DEVELOPMENT OF CHARGE TRANSFER DEVICES FOR 1-2 MICRON IMAGING
MAR 81 R A MILANO, Y Z LIU, R J ANDERSON
DAAK70-79-C-0145
ERC41034.27FR
NL
Development of Charge Transfer Devices for 1-2 Micron Imaging

Rockwell International
Microelectronics Research and Development Center
1049 Camino Dos Rios
Thousand Oaks, California 91360

March, 1981

Final Report for Period 09/06/79 through 01/31/81

"Unclassified" Approved for public release.

Prepared for
W26P7Z
Director
Night Vision/Electro Optics Lab
Fort Belvoir, VA 22060
Currently no satisfactory solid state imaging device exists for use in near infrared applications. While transmission photocathodes are most often used, their spectral response rapidly falls off for $\lambda > 0.99 \mu m$ due to the minimum vacuum level which can be achieved with a cesiated III-V semiconductor surface. These devices are thus suitable for use in those night vision systems which operate in the visible or near-infrared spectrum under low level moonlight and starlight illumination. They are, however, ineffective under moonless or overcast conditions because of the lack of light in the 0.5-0.9 \mu m region.
heterojunction imaging charge coupled device, CCD, in the GaSb-\(\text{AlGaAsSb}\) material system would eliminate the vacuum level problem and make possible the design and construction of imagers whose long wavelength cut-off is >1.8\(\mu\)m. Since there is considerable night glow ambient illumination in the 1.0-1.8\(\mu\)m wavelength region, this device is ideally suited to night vision applications.

This program focused on the development of a backside illuminated, imaging, heterojunction CCD. This program is the forerunner of an analogous concept currently employed in the design of \(\text{AlGaAs/GaAs}\) imaging devices and great success has been achieved. The CCD consists of three layers and is permanently bonded to a glass substrate. Metallization patterns which define the device active area and individual pixels are fabricated on the top, \(\text{AlGaAsSb}\), n-type channel layer. Charge storage and transfer take place in this layer. The alloy composition is adjusted to maximize the bandgap resulting in low dark current. This n-\(\text{AlGaAsSb}\) layer and another (p-type) \(\text{AlGaAsSb}\) "window" layer, together sandwich the GaSb optical absorber. Thus, light penetrates the glass and the transparent window layer and is strongly absorbed in the GaSb layer. Photogenerated electrons diffuse to the p+n junction, where they are swept into potential wells in the channel. In addition to the optimal spectral response and low dark current, the device has high optical quantum efficiency, is radiation hard, and naturally anti-blooming owing to the Schottky barrier transfer gates and has a wide dynamic range.

The primary objective of this contract was the successful fabrication and operation of a charge coupled device made in \(\text{AlGaAsSb}\). In order to accomplish this goal, the basic elements of the device, i.e., materials properties, characteristics of the Schottky barrier diodes and ohmic contacts, had to be analyzed in detail. While the primary goal was not achieved, significant advantages were made in understanding the characteristics of both the material and associated devices.

The major accomplishments of this program included:

- Development of a reliable ohmic contact technology,
- Identification of thermally stable Schottky metallization,
- Improved lattice-matching by increasing As content,
- Initiation of investigation of differential wet chemical etchants.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2.0</td>
<td>MATERIALS GROWTH</td>
<td>4</td>
</tr>
<tr>
<td>3.0</td>
<td>SCHOTTKY BARRIERS TO A1GaAsSb</td>
<td>16</td>
</tr>
<tr>
<td>4.0</td>
<td>OHMIC CONTACTS</td>
<td>25</td>
</tr>
<tr>
<td>5.0</td>
<td>PROCESSING ISSUES</td>
<td>35</td>
</tr>
<tr>
<td>6.0</td>
<td>RECOMMENDATIONS AND CONCLUSIONS</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>REFERENCES</td>
<td>40</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Backside-illuminated Schottky barrier gate AlGaAsSb/GaSb heterojunction CCD.</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Temperature-time profile of the LPE growth cycle of Al<sub>x</sub>Ga<sub>1-x</sub>As<sub>y</sub>Sb<sub>1-y</sub></td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Atomic fraction of Te required in the melt to achieve N<sub>d</sub> ≈ 1 x 10<sup>16</sup> cm<sup>-3</sup> for selected composition of Al<sub>x</sub>Ga<sub>1-x</sub>As<sub>y</sub>Sb<sub>1-y</sub></td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>C-V plot and Te-doping profile of a Al<sub>x</sub>Ga<sub>1-x</sub>As<sub>y</sub>Sb<sub>1-y</sub> (x=0.3, y=0.99) epitaxial layer</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>(a) As-grown surface of AlGaSb epilayer, (b) As-grown surface of an AlGaAsSb epilayer</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>X-ray double crystal diffractometer measurement of the lattice mismatch between an AlGaAsSb epilayer and the GaSb substrates; Δa<sub>0</sub>/a<sub>0</sub> = 0.012%</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>Lattice mismatch vs. atomic fraction of As in the melt for AlGaAsSb containing 20 mole percent of Al</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>Cleaved and stained cross-section of a GaSb-AlGaAsSb structure. The uniform deposition of GaSb n<sup>+</sup>-layer onto the AlGaAsSb layer is clearly evident</td>
<td>14</td>
</tr>
<tr>
<td>9</td>
<td>Photograph of the as-grown surface of the wafer whose cross-section is shown in Fig. 8</td>
<td>15</td>
</tr>
<tr>
<td>10</td>
<td>Forward I-V characteristics of a Au-Al<sub>x</sub>Ga<sub>1-x</sub>As<sub>0.1</sub>Sb<sub>0.9</sub> Schottky barrier diode</td>
<td>18</td>
</tr>
<tr>
<td>11</td>
<td>Reverse I-V characteristics of a Au-Al<sub>x</sub>Ga<sub>1-x</sub>As<sub>0.1</sub>Sb<sub>0.9</sub> Schottky barrier diode</td>
<td>19</td>
</tr>
<tr>
<td>12</td>
<td>Au Schottky barrier height and energy gap vs. Al mole fraction. The I-V data is denoted by Δ and the spread in photoresponse data is denoted by vertical bars</td>
<td>21</td>
</tr>
<tr>
<td>13</td>
<td>Depth composition profile for AuGe/Pt/Au metallization determined by AES</td>
<td>26</td>
</tr>
</tbody>
</table>
Fig. 14. (a) I-V characteristics of aluminum contacts on n-Al$_{0.3}$Ga$_{0.7}$AsSb/p-GaSb (wafer K108d) after 200 keV Se implant at 1 x 1013 cm$^{-2}$ dosage, (b) at lower current scale........... 27

Fig. 15. Sample K108g, Ohmic metal - 400Å Ge/240Å Au, Implant - Kr$^+$ - 300 KeV, 1 x 1014 ions/cm2, post implant anneal - none. 28

Fig. 16. I-V characteristics of Sn/Ag/Ni metallization after 425°C alloy. Vert. scale: 20 mA/div, horiz. scale: 0.5 V/div..... 30

Fig. 17. Total resistance vs. alloy temperature of Ag-Sn-Ni metallization system on n-Al$_{0.3}$Ga$_{0.7}$As$_{0.9}$Sb$_{0.1}$. The contact areas are circular, having the diameters listed in the figure..... 31

Fig. 18. Depth composition profile for Sn/Ag/Ni metallization determined by AES. The data for all elements are X1. Al data have been deleted for clarity......................... 32

Fig. 19. Depth composition profile for Sn/Ag/Ni metallization determined by AES. The data for all elements are X1. Al data have been deleted for clarity......................... 33
1.0 INTRODUCTION

Currently no satisfactory solid state imaging device exists for use in near infrared applications. While transmission photocathodes are most often used, their spectral response rapidly fall off for $\lambda > 0.9\mu m$ due to the minimum vacuum level which can be achieved with a cesiated III-V semiconductor surface. These devices are thus suitable for use in those night vision systems which operate in the visible or near-infrared spectrum under low level moonlight and starlight illumination. They are, however, ineffective under moonless or overcast conditions because of the lack of light in the 0.5-0.9 μm region. A heterojunction imaging charge coupled device, CCD, in the GaSb-AlGaAsSb material system would eliminate the vacuum level problem and make possible the design and construction of imagers whose long wavelength cut-off is $> 1.8 \mu m$. Since there is considerable night glow ambient illumination in the 1.0-1.8 μm wavelength region, this device is ideally suited to night vision applications.

The backside illuminated, imaging, heterojunction CCD concept as originally conceived for this program is illustrated in Fig. 1. This concept has since been employed in the design of AlGaAs/GaAs visible imaging devices also and great success has been achieved. The CCD consists of three layers, as shown, and is permanently bonded to a glass substrate. Metallization patterns which define the device active area and individual pixels are fabricated on the top, AlGaAsSb, n-type channel layer. Charge storage and transfer take place in this layer. The alloy composition is adjusted to maximize the bondgap resulting in low dark current. This n-AlGaAsSb layer and another (p-type) AlGaAsSb "window" layer, together sandwich the BaSb optical absorber. Thus, light penetrates the glass and the transparent window layer and is strongly absorbed in the GaSb layer. Photogenerated electrons diffuse to the p^-n junction, where they are swept into potential wells in the channel. In addition to the optimal spectral response and low dark current, the device has high optical quantum efficiency, is radiation hard, and naturally anti-blooming owing to the Schottky barrier transfer gates and has a wide dynamic range.
Fig. 1. Backside-illuminated Schottky barrier gate AlGaAsSb/GaSb heterojunction CCD.
The primary objective of this contract was the successful fabrication and operation of a charge coupled device made in AlGaAsSb. In order to accomplish this goal, the basic elements of the device, i.e., materials properties, characteristics of the Schottky barrier diodes and ohmic contacts, had to be analyzed in detail. While the primary goal was not achieved, significant advances were made in understanding the characteristics of both the material and associated devices.

The major accomplishments of this program included:

- Development of a reliable ohmic contact technology.
- Identification of thermally stable Schottky metallization.
- Improved lattice-matching by increasing As content.
- Initiation of investigation of differential wet chemical etchants.

These are discussed in detail in the following sections.
Although AlGaAsSb/GaSb heterostructures have been fabricated previously, more research is required in this materials system to obtain the level of maturity found in other systems, e.g., AlGaAs/GaAs, InGaAsP/InP. Of particular importance for CCD fabrication is the ability to grow multilayer structures with morphology suitable for photolithographic processing. In addition, layer thickness and doping must be well-controlled to ensure proper device operation. The ability to control the electrical and optical properties of the material over large areas is a necessity when area imagers are contemplated. The materials growth effort for this program has concentrated mainly on the following areas: (1) the elimination of misfit dislocations ("cross-hatching"), (2) determination of the optimum Al concentration for low leakage current, and (3) the investigation of the conditions required for the growth of layers of epi-material in which $X_{Al} > 0.3$. In addition, material was also grown for doping and layer thickness calibration and for Schottky barrier and ohmic contact studies.

The GaSb substrates used in this program were either Te doped n-type or undoped p-type (100) material. The etch pit density of the Te-doped substrate is approximately 500/cm2, while the undoped substrates had EPD of less than 1000. They were chemically-mechanically polished on a "kitten ear" pad with Br-CH$_3$OH dripping on it. Due to the softness of GaSb, at least 5 mils of the material was removed by this method to remove saw-induced damage. Some of the samples were polished in fused silica gel to provide a smoother finish. Prior to growth, the substrates were again etched in Br-CH$_3$OH to remove approximately 1 mil of the material. At times, the etch created a dull surface on the Te doped GaSb substrates. This resulted from the doping striations and did not affect the LPE growth. The Te-doped substrates were usually soaked in concentrated H$_2$SO$_4$ for 5 minutes to remove any excess Te from the surface. This is especially important for growing high purity material owing to the high distribution coefficient of Te. The substrate was then rinsed thoroughly in deionized water to remove all sulphate ions, followed by an HF soak to dissolve any residual oxides.
For the growth of AlGaAsSb of reasonably high purity ($|N_D - N_A| \leq 10^{15}$ cm$^{-3}$), a long bake of the Ga melt out at high temperature is mandatory. The gallium melt, together with the precisely measured antimony and GaAs, were baked in a purified H_2 atmosphere at 750°C for 12 hours. Figure 2 shows a typical growth schedule. Sections A, B, and C of the schedule were for baking out the melt. At D, the substrate together with the dopants and aluminum were loaded such that the aluminum was not touching the melt. The furnace was then raised to 600°C for half an hour and the aluminum was mixed with the melt. For the growth of AlGaAsSb alloys at 550°C, the growth schedule followed G$_1$, H$_1$, J$_1$, K$_1$. At H$_1$, the temperature of the furnace was equilibrated at ≈560°C for at least half an hour and temperature ramping started at J$_1$ at a rate of $\frac{5}{2}$°C/min. The epitaxial layers were grown at 2-3°C supersaturation. After the growth, the furnace was quenched down to room temperature.

The channel layer of a CCD must have uniform doping and thickness for proper operation. Large fluctuations of either parameter will result in correspondingly large variations in pinch-off voltage and, hence, the clock voltage necessary for proper operation. Layer thickness is a function of the supersaturation of the melt, rate of melt cooling and total time the melt is in contact with the substrate. The contact time and cooling rate are easily controlled; however, the degree of supersaturation of the melt is subject to some variation. This results in epitaxial layers that may vary by ≈15% from the desired thickness. For the 1-2 μm thickness required for the CCD channel, this variation is not of significant concern. Layer thickness uniformity is very good over the 0.5 cm2 substrate areas presently in use. Significant deviations from flatness are found only near the substrate perimeter and are due to the edge growth phenomena, a characteristic of the LPE growth technique.

The doping density required for a 1 μm thick CCD channel layer is $N_D = 1-2 \times 10^{16}$ cm$^{-3}$. Te is commonly used as an n-type dopant in the $Al_xGa_{1-x}As_{1-y}Sb_y$ system since it exhibits no amphoteric behavior. To reproducibly obtain the required doping density, the distribution coefficient of Te as a function of Al concentration must be determined. It has been found that only minute amounts of Te are needed to produce the desired N_D and that as the atomic fraction of
Fig. 2. Temperature-time profile of the LPE growth cycle of $\text{Al}_x\text{Ga}_{1-x}\text{As}_{1-y}\text{Sb}_y$
Al in the melt (X_{Al}^1) increases, X_{Te} decreases for a fixed value of N_D. These results are summarized in Fig. 3 where X_{Te} for N_D = 1 x 10^{16} cm^{-3} is shown to be inversely proportional to the Al/Ga ratio in the solid (X_{Al}^S / X_{Ga}^S). Each data point represents an average value determined from several growth runs.

Differential C-V measurements were used to analyze the variation of N_D with depth in the layer. These measurements are performed on Au-Schottky barrier diodes. Typical results, shown in Fig. 4, demonstrate that N_D is very uniform throughout the layer.

The AlGaSb/GaSb materials system is similar to the AlGaAs/GaAs system in that the addition of Al will increase the bandgap while the lattice constant stays very close to that of the GaSb substrate. The percentage change in lattice constant Δa/a_0 between AlSb and GaSb is only 0.7%. While this value is small enough to permit epitaxial growth to occur, a significant number of misfit dislocations are generated. The linear density, estimated using the expression ρ_{dl} = Δa_0/a_0^2, is ρ_{dl} ≈ 1.6 x 10^6 cm^{-1}. The density of interface states in the (100) direction is N_{ss} ≈ 1.5 x 10^{13} cm^{-2} (N_{ss} ≈ 8Δa_0/a_0^3) which yields an unacceptably large interface recombination velocity, S = (σ N_{ss} v_{th}) for device applications. It is, therefore, necessary to reduce Δa_0/a_0. By adding small amounts of As to the AlGaSb melt, the lattice constant of the AlGaAsSb solid can be made to match that of the GaSb substrate. The improvement in surface morphology is shown in Fig. 5 where as-grown layers of AlGaSb(a) and AlGaAsSb(b) are compared. The results of an x-ray double crystal diffractometer measurement of the lattice mismatch of an AlGaAsSb layer on a GaSb substrate, Fig. 6, indicate that Δa/a_0 as low as 0.012% can be achieved.

In order to incorporate sufficient As into the solid to achieve lattice matching, the initial growth temperature must be ~550°C. This is due to the limited solubility of As in Al-Ga solutions. The dependence of Δa/a_0 on X_{As}^1 for AlGaAsSb containing 20 mole percent Al in the solid is shown in Fig. 7. The lattice mismatch can be routinely reduced below 0.1%, yielding acceptably low values of ρ_{dl} and N_{ss} (ρ_{dl} < 2 x 10^4 cm^{-1}, N_{ss} < 2 x 10^{12} cm^{-2}). The distribution coefficient of As (k_{As}) at 550°C varies with the Al content in the melt. It has been found that as the amount of Al increases, so also does k_{As}. Pertur-
Fig. 3. Atomic fraction of Te required in the melt to achieve $N_D = 1 \times 10^{16}$ cm$^{-3}$ for selected composition of Al$_{x}$Ga$_{1-x}$As$_{1-y}$Sb$_y$.
Fig. 4. C-V plot and Te-doping profile of an Al$_{x}$Ga$_{1-x}$As$_{1-y}$Sb$_{y}$ ($x \sim 0.3$, $y \sim 0.99$) epitaxial layer.
Fig. 5 (a) As-grown surface of AlGaSb epilayer, (b) As-grown surface of an AlGaAsSb epilayer.
Fig. 6. X-ray double crystal diffractometer measurement of the lattice mismatch between an AlGaAsSb epilayer and the GaSb substrates; $\Delta a_0/a_0 = 0.012\%$. (The Scale Marker shown in the Figure indicates the length of arc through which the reflected x-ray beam was deflected.)
Fig. 7. Lattice mismatch vs. atomic fraction of As in the melt for AlGaAsSb containing 20 mole percent of Al.
bations of k_{AS} are not uncommon and are the result of many factors including the addition of dopants to the melt.

The fabrication of a heterojunction imaging CCD structure requires a multilayer epitaxial technology in which GaSb can be grown on an already deposited quaternary layer. To ensure wetting of the GaSb to the Al bearing material, it was necessary to minimize the exposure of the freshly grown quaternary surface to the ambient gas flow, thereby minimizing the formation of surface oxides. This requires precise adjustment of the saturation temperatures of the melts so that the layers can be grown sequentially with no intervening delay. The result of this technique is shown in the cleaved and stained cross-section of Fig. 8. The dark line in the photograph is the result of a poor cleave and is not part of the original structure. Shown in Fig. 9 is the as-grown surface of this two-layer structure. Note that excellent surface morphology was maintained.
Fig. 8 Cleaved and stained cross-section of a GaSb-Al$_{x}$Ga$_{1-x}$AsySb$_{1-y}$ ($x = 0.3, y < 0.01$) structure. The uniform deposition of a GaSb n$^+$-layer onto the AlGaAsSb layer is clearly evident.
Fig. 9 Photograph of the as-grown surface of the wafer whose cross-section is shown in Fig. 8.
The design of a process for the fabrication of Schottky gate CCDs necessitated a detailed study of Schottky barriers on AlGaAsSb. The optimum Schottky diode must have a high barrier height, nearly unity ideality factor, and low reverse leakage current. Furthermore, the metal used to form the barrier must be process-compatible, e.g., thermally stable and reasonably brittle. Thermal stability is required if the gate diode is to maintain its characteristics during subsequent processing steps. Britteness is a desirable characteristic since the CCD gates are defined using a lift-off technique. Schottky diodes were fabricated using several different metals. The barrier height, ideality factor and reverse I-V characteristics were examined as a function of the Al mole fraction in the solid with particular emphasis on the range $0.3 < x_{Al} < 0.65$. The results of this study indicate that Cr is the best choice for a barrier metal since it is most thermally stable. This investigation has also provided useful information about the properties of the epitaxial material.

Initial attempts to fabricate discrete, guarded Schottky diodes on Al$_x$Ga$_{1-x}$As$_{1-y}$Sb$_y$ proved to be quite problematic. Several sets of guarded diodes were fabricated using the standard CCD Schottky metallization: 500Å Cr-500Å Au. This metallization has produced very low leakage current diodes in Al$_x$Ga$_{1-x}$As. However, the diodes on the quaternary material were found to be rather leaky and very pressure sensitive. The I-V characteristics were measured by probing the devices while still in wafer form. A probe pressure sufficient to make stable contact to the device caused a change from rectifying to ohmic behavior after several seconds of operation. New Schottky diodes were fabricated on n-epilayers grown on n$^+$ GaSb substrates. Three wafers with $x = 0.3$, 0.45 and 0.65 were used. Schottky barriers were formed by electron beam evaporation through a shadow mask. Most of the devices had relatively thick metal layers (\sim3500Å) to facilitate probing; however, some diodes had semitransparent Schottky barriers so that ϕ_{Br} could be measured using the photoresponse technique. The characteristics of the thick metal diodes were found to be very
stable when probed. Since GaSb and its alloys are very soft materials, it is necessary to cushion the probe tip in order to prevent strain-induced changes in the I-V characteristics. The thick barrier metal accommodates the strain introduced by the probe tip.

The diodes were characterized by measuring the forward and reverse I-V characteristics. Barrier height and ideality factor are determined from the forward bias data and information about traps and localized defects is obtained from the reverse bias data. In addition, \(\Phi_{BN} \) was also determined by photoresponse measurements. Typical forward and reverse I-V data for an Au Schottky diode fabricated on \(Al_{0.3}Ga_{0.7}As_{0.01}Sb_{0.99} \) are shown in Figs. 10 and 11, respectively. As shown in Fig. 10, the forward current is initially dominated by a generation-recombination mechanism \((n = 1.71) \) for \(V<0.15 \) V and is essentially diffusion limited \((n = 1.15) \) for larger biases. The semiconductor surface is unpassivated, therefore it is reasonable to assume that a significant portion of the g-r current is due to leakage along the surface.

The reverse I-V characteristics shown in Fig. 11 exhibit the expected g-r dependence for \(V<5 \) V and show an abrupt increase for larger applied biases. Recent experiments on InP avalanche photodiodes \(^{1} \) have demonstrated that this behavior is characteristics of microplasmas located in the growth striations. The sources of the microplasmas are recombination centers. The morphology of the quaternary layers used in these experiments is characterized by similar striations and, although detailed experiments have not been carried out, it is assumed that microplasmas are present here also.

By extrapolating the diffusion limited current in Fig. 10 to the current axis intercept, the barrier height can be calculated using the expression:

\[
\Phi_{BN} = (kT/q)\ln(AA^{*2}/I_{S})
\]

where \(A \) is the diode area, \(A^{*} = 120 \) m*/m_0 is the modified Richardson constant, \(T \) is the temperature and \(I_{S} \) is the forward saturation current. The effective mass of the quaternary alloy was estimated from a Vegard's law approximation for the ternary alloy \(Al_{x}Ga_{1-x}Sb \). These values should be reasonably accurate.
Fig. 10. Forward I-V characteristics of a Au-Al$_{.3}$Ga$_{.7}$As$_{.01}$Sb$_{.99}$ Schottky barrier diode.
Au-Al$_{0.3}$Ga$_{0.7}$As
Schottky diode
10 mil diameter
$V_{GR} = 22$ V

Fig. 11. Reverse I-V characteristics of a Au-Al$_{0.3}$Ga$_{0.7}$As$_{0.01}$Sb$_{0.99}$ Schottky barrier diode.
since very little As is contained in the solid. Photoresponse measurements of ϕ_{Bn} were also used to corroborate these data. The results of these measurements are shown in Fig. 12. Data for $x<0.3$ were taken on samples provided by H. D. Law. A difference of $\sim 5\text{-}10\%$ exists between the data obtained by the two methods. This is probably owing to the uncertainty introduced when the data are extrapolated to determine I_s. The average barrier height and n factor for $x>0.3$ are listed in Table 1. The alloy has an indirect bandgap for $x>0.3$, and the magnitude of the energy gap has a weaker dependence on x in this region, therefore the small variation of ϕ_{Bn} over this composition range is not surprising. The dependence of ϕ_{Bn} on X_{Al} does not agree with the "common anion" rule and is sensitive to the Ga/Al cation ratio. This topic is explored more fully in a recent publication\(^{(2)}\).

The measured values of ϕ_{Bn} and n indicate that if the surface contribution to the total leakage current can be controlled, sufficiently low dark current CCD gates can be fabricated.

The results presented above demonstrate that low leakage current Schottky barriers can be formed on AlGaAsSb by e-beam evaporation. This technique, however, is not directly applicable to the fabrication of guard ring isolated CCDs. The current intermetallic insulator technology employed in the fabrication process utilizes plasma-deposited Si$_3$N$_4$ which requires that the Schottky barrier be held at 250$^\circ$C for 30 min. during deposition. Since Au rapidly diffuses into the alloy at temperatures above 100$^\circ$C, the Schottky barrier characteristics are permanently degraded and are useless as CCD gates.

Three alternative barrier metals, Cr, Ni and Ti, have been examined as possible substitutes. Schottky diodes were fabricated on Al$_{3.3}$Ga$_{0.7}$As$_{0.01}$Sb$_{0.99}$ by e-beam evaporation through a shadow mask. The metal films were 2000Å thick. The I-V characteristics of the diodes were measured after fabrication and subsequent to annealing at 150$^\circ$C and 225$^\circ$C for 30 min. The barrier heights and ideality factors are presented in Table 2. Each table entry is the average of more than five data points. Both Ni and Ti exhibit degraded characteristics after annealing. The decrease in ϕ_{Bn} and corresponding increase in ideality factor indicate that the character of the metal-semiconductor interface is significantly altered. The high n values imply the enhancement of generation-
Fig. 12. Au Schottky barrier height and energy gap vs. Al mole fraction. The I-V data are denoted by \(\Delta \) and the spread in photoresponse data are denoted by vertical bars.
TABLE 1

BARRIER HEIGHT AND IDEALITY FACTOR OF Au SCHOTTKY DIODES FABRICATED ON Al$_x$Ga$_{1-x}$Sb$_{1-y}$As$_y$

<table>
<thead>
<tr>
<th>x</th>
<th>ϕ_{Bn} (eV)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>0.73</td>
<td>1.3</td>
</tr>
<tr>
<td>0.45</td>
<td>0.79</td>
<td>1.2</td>
</tr>
<tr>
<td>0.65</td>
<td>0.83</td>
<td>1.3</td>
</tr>
</tbody>
</table>
TABLE 2

TEMPERATURE DEPENDENCE OF THE BARRIER HEIGHTS AND IDEALITY FACTORS OF Cr, Ni AND Ti BARRIERS FABRICATED ON Al_{0.3}Ga_{0.7}As_{0.01}Sb_{0.99}

<table>
<thead>
<tr>
<th></th>
<th>As-Fabricated</th>
<th>150°C Anneal</th>
<th>225°C Anneal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\phi_Bn) (V)</td>
<td>n</td>
<td>(\phi_Bn) (V)</td>
</tr>
<tr>
<td>Cr</td>
<td>0.704</td>
<td>1.12</td>
<td>0.697</td>
</tr>
<tr>
<td>Ni</td>
<td>0.744</td>
<td>1.19</td>
<td>0.709</td>
</tr>
<tr>
<td>Ti</td>
<td>0.715</td>
<td>1.09</td>
<td>0.713</td>
</tr>
</tbody>
</table>

Consideration of the results presented above clearly shows that Cr is the optimum metal for Schottky barrier formation on AlGaAsSb. The barrier height is comparable to that obtained using Au as the barrier metal. \((\phi_Bn(Au)\) is considered to be the upper limit on the value \(\phi_Bn\) since Au is one of the most electronegative metals) In addition, the dark current of a Cr-Al_{0.3}Ga_{0.7}As_{0.89}Sb Schottky barrier \((\phi_Bn = 0.074V)\) is \(\sim 5 \times 10^{-13} \text{ A/cm}^2\) at 200°K which is much less than the channel generation current. Cr Schottky barriers are thermally stable at room temperatures normally encountered in the CCD processing sequence. Also, Cr is a very brittle metal and, therefore, excellent gate and gap definition can be achieved using a lift-off procedure.
recombination mechanisms. Since it is known that Ni does not diffuse very far into AlGaAsSb (see Section 4, ohmic contacts), the mechanism for this enhancement is probably the production of traps by the out-diffusion of As and Sb. In contrast, the barrier height and ideality factor of the Cr Schottky diodes remains nearly constant. Apparently Cr successfully prevents out-diffusion of the column V elements. Therefore, the metal-semiconductor interface remains relatively stable.
4.0 OHMIC CONTACTS

The standard procedure for the formation of ohmic contacts to AlGaAsSb is to alloy a multilayer thin film of Au-Ge/Pt/Au. The alloy temperature is typically in the range 270-330°C. Good ohmic contacts can be achieved using this technique; however, Au rapidly diffuses into the material. This technique is not useful for the fabrication of ohmic contacts to a CCD channel layer because the contact constituents diffuse through this relatively thin (1 μm) layer and short out the underlying heterojunction. An Auger analysis of an alloyed AuGe/Pt/Au contact region is shown in Fig. 13. The Al peak defines the position of the quaternary channel layer. The Pt diffusion barrier is ineffectual in preventing the penetration of Au into the GaSb substrate.

Several new contacting schemes have been investigated including (1) the formation of shallow n⁺ regions by ion implantation, (2) ion bombardment of AuGe, and (3) the use of low temperature eutectics which do not contain Au. The common theme linking these choices is the search for a substitute for the fast diffusing Au in the contact recipe. Only partial success was achieved with methods (1) and (2). Se was chosen as the n⁺ implant species, and fair ohmic contacts were formed as shown in Fig. 14; however, the underlying heterojunction was shorted by the implant anneal. Since Se is known to remain localized near the surface of AlGaSb, diffusion of implant generated defects is suspected as the cause of junction degradation.

Bombardment of AuGe films by ions was used in an attempt to drive the contact constituents into the material without the need for a thermal annealing. Kr was selected as the ion since the peak of the Gaussian distribution would be close to the metal-semiconductor interface for a 300 keV implant. Ohmic contacts can be formed using this technique; however, they are of variable quality and often irreproducible. A common problem with even the best bomarded contacts is an example of which is shown in Fig. 15, is high resistance. This is most likely due to the residual damage from the unannealed implanted region.
Fig. 13. Depth composition profile for AuGe/Pt/Au metallization determined by AES.
Fig. 14 (a) I-V characteristics of aluminum contacts on n-Al$_{3}$Ga$_{7}$AsSb/p-GaSb (wafer K108d) after 200 KeV Se implant at 1 x 1013 cm$^{-2}$ dosage, (b) at lower current scale.
Fig. 15 Sample K108g, ohmic metal - 400Å Ge/240Å Au, implant - Kr⁺ - 300 KeV, 1 x 10¹⁴ ions/cm², post implant anneal - none.
The successful fabrication of ohmic contacts using Au-Ge demonstrated
that evaporated metal eutectics provide a simple means of contact formation.
The use of Au-based eutectics for the contacting of material containing sig-
ificant amounts of Al is not an optimized technique since Au and Al are essen-
tially insoluble. Therefore, group III vacancies can be generated only when
Au reacts with the Ga in the semiconductor. In order to eliminate this problem,
a Ag-based eutectic was used to contact the AlGaAsSb. Ag combines with both Al
and Ga, therefore significantly more vacancies are formed which can accomodate
dopant atoms.

Ohmic contacts were formed by sequentially evaporating 100Å Sn/200Å
Ag/500Å Ni onto Al$_{0.3}$Ga$_{0.7}$As$_{0.9}$Sb$_{0.1}$. Circular contact areas of differing dimen-
sions were defined photolithographically prior to evaporation. The sample was
cleaved into nine pieces and each piece was alloyed for 5 min. An alloy tem-
perature range of 275-475°C was investigated in 25°C increments. The I-V char-
acteristics between dots with varying center-to-center spacings were examined
on a curve tracer. Samples that were alloyed at 350°C had nonlinear I-V char-
acteristics and the resistance uniformity was very poor. For alloy temperatures
>375°C, the uniformity and linearity improved significantly with the best results
in the 400-425°C range. A typical I-V characteristic of Sn/Ag/Ni contacts
alloyed at 425°C is shown in Fig. 16. The total resistance measured between
the contacts is independent of contact separation indicating that the resistance
of the contact dominates the measurement. The total resistance is shown as a
function of alloy temperature in Fig. 17. Specific contacts resistance was cal-
culated using the expression $R_c = (R_T/2)A$, where R_T is the total measured
resistance between the contacts and A is the contact area (3). The minimum R_c
were obtained for an alloy temperature of 425°C. At this temperature, $R_c < 1.3$
\times 10^{-3} \Omega\cdot\text{cm}^2$.

The results of the AES analysis of the contacts alloyed at 375°C and
475°C are shown in Figs. 18 and 19, respectively. At 375°C, Ag remains local-
ized in a region very near the surface of the semiconductor. Only a small
amount of Sn has penetrated into the material. The relative positions of the Ag
and Sn peaks indicate that at this temperature Sn is moving into the Ni cap layer
Fig. 16 I-V characteristics of Sn/Ag/Ni metallization after 425°C alloy. Vertical scale: 20 mA/div; Horizontal scale: 0.5 V/div.
Fig. 17. Total resistance vs. alloy temperature of Ag-Sn-Ni metallization system on n-AlGaAsSb. The contact areas are circular, having the diameters labeled on the figure.

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>#1</td>
<td>106.8 mm</td>
</tr>
<tr>
<td>#2</td>
<td>155.7 mm</td>
</tr>
<tr>
<td>#3</td>
<td>217.7 mm</td>
</tr>
<tr>
<td>#4</td>
<td>326.9 mm</td>
</tr>
<tr>
<td>#5</td>
<td>542.9 mm</td>
</tr>
</tbody>
</table>
Fig. 18. Depth composition profile for Sn/Ag/Ni metallization determined by AES. The data for all elements are X1. All data have been deleted for clarity. (For both 375°C, 475°C, Auger signal for Al didn't become sizable until ~24 min of sputtering time. Very little data available, therefore not included.)
Fig. 19. Depth composition profile for Sn/Ag/Ni metallization determined by AES. The data for all elements is X1. Al data have been deleted for clarity.
layer. Allooying at 475°C produces a somewhat broader interface region; however, relatively locations of Ag and Sn and the depth of penetration of each into the semiconductor is essentially unchanged. A Ni cap was originally chosen to prevent the contact metals from balling up for T>229°C (eutectic temperature of Ag-Sn). As shown in Figs. 18 and 19, it effectively stops the outdiffusion of Ga and Sb from the semiconductor. Very few vacancy sites are therefore available for the dopant atoms to occupy, consequently the contact resistance of this system is relatively high.
5.0 PROCESSING ISSUES

In the preceding sections, the epitaxial growth of GaSb and AlGaAsSb, the fabrication of low leakage, thermally stable Schottky barriers, and a reliable ohmic contact formula for AlGaAsSb have been described. However, no CCDs have, as yet, been produced. The major roadblock to the fabrication of devices is the lack of suitable etchants, both selective and non-selective. This problem was not anticipated based on information available at the start of this program. The results to date indicate that it is related to the surface chemistry of the GaSb-AlGaAsSb materials system.

Wet chemical etchants are required for a variety of processing functions. The fabrication of a glass bonded imaging CCD requires the removal of the substrate after the material has been attached to the glass window. This is usually accomplished by a material selective etchant which can distinguish moderate differences in Al content. Non-selective etches are used during processing to remove contaminants from the surface of the material. The major requirements of an etching solution for use in semiconductor processing are (1) slow to moderate etch rate (<10,000Å/min), (2) uniform etching over wafer surface, and (3) no residual etchant by-product deposition on the material. Etch rates >10,000Å/min present problems in wafer handling while non-uniform etching destroys the planarity of the surface, making photoprocessing impossible. Reactant products of the etch components and the material, in the form of opaque films on crystallites, can change the character of the surface. These contaminants must be removed before processing can continue, and, even if removed, the electrical properties of the surface may be permanently changed.

Etching experiments were performed on LPE-grown GaSb and Al$_3$Ga$_7$Sb layers, and the results are shown in Table 3. The majority of etchants acted much too quickly and left opaque deposits on the surface of the material. Only two solutions, neither of which is material selective, were found useful for etching GaSb: 10 H$_2$O:1 H$_3$PO$_4$:1 H$_2$O$_2$ and 20 H$_2$O:1 HF. The dilute HF solution is the more useful since it is well-controlled with an etch rate of 400Å/min.
<table>
<thead>
<tr>
<th>ETCHANT</th>
<th>GaSb</th>
<th>Al_{0.3}Ga_{0.7}As_{0.01}Sb_{0.99}</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 H_2O:1 H_3PO_4:1 H_2O_2</td>
<td>5,000Å/min</td>
<td>7,000Å/min</td>
<td>Occasional formation of black crystallites in etched area.</td>
</tr>
<tr>
<td>10 H_2O:1 H_3PO_4:1 H_2O_2</td>
<td>2,500Å/min</td>
<td></td>
<td>Clean etch (no discoloration) on the one sample tried.</td>
</tr>
<tr>
<td>5 H_2O:1 H_2SO_4:1 H_2O_2</td>
<td>45,000Å/min</td>
<td>51,000Å/min</td>
<td>A thin cracked film covered etched area which was not removed in HF or HCl.</td>
</tr>
<tr>
<td>10 H_2O:1 H_2SO_4:1 H_2O_2</td>
<td>29,000Å/min</td>
<td></td>
<td>A thick cracked film covered etched area which was not removed in HF or HCl</td>
</tr>
<tr>
<td>H_2O_2 adjusted to a pH of 7.1 with NH_4OH (peroxol)</td>
<td>No etch</td>
<td>No apparent etch</td>
<td>GaSb: Clean etch - no discoloration. Etch rate not reproducible. Al_{0.3}Ga_{0.7}Sb: very discolored surface.</td>
</tr>
<tr>
<td>10 H_2O:1 NH_4OH:1 H_2O_2</td>
<td>400Å/min to less than 20Å/min</td>
<td></td>
<td>Clean etch - no discoloration</td>
</tr>
<tr>
<td>20 H_2O:1 HF</td>
<td>400Å/min</td>
<td>>100,000Å/min</td>
<td>Clean etch - no discoloration</td>
</tr>
<tr>
<td>10 H_2O:1 HF:1 H_2O_2</td>
<td></td>
<td>15,000Å/min</td>
<td>Surface very discolored.</td>
</tr>
<tr>
<td>100 H_2O:1 HF:1 H_2O_2</td>
<td></td>
<td>30,000Å/min</td>
<td>Clean etch - no discoloration</td>
</tr>
<tr>
<td>10 H_2O:1 Buffered HF (10:1):1 H_2O_2</td>
<td></td>
<td>17,000Å/min</td>
<td>Some surface discoloration.</td>
</tr>
<tr>
<td>20 H_2O:1 Buffered HF (10:1):1 H_2O_2</td>
<td></td>
<td>>50,000Å/min</td>
<td>Uneven etch, dense striations in some areas with thick cracked film in others</td>
</tr>
<tr>
<td>20 Acetic Acid:9 HNO_3:1.5 HF</td>
<td></td>
<td>20,000Å/min</td>
<td>Uneven etch, with decrease in areas covered by striation and increase in areas covered by thick cracked film as compared to above sample.</td>
</tr>
<tr>
<td>120 Acetic Acid:9 HNO_3:1.5 HF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Br-Methanol</td>
<td>Variable</td>
<td>Variable</td>
<td>No control over etch rate.</td>
</tr>
<tr>
<td>Br_2/HBr</td>
<td>Variable</td>
<td>Variable</td>
<td>Etched surface is very uneven.</td>
</tr>
</tbody>
</table>

NOTE: Etch rates determined from Dektak measurements.
No completely satisfactory etchant has been found for the quaternary alloy. Dilute solutions of HF and H_2O_2 leave no residue on the surface; however, the etch rates are much too high to be of practical use. Attempts to reduce the etch rate by increasing the dilution factor resulted in the formation of residual deposits on the wafer surface. It is suspected that a complexing agent, added to the etchant, will produce the required etch rate without any residues; however, lack of time did not permit further experimentation.

Material selective etches which can distinguish moderate differences in Al concentration have been developed for the GaAs-AlGaAs materials system. Several of these etches have been applied to the GaSb-AlGaAsSb system, without success. In all cases, the etches fail to distinguish any differences between the material. The failure of these solutions to perform the desired function is apparently associated with the Sb content of the surface. In fact, the variable etch rates of even the non-selective etches are probably also related to the amount of Sb. In order to develop a selective etchant suitable for this alloy system, a systematic study of the surface chemistry must be initiated. Of particular importance is the amount of Sb present at the surface and how various processing techniques change this amount. With this information, it will be possible to design redox systems4 to accomplish selective etching in a well-controlled fashion.
6.0 CONCLUSIONS AND RECOMMENDATIONS

Several major accomplishments have resulted from our efforts to fabricate Schottky gate, imaging charge coupled devices in the AlGaAsSb alloy system. The growth of alloys containing 30-65% Al has been investigated in detail and a technique has been developed for the growth of GaSb on $\text{Al}_x\text{Ga}_{1-x}\text{As}\text{1-ySb}_y$ with \(x > 0.3 \). A reproducible ohmic contact technology for lightly doped AlGaAsSb, using alloyed Ag/Sn/Ni thin films, has also been demonstrated. At the start of the program, these were unsolved problems of major importance. In addition, a thermally stable Schottky gate metal has been identified which is well suited to photolithographic processing. These developments represent the key elements necessary for the realization of imaging CCDs.

The most significant problem area which remains is that of device fabrication, including the development of surface passivants, etchants, and "process recipes". Our present techniques, based on GaAs technology, have proven inadequate. Some progress has been made in understanding the surface chemistry of the material. The investigation of etchant-alloy interaction, described in Section 5.0, also indicates that the wafer treatment history is of great importance. The effects, if any, of photolithographic chemicals, e.g., resists, developers, on the surface properties are, at this time, unknown. This is also true of the available passivation materials. A detailed investigation of these areas must be made in order to increase the probability of fabricating complex devices in this material system.

It is clear from the work presented here that the GaSb-AlGaAsSb material system is well suited to night vision applications and that significant progress has been made in understanding the characteristics of fundamental device building blocks. It is also apparent, however, that the material is significantly different from the more well-understood III-V compounds, such as GaAs, and requires the development of specialized techniques. Because of the magnitude of this difference, a research and development program in process-development is required. This program should include: (a) the development of etchants, both selective
and non-selective, (b) an investigation of the effects of dry processing techniques, e.g., plasma etching and (c) the development of surface passivation techniques. These results, coupled with the achievements of the present program, will provide all of the building blocks necessary for the realization of a wide class of devices.
REFERENCES

