Fire Fighting Types of Training 88

Fireman Apprentice Training 59

Five-Year Defense Program 52

Fixed Cost 110

Fixed Variable Cost Model 83

Fixed to Variable Cost Rates 83
Technical Report 120

KEYWORD Index

Fixed vs. Variable Costs 83

Fixed-Variable Costs vs. Direct-Indirect Costs 110

Fleet ECCM Training 19

Fleet Readiness Training--Fleet Readiness Support Requirements 130

Fleet Replacement Aviation Maintenance Aircrew Training--Aircraft Requirements 130

Fleet Replacement Aviation Maintenance Personnel Program 130

Flight Hour Reduction 60

Flight Hour Substitution 48, 60

Flight Hour Substitution in Aircraft Performance Simulation 147

Flight Simulation 5, 49

Flight Substitution Ratio (FSR) 49

Flight Syllabus Reduction 49

Flight Task Proficiency 100

Flight Training Devices 48

Flight Training Hours 48, 69

Flight Training Simulation 147

Foreign Military Sales (Recovering Training Costs) 145

Foreign Military Training Management Information System 120

Foreign Military Training Pricing Policies 145

Foreign Navy Training Materials (Rewriting) 150
<table>
<thead>
<tr>
<th>Format of Learning Materials</th>
<th>Generalized EW Operator Curriculum</th>
<th>90</th>
<th>62</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional Analysis</td>
<td>Generalized Electronic Warfare</td>
<td>14</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Training Simulator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Functional Models of Training Systems</td>
<td>Generalized Operator Training System</td>
<td>14</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>Generalized Training</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundamental Technical Subject</td>
<td>Glossary of Naval Terms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department Head Course at SWOSCOL</td>
<td>Goal Setting</td>
<td>152</td>
<td>32</td>
</tr>
<tr>
<td>(Revised)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Future Recruit Training</td>
<td>Grade Analysis (FTS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>General Aviation Substitution</td>
<td>39,73</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td>Practices</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Flying Ability</td>
<td>Graphic Memory Aids</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>General Pilot Skills</td>
<td>31</td>
<td>72</td>
</tr>
<tr>
<td>Generalized Acoustic Sensor Operator Training</td>
<td>Graphic Scanners</td>
<td>6</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>Training</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Guiding and Steering</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

123
Technical Report 120

KEYWORD Index

Gunner's Mate "C" School Training
154

Gunner's Mate Training Adequacy
154

Gunner's Mate Training Relevancy
154

Hardware Developments in Training Requirements
101

Hispanic Recruit Academic Performance
92, 156

Hispanic Recruit Attrition
92, 156

Hispanic Recruit Company Commander Questionnaire
92, 156

Hispanic Recruit Education Level
92, 156

Hispanic Recruit English Language Deficiencies
92, 156

Hispanic Recruit Ethnic Background
92, 156

Hispanic Recruit Instructor Questionnaire
92, 156

Hispanic Recruit Language Proficiency Skills
92, 156

Hispanic Recruit Questionnaire
92, 156

Hispanic Recruits
92, 156

Human Factors in Accidents
47

Human Resource Management
153

IPD Center Great Lakes
76

IPD Center Guidance and Direction
76

IPD Center Organization
76

IPD Center Personnel Training and Retraining
76
Technical Report 120

KEYWORD Index

IPD Center San Diego
76

IPD Center Staffing and Personnel Selection
76

ISD Analysis vs. Rating Analysis
76

ISD Evaluation
44

ISD Implementation
76

ISD Management Information System
76

ISD Preanalysis and Coordination
76

ISD Subject Matter Expert Use
76

ITSS Application to BE&E School
113

Illustrating
56

In-Flight Training
11, 31, 48, 49

In-Flight Training Time Reduction
147

Increment RRR Process
67

Incremental Costing
135

Incremental Costing Model
83, 138

Incremental Costing Model Computer Operation
138

Incremental Costing Model Computer Program
138

138

Incremental Costs for Managerial Decision Making
135

Indexing Instructional Techniques
46

Indirect Cost
110
<table>
<thead>
<tr>
<th>Keyword</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individualized Instruction</td>
<td>18, 30, 84</td>
</tr>
<tr>
<td>Individualized Instruction Attitudes</td>
<td>84</td>
</tr>
<tr>
<td>Individualized Instruction Course Administration</td>
<td>84</td>
</tr>
<tr>
<td>Individualized Instruction Data Bases</td>
<td>84</td>
</tr>
<tr>
<td>Individualized Instruction Instructor</td>
<td>84</td>
</tr>
<tr>
<td>Individualized Instruction Organizational Structure</td>
<td>84</td>
</tr>
<tr>
<td>Individualized Instruction Resources</td>
<td>84</td>
</tr>
<tr>
<td>Individualized Instruction Student Administration</td>
<td>84</td>
</tr>
<tr>
<td>Individualized Self-Paced Training</td>
<td>13</td>
</tr>
<tr>
<td>Individualized Training Simulation System (ITSS)</td>
<td>113</td>
</tr>
<tr>
<td>Industrial Training Trends</td>
<td>103</td>
</tr>
<tr>
<td>Industry Training</td>
<td>25, 27</td>
</tr>
<tr>
<td>Information Recall</td>
<td>29</td>
</tr>
<tr>
<td>Initial Budgetary Estimates</td>
<td>74</td>
</tr>
<tr>
<td>Initial Skill Training</td>
<td>59</td>
</tr>
<tr>
<td>Initial Training</td>
<td>39, 73, 74</td>
</tr>
<tr>
<td>Initial Training Alternatives</td>
<td>74</td>
</tr>
<tr>
<td>Innovative Educational Technological Change Assessment</td>
<td>16, 37, 46</td>
</tr>
<tr>
<td>Innovative Training Materials for Learning Morse Code</td>
<td>96</td>
</tr>
<tr>
<td>Instruction Requirements</td>
<td>58</td>
</tr>
<tr>
<td>Instructional Delivery Systems</td>
<td>20, 95</td>
</tr>
</tbody>
</table>
KEYWORD Index

Instructional Innovations 30

Instructional Management 18

Instructional Management Systems 95

Instructional Materials Design 72, 90

Instructional Materials Effectiveness 72

Instructional Media Categories 95

Instructional Media Selection 8

Instructional Media Use 5

Instructional Program Development (IPD) 76

Instructional Program Development Centers Cost 122

Instructional Strategies for Electronic Warfare School 127

Instructional Strategy 9, 10

Instructional Support Roles 30

Instructional System Development (ISD) 76

Instructional Systems 30

Instructional Systems Development 90, 108

Instructional Systems Development (Complying with) 142

Instructional Systems Development Benefits 122

Instructional Systems Development Implementation--Needs Analysis 129

Instructional Systems Development Implementation--Resources Needed 129

127
Instructor Evaluation
Instructor Feedback
Instructor Managed Instruction
Instructor Selection
Instructor Training
Instructor Training Curriculum
Instructor Training Requirements
Instructor Training Schools Centralization
Instructor Training Schools Staff
Integrated Logistics Support
Interactive Computer Interview

Instructor Career Structure
Instructional Television Systems
Instructional Techniques
Instructional Television Systems Instructor Training Schools Staff
Instructional Systems Management
Instructional Systems Development
Implementation--Support Documents
Instructor Managed Instruction
Life Cycle Costs
Instructor Selection
Instructor Training
Instructor Training Curriculum
Instructor Training Requirements
Integrated Logistics Support
Interactive Computer Interview

Instructor Career Structure
Instructional Television Systems
Instructional Techniques
Instructional Television Systems Instructor Training Schools Staff
Instructional Systems Management
Instructional Systems Development
Implementation--Support Documents
Instructor Managed Instruction
Life Cycle Costs
Instructor Selection
Instructor Training
Instructor Training Curriculum
Instructor Training Requirements
Integrated Logistics Support
Interactive Computer Interview

Instructor Career Structure
Instructional Television Systems
Instructional Techniques
Instructional Television Systems Instructor Training Schools Staff
Instructional Systems Management
Instructional Systems Development
Implementation--Support Documents
Instructor Managed Instruction
Life Cycle Costs
Instructor Selection
Instructor Training
Instructor Training Curriculum
Instructor Training Requirements
Integrated Logistics Support
Interactive Computer Interview

Instructor Career Structure
Instructional Television Systems
Instructional Techniques
Instructional Television Systems Instructor Training Schools Staff
Instructional Systems Management
Instructional Systems Development
Implementation--Support Documents
Instructor Managed Instruction
Life Cycle Costs
Instructor Selection
Instructor Training
Instructor Training Curriculum
Instructor Training Requirements
Integrated Logistics Support
Interactive Computer Interview

Instructor Career Structure
Instructional Television Systems
Instructional Techniques
Instructional Television Systems Instructor Training Schools Staff
Instructional Systems Management
Instructional Systems Development
Implementation--Support Documents
Instructor Managed Instruction
Life Cycle Costs
Instructor Selection
Instructor Training
Instructor Training Curriculum
Instructor Training Requirements
Integrated Logistics Support
Interactive Computer Interview

Instructor Career Structure
Instructional Television Systems
Instructional Techniques
Instructional Television Systems Instructor Training Schools Staff
Instructional Systems Management
Instructional Systems Development
Implementation--Support Documents
Instructor Managed Instruction
Life Cycle Costs
Instructor Selection
Instructor Training
Instructor Training Curriculum
Instructor Training Requirements
Integrated Logistics Support
Interactive Computer Interview

Instructor Career Structure
Instructional Television Systems
Instructional Techniques
Instructional Television Systems Instructor Training Schools Staff
Instructional Systems Management
Instructional Systems Development
Implementation--Support Documents
Instructor Managed Instruction
Life Cycle Costs
Instructor Selection
Instructor Training
Instructor Training Curriculum
Instructor Training Requirements
Integrated Logistics Support
Interactive Computer Interview

Instructor Career Structure
Instructional Television Systems
Instructional Techniques
Instructional Television Systems Instructor Training Schools Staff
Instructional Systems Management
Instructional Systems Development
Implementation--Support Documents
Instructor Managed Instruction
Life Cycle Costs
Instructor Selection
Instructor Training
Instructor Training Curriculum
Instructor Training Requirements
Integrated Logistics Support
Interactive Computer Interview

Instructor Career Structure
Instructional Television Systems
Instructional Techniques
Instructional Television Systems Instructor Training Schools Staff
Instructional Systems Management
Instructional Systems Development
Implementation--Support Documents
Instructor Managed Instruction
Life Cycle Costs
Instructor Selection
Instructor Training
Instructor Training Curriculum
Instructor Training Requirements
Integrated Logistics Support
Interactive Computer Interview

Instructor Career Structure
Instructional Television Systems
Instructional Techniques
Instructional Television Systems Instructor Training Schools Staff
Instructional Systems Management
Instructional Systems Development
Implementation--Support Documents
Instructor Managed Instruction
Life Cycle Costs
Instructor Selection
Instructor Training
Instructor Training Curriculum
Instructor Training Requirements
Integrated Logistics Support
Interactive Computer Interview

Instructor Career Structure
Instructional Television Systems
Instructional Techniques
Instructional Television Systems Instructor Training Schools Staff
Instructional Systems Management
Instructional Systems Development
Implementation--Support Documents
Instructor Managed Instruction
Life Cycle Costs
Instructor Selection
Instructor Training
Instructor Training Curriculum
Instructor Training Requirements
Integrated Logistics Support
Interactive Computer Interview

Instructor Career Structure
Instructional Television Systems
Instructional Techniques
Instructional Television Systems Instructor Training Schools Staff
Instructional Systems Management
Instructional Systems Development
Implementation--Support Documents
Instructor Managed Instruction
Life Cycle Costs
Instructor Selection
Instructor Training
Instructor Training Curriculum
Instructor Training Requirements
Integrated Logistics Support
Interactive Computer Interview
<table>
<thead>
<tr>
<th>Interactive Data Base</th>
<th>Knowledge of Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interactive Instructional Television</td>
<td>LSO Command Structure</td>
</tr>
<tr>
<td>Training Programs</td>
<td>137</td>
</tr>
<tr>
<td>Interscale Correlations</td>
<td>LSO Computer Managed</td>
</tr>
<tr>
<td></td>
<td>Information--Operators Guide</td>
</tr>
<tr>
<td></td>
<td>137</td>
</tr>
<tr>
<td>Investment Return</td>
<td>LSO Data Base</td>
</tr>
<tr>
<td>108</td>
<td>137</td>
</tr>
<tr>
<td>Job Knowledge Tests</td>
<td>LSO Information, Status, and Tracking System</td>
</tr>
<tr>
<td>70, 90</td>
<td>137</td>
</tr>
<tr>
<td>Job Performance Aid</td>
<td>LSO Report Print Selection</td>
</tr>
<tr>
<td>90</td>
<td>137</td>
</tr>
<tr>
<td>Job Task Analysis</td>
<td>LSO Tracking Systems, LSO Reporting System</td>
</tr>
<tr>
<td>102</td>
<td>137</td>
</tr>
<tr>
<td>Job Task Description</td>
<td>Landing Performance Simulation</td>
</tr>
<tr>
<td>102</td>
<td>60</td>
</tr>
<tr>
<td>Job Task Statements</td>
<td>Leadership</td>
</tr>
<tr>
<td>24</td>
<td>153</td>
</tr>
<tr>
<td>Job Training Proficiency Scale</td>
<td>Leadership Training</td>
</tr>
<tr>
<td>125, 126</td>
<td>153</td>
</tr>
<tr>
<td>Kinds of Skills Trained</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td></td>
</tr>
</tbody>
</table>
Technical Report 120

KEYWORD Index

Learning Activities
29

Length of Recruit Training
39

Learning Aid
90

Life Cycle Cost Analysis
107

Learning Aids for Technical Training
66

Life Cycle Cost Model
1

Learning Algorithms
20, 29

Life Cycle Costs
8, 135

Learning Events
29

Linear Programming Model
114

Learning Guidelines
29, 90

Logistic Requirements for COMISAT
55

Learning Module
13

Logistic Support Cost Estimates
106

Learning Objectives
47

Long-Term Pilot Training
31

Learning Principles
29

Long-run Analysis
110

Learning Procedures
90

MS "A" School Graduates' Job Performance
82

Learning Strategies
72, 90

MS "A" School Training Relevancy
82
Technical Report 120

KEYWORD Index

<table>
<thead>
<tr>
<th>Machinery Repairman A School Job Requirements 132</th>
<th>Management Information Directory (Education and Training) 155</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machinery Repairman A School Training 132</td>
<td>Management Information System (Foreign Military Training) 120</td>
</tr>
<tr>
<td>Machinery Repairman A School Training--Value of 132</td>
<td>Management of Curriculum Development 62</td>
</tr>
<tr>
<td>Machinery Repairman Job Task Inventory 132</td>
<td>Management of Military Personnel (Use of Authority) 153</td>
</tr>
<tr>
<td>Maintenance Handbook Development 119</td>
<td>Management of Recruit Training 39</td>
</tr>
<tr>
<td>Maintenance Management Training 121</td>
<td>Managerial Costing 135</td>
</tr>
<tr>
<td>Maintenance Training Simulation 63</td>
<td>Manpower Use Indices 109</td>
</tr>
<tr>
<td>Management Control 109</td>
<td>Manufacturing Cost Estimates 106</td>
</tr>
<tr>
<td>Management Indices 109, 111</td>
<td>Marginal Cost Pricing 145</td>
</tr>
<tr>
<td>Management Information 109, 111</td>
<td>Marine Corps Drill Instructor Program 68</td>
</tr>
</tbody>
</table>

131
<table>
<thead>
<tr>
<th>Marine Corps Skill Training</th>
<th>Memory Aid Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>27, 28</td>
<td>66</td>
</tr>
<tr>
<td>Marine Corps Training Evaluation</td>
<td>Memory Aids</td>
</tr>
<tr>
<td>44</td>
<td>66, 72</td>
</tr>
<tr>
<td>Master Course Reference File</td>
<td>Memory Aids Development</td>
</tr>
<tr>
<td>57</td>
<td>(Guidelines Field Test)</td>
</tr>
<tr>
<td>Mathematics Skills Workbook (Remedial)</td>
<td>142</td>
</tr>
<tr>
<td>157</td>
<td>Memory Aids for Technical Material</td>
</tr>
<tr>
<td>Maximum Revenue Pricing</td>
<td>66</td>
</tr>
<tr>
<td>145</td>
<td>Memory Aids in Technical Training</td>
</tr>
<tr>
<td>Measurement and Evaluation</td>
<td>142</td>
</tr>
<tr>
<td>57</td>
<td>Mess Management Specialist</td>
</tr>
<tr>
<td>Media Analysis of Electronic Warfare</td>
<td>"A" School Training</td>
</tr>
<tr>
<td>Training</td>
<td>82</td>
</tr>
<tr>
<td>127</td>
<td>Mess Management Specialist</td>
</tr>
<tr>
<td>Media Selection</td>
<td>Rating</td>
</tr>
<tr>
<td>20</td>
<td>82</td>
</tr>
<tr>
<td>Media Selection for Electronic</td>
<td>Microfiche Based Training Media</td>
</tr>
<tr>
<td>Warfare School</td>
<td>40</td>
</tr>
<tr>
<td>127</td>
<td>Microfiche Branching Task</td>
</tr>
<tr>
<td>Media Selection for Training System Design</td>
<td>40</td>
</tr>
<tr>
<td>8</td>
<td>Microfiche Costs</td>
</tr>
<tr>
<td></td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Microfiche Frame Positioning Task</td>
</tr>
<tr>
<td></td>
<td>40</td>
</tr>
</tbody>
</table>
Technical Report 120

KEYWORD Index

Microfiche Reader Characteristics 40

Microfiche Readers 40

Microfiche Reloading Task 40

Microfiche as Training Medium 118

Microfiche as a Training Medium 54

Microfiche-Based Audio/Visual System 118

Military Aviation Substitution Practices 49

Military Service Report 134

Military Service Reporting System 134

Military Service Reporting System Computer Software 134

Military Service Reporting System Preparation 134

Military Service Reporting System Process 134

Military Service Reporting System User's Guide 134

Military Training 39

Minicomputers 18

Mission Analysis 31

Mnemonic Techniques 66

Mnemonic Techniques for Training Material 66

Mnemonics 66, 72

Models in Decision Making 15
Morse Code Memory Aids
 66
Morse Code Training
 72
Morse Code Training for Signalman
 96
Motion Sickness
 69
Motion Simulation
 48, 69
Motion Simulation in Flight Training
 147
Motion System Requirements
 11
NAVCOMPT Form 2168--Computer Automating
 141
NAVCOMPT Form 2182
 134
NAVEDTRA 106A
 76
NAVEDTRACOM Curriculum Data
 123

NAVEDTRACOM Schools Training Objectives
 123
NOTAP Data on the Enlisted Rating
 80
NROTC Accession Patterns
 143
NROTC Core Curriculum Evaluation Plan
 143
NROTC Follow-on Training
 143
NROTC Graduate Performance
 143
NROTC Management Information System
 143
NROTC Program Supporting Professional/Military Skills
 143
NROTC Proposed Core Curriculum
 143
NROTC Revised Core Curriculum Evaluation
 143
Technical Report 120

KEYWORD Index

Naval Orientation for Officers 51

Navigation Aids 142

Navy "C" School Course Revision Alternatives 129

Navy Academic Remedial Training Program 85

Navy Apprentice Trainee Characteristics 59

Navy Apprentice Training 59

Navy Apprentice Training Management 59

Navy Apprentice Training Throughput 59

Navy Aviation Maintenance Training 80

Navy Basic Skill Training 17, 25, 26

Navy Campus for Achievement ADS 115

Navy Division Officer Roles and Functions 87

Navy Division Officers 87

Navy Education and Training System 12

Navy Enlisted Career Model 80

Navy Enlisted Career Planning 80

Navy Officer Acquisition Cost 51

Navy Recruit Company Commanders 68

Navy Recruit Training 39, 73

Navy Technical Training Courses 57, 58

Navy Training 18

135
Technical Report 120

KEYWORD Index

Navy Training Analysis and Planning
101

Navy Training Courses
58, 78

Navy Training Evaluation
44, 45

Navy Training Management
12, 14, 15

Navy Training Plan
52

Navy Training Plan Conference
101

Navy Training Plan Process
52, 101

Navy Training Plan Purpose
101

Navy Training Plan Situational Analysis
101

Non-Hardware Developments in Training Requirements
101

Nonacademic Attrition
53, 75

Noncost Management
74

Nonverbal Prediction of Morse Code Performance
96

Nuclear Submarine Tactical Team Training
3

Numerical Skills (Navy)
157

Numerical Skills Workbook (Navy Relevant)
157

Numerical Skills Workbook (Navy Remedial)
157

Numerical Skills Workbook Field Test
157

Numerical Taxonomy
57

OCS Administration and Management
51

OCS Attrition and Retention (Navy)
51
Technical Report 120

KEYWORD Index

<table>
<thead>
<tr>
<th>OCS Considerations for the Future</th>
<th>Officer Accession Training</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>51</td>
</tr>
<tr>
<td>OCS Curriculum</td>
<td>Officer Acquisition Processes</td>
</tr>
<tr>
<td>51</td>
<td>51</td>
</tr>
<tr>
<td>OCS Curriculum Efficiency</td>
<td>Officer Acquisition Programs (Navy)</td>
</tr>
<tr>
<td>51</td>
<td>51</td>
</tr>
<tr>
<td>OCS Instructors</td>
<td>Officer Candidate Schools (OCS)</td>
</tr>
<tr>
<td>51</td>
<td>51</td>
</tr>
<tr>
<td>OCS Long-Range Planning</td>
<td>Officer Training (Navy)</td>
</tr>
<tr>
<td>51</td>
<td>51</td>
</tr>
<tr>
<td>OCS Program Analysis</td>
<td>Officers Assigned to Navy Recruit Training</td>
</tr>
<tr>
<td>51</td>
<td>87</td>
</tr>
<tr>
<td>OCS Student Profile</td>
<td>Onboard Instructional Package (Naval Officer Authority)</td>
</tr>
<tr>
<td>51</td>
<td>153</td>
</tr>
<tr>
<td>OCS and Follow-on Schools</td>
<td>Onboard Instructional Package (Naval Petty Officer Authority)</td>
</tr>
<tr>
<td>51</td>
<td>153</td>
</tr>
<tr>
<td>OCS and the Fleet</td>
<td>Onboard Training</td>
</tr>
<tr>
<td>51</td>
<td>54</td>
</tr>
<tr>
<td>OPSCAN-17</td>
<td>Onboard Training Materials</td>
</tr>
<tr>
<td>136</td>
<td>119</td>
</tr>
<tr>
<td>Objective Evaluation Methods</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
</tr>
</tbody>
</table>

137
Technical Report 120

KEYWORD Index

Onboard Training Media
40

Optimized Recruit Training
39

One-Time Costs
135

Optimized Recruit Training Curriculum
73

Operational Evaluation
104

Optimized System Design
31

Operational Mathematical Model
14

Optimum Decision Making
32

Operational Performance Measures of
P-3 Pilots
93

Organizational Management of COMISAT
55

Operational Performance of P-3 Pilots
93

Organizational Properties
57

Operational Procedures for COMISAT
55

P-3 Aircraft Simulator Training
60, 69

Operational Test & Evaluation
104

P-3 Aircraft Training
60

Operations Specialists Curricula
19, 99

P-3 Curriculum Evaluation
5, 7

Operator/Data Item Description
104

P-3 Flight Crew Training
7

Opinion Toward Centralized Instructor Training
43

P-3 Flight Engineer Training
11
Technical Report 120

KEYWORD Index

P-3 Landing Practice 69

P-3 Pilot Fleet Readiness Training 93

P-3 Pilot Training Effectiveness 93

P-3 Replacement Pilot Training 5, 11

P-3 Simulator Training 93

POM/Budget Cycles 101

Payback Period 108

Per Capita Cost Data System 83

Per Capita Course Costing Data Base 83

Per Capita Training Costs 83

Per Capita Training Data Base 83

Performance Assessment 22

Performance Problems of Military Recruits 81

Performance in Basic Military Training 81

Personality Characteristics of Military Recruits 81

Personnel (Skilled) Shortages 103

Personnel Attrition 53

Personnel Information 109

Personnel Information Data Bases 109

Personnel Management 109

Personnel Management Indices 109
Technical Report 120

KEYWORD Index

Personnel Requirements for COMISAT 55

Personnel Resources 109

Personnel Training and Evaluation Program 44

Phototypesetting 56

Physical Resource Requirements 61

Pilot Evaluation Program Study Design 125, 126

Pilot Flight Training 5

Pilot Ground Training 5

Pilot Proficiency 100

Pilot Selection 31

Pilot Training 5, 31, 100

Pilot Training Scheduling 100

Platemaking 56

Precommissioning Training (Navy) 121

Pricing for Social, Economic, or Political Objectives 145

Primer of Economic Analysis 36

Printing 56

Prioritization 36

Prioritizing POM Submissions Technique 117

Prioritizing Training Needs 117

Private Training Institutions 25, 27

Procedural Recall 29
Technical Report 120

KEYWORD Index

Procedural Task Performance Errors 90

Procedural Task Performance Time 90

Procedure Learning 90

Process Flow Model 15

Production/Editing/Validation Instructional Television Subsystem 97

Productivity Measures 83

Proficiency Grading 100

Proficiency-Based Training 48, 60, 69

Program Objective Memoranda Submissions 117

Program Objective Memorandum (POM) 67

Program of Instruction 7

Programmed Instruction 18, 40, 64, 65, 84

Programmed Text Formatting Operations 65

Programmed Texts Produced by Computer 65

Proposed Recruit Training Model 39

Public Training Institutions 25, 27

Public Works Department (NTC Orlando)--Analysis of 148

Public Works Department (NTC Orlando)--Operation of 148

Public Works Department Management Information Systems 148

Public Works Department Operation and Personnel Trends 148

Public Works Department Operations Options 148
Technical Report 120

KEYWORD Index

Public Works Department--Functional Needs 148

Public Works Department--Resource Support 148

Publishing Advancement in Rate Examinations 56

Publishing Correspondence Courses 56

Publishing Instructional Program Development Materials 56

Publishing Personnel Qualification Standards 56

Publishing Rate Training Manuals 56

Publishing System Alternatives 56

Publishing System for Naval Training 56

Publishing Systems Cost Analysis 56

Qualitative Alternative Assessment 61

Questionnaire Data Analysis 24

Questionnaire Preparation 24

Questionnaire Return Rate 23

Questionnaires 23, 24, 70

RDT&E Funding Guidelines 77

RDT&E Support 77

RRR Annual Events 67

RRR Distribution by Category 67

Radar Operator ECCM Tasks 19

Random Access Video Instructional Programs 97
Technical Report 120

KEYWORD Index

Range-of-Effect Program 46
Recruit Company Commander Benefits and Incentives 68
Rating Scale 23
Recruit Company Commander Duties 68
Readability Formula 89
Recruit Company Commander Selection 68
Readability of Remedial Workbook 85, 151
Recruit Company Commander Training 68
Reading Comprehension 85, 151
Recruit Detachment and Transfer 73
Reading Deficiencies 85, 151
Recruit Division Officers Indoctrination 87
Reading Skill Improvement 85, 151
Recruit Division Officers Orientation 87
Reading Vocabulary 85, 151
Recruit Division Officers Orientation/Indoctrination Curriculum 87
Reading Workbook (Remedial) 151
Recruit Division Officers Selection 87
Recalling Symbols 72
Recruit Division Officers Training 87
Records and Reports 45
Recruit Indoctrination
39, 73

Recruit Instructors (Officers)
87

Recruit Orientation
39, 73

Recruit Processing
73

Recruit Program Management
73

Recruit Skill Training
73

Recruit Training
68

Recruit Training Basic Numerical Skills
157

Recruit Training Curriculum
39, 73

Recruit Training Goals
39

Recruit Training Instructor Programs
68

Recruit Training Instructor School
Current Curriculum
68

Recruit Training Instructor School
Proposed Curriculum
68

Recruit Training Instructors
68

Recruit Training Priorities
39

Recruit Training Standardized Tests
92, 156

Recruit Training in the 1980s
73

Recruit Training in the Military Services
87

Recruiting
39

Recurring Costs
135

Reference Utility
37
<table>
<thead>
<tr>
<th>Keyword</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulatory Requirements in Instructional Television</td>
<td>97</td>
</tr>
<tr>
<td>Reliability</td>
<td>45</td>
</tr>
<tr>
<td>Remedial Reading Need in Enlisted Training</td>
<td>85, 151</td>
</tr>
<tr>
<td>Remedial Reading Program</td>
<td>85</td>
</tr>
<tr>
<td>Remedial Reading Program (Navy)</td>
<td>151</td>
</tr>
<tr>
<td>Remedial Reading Workbook for Navy Training</td>
<td>85, 151</td>
</tr>
<tr>
<td>Reporting Systems</td>
<td>109</td>
</tr>
<tr>
<td>Requirements Model</td>
<td>34, 35, 41, 42, 114</td>
</tr>
<tr>
<td>Requirements and Resources Model</td>
<td>15</td>
</tr>
<tr>
<td>Resource Authorization Preparation</td>
<td>141</td>
</tr>
<tr>
<td>Resource Authorization System</td>
<td>141</td>
</tr>
<tr>
<td>Resource Authorization System Process</td>
<td>141</td>
</tr>
<tr>
<td>Resource Authorization System Software</td>
<td>141</td>
</tr>
<tr>
<td>Resource Cost Categories</td>
<td>110</td>
</tr>
<tr>
<td>Resource Cost Requirements</td>
<td>61</td>
</tr>
<tr>
<td>Resource Planning (Navy Training)</td>
<td>117</td>
</tr>
<tr>
<td>Resource Requirement Request (RRR) Process</td>
<td>67</td>
</tr>
<tr>
<td>Resources Management System</td>
<td>57</td>
</tr>
<tr>
<td>Resources Model</td>
<td>34, 35, 41, 42, 114</td>
</tr>
</tbody>
</table>
Responsibility of Naval Officers
153

Responsibility of Naval Petty Officers
153

Rule Use
29

SWOSCOL Department Head Course
152

SWOSCOL FTS Units
152

Saudi Naval Course Material Cost Estimate
150

Savings
108

Scaling Procedures
37

Schedule Alternatives Determination
78

Schedule Printing
78

Schedule Work Sheet Recording
78

Scheduling Pilot Training
100

Scheduling Training Courses
78

Scheduling of Navy Electronic Warfare Training
86

Scheduling of Navy Training Courses
58

Seaman Apprentice Training
59

Seasparrow Missile Maintenance
154

Seasparrow Missile Operation
154

Seasparrow Missile Repair
154

Seasparrow Missile System Maintenance Tasks
154

Seasparrow Missile System Task Analyses
154
Technical Report 120

KEYWORD Index

Seasparrow Missile System Task Data
154

Seasparrow Missile System Task
Inventory
154

Security Department (NTC
Orlando)--Analysis of
149

Security Department (NTC
Orlando)--Operations of
149

Security Department Deficiencies in
Current Operations
149

Security Department Efficiencies in
Current Operations
149

Security Department's Remedies for
Existing Deficiencies
149

Self Paced Instruction
84

Self-paced Instruction in Morse Code
Learning
96

Sentry Duty Memory Aids
66

Sequential Sampling Decision Model
100

Ship Handling
47

Ship Handling Accidents
47

Ship Handling Bridge Simulator
71

Ship Handling Instructional Modules
71

Ship Handling Knowledge and Skill
Requirements
47

Ship Handling Training
47

Ship Handling Training Aids and
Devices
47

Ship Handling Training Analysis
47
Technical Report 120

KEYWORD Index

Ship Handling Training Courses (Proposed) 47
Simulation Languages 86

Ship Handling Training Device 71
Simulation Model 13

Ship Handling Training System 71
Simulation Model Selection 86

Ship Handling Training System (Proposed) 47
Simulation Requirements for Electronic Equipment Maintenance 63

Ship Handling Training Unit 71
Simulation Substitution Practices 49

Shipboard Computers 18
Simulation of Aircraft Landings 69

Short-run Analysis 110
Simulation of Aircraft Tasks 48

Signal Flag Memory Aids 66
Simulation of Training Systems 35, 38, 41, 42

Signalman Performance in Morse Code Learning 96
Simulator Capability 49

Simulated Landing Performance 48
Simulator Cockpit Motion 69

Simulator Fidelity 105
Simulator Landing Practice 69

Simulator Pilot Training Long-Term Effects 93

Simulator Trained P-3 Pilot Performance 93

Simulator Training Effectiveness 69

Simulator Training Effects on P-3 Pilots 93

Simulator vs. In-Flight Training 60, 69

Simulator vs. nonsimulator Trained P-3 Pilots 93

Skill Analysis 25, 27

Skill Training 17, 25, 26, 27, 28

Small Craft Training Device 71

Sound Powered Phones (Proper Use of) 142

Sound Powered Telephone Circuit Codes 142

Sound/Microfiche Programs 118

Sources of Marine Corps Related Training 28

Sources of Navy Related Training 26

Space Requirements for COMISAT 55

Spanish-Speaking Recruits 92, 156

Specific Pilot Skills 31

Standardized Recruit Training 39

Strategic Working Assumptions 14

Structured Interviews 23, 70
<table>
<thead>
<tr>
<th>Keyword</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Flow Computer Simulation</td>
<td>86</td>
</tr>
<tr>
<td>Substitution for In-Flight Training</td>
<td>49</td>
</tr>
<tr>
<td>Student Flow Simulation Data Base</td>
<td>86</td>
</tr>
<tr>
<td>Surface Ship Acquisition Training</td>
<td>74</td>
</tr>
<tr>
<td>Student Flow Simulation Model Uses</td>
<td>86</td>
</tr>
<tr>
<td>Surface Sonar Technician Career Path</td>
<td>58</td>
</tr>
<tr>
<td>Student Loading Demands in Instructional Television</td>
<td>97</td>
</tr>
<tr>
<td>Symbol Identification</td>
<td>29, 64</td>
</tr>
<tr>
<td>Student Population (FTS)</td>
<td>152</td>
</tr>
<tr>
<td>Symbol Learning</td>
<td>64, 65, 72</td>
</tr>
<tr>
<td>Student Progress Tracking</td>
<td>120</td>
</tr>
<tr>
<td>Subjective Estimates</td>
<td>37</td>
</tr>
<tr>
<td>Symbol Learning Materials</td>
<td>144</td>
</tr>
<tr>
<td>Subjective Evaluation Methods</td>
<td>45</td>
</tr>
<tr>
<td>Symbol Recognition Training</td>
<td>64</td>
</tr>
<tr>
<td>Subjective Judgments</td>
<td>37</td>
</tr>
<tr>
<td>Synthetic Training</td>
<td>31</td>
</tr>
<tr>
<td>Synthetic Training Devices</td>
<td>11, 48, 69</td>
</tr>
<tr>
<td>Submarine Fire Control Team</td>
<td>3</td>
</tr>
<tr>
<td>System Capabilities Model</td>
<td>15</td>
</tr>
<tr>
<td>Submarine Sonar Team</td>
<td>3</td>
</tr>
<tr>
<td>System Capabilities/Requirements and Resources Model</td>
<td>33, 34, 35, 38, 41, 114</td>
</tr>
</tbody>
</table>
Technical Report 120

KEYWORD Index

<table>
<thead>
<tr>
<th>System Generating Programs</th>
<th>Tactical Team Training</th>
</tr>
</thead>
<tbody>
<tr>
<td>112</td>
<td>3, 22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System/Equipment Acquisition Process</th>
<th>Task Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>7, 62, 102</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System/Equipment Life Cycle</th>
<th>Task Analysis Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>102</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System/Equipment Training Funding</th>
<th>Task Analysis of P-3 Flight Crew Training</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System/Equipment Training and ISD Procedures</th>
<th>Task Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>102</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Systems Acquisition Training Policy (Navy)</th>
<th>Task Frequency Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>121</td>
<td>125, 126</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Systems Approach to Training</th>
<th>Task Inventory Data Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>5, 7, 76</td>
<td>154</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRAM Data Base</th>
<th>Task Statements (Guidelines for)</th>
</tr>
</thead>
<tbody>
<tr>
<td>112</td>
<td>146</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRAM Model Operating Programs</th>
<th>Task Taxonomies</th>
</tr>
</thead>
<tbody>
<tr>
<td>112</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRAM User's Guide</th>
<th>Team Training</th>
</tr>
</thead>
<tbody>
<tr>
<td>112</td>
<td>22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tactical Decision Making</th>
<th>Technical Information Needed for Training</th>
</tr>
</thead>
<tbody>
<tr>
<td>3, 22</td>
<td>119</td>
</tr>
<tr>
<td>Technical Manual Design</td>
<td>Television and Photographic Camera Requirements</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>119</td>
<td>97</td>
</tr>
<tr>
<td>Technical Manual Design Issues</td>
<td>Test and Evaluation</td>
</tr>
<tr>
<td>119</td>
<td>33, 77</td>
</tr>
<tr>
<td>Technical Manual Formats</td>
<td>Test and Evaluation Selection</td>
</tr>
<tr>
<td>119</td>
<td>77</td>
</tr>
<tr>
<td>Technical Manual Improvement Recommendations</td>
<td>Text Editor</td>
</tr>
<tr>
<td>119</td>
<td>56</td>
</tr>
<tr>
<td>Technical Manuals (Preliminary)</td>
<td>Time vs. Fixed and Variable Costs</td>
</tr>
<tr>
<td>121</td>
<td>110</td>
</tr>
<tr>
<td>Technical School Training Evaluation</td>
<td>Total vs. Average vs. Incremental Costs</td>
</tr>
<tr>
<td>146</td>
<td>135</td>
</tr>
<tr>
<td>Technical Skills Profiles Development</td>
<td>Tracking</td>
</tr>
<tr>
<td>146</td>
<td>29</td>
</tr>
<tr>
<td>Technical Training</td>
<td>Trainee Attrition</td>
</tr>
<tr>
<td>39</td>
<td>75</td>
</tr>
<tr>
<td>Technical Training Materials (Memory Aids for)</td>
<td>Trainee Qualifications</td>
</tr>
<tr>
<td>142</td>
<td>75</td>
</tr>
<tr>
<td>Technical Training Requirements</td>
<td>Training (Contractor-Conducted)</td>
</tr>
<tr>
<td>58</td>
<td>104</td>
</tr>
<tr>
<td>Technology Transfer (Dollar Value)</td>
<td>Training Adequacy Ratings</td>
</tr>
<tr>
<td>128</td>
<td>70</td>
</tr>
</tbody>
</table>
Training Adequacy Scale
125, 126

Training Aids
19, 72, 90

Training Aids (ECCM)
99

Training Alternatives for the 1980s
59

Training Analysis
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 156

Training Analysis of Flight Engineer Curriculum
11

Training Analysis of P-3 Flight Crew Training
7

Training Appraisal
45, 70

Training Appraisal Comparisons
123

Training Appraisal Practices--Proposed Changes
123

Training Appraisal Program External Evaluation
123

Training Appraisal Program Internal Evaluation
123

Training Appraisal Programs
123

Training Appraisal Summaries
123

Training Aptitude Requirements
75

Training Assessment
44, 45

Training Assessment Factors
45
<table>
<thead>
<tr>
<th>Training Attrites</th>
<th>Training Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training Attrition</td>
<td>Training Course Cost</td>
</tr>
<tr>
<td>Training Budget (Corporate)</td>
<td>Training Course Data Random Retrieval</td>
</tr>
<tr>
<td>Training Capability Analysis</td>
<td>Training Course Data Storage</td>
</tr>
<tr>
<td>Training Classification Systems</td>
<td>Training Course Material (Saudi Navy)</td>
</tr>
<tr>
<td>Training Commonality</td>
<td>Training Course Scheduling</td>
</tr>
<tr>
<td>Training Content</td>
<td>Training Craft Design</td>
</tr>
<tr>
<td>Training Cost Effectiveness</td>
<td>Training Curriculum</td>
</tr>
<tr>
<td>Training Cost Functions (Typical)</td>
<td>Training Data Bases</td>
</tr>
<tr>
<td>Training Cost Model</td>
<td>Training Data Source</td>
</tr>
<tr>
<td>Training Cost Model Program</td>
<td>Training Development</td>
</tr>
</tbody>
</table>
Training Device Acceptance
77

Training Device Acquisition Process
77

Training Device Categories
77

Training Device Evaluation
77

Training Device Procurement
77

Training Device Procurement and POM/Budget Process
77

Training Device Selection
2

Training Device Substitution
2

Training Device Test and Evaluation
77

Training Device Use
5, 48, 69

Training Devices
2, 5, 19, 69

Training Devices (ECCM)
99

Training Effectiveness
1, 2, 20, 23, 44

Training Effectiveness Assessment
44, 45

Training Effectiveness Evaluation
11, 48, 72

Training Effectiveness Prediction
1, 2

Training Effectiveness Ratio (TER)
49

Training Effectiveness in Pilot Training
147

Training Effectiveness of Computer-Authored Training Materials
144

Training Efficiency
4, 9, 10, 39

Training Efficiency in Pilot Training
147
Technical Report 120

KEYWORD Index

Training Equipment 31

Training Evaluation 39, 44, 45

Training Evaluation Costs 45

Training Feedback 23, 24, 70, 98, 131, 132, 133, 139, 140

Training Feedback Data Collection 98

Training Feedback Instrument Costs 70

Training Feedback Instruments 98, 131, 132, 133, 139, 140

Training Feedback Job Knowledge Tests 125

Training Feedback Questionnaires 125, 126

Training Feedback Structured Interviews 98, 125, 126, 131, 133, 139, 140

Training Forecasting 103

Training Innovations 16, 46

Training Investment in Manpower 103

Training Load Increments and Decrements 83

Training Management 17, 27, 120

Training Management (Corporate) 103

Training Management Economic Analysis of Training 25

Training Management Information System 103

Training Management Procedures 16, 37, 38, 41, 42, 46, 112, 113

Training Manual Design 119

Training Manual Formats 119
<table>
<thead>
<tr>
<th>Training Material Production</th>
<th>Training Plan User Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training Media</td>
<td>Training Planning</td>
</tr>
<tr>
<td>Training Media Cost Model</td>
<td>Training Policy (Corporate)</td>
</tr>
<tr>
<td>Training Media Selection</td>
<td>Training Practices</td>
</tr>
<tr>
<td>Training Media Substitution</td>
<td>Training Preparedness (Orientation)</td>
</tr>
<tr>
<td>Training Model</td>
<td>Training Process Flow Model</td>
</tr>
<tr>
<td>Training Objectives</td>
<td>Training Process Flow Models</td>
</tr>
<tr>
<td>Training Outcome</td>
<td>Training Process Modeling</td>
</tr>
<tr>
<td>Training Plan Generation</td>
<td>Training Proficiency</td>
</tr>
<tr>
<td>Training Plan Management and Forecasting</td>
<td>Training Program Forecast Model</td>
</tr>
<tr>
<td>Training Plan Process Deficiencies</td>
<td>Training Program Selection</td>
</tr>
</tbody>
</table>
Training Requirements 7, 31, 52
Training Requirements Analysis Model (TRAM) 42, 112
Training Requirements Generation 101
Training Requirements for COMISAT 55
Training Resource Allocation 135
Training Resource Cost Categories 110
Training Resource Management 111
Training Resource Modeling 38, 42, 112, 113
Training Resources Use 78
Training Simulation Variables 13
Training Simulator Requirements 11
Training Simulator Use 11
Training Simulator Use and Maintenance 5
Training Source Selection 25, 27
Training Specification for Skill Training 26, 28
Training Staffs (Corporate) 103
Training Strategies 29
Training Strategies for Morse Code Learning 96
Training Suitability 82
Training Syllabi 7
Training System 12
<table>
<thead>
<tr>
<th>Training System Alternatives</th>
<th>50, 55</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training System Design</td>
<td>1, 9, 10, 31, 73, 102</td>
</tr>
<tr>
<td>Training System Model</td>
<td>31</td>
</tr>
<tr>
<td>Training System Modeling</td>
<td>15</td>
</tr>
<tr>
<td>Training System Optimization</td>
<td>1</td>
</tr>
<tr>
<td>Training System Simulation</td>
<td>13</td>
</tr>
<tr>
<td>Training Systems</td>
<td>112</td>
</tr>
<tr>
<td>Training Systems Development</td>
<td>104</td>
</tr>
<tr>
<td>Training Technology</td>
<td>9, 10, 16, 37, 46</td>
</tr>
<tr>
<td>Training Technology (Advances)</td>
<td>103</td>
</tr>
<tr>
<td>Training Technology Evaluation</td>
<td></td>
</tr>
<tr>
<td>Modeling</td>
<td>16, 46</td>
</tr>
<tr>
<td>Training Time</td>
<td>31</td>
</tr>
<tr>
<td>Training Using Microfiche</td>
<td>54</td>
</tr>
<tr>
<td>Training and Education Data Bases</td>
<td></td>
</tr>
<tr>
<td>(Directory of)</td>
<td>155</td>
</tr>
<tr>
<td>Training and Education Information</td>
<td>124</td>
</tr>
<tr>
<td>Training and Education Information Sources (Directory of)</td>
<td>155</td>
</tr>
<tr>
<td>Training and Education Record System (Interest in)</td>
<td>124</td>
</tr>
<tr>
<td>Training and Education Record System (TERs)</td>
<td>124</td>
</tr>
<tr>
<td>Training at Remote Sites</td>
<td>50, 55</td>
</tr>
<tr>
<td>Training for Replacement Patrol Pilots</td>
<td>147</td>
</tr>
<tr>
<td>Training in the Military</td>
<td>44</td>
</tr>
</tbody>
</table>
Transfer Effectiveness Ratios 69
Transfer of Training 2, 105
Transfer of Training in Replacement Pilot Training 147
Trends in Instructional Technology 127
Trends in Media Technology 127
Types of Training Objectives 29
Typesetting 56
Typesetting Camera-Ready Masters 94
Typesetting Cost Savings 94
Typesetting Programmed Instructional Material 94
Typesetting Special Graphic Symbols 94
Typesetting Telecommunications 94
Undergraduate Pilot Training 31
Unit Analysis (FTS) 152
User Interface Programs 112
Validity 45
Variable Cost 110
Verbal Information Use 29
Video Media Use in EW Training 97
Video Playback Equipment Requirements 97
Visual Pattern Discrimination Test 96
Visual Reaction Time Test 96
Technical Report 120

KEYWORD Index

Visual Simulation
48, 69

Visual Simulation Requirements
11

Visual Simulation in Flight Training
147

Vocational Aptitude Battery (Armed Services)
157

Vocational-Technical (VOTEC) Training
17, 25, 26, 27, 28

Voice Communication
29

Waiver Analysis
53

Weapons System Development
104

Word Analysis Skills
151

Word List (Basic Navy)
89

Word List (Common)
89

Word List (Supplementary Technical)
89

Word Processors
56

Word Substitution List (Army)
89

Word Substitution List (Navy)
89

Word Substitution Lists
89
1972 Technical Reports

1 Staff Study on Cost and Training Effectiveness of Proposed Training Systems.

2 Analysis of the Transfer of Training, Substitution, and Fidelity of Simulation of Training Equipment.

3 SSN Tactical Team Training System (U).

4 Electronic Warfare Training Analysis.

5 Training Analysis of P-3 Replacement Pilot Training.

1973 Technical Reports

7 Task Analysis of Pilot, Copilot, and Flight Engineer Positions for the P-3 Aircraft.

8 An Evaluation of Ten Techniques for Choosing Instructional Media.

11 Training Analysis of P-3 Replacement Pilot and Flight Engineer Training.

12 Design of Training Systems Phase I Summary Report.

14 Design of Training Systems, Phase I Report, Volumes I and II.
1974 Technical Reports

9 Electronic Warfare Maintenance Training Analysis Executive Summary.

10 Electronic Warfare Maintenance Training Analysis.

13 Application of Simulation to Individualized Self-Paced Training.

15 Design of Training Systems Phase II Report.

17 Analysis of Commercial Contract Training.

18 Computer Managed Instruction in Navy Training.

1974 Technical Memorandums

1975 Technical Reports

19 Surface Navy ECCM Training Analysis.

20 A Technique for Choosing Cost-Effective Instructional Delivery Systems.

21 Instructor Training.
1975 Technical Reports

22 An Assessment of U.S. Navy Tactical Team Training.

24 Procedures for Questionnaire Development and Use in Navy Training Feedback.

25 Analysis of Commercial Contract Training for the Navy (Phase II).

27 Analysis of Commercial Contract Training for the Marine Corps (Phase II).

30 Military Instructor Training in Transition. Proceedings of an Inter-Service Conference.

32 Decision Analysis and Its Application to the Naval Education and Training Command.

33 Design of Training Systems Phase III Report.

1975 **Technical Reports**

37 Design of Training Systems: The Development of Scaling Procedures.

1975 **Technical Memorandums**

102 Task Description and Analysis for Training System Design.

103 Trends in Industrial Training Management.

105 Evaluation of the 1200 PSI Simulator.

107 Consolidated Electronic Warfare Operator Training System Cost Analysis.

109 A Study to Develop Management Indices for CNET, Phase 1--Personnel Indices.

1976 **Technical Reports**

29 Learning Guidelines and Algorithms for Types of Training Objectives.

36 A Primer on Economic Analysis for Naval Training Systems.
1976 Technical Reports

40 An Evaluation of Microfiche Reader Types for Use with Programmed Instruction.

42 Design of Training Systems Phase IV Report.

43 Centralized Instructor Training for Naval Technical Training.

44 Training Effectiveness Assessment: Volume I, Current Military Training Evaluation Programs.

47 Ship Handling and Ship Handling Training.

1976 Technical Memorandums

111 A Study to Develop Management Indices for the Chief of Naval Education and Training, Phase II: Capital Resources Indices.

113 Design of Training Systems, Application of the Individualized Training Simulation System (ITSS) at the Basic Electricity and Electronics (BE&E) School, San Diego, CA.

114 An Application of Linear Programming to the Naval Education and Training Command.

115 Navy Campus for Achievement Automated Data System--A Brief Review and Proposal for Analysis and Design.

116 Cost/Benefit Analysis of the Instructional Systems Development Implementation Plan (FY 77 to FY 82).

1977 Technical Reports

48 Training Effectiveness Evaluation of Device 2F87F, P-3C Operational Flight Trainer.

1977 Technical Reports

51 Officer Candidate School Curriculum Optimization.

53 Academic Attrition from Navy Technical Training Class "A" School Courses.

54 Evaluation of Microfiche as an Instructional Medium in a Technical Training Environment.

55 Computer Managed Instruction at Remote Sites; Phases II-III, A Demonstration Design.

56 An Automated Publishing System for the Naval Education and Training Command.

57 Demonstration of a Methodology for Classifying Naval Training Courses.

58 An Heuristic Approach for the Scheduling of Navy Training Courses.

1977 Technical Memorandums

117 A Technique for Achieving Budget Item Prioritization.

118 Demonstration and Evaluation of a Microfiche-Based Audio/Visual System.

119 Training Requirements for the Naval Technical Information Presentation Program: A Needs Assessment.

120 Foreign Military Training Management Information System.
Technical Report 120
Title by Year Index

1977 Technical Memorandums

121 Precommissioning Training.

123 Description of Selected Training Appraisal Programs Within the Naval Education and Training Command.

124 Navy-Wide Training and Education Record System (TERS): a Feasibility and Interest Assessment Study.

125 Aviation Electrician's Mate "A" School Training Assessment Data.

1978 Technical Reports

60 Utilization of Device 2F87F OFT to Achieve Flight Hour Reductions in P-3 Fleet Replacement Pilot Training.

61 A Guidebook for Economic Analysis in the Naval Education and Training Command.

62 Development of the Navy Consolidated Electronic Warfare Operator Curriculum.

63 Analysis of Software Simulation in Computer-Based Electronic Equipment Maintenance Trainers.

64 Computer-Aided Authoring of Programmed Instruction for Teaching Symbol Recognition.
1978 Technical Reports

67 Study to Improve the Resource Requirements Request (RRR) Process in the NAVEDTRACOM.

68 Selection and Training of Navy Recruit Company Commanders.

69 The Effects of Simulator Landing Practice and the Contribution of Motion Simulation to P-3 Pilot Training.

70 A Comparative Assessment of Three Methods of Collecting Training Feedback Information.

79 The CNET Automated Budget System (CABS).

1978 Technical Memorandums

126 Boiler Technician "A" School (1200 PSI) Training Assessment Data.

127 A Media Analysis of Electronic Warfare Training in Support of the Consolidated Navy Electronic Warfare Training Development Program.

128 Interim Cost Model for Estimating Development Costs of Existing Curricula in NAVEDTRACOM.
1979 Technical Reports

71 The Design of a Shiphandling Training System.

74 A Cost Management Control Procedure for Initial Training in Surface Ship Acquisition Programs.

75 Personnel Attrition from Navy Enlisted Initial Technical Training.

76 Institutionalization of Instructional System Development (ISD) in the Naval Education and Training Command: An Organizational Analysis.

77 Proposed OPNAV Instruction for Test and Evaluation of Navy Training Devices Procured Under RDT&E Funding.

78 Automated Course Scheduling System for Naval Training.

80 A Conceptual Model for a Navy Enlisted Career Plan.

81 The Relationship of Personality Characteristics to Attrition and Performance Problems of Navy and Air Force Recruits.

82 Evaluation of Mess Management Specialist (MS) "A" School Training by Advanced MS NAVEDTRACOM Students and by Fleet MS Personnel.

83 Incremental Costing Model for Use with the CNET Per Capita Course Costing Data Base: System I.

84 An Assessment of Individualized Instruction in Navy Technical Training.
Technical Reports

1979

85 Development and Evaluation of a Remedial Reading Workbook for Navy Training.

Technical Memorandums

1979

130 Feasibility of Consolidating USN/USMC A-6E Aircrew and Enlisted Training Within Existing USN Fleet Readiness Squadrons.

131 Evaluation of Aviation Machinist's Mate (AD) A1 Course.

133 Evaluation of Engineman (EN) Class "A" Course.

134 Military Service Reporting System.

Technical Notes

1979

143 A Plan for the Evaluation of a Revised Core Curriculum for the Naval Reserve Officers Training Corps.

144 Computer-Aided Authoring of Instructional Materials.

145 Foreign Military Sales--Average Cost Pricing or Marginal Cost Pricing--A Theoretical Perspective.
Technical Report 120
Title by Year Index

1979 Technical Notes

146 Guidelines for Preparing Feedback Questionnaire Task Statements.

147 Flight Hour Reductions in Fleet Replacement Pilot Training Through Simulation.

148 Analysis of Base Operations Support Functions, Naval Training Center, Orlando: Public Works Department.

149 Analysis of Base Operations Support Functions, Naval Training Center, Orlando: Security Department.

150 Cost Estimate for Royal Saudi Naval Forces, Level II Course Materials.

1980 Technical Reports

86 Student Flow Simulation Model for Navy Consolidated Electronic Warfare Training.

87 Selection, Training, and Utilization of Navy Recruit Training Command Officers.

89 Development and Test of a Computer Readability Editing System (CRES).

91 The CNET Automated Budget System (CABS) II.

92 An Assessment of Hispanic Recruits Who Speak English As a Second Language.
1980 Technical Reports

93 Operational Performance of P-3 Pilots as a Function of Variations in Fleet Readiness Training.

94 System for Computer Automated Typesetting (SCAT) of Computer Authored Texts.

96 The Prediction of Performance in Navy Signalman Class "A" School.

97 Application of Random Access Video Programs in Navy Electronic Warfare Training.

98 A Structured Interview Methodology for Collecting Training Feedback Information.

1980 Technical Memorandums

136 Economic Analysis of Selected CMI Test Input Alternatives.

137 Landing Signal Officer (LSO) Information, Status, and Tracking System (LISTS).

138 User's Manual for the Incremental Costing Model Developed for Use with the CNET Per Capita Course Costing Data Base.
1980 Technical Memorandums

139 Evaluation of Avionics Technician Class A1 Course.

140 Evaluation of Fire Control Technician Class "A" Phase I Course.

141 Resource Authorization System.

142 Field Test of Guidelines for the Development of Memory Aids in Technical Training.

1980 Technical Notes

151 Job-Related Reading Material: A Navy-Relevant Remedial Reading Workbook.

152 Review of Fundamental Technical Subject (FTS) Units at Surface Warfare Officers School Command (SWOSCOLCOM).

153 Authority of Officers and Petty Officers of the United States Navy (Onboard Instructional Package).

154 NATO Seasparrow Missile System: Analysis of Maintenance Task Data.

155 A Directory of Sources of Information and Data Bases on Education and Training.

156 Hispanic Recruits in the Navy: An Assessment of Their Skills in English as a Second Language.

Technical Report 120

DISTRIBUTION LIST

Navy

OASN (R&D, MRA&L)
CNO (OP-115, OP-987H, OP-987, OP-12)
NAVCOMPT (NCD-7)
ONR (422 (M. Tolcott and M. Farr))
CMM (MAT-08T2)
CNET (01, 02, N-5)
CNAVRES (02)
COMNAVSEASYSCOM (05L1C, 05L1C2)
COMNAVAIRSYSCOM (03, 34OF, 4136)
CNETECHTRA (016, N-6)
CNAVTRA (Library)
COMTRALANT
COMTRALANT (Educational Advisor)
COMTRAPAC (2 copies)
CO NAVPERSRANDCEN (Library (2 copies))
NAVPERSRANDCEN Liaison (021)
Superintendent NAVPGSCOL (2124, 32)
Superintendent Naval Academy Annapolis (Chairman, Behavioral Science Dept.)
CO NAVEDTRAPRODEV CEN (Technical Library (2 copies))
CO NAVEDTRASUPPCENLANT (N-3 (2 copies))
CO NAVEDTRASUPPCENPAC (2 copies)
CO NAVAEROMEDRSCHLAB (Chief Aviation Psych. Div.)
CO FLECOMBATRACENPAC
CO NAMTRAGRU
CO NAVTECHTRACEN Corry Station (101B, 3330, Cryptologic Training Department)
CO NAVTECHTRACEN (TIC (2 copies))
Center for Naval Analyses (2 copies)
U.S. Naval Institute
OIC NODAC (2)
CO TRITRAFAC (2 copies)
CO NAVSUBTRACENPAC
CO FLEASWTRACENPAC
CO FLETRACEN SDIEGO
Executive Director NAVINSTPRODEVDET
VT-10 (Education Specialist)
CO NAVSUBSCOL NLO (Code 0110)
CO NAVTECHTRACEN Treasure Island (Technical Library)
TAEG Liaison, CNET 022 (5 copies)
NAVEDTRAPRODEV CENDET Memphis
CO NAVSCOLSCOM (Code 40C)
CO NAVTECHTRACEN Meridian
COMLETRAGRU Pearl Harbor
NAVEDTRAPRODEV CENDET Meridian
CNET Liaison Officer, Williams Air Force Base

Air Force

Headquarters, Air Training Command (XPTD, XPT1A) Randolph Air Force Base
Air Force Human Resources Laboratory, Brooks Air Force Base
Air Force Human Resources Laboratory, Williams Air Force Base

(Page 1 of 2)
DISTRIBUTION LIST (continued)

Air Force (continued)

Air Force Human Resources Laboratory (Library), Lowry Air Force Base
Air Force Office of Scientific Research/AR
Air Force Human Resources Laboratory (Library), Wright Patterson Air Force Base

Army

Commandant, TRADOC (Technical Library)
ARI (Reference Service)(2 copies)
COM USA Armament Materiel Readiness Command (DRSAR-MAS)
COMDT, USAIPRM (ATSG-OT-R)

Coast Guard

Commandant, Coast Guard Headquarters (G-P-1/2/42, GRT/54)

Marine Corps

CMC (OT)
CGMCDEC
Director, Marine Corps Institute
CO MARCORCOMMELECSOL

Other

Military Assistant for Human Resources, OUSDR&E, Pentagon
Program Manager, Office of Cybernetics Technology, Defense Advanced Research Projects Agency
Institute for Defense Analyses
COM National Cryptologic School (Code E-2)

Information Exchanges

DTIC (12 copies)
DLSIE
ERIC Processing and Reference Facility, Bethesda, MD (2 copies)