HF RADIO-NOISE MODELS FOR SEVERELY DISTURBED PROPAGATION ENVIRONMENTS

Gary H. Price
V. Elaine Hatfield
SRI International
333 Ravenswood Avenue
Menlo Park, California 94025

31 March 1981

CONTRACT No. DNA 001-80-C-0253

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

THIS WORK SPONSORED BY THE DEFENSE NUCLEAR AGENCY
UNDER RDT&E RMSS CODE 8322080464 S99QAXH805313 H2680D.

Prepared for
Director
DEFENSE NUCLEAR AGENCY
Washington, D.C. 20305
Destroy this report when it is no longer needed. Do not return to sender.

PLEASE NOTIFY THE DEFENSE NUCLEAR AGENCY, ATTN: STTI, WASHINGTON, D.C. 20305, IF YOUR ADDRESS IS INCORRECT, IF YOU WISH TO BE DELETED FROM THE DISTRIBUTION LIST, OR IF THE ADDRESSEE IS NO LONGER EMPLOYED BY YOUR ORGANIZATION.
Models and sample results are given for the natural HF radio-noise environment under conditions of severe disturbance to HF sky-wave propagation, such as might be produced by the detonation of numbers of high-altitude nuclear explosions in a major attack. Both local and remote atmospheric-noise sources are treated, and the effects on cosmic noise and atmospheric noise of changes in the F-region critical frequency are included.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF ILLUSTRATIONS</td>
<td>2</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>3</td>
</tr>
<tr>
<td>I INTRODUCTION AND SUMMARY</td>
<td>5</td>
</tr>
<tr>
<td>II TESTING, CHECKING, AND EVALUATING THE BASIC NOISE MODEL</td>
<td>7</td>
</tr>
<tr>
<td>A. Introduction</td>
<td>7</td>
</tr>
<tr>
<td>B. Model Equations</td>
<td>8</td>
</tr>
<tr>
<td>C. Calculation of the Coefficients for Computing the Sky Temperature Due to Lightning</td>
<td>12</td>
</tr>
<tr>
<td>D. A Comparison of Model Results with Observed Disturbed-Environment Noise</td>
<td>12</td>
</tr>
<tr>
<td>III NOISE OF LOCAL ORIGIN</td>
<td>17</td>
</tr>
<tr>
<td>A. Isolated Flashes</td>
<td>17</td>
</tr>
<tr>
<td>B. Overlapping Flashes</td>
<td>30</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>37</td>
</tr>
<tr>
<td>Figure</td>
<td>Illustration</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>Empirical Fit for Frequency Dependence of Thunderstorm Temperature Function</td>
</tr>
<tr>
<td>2</td>
<td>HF/VHF Spectrum of Lightning Atmospherics</td>
</tr>
<tr>
<td>3</td>
<td>Source-Receiver Geometry for Line-of-Sight Propagation</td>
</tr>
<tr>
<td>4</td>
<td>Variation with Distance of Mean Power Radiated by a Single Lightning Flash</td>
</tr>
<tr>
<td>5</td>
<td>Probability Density Function for Mean Received Power in a One-Hz Bandwidth</td>
</tr>
<tr>
<td>6</td>
<td>High-Amplitude Portion of Probability Density Function for Noise-Envelope</td>
</tr>
<tr>
<td></td>
<td>Amplitude in a One-Hz Bandwidth at Moderate Level of Local Thunderstorm Activity</td>
</tr>
<tr>
<td>7</td>
<td>High-Amplitude Portion of Probability Distribution Function for Noise-Envelope</td>
</tr>
<tr>
<td></td>
<td>Amplitude in a One-Hz Bandwidth at Moderate Level of Local Thunderstorm Activity</td>
</tr>
<tr>
<td>8</td>
<td>Probability Density Function for Mean Received Power in a One-Hz Bandwidth</td>
</tr>
<tr>
<td></td>
<td>at High Level of Local Thunderstorm Activity</td>
</tr>
<tr>
<td>9</td>
<td>High-Amplitude Portion of Probability Density Function for Noise-Envelope</td>
</tr>
<tr>
<td></td>
<td>Amplitude in a One-Hz Bandwidth at High Level of Local Thunderstorm Activity</td>
</tr>
<tr>
<td>10</td>
<td>High-Amplitude Portion of Probability Distribution Function for Noise-Envelope</td>
</tr>
<tr>
<td></td>
<td>Amplitude in a One-Hz Bandwidth at High Level of Local Thunderstorm Activity</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>Parameters Used in Deriving the Empirical Relationship Between Thunderstorm Activity and Equivalent Sky-Noise Temperature</td>
</tr>
<tr>
<td>2</td>
<td>Summary of Results from and Input to Computation of Johnston Island Noise Environment at One Hour Following STAR FISH</td>
</tr>
</tbody>
</table>
I INTRODUCTION AND SUMMARY

Evaluation of the performance of HF radio-communication systems requires that certain basic characteristics of both the signal and the noise with which it is received be known. Propagation plays a major role in determining these characteristics. Consequently, pronounced changes in HF propagation behavior produced by high-altitude nuclear detonations can affect the performance of a HF communication system. Complex computer codes have been developed to assess the impact of such propagation changes on signal characteristics. Applying these codes to HF radio noise is, however, computationally awkward because of the wide geographic distribution and variability of natural noise sources. This report (the second of two prepared for the Defense Nuclear Agency) describes a model that avoids this difficulty under conditions of sufficiently severe and widespread propagation attenuation, such as would result if several high-altitude "blackout" detonations were included in a nuclear attack.

Price and Smith outlined a simplified HF noise model that could be applied to severely disturbed propagation environments, and discussed the approximations through which the model was developed. A finished implementation of the model was, however, not presented; we complete this work in Section II of this report. The data base used to evaluate the empirical parameters through which lightning is related in the model to equivalent noise-source temperature has also been expanded, improving the accuracy of the values obtained for these parameters. Additionally,

* E.g., NUCOM

† The first report is Price and Smith. All references are listed at the end of this report.
the model has been used to calculate the effects on the noise of a disturbed environment, similar to that found in the vicinity of Johnston Island following the STAR FISH detonation. Comparison of the model results with HF noise measurements made in Hawaii shows satisfactory consistency (the ionospheric disturbance produced by STAR FISH was not sufficiently uniform over a wide area so that the model could be strictly applied to these data).

A treatment of locally produced atmospheric radio noise is presented in Section III. This noise contribution, which is unaffected by high-altitude detonations, is not properly dealt with in the simpler model discussed in Section II. The model departs from the Rayleigh amplitude-distribution function (implicitly assumed in the simpler model) at the low-probability/high-amplitude extreme of the distribution when local noise is included. These high amplitudes occur more frequently with the improved model (although still infrequently) than is predicted by the Rayleigh distribution.

The simple model presented in Section II can be readily incorporated into current HF nuclear-effects propagation-prediction codes; such inclusion is recommended. The local-noise model discussed in Section III is not, however, suitable for incorporation into these codes in its present form. We recommend that this model first be reduced, insofar as possible, to table form, with the tables calculated using an improved numerical version of the present implementation. Finally, extension of the methodology developed to treat local noise to provide a unified treatment of both local and remote noise is also recommended. Such extension, along the lines outlined in Section III.B, will improve the description provided by the overall model of atmospheric noise amplitude statistics in disturbed propagation environments. Finally, experiments to validate the local-noise model, and its generalization, should be undertaken because the experimental data upon which the model is based are, as is noted in Section III of this report, weak in several particulars.
II TESTING, CHECKING, AND EVALUATING THE BASIC NOISE MODEL

A. Introduction

A basic model for natural HF noise in severely disturbed propagation environments was described in Price and Smith. The task reported on here is to review this model, including the improvements that have been implemented in accordance with the recommendations made in Price and Smith. In this process, we have accomplished the following:

(a) Checked the physical parameters and confirmed that they are correctly included.

(b) Expanded the data base used to derive the values of empirical parameters, thereby improving their accuracy.

(c) Applied the model to demonstrate its performance in its intended environment.

The physical parameters involved in the model were indicated in Price and Smith, but simple averages and only rough estimates were used to establish the functional relationship between thunderstorm activity and equivalent noise temperature. For ease in making this relationship more precise, a computer program representing the model has been written on the SRI Prime computer. Several changes from the earlier version have been included. The dependence of equivalent source temperature on elevation angle is now included in the lightning integral, and an analytic representation of the normal D region has been added.

The data base for deriving the empirical relationship between thunderstorm activity and equivalent noise temperature has been expanded to include nine additional cases. A larger, more diverse data base can probably improve the model further, but care must be exercised in its selection because only in certain cases is the model applicable to the normal environment. A sample case in a nuclear environment was run on the program to show how the model will work.
Section II.B describes the equations that are used in the current version of the basic model. Section II.C describes the computation of the empirical coefficients and evaluates them. Section II.D describes and evaluates the results of a test case run for a nuclear environment.

B. Model Equations

The basic model was derived in Price and Smith. This section explains in detail some portions of the model that were only outlined in the earlier report. This model is only for severely disturbed conditions, and is not a general model. The severely disturbed environment can be described as one in which D-region losses are high over a large region. This condition can be produced in a nuclear environment if high-altitude radioactive debris is widespread, extending in all directions for a considerable distance (thousands of kilometers) from the receiver. More precisely, the limitations imposed are:

1. Only sources relatively near (within a few thousand kilometers of) the receiver are significant.
2. Lightning activity in this source area is (statistically) the same as that in the immediate vicinity of the receiver.
3. Sky-wave propagation characteristics are uniform over this region, with high losses; therefore, only one-hop paths are significant.

The general equation for antenna noise temperature, $T_A(f)$, presented in Price and Smith (page 13) can be written:

$$T_A(f) = \frac{\int_0^{\pi/2} d\theta \sin \theta \int_0^{2\pi} d\phi \ p(\theta, \phi, f) \left[1 + R^2(\theta, f) \right] T_s(\theta, f) \int_0^{\pi/2} d\theta \sin \theta \int_0^{2\pi} d\phi \ p(\theta, \phi, f) \left[1 + R^2(\theta, f) \right]}{\int_0^{\pi/2} d\theta \sin \theta \int_0^{2\pi} d\phi \ p(\theta, \phi, f) \left[1 + R^2(\theta, f) \right]}$$

(1)
where

\[f = \text{operating frequency (MHz)} \]
\[\phi = \text{azimuthal angle} \]
\[\theta = \text{zenith angle} \]

\[p(\theta, \phi, f) = \text{receiver antenna power gain pattern} \]
\[T_s(\theta, f) = \text{apparent sky temperature} \]
\[R(\theta, f) = \text{ground reflection loss (this parameter was omitted in Price and Smith.1)} \]

The apparent sky temperature, \(T_s(\theta, f) \), is the source term in the noise model. It is described in terms of the most important noise sources, lightning and cosmic processes. As a function of zenith angle, \(\theta \), these sources are mutually exclusive. The switch from one source to the other occurs as the path of the arriving noise shifts from ionospheric reflection to penetration. The zenith angle for the switch is calculated:

\[
\theta_c(f) = \sin^{-1} \left(\frac{r_e}{r_p} \left[1 - \left(\frac{f_c}{f} \right)^2 \right]^{1/2} \right)
\]

(2)

where

\[r_e = \text{radius of the earth} \]
\[r_p = \text{distance from center of earth to the peak of the ionospheric electron density profile} \]
\[f_c = \text{critical frequency of the ionosphere.} \]

The galactic noise is received from the region \(\theta = 0 \) to \(\theta_c \), and the atmospheric noise is received in the region \(\theta = \theta_c \) to \(\pi/2 \). The apparent sky temperature from either source is reduced by propagation losses through the absorbing region, and the absorbing medium responsible for them itself radiates thermally. These phenomena can be represented mathematically as follows:
Sky Temperature Due to Lightning Source

for $\theta = \theta_c(f)$ to $\pi/2$

$$T_s(\theta, f) = T_L(\theta, f) \left[(1 + R^2(\theta, f)) \right]$$

$$\times \left(\frac{-2L_{v0}(f) \sec i/20}{10} - \frac{-2L_{vx}(f) \sec i/20}{10} + \frac{-2L_{vx}(f) \sec i/20}{2} \right)$$

$$+ T_r \left[1 - \left(\frac{-2L_{v0}(f) \sec i/20}{10} - \frac{-2L_{vx}(f) \sec i/20}{10} + \frac{-2L_{vx}(f) \sec i/20}{2} \right) \right]$$

where

$L_{v0}(f)$ = one-way vertical absorption for frequency, f, on ordinary ray

$L_{vx}(f)$ = one-way vertical absorption for frequency, f, on extraordinary ray

i = ray incidence angle to the ionospheric layer at the maximum absorbing height (D region approximately 70 km)

T_r = D-region radiative temperature (283 K)

(note change of notation from Price and Smith1)

$T_L(\theta, f)$ = lightning-noise source temperature

$= \alpha_0 f^{-a_1} \sigma_h \sec \theta$

σ_h = lightning flashes/km2/hour

$= (0.03 T_m + 0.009 T_m^2)/720 \times TA_h \times 24/100$

($\text{Cianos and Pierce}^2$)

Hours per month.
where

\[T_m = \text{thunderstorm days per month (as given in Reference 3).} \]

\[T_{Ah} = \text{thunderstorm activity per hour (as given in Cianos and Pierce).} \]

\[a_0, a_1 = \text{empirical constants derived in next section.} \]

(2) **Sky Temperature Due to Galactic Sources**

for \(0 = 0 \) to \(\theta_c(f) \)

\[
T_S(\theta, f) = T_c(f) \left(\frac{-L_o(f) \sec i/20 - L_x(f) \sec i/20}{10} + \frac{10}{2} \right)
\]

\[
+ T_R \left[1 - \left(\frac{-L_o(f) \sec i/20 - L_x(f) \sec i/20}{10} + \frac{10}{2} \right) \right]
\]

where

\[T_c(f) = 100 \lambda^{2.3} \text{ (CCIR)} \]

\[\lambda = \text{wavelength in meters} = 300/f. \]

The absorption losses \(L_o(f) \sec i \) and \(L_x(f) \sec i \) are doubled for lightning to account for the ascending and descending portions of the path; for cosmic noise, these losses appear once, because the ray path only makes one pass through the absorbing region.
C. Calculation of the Coefficients for Computing the Sky Temperature Due to Lightning

Empirical coefficients for the sky-temperature model were computed by using data taken in a normal environment, with the requirement that the data must also satisfy the limitations listed in Section II.B. These conditions are satisfied if ambient propagation losses are sufficiently high. A summer month, July, was chosen and appropriate data values of \(F_A(f) \) from CCIR were found for four separate cases. Table 1 lists the data used. The CCIR data base was collected between 1957 and 1961. An average SSN of 140 was estimated for that period.

\[
F_A(f) = 10 \log \left(\frac{T_A(f)}{T_0} \right)
\]

where \(T_0 = 288 \) K.

The empirical coefficients \(a_0 = 5.27 \times 10^{15} \) and \(a_1 = -7.11 \) in the functional relationship

\[
T_L(\theta, f) = a_0 f^{-a_1} \sigma_h \sec \theta
\]

were derived by substituting the parameters from Table 1 into Eq. (1) and solving for \(a_0 \) and \(a_1 \) by least squares. The relationship is linear on a log scale. Figure 1 shows a plot of the data \(a = a_0 f^{-a_1} \) as a function of frequency, \(f \), together with the least squares linear fit to the data for the four cases. The standard error for this limited data set is 0.229 on the log scale.

A check was made to see if the daily and hourly variation in thunderstorm activity over the four cases fitted, has contributed to the quality of the fit. Elimination of \(\sigma_h \) from the computation increased the standard error of the fit by 14 percent—a significant change given the general similarity of the cases.

D. A Comparison of Model Results with Observed Disturbed-Environment Noise

The STAR FISH high-altitude nuclear detonation over Johnston Island on 9 July 1962, provides an interesting example with which to compare our model. Herman reported that the 5-MHz radio noise measured at Kekaha, Hawaii was about 12 dB below normal level at one hour following STAR FISH, with a smaller decrease at higher frequencies. Data also
<table>
<thead>
<tr>
<th>Case No.</th>
<th>F_A (dB)</th>
<th>Days Per Month</th>
<th>Activity Per Hour (percent)</th>
<th>f_H (MHz)</th>
<th>f_L (MHz)</th>
<th>Latitude (Degrees North)</th>
<th>Longitude (Degrees West)</th>
<th>f_0^{**} (MHz)</th>
<th>H_2^{**} (km)</th>
<th>UT</th>
<th>Local Time</th>
<th>Ground Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40.0</td>
<td>8</td>
<td>5.0</td>
<td>1.5</td>
<td>40</td>
<td>90</td>
<td>7.0</td>
<td>352</td>
<td>2000</td>
<td>1400</td>
<td></td>
<td>Poor earth</td>
</tr>
<tr>
<td></td>
<td>37.5</td>
<td>8</td>
<td>5.0</td>
<td>1.5</td>
<td>40</td>
<td>90</td>
<td>7.0</td>
<td>352</td>
<td>2000</td>
<td>1400</td>
<td></td>
<td>Poor earth</td>
</tr>
<tr>
<td></td>
<td>36.0</td>
<td>8</td>
<td>5.0</td>
<td>1.5</td>
<td>40</td>
<td>90</td>
<td>7.0</td>
<td>352</td>
<td>2000</td>
<td>1400</td>
<td></td>
<td>Poor earth</td>
</tr>
<tr>
<td>2</td>
<td>55.0</td>
<td>8</td>
<td>8.5</td>
<td>1.5</td>
<td>40</td>
<td>90</td>
<td>6.9</td>
<td>333</td>
<td>2200</td>
<td>1800</td>
<td></td>
<td>Poor earth</td>
</tr>
<tr>
<td></td>
<td>47.5</td>
<td>8</td>
<td>8.5</td>
<td>1.5</td>
<td>40</td>
<td>90</td>
<td>6.9</td>
<td>333</td>
<td>2200</td>
<td>1800</td>
<td></td>
<td>Poor earth</td>
</tr>
<tr>
<td></td>
<td>42.5</td>
<td>8</td>
<td>8.5</td>
<td>1.5</td>
<td>40</td>
<td>90</td>
<td>6.9</td>
<td>333</td>
<td>2200</td>
<td>1800</td>
<td></td>
<td>Poor earth</td>
</tr>
<tr>
<td>3</td>
<td>47.5</td>
<td>12</td>
<td>6.0</td>
<td>1.1</td>
<td>12</td>
<td>85</td>
<td>12.5</td>
<td>382</td>
<td>2000</td>
<td>1400</td>
<td></td>
<td>Poor earth</td>
</tr>
<tr>
<td></td>
<td>41.0</td>
<td>12</td>
<td>6.0</td>
<td>1.1</td>
<td>12</td>
<td>85</td>
<td>12.5</td>
<td>382</td>
<td>2000</td>
<td>1400</td>
<td></td>
<td>Poor earth</td>
</tr>
<tr>
<td></td>
<td>38.5</td>
<td>12</td>
<td>6.0</td>
<td>1.1</td>
<td>12</td>
<td>85</td>
<td>12.5</td>
<td>382</td>
<td>2000</td>
<td>1400</td>
<td></td>
<td>Poor earth</td>
</tr>
<tr>
<td>4</td>
<td>55.0</td>
<td>12</td>
<td>7.5</td>
<td>1.1</td>
<td>12</td>
<td>85</td>
<td>11.8</td>
<td>377</td>
<td>2200</td>
<td>1800</td>
<td></td>
<td>Poor earth</td>
</tr>
<tr>
<td></td>
<td>47.5</td>
<td>12</td>
<td>7.5</td>
<td>1.1</td>
<td>12</td>
<td>85</td>
<td>11.8</td>
<td>377</td>
<td>2200</td>
<td>1800</td>
<td></td>
<td>Poor earth</td>
</tr>
<tr>
<td></td>
<td>42.5</td>
<td>12</td>
<td>7.5</td>
<td>1.1</td>
<td>12</td>
<td>85</td>
<td>11.8</td>
<td>377</td>
<td>2200</td>
<td>1800</td>
<td></td>
<td>Poor earth</td>
</tr>
</tbody>
</table>

* CCIR
* WHO
* Cianos and Pierce
* Davies
** Bargasussen
are available* from Johnston Island for vertical absorption and for F-
region critical frequency variations following STAR FISH. These data
have been used as input to our noise model to obtain the expected noise
level at Johnston Island at one hour after the shot. The results of this
calculation are summarized in Table 2, along with the values of other
parameters that have been input to the calculation.

If the D-region ionization produced by STAR FISH were sufficiently
widespread, the noise reduction calculated for Johnston Island and the
noise reduction observed at Kekaha could be expected to be similar.
This, however, was not the case; the calculated noise reduction at
Johnston Island caused by the detonation exceeds that observed at Kekaha
by a considerable margin. This result is consistent with Herman's7
analysis of the noise data, in which he finds thunderstorm activity in
the Americas, eastward of Kekaha, to be a major source of the noise
received there. The propagation path of this noise was little affected
(at one hour) by the STAR FISH debris, which, at this time, remained
largely westward of Kekaha.

* Unpublished DNA reports.
Table 2

SUMMARY OF RESULTS FROM AND INPUT TO COMPUTATION OF JOHNSTON ISLAND
HF NOISE ENVIRONMENT AT ONE HOUR FOLLOWING STAR FISH

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>$F_a(f)$</th>
<th>f_oF_2</th>
<th>Increased Absorption above Normal at 30 MHz (dB)</th>
<th>UT</th>
<th>Location</th>
<th>SSN</th>
<th>Thunderstorm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Disturbed (dB)</td>
<td>Normal (dB)</td>
<td></td>
<td></td>
<td>Latitude (Degrees N)</td>
<td>Longitude (Degrees W)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-0.1</td>
<td>48</td>
<td>2.5</td>
<td>1000</td>
<td>16.7</td>
<td>169.5</td>
<td>40</td>
</tr>
<tr>
<td>10</td>
<td>2.6</td>
<td>39</td>
<td>2.5</td>
<td>1000</td>
<td>16.7</td>
<td>169.5</td>
<td>40</td>
</tr>
<tr>
<td>15</td>
<td>9.0</td>
<td>27</td>
<td>2.5</td>
<td>1000</td>
<td>16.7</td>
<td>169.5</td>
<td>40</td>
</tr>
</tbody>
</table>
III NOISE OF LOCAL ORIGIN

Noise of local origin, that is, noise produced within line-of-sight (or ground-wave) range of the receiving antenna, is unaffected by the changes in ionospheric propagation loss with which we have largely been concerned in Section II. A lightning discharge at such close distances is, however, a relatively rare event. For example, a mean rate of occurrence of ten flashes per square kilometer per month, a value representative of regions of moderately high thunderstorm activity, implies only about a 50-percent probability of a flash (mean duration 0.5 s) being in progress within a 250-km range (line-of-sight for a source at 5-km altitude and a receiving antenna at ground level) at any given time. This sporadicity of occurrence must be accounted for in modeling noise of local origin.

A. Isolated Flashes

The problem of describing locally-produced noise can be divided into two parts. The first of these is to define the probability that a local lightning flash is in progress, and the second is to characterize the noise given that a flash is, or is not, in progress. Statistically, if \(p(E) \) represents the probability density distribution for the noise field envelope amplitude at the receiving antenna, then

\[
p(E) = p(E|\text{no flash}) P(\text{no flash}) + p(E|\text{flash}) P(\text{flash}) \quad . \tag{5}
\]

In the absence of a local flash, the noise will be considered Gaussian within the bandwidths of interest, with a variance determined by the effective antenna temperature, \(T \). Thus, we have

\[
p(E|\text{no flash}) = \frac{E}{\sigma_0^2} \exp \left(-\frac{E^2}{2\sigma_0^2} \right) \tag{6}
\]
where the variance, \(\sigma_0^2 \), is given by CCIR\(^4\) as

\[
\sigma_0^2 = 2.82 \times 10^{-34} f^2 \frac{B}{T_0} \text{(V/m)}^2
\]

if both the receiver bandwidth, \(B \), and frequency, \(f \), are measured in Hertz, and the reference temperature, \(T_0 \), is 288 K. This noise component represents the aggregate of more distant lightning flashes or cosmic noise (or both) treated in Section II; the effective antenna temperature, \(T \), is defined as \(T_A(f) \).

Regarding the noise emitted by local lightning flashes, relatively few studies have addressed the statistical characteristics of the HF radio emissions from individual flashes. Oetzel and Pierce\(^8\) characterize this noise as a quasi-continuous burst of radiation that continues over the duration of the flash—typically some hundreds of milliseconds. Horner\(^9\) offers a similar description and summarizes, in terms of mean spectral amplitude as a function of frequency, various measurements of source strength. These data are reproduced in Figure 2.

Although significant fluctuations in radiated power occur over the duration of a flash (most notably the cessation of HF emission for some milliseconds following a return stroke of a flash to ground\(^8\)), it seems adequate for our purposes to treat the HF radiation as a statistically uniform process throughout the flash. The noise also will be considered Gaussian, or "white," over bandwidths of interest, although there is some evidence\(^10\) for occasional isolated, broadband spikes of HF radiation that may not be well represented by such a model.

The randomness of flash location, which produces at the receiving antenna a randomness in the mean power received during a flash, must also be considered. The noise power incident on the antenna is described by the variance, \(\sigma_1^2 \), of the noise-amplitude distribution. Generally, \(\sigma_1^2 \) is a function of the distance between source and receiver. Because this distance is a random variable, so is \(\sigma_1^2 \). The net noise received during a flash is the sum of the noise background and that produced by the flash.
Both of these noise components are modeled as Gaussian random variables, so their sum is also Gaussian with a variance, σ^2, that is the sum of those for the two components:

$$\sigma^2 = \sigma_0^2 + \sigma_1^2.$$ \hfill (8)

The probability density function for the net noise incident on the antenna during a flash can now be written as an integration over the distribution of σ^2. We have

$$p(E|\text{flash}) = \int d\sigma^2 \ p(\sigma^2) \ p(E|\text{flash}, \sigma^2)$$ \hfill (9)
where

\[p(E|\text{flash}, \sigma^2) = \frac{E}{\sigma^2} \exp\left(-\frac{E^2}{2\sigma^2}\right) \quad . \]

(10)

The probability density function for \(\sigma^2 \), \(p(\sigma^2) \), is derived from that for \(\sigma_1^2 \):

\[p(\sigma^2) = p(\sigma_1^2 = \sigma^2 - \sigma_0^2) \quad . \]

(11)

The times of occurrence of lightning flashes are taken to be uncorrelated and (statistically) distributed uniformly over time in the short term. (The mean flash rate is, however, allowed to vary diurnally and seasonally.) Thus, the probability of occurrence of \(N \) flashes within some time interval, \(\tau \), is given by the Poisson distribution:

\[P(N, \tau) = \frac{(\bar{n}\tau)^N \exp(-\bar{n}\tau)}{N!} \]

(12)

where \(\bar{n} \) is the mean flash rate. If \(\tau \) is set equal to the mean duration of a flash, then it can be shown that \(P(N, \tau) \) also is the probability that \(N \) flashes are in progress simultaneously; \(P(0, \tau) \) and \(P(1, \tau) \) will be required for evaluation of Eq. (5) from Eq. (12).

\[P(\text{no flash}) = P(0, \tau) = \exp(-\bar{n}\tau) \quad , \]

(13a)

\[P(\text{flash}) = P(1, \tau) = \bar{n}\tau \exp(-\bar{n}\tau) \quad . \]

(13b)

Assume for the moment that the probability of more than one local flash in progress simultaneously in a region of low thunderstorm activity is negligible. Flash rates in regions of high thunderstorm activity are, however, sufficiently great that extension of the model to treat overlapping flashes is desirable. Such extension, although analytically straightforward, is numerically taxing. It will be discussed in Section III.B.
To obtain the probability-density function for the envelope amplitude of the incident noise, Eq. (5) must be evaluated. If we insert into this equation, the expressions from Eqs. (6), (9), (10), (11) and (13), developed for its component parts, we have

\[
p(E) = \exp(-\bar{\eta} \tau) \frac{E}{\sigma_0^2} \exp\left(-\frac{E^2}{2\sigma_0^2}\right) + \bar{\eta} \tau \exp(-\bar{\eta} \tau) \int_{\sigma_0^2}^\infty d\sigma^2 \frac{1}{\sigma^2} \left(\sigma^2 - \sigma_0^2\right) \frac{E}{\sigma^2} \exp\left(-\frac{E^2}{2\sigma^2}\right) .
\]

Eq. (14) can be easily integrated with respect to E to obtain the probability-distribution function for E:

\[
p(E > E_T) = \int_{E_T}^\infty dE \ p(E) = \exp(-\bar{\eta} \tau) \exp\left(-\frac{E_T^2}{2\sigma_0^2}\right) + \bar{\eta} \tau \exp(-\bar{\eta} \tau) \int_{\sigma_0^2}^\infty d\sigma^2 \frac{1}{\sigma^2} \left(\sigma^2 - \sigma_0^2\right) \exp\left(-\frac{E_T^2}{2\sigma^2}\right) .
\]

To proceed further, it next is necessary to calculate \(p(\sigma_1^2 = \sigma^2 - \sigma_0^2)\). This density function represents the effect on incident noise power at the receiving antenna, both of the spatial distribution of flashes about the antenna and of variability from flash to flash in the mean strength of the radiation from a flash. The spatial distribution of radiation sources within a flash, although of some interest (particularly the vertical extent because of the impact of source height on the
distance to the line-of-sight horizon), will not be addressed. Present data (e.g. Taylor and Rustan) are insufficient, and we cannot define this distribution with any confidence. A "representative" source height of 5 km will be used in the numerical examples that follow.

Few data have been found from which the variability in mean source strength from flash to flash could be inferred. However, in light of the large variation in incident noise power associated with the variability of source location, this limitation is unlikely to prove serious. The mean source strength averaged over all flashes is obtained from Figure 2. We assume that the total radiated energy is spread uniformly over the duration of a flash to obtain

\[\sigma_s^2 = \frac{2B}{\tau} S^2(f) \] \hspace{1cm} (16)

where \(\sigma_s^2 \) is the variance of the radiated field at unit distance; \(B \) is the receiver bandwidth; \(\tau \) the mean flash duration; and \(S(f) \) the noise spectral amplitude at unit distance for the receiver frequency, \(f \).

Given \(\sigma_s^2 \), \(\sigma_l^2 \) is known for a specific source location, once the propagation loss has been determined. Generally, we have

\[\sigma_l^2 = \sigma_s^2 g(\theta, \phi; h_s, h_r) \] \hspace{1cm} (17)

where the loss function, \(g \), depends on the geocentric coordinates, \((\theta, \phi) \), of the flash relative to the antenna, and on the respective heights, \(h_s \) and \(h_r \) of the source and the antenna above the earth's surface. This relationship is assumed to be known.

The loss function will also be taken to include a geometrical factor that specifies the loss associated with polarization and orientation mismatch between the incident noise field and the receiving antenna. For example, in the case of a vertically polarized monopole antenna, only the vertical component of the incident field is relevant, and \(g(\theta, \phi; h_s, h_r) \) will include the factor \(\sin^2(\theta_A) \), where \(\theta_A \) is the zenith angle.
of the source (flash) as seen from the antenna. In terms of the received noise power at the antenna terminals, this mismatch factor can be recognized as simply the receiving antenna pattern.

Unfortunately, the dependence of σ_1^2 on θ and ϕ is sufficiently complex for even a simple propagation model so that direct calculation of $p(\sigma_1^2)$ is awkward. This difficulty can, however, be circumvented by using the characteristic function for $p(\sigma_1^2)$, $M_{\sigma_1,2}(iv)$, to link the distribution of σ_1^2 to that of flash occurrence in the coordinate variables θ and ϕ. This last distribution is straightforward; the flash density for a given range, θ, is simply proportional to the area at that range.

We have then,

$$p(\sigma_1^2) = \frac{1}{2\pi} \int_{-\infty}^{\infty} M_{\sigma_1^2}(iv) \exp(-iv\sigma_1^2)$$ \hspace{1cm} (18)

where the characteristic function, M, is defined as the Fourier transform of the density function:

$$M_{\sigma_1^2}(iv) = \int_{\sigma_1^2}^{\infty} p(\sigma_1^2) \exp(iv\sigma_1^2)$$ \hspace{1cm} (19)

Equivalently,

$$M_{\sigma_1^2}(iv) = \int_{0}^{\pi} \int_{0}^{2\pi} p(\theta, \phi) \exp(iv\sigma_1^2(\theta, \phi))$$ \hspace{1cm} (20)

where $\sigma_1^2(\theta, \phi)$ is known by virtue of Eq. (17).

The probability, $p(\sigma_1^2 = \sigma^2 - \sigma_0^2)$, needed in Eqs. (14) and (15) follows simply by substitution of $\sigma^2 - \sigma_0^2$ for σ_1^2 in Eq. (18):
\[p(\sigma_1^2 = \sigma^2 - \sigma_0^2) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{dv}{\sigma_1^2} \quad \text{(iv)} \exp \left[-iv(\sigma^2 - \sigma_0^2)\right] \quad (21) \]

\(M_{\sigma_1^2} \) (iv) is unaffected by this substitution, being calculated generally in accordance with Eq. (20).

The probability-density function, \(p(\theta, \phi) \), in Eq. (2) is given by

\[p(\theta, \phi) \, d\theta d\phi = \frac{r_e^2 \sin \theta \, d\theta \, d\phi}{A} \quad (22) \]

where \(A \) is the area within which the flash is assumed to have occurred and \(r_e \) is the earth's radius. If attention is restricted to flashes within a limited range, such as those within line of sight of the receiving antenna, we obtain

\[A = 2\pi r_e^2 \left(1 - \cos \theta_m\right) \quad (23) \]

where \(\theta_m \) is the angular distance to a flash on the horizon; for a receiving antenna at ground height

\[\cos \theta_m = \frac{r_e}{r_e + h_s} \quad . \quad (24) \]

The integration range for \(\theta \) is correspondingly restricted in the calculation of \(M_{\sigma_1^2} \) (iv) from Eq. (20); we have, insertings Eqs. (22) and (23),

\[M_{\sigma_1^2} \quad (iv) = \frac{1}{2\pi(1 - \cos \theta_m)} \int_{0}^{\theta_m} \int_{0}^{2\pi} \sin \theta \, d\phi \exp \left[i\nu \sigma_1^2(\theta, \phi)\right] \quad (25) \]
As an example of this procedure, we have calculated $p(\sigma^2_1)$ for the vertical electric component of the incident noise field at the earth's surface, using a simple line-of-sight propagation model. In this model, the noise power incident on the antenna from a flash varies inversely as the square of the distance, d, between the flash and the antenna. Equation (17), then, becomes, for this model,

$$\sigma^2_1 = \sigma^2_s \left(\frac{r_s}{d} \right)^2 \sin^2 \theta_A,$$

where r_s is the (unit) distance to which σ_s is referenced. The source-receiver geometry is illustrated in Figure 3, from which it can be seen
that the source-receiver distance, \(d\), is related to the angular distance, \(\theta\), by

\[
d^2 = h_s^2 + 2r_e (r_e + h_s)(1 - \cos \theta),
\]

(27)

where \(h_s\) is the source height. Additionally, the antenna pattern factor, \(\sin \theta_A\), is related to \(\theta\) by

\[
\sin(\pi - \theta_A) = \frac{r_e + h_s}{d} \sin \theta.
\]

(28)

Insertion of these relationships into Eq. (26) gives

\[
\frac{2}{\sigma_1} = \frac{2}{\sigma_s} \left[\frac{\frac{r_e}{h^2 + 2r_e (r_e + h_s)(1 - \cos \theta)}}{r_s (r_e + h_s) \sin \theta} \right]^2.
\]

(29)

In this case, \(\sigma_1^2\) is independent of \(\phi\); thus, the \(\phi\) integration in Eq. (25) can be simply performed to obtain

\[
M_2 (iv) = \int_0^{\theta_m} \int d\theta \sin \theta \exp \left[iv\sigma_1^2(\theta) \right] \, .
\]

(30)

The variation of \(\sigma_1^2\) as a function of \(\theta\) given by Eq. (29) is shown in Figure 4 for a source height \(h_s = 5\) km and strength \(\sigma_s^2 = 1.6 \times 10^{-3} \, (V/m)^2\). This value of \(\sigma_s^2\) corresponds to a spectral amplitude \(S(f) = 0.02 \, \text{Vs/m} \, [\text{Eq. (16)}]\) for a frequency \(f = 10 \, \text{MHz} \, (\text{Figure 2})\), a receiver bandwidth \(B = 1 \, \text{Hz}\), and a mean flash duration \(\tau = 0.5 \, \text{s}\). The horizon in this example is at a surface distance \(r_e \theta_m = 252 \, \text{km}\).

The \(\sigma_1^2(\theta)\) shown in Figure 4 yields the \(p(\sigma_1^2 = \sigma^2 - \sigma_0^2)\) illustrated in Figure 5, when used in Eq. (21) with a background noise variance \(\sigma_0^2 = 2.8 \times 10^{-20} \, (V/m)^2\), corresponding [Eq. (4)] to a minimal background
FIGURE 4 VARIATION WITH DISTANCE OF MEAN POWER RADIATED BY A SINGLE LIGHTNING FLASH

FIGURE 5 PROBABILITY DENSITY FUNCTION FOR MEAN RECEIVED POWER IN A ONE-Hz BANDWIDTH RADIATED BY A SINGLE FLASH
temperature $T = 288$ K. Over the range of σ^2 shown in Figure 5, $\sigma^2 \gg \sigma_0^2$, and consequently $p(\sigma_1^2 = \sigma^2 - \sigma_0^2) \approx p(\sigma^2)$. The density function peaks at $\sigma = 0.1 \text{ (}\mu\text{V/m})^2$, which corresponds to the variance in the received noise field for a flash at the most likely range, namely the maximum range (cf. Figure 4). The oscillatory fine structure evident in Figure 5, which leads to some negative (and hence impossible) values for p at the small variances, is an artifact of the Fourier methods used in the calculation.

Use of the $p(\sigma_1^2)$, shown in Figure 5, to calculate $p(E)$ and $P(E > E_1)$ from Eqs. (14) and (15) yields the results shown in Figures 6 and 7.

![Graph](image)

FIGURE 6 HIGH-AMPLITUDE PORTION OF PROBABILITY DENSITY FUNCTION FOR NOISE-ENVELOPE AMPLITUDE IN A ONE-Hz BANDWIDTH AT MODERATE LEVEL OF LOCAL THUNDERSTORM ACTIVITY
FIGURE 7 HIGH-AMPLITUDE PORTION OF PROBABILITY DISTRIBUTION FUNCTION "OR NOISE-ENVELOPE AMPLITUDE IN A ONE-Hz BANDWIDTH AT MODERATE LEVEL OF LOCAL THUNDERSTORM ACTIVITY

In this calculation, a mean flash rate of 1 per km2 per month, corresponding to $\mathcal{R} = 0.08$ s$^{-1}$ within line-of-sight range, was assumed. This flash density is representative of a region of moderate thunderstorm activity (5 thunderstorm days per month2). Again, only that portion of the total range of envelope amplitude has been shown in the figures for which the contribution of the noise produced by local lightning is significant. This contribution, given by the second terms of Eqs. (14) and (15), is approximately linear with \mathcal{R} so long as $\mathcal{R}t$ remains small (for $\mathcal{R}t$ on the order of unity or greater, the effects of overlapping flashes also must be considered, as described in Section III.B).

The background contribution to the noise, given by the first terms of Eqs. (14) and (15), lies predominantly at much smaller values of E than those produced by close lightning, giving a peak in $p(E)$ at $E = \sigma_0 (1.7 \times 10^{-4}$ µV/m in this example). The probability density function
is bimodal, although the peak shown in Figure 6 is much smaller in magnitude than the one produced at smaller E by the background noise. The form of Eq. (15) further indicates that the integrated contribution to the envelope distribution from the background noise exceeds that from local flashes by a similar factor (i.e. in the ratio \(\bar{n} = 1 \)), as also shown by the leveling out of \(P(E > E_T) \) for small \(E_T \) (but \(>> \sigma_0 \)) in Figure 7.

B. Overlapping Flashes

Extension of the model presented in Section III.A to include the effects of overlapping flashes is not difficult in principle. We simply generalize Eq. (5) to a series in which each term corresponds to a given number of flashes, \(N \), simultaneously in progress:

\[
p(E) = \sum_{n=0}^{\infty} P(N) p(E|N) \quad . \tag{31}
\]

The probability \(P(N) \) has already been determined (under the assumption of no correlation between flashes); it is given by Eq. (12).

The envelope probability density function given \(N \) flashes in progress, \(p(E|N) \), is defined just as for \(N = 1 \), namely by Eq. (30)—except that \(p(E|\text{flash}, \sigma^2) \) becomes \(p(E|N, \sigma^2) \) and \(p(\sigma^2) \) becomes \(p(\sigma^2|N) \). Thus, we have

\[
p(E|N) = \int d\sigma^2 p(E|N, \sigma^2) p(\sigma^2|N) \quad . \tag{32}
\]

Equation (10) also remains valid because we are dealing (as regards the field, not its envelope) with a sum of Gaussian random variables, which also is Gaussian. Now, however, \(\sigma^2 \) represents the sum of the \(\sigma^2_i \) for \(N \) flashes plus \(\sigma_0^2 \) for the background.
\[\sigma^2 = \sum_{n=0}^{\infty} \sigma_1^n \quad . \] (33)

The variety of combinations of the \(\sigma_1^2 \) that can yield the same value for \(\sigma^2 \) is most readily dealt with through the characteristic functions for the \(p(\sigma_1^2) \), defined by Eq. (19). Because \(\sigma^2 \) is formed as the sum of the statistically independent random variables \(\sigma_1^2 \), its characteristic function is the product of those for the individual \(\sigma_1^2 \):

\[M_{\sigma^2}^{(iv)} = \prod_{i=0}^{N} M_{\sigma_1^2}^{(iv)} \quad . \] (34)

With the exception of \(\sigma_0^2 \), the \(\sigma_1^2 \) are all drawn from the same population. Thus,

\[M_{\sigma^2}^{(iv)} = M_{\sigma_1^2}^{(iv)} M_{\sigma_0^2}^{(iv)} \quad . \] (35)

As previously, \(M_{\sigma_1^2}^{(iv)} \) can be readily calculated in terms of the geographic distribution of flashes, using Eq. (20).

The characteristic function \(M_{\sigma_0^2}^{(iv)} \) for the background component of the noise can be defined even though \(\sigma_0^2 \) has a fixed value and is not, in the conventional sense, a random variable. If we consider that a fixed \(\sigma_0^2 \) results as the limiting case when its distribution is narrowed to an infinitesimal width, however, we recognize \(p(\sigma_0^2) \) as a delta function.

Thus, from Eq. (19),

\[M_{\sigma_0^2}^{(iv)} = \int_{0}^{\infty} d\sigma_0^2 \delta(\sigma_0^2 - \sigma_0^2) \exp(i\sigma_0^2) \quad . \] (36a)

\[= \exp(i\sigma_0^2) \quad . \] (36b)

31
Fourier inversion of M_σ^2 (iv) now produces $p(\sigma^2 | N)$:

$$p(\sigma^2 | N) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dv \exp \left[-iv(\sigma^2 - \sigma_0^2) \right] M_\sigma^N (iv)$$ \hspace{1cm} (37)$$

[Equation (37) reduces, as it should, to Eq. (21) for $N = 1$.]

The use of Eq. (37) in Eq. (32), and this, in turn, with Eq. (12) in Eq. (31) yields

$$p(E) = \frac{\exp(-\bar{\eta}t)}{2\pi} \sum_{N=0}^{\infty} \frac{(\bar{\eta}t)^N}{N!}$$ $$\times \int_0^{\infty} d\sigma^2 \frac{E}{\sigma^2} \exp(-E^2/2\sigma^2) \int_{-\infty}^{\infty} dv \exp \left[-iv(\sigma^2 - \sigma_0^2) \right] M_\sigma^N (iv)$$. \hspace{1cm} (38)$$

If the summation in this expression is now brought within the integrals, there results

$$p(E) = \frac{\exp(-\bar{\eta}t)}{2\pi} \int_0^{\infty} d\sigma^2 \frac{E}{\sigma^2} \exp(-E^2/2\sigma^2)$$ $$\times \int_{-\infty}^{\infty} dv \exp \left[-iv(\sigma^2 - \sigma_0^2) \right] \sum_{N=0}^{\infty} \frac{(\bar{\eta}tM_\sigma^2 (iv))^N}{N!}$$. \hspace{1cm} (39)$$

in which the summation has been reduced to the Taylor series representation for the exponential function, whence
\[p(E) = \frac{1}{2\pi} \int_0^\infty \frac{d\sigma^2}{\sigma^2} \exp\left(-\frac{E^2}{2\sigma^2}\right) \times \int_0^\infty dv \exp\left[-iv\left(\sigma^2 - \sigma_0^2\right)\right] \exp\left\{\ln\left[M; (iv) - 1\right]\right\} \quad . \tag{40} \]

As previously, \(p(E) \) can readily be integrated with respect to \(E \) to obtain \(p(E > E_T) \):

\[p(E > E_T) = \frac{1}{2\pi} \int_0^\infty \frac{d\sigma^2}{\sigma^2} \exp\left(-\frac{E^2}{2\sigma^2}\right) \times \int_0^\infty dv \exp\left[-iv\left(\sigma^2 - \sigma_0^2\right)\right] \exp\left\{\ln\left[M; (iv) - 1\right]\right\} \quad . \tag{41} \]

The above approach does not depend strongly in its general development on the particular assumptions made concerning the nature of the noise radiated by an individual lightning flash. Furutsu and Ishida,14 for example, have obtained somewhat comparable results employing a model in which non-uniform bursts of discrete noise pulses are folded with the receiver-impulse response to define the characteristics of the noise received from an individual flash. We have simplified this aspect of the model by assuming that the noise power is distributed uniformly, both temporally over the duration of the flash, and spectrally over the receiver pass band.

Furutsu and Ishida14 do not, however, decompose, as we have, \(p(E) \) into an integration over the joint distribution \(p(E, \sigma^2) \). This step serves to isolate the influence on the noise of propagation loss, which
we have considered the dominant propagation effect, and allows it to be
dealt with in some detail. Lacking effective computational means for
handling the variation of propagation loss with range, Furutsu and Ishida
were constrained in application of their results to situations for which
this loss was approximately the same for all sources.

Some preliminary calculations have been made employing Eqs. (40) and
(41), but the results have not been completely satisfactory. The diffi-
culties encountered are largely numerical, and appear to result, for the
most part, from the embedding of the background noise contribution, whose
characteristic function has constant amplitude out to large values of \(v \),
within the Fourier integrals. These difficulties should lessen as the
mean number of flashes in progress at any time becomes large. This com-
putational approach may thus have application in the joint treatment of
noise arriving both by ground wave and by sky wave from a larger collec-
tion region.

For the treatment of overlapping noise flashes from within line-of-
sight range alone, the mean flash rate remains low, even for highly active
thunderstorm regions; thus, direct summation of the series in Eq. (39)
is feasible. If this summation is performed following Fourier inversion
of the characteristic function for each \(N \) on a term-by-term basis, the
difficulties noted above are avoided.

This direct-summation approach was employed for a mean flash rate
of 10 per \(\text{km}^2 \) per month, corresponding to an area of high thunderstorm
activity (20 thunderstorm days per month\(^2\)), to produce the results shown
in Figures 8 through 10. The mean number of flashes in progress within
line-of-sight range, is, in this case, appreciable; \(\bar{n} = 0.4 \). With the
exception of the increase by a factor of ten in mean flash rate, the
parameter values used in this example are the same as those employed in
Section III.A.

The shape of the density function, \(p(\sigma^2) \), for the net variance,
shown in Figure 8, is little changed (even at this flash density) from
that for a single flash—illustrated in Figure 5. Careful comparison,
however, reveals a shift in probability toward higher \(\sigma^2 \) values. This
change can also be found, on careful examination, in the envelope probability density function, $p(E)$, Figure 9, and the distribution function, Figure 10.
FIGURE 8 PROBABILITY DENSITY FUNCTION FOR MEAN RECEIVED POWER IN A ONE-Hz BANDWIDTH AT HIGH LEVEL OF LOCAL THUNDERSTORM ACTIVITY

FIGURE 9 HIGH-AMPLITUDE PORTION OF PROBABILITY DENSITY FUNCTION FOR NOISE-ENVELOPE AMPLITUDE IN A ONE-Hz BANDWIDTH AT HIGH LEVEL OF LOCAL THUNDERSTORM ACTIVITY

FIGURE 10 HIGH-AMPLITUDE PORTION OF PROBABILITY DISTRIBUTION FUNCTION FOR NOISE-ENVELOPE AMPLITUDE IN A ONE-Hz BANDWIDTH AT HIGH LEVEL OF LOCAL THUNDERSTORM ACTIVITY
REFERENCES

DISTRIBUTION LIST

DEPARTMENT OF DEFENSE

Assistant Secretary of Defense
Comm. Cmd, Cont & Intell
ATTN: Dir of Intelligence Sys

Command & Control Technical Center
ATTN: C-312, R. Mason
ATTN: C-650, G. Jones
3 cy ATTN: C-650, W. Heidig

Defense Communications Agency
ATTN: Code 480, F. Dieter
ATTN: Code 480
ATTN: Code 205
ATTN: Code 101B

Defense Communications Engineer Center
ATTN: Code R123
ATTN: Code R410, N. Jones

Defense Intelligence Agency
ATTN: DT-1B
ATTN: DB-4C, E. O'Farrell
ATTN: DB, A. Wise
ATTN: Dir
ATTN: DC-7B

Defense Nuclear Agency
ATTN: NAFD
ATTN: NATD
ATTN: STNA
ATTN: RAEE
4 cy ATTN: TTT
3 cy ATTN: RAEE

Defense Technical Information Center
12 cy ATTN: DD

Field Command
Defense Nuclear Agency
ATTN: FCPR, J. McDaniel

Field Command
Defense Nuclear Agency
Livermore Branch
ATTN: FCPRL

Interservice Nuclear Weapons School
ATTN: TTY

Joint Chiefs of Staff
ATTN: CJS, Evaluation Office (HDOO)
ATTN: CJS

Joint Strat Tgt Planning Staff
ATTN: JLA
ATTN: JLM-2

National Security Agency
ATTN: W-32, D. Bartlett
ATTN: R-52, J. Skillman
ATTN: B-3, F. Leonard

DEPARTMENT OF DEFENSE (Continued)

Under Secretary of Defense for Rsch & Engrg
ATTN: Strat & Theater Nuc Forces, B. Stephan
ATTN: Strategic & Space Sys (OS)

WWMCCS System Engineering Org
ATTN: R. Crawford

DEPARTMENT OF THE ARMY

Assistant Chief of Staff for Automation & Comm
Department of the Army
ATTN: DAMO-C4, P. Kenny

Atmospheric Sciences & Laboratory
U.S. Army Electronics R&D Command
ATTN: DELAS-EQ, F. Niles

BMD Advanced Technology Center
Department of the Army
ATTN: ATC-T, M. Capps
ATTN: ATC-O, W. Davies

BMD Systems Command
Department of the Army
2 cy ATTN: BMDS-HW

Deputy Chief of Staff for Ops & Plans
Department of the Army
ATTN: DAMO-RQC

Harry Diamond Laboratories
Department of the Army
ATTN: DELHD-NM-R, R. Williams

U.S. Army Chemical School
ATTN: ATCN-CM-CS

U.S. Army Comm-Elec Engrg Instal Agency
ATTN: CCC-CED-CED, W. Neudorf
ATTN: CCC-CED-ED, G. Lane

U.S. Army Communications Command
ATTN: CC-OPS-W
ATTN: CC-OPS-WR, H. Wilson

U.S. Army Communications R&D Command
ATTN: DRCO-COM-RY, W. Kesselman

U.S. Army Foreign Science & Tech Ctr
ATTN: DRLST-SD

U.S. Army Materiel Dev & Readiness Cmd
ATTN: DRLDC, J. Bender

U.S. Army Nuclear & Chemical Agency
ATTN: Library

U.S. Army Satellite Comm Agency
ATTN: Document Control

39
DEPARTMENT OF THE AIR FORCE (Continued)

Deputy Chief of Staff
Operations Plans and Rear
Department of the Air Force
ATTN: AFXOFD
ATTN: AFXOKT
ATTN: AFXOKS
ATTN: AFXOKCD

Deputy Chief of Staff
Research, Development, & Acq
Department of the Air Force
ATTN: AFRODS
ATTN: AFROSFP
ATTN: AFROSS

Headquarters
Electronic Systems Division
Department of the Air Force
ATTN: OEC-4, J. Deas

Headquarters
Electronic Systems Division
Department of the Air Force
ATTN: YSEA
ATTN: YSM, J. Kobelski

Foreign Technology Division
Air Force Systems Command
ATTN: TQID, B. Ballard
ATTN: NIS Library

Rome Air Development Center
Air Force Systems Command
ATTN: TSLD
ATTN: OCS, V. Coyne

Rome Air Development Center
Air Force Systems Command
ATTN: EEP

Space Division
Department of the Air Force
ATTN: YGJB, W. Mercer

Space Division
Department of the Air Force
ATTN: YKA, D. Bolin
ATTN: YKA, C. Kennedy

Strategic Air Command
Department of the Air Force
ATTN: XPPS
ATTN: DCTR
ATTN: NRT
ATTN: DCTR, T. Jorgensen
ATTN: DCTR

OTHER GOVERNMENT AGENCIES (Continued)

Central Intelligence Agency
ATTN: OSMR/MED

Department of Commerce
National Bureau of Standards
ATTN: Sec Ofc for R. Moore

OTHER GOVERNMENT AGENCIES (Continued)

Department of Commerce
National Oceanic & Atmospheric Admin
Environmental Research Laboratories
ATTN: R. Grubb

Institute for Telecommunications Sciences
National Telecommunications & Info Admin
ATTN: L. Berry
ATTN: W. Utlaud
ATTN: A. Jean

DEPARTMENT OF ENERGY CONTRACTORS

EG&G, Inc
Los Alamos Division
ATTN: J. Calvin
ATTN: D. Wright

Lawrence Livermore National Lab
ATTN: Technical Info Dept Library
ATTN: L-31, R. Hager
ATTN: L-30A, R. Ott

Los Alamos National Laboratory
ATTN: T. Kunkle, ESS-5
ATTN: C. Westervelt
ATTN: MS 670, J. Hopkins
ATTN: P. Keaton
ATTN: D. Simons
ATTN: MS 664, J. Zinn

Sandia National Laboratories
Livermore Laboratory
ATTN: B. Murphy
ATTN: T. Cook

Sandia National Lab
ATTN: Space Project Div
ATTN: Org 1250, W. Brown
ATTN: D. Dahlgren
ATTN: 3141
ATTN: Org 4241, T. Wright
ATTN: D. Thornbrough

DEPARTMENT OF DEFENSE CONTRACTORS

Aerospace Corp
ATTN: N. Stockwell
ATTN: D. Olsen
ATTN: J. Straus
ATTN: S. Bower
ATTN: T. Garfunkel
ATTN: V. Josephson
ATTN: T. Salmi
ATTN: R. Slaughter

Analytical Systems Engineering Corp
ATTN: Radio Sciences

Analytical Systems Engineering Corp
ATTN: Security

Barry Research Corporation
ATTN: J. McLaughlin
DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

BDM Corp
ATTN: T. Neighbors
ATTN: L. Jacobs

Berkeley Research Associates, Inc
ATTN: J. Workman

Betac
ATTN: J. Hirsch

Boeing Co
ATTN: S. Tashird
ATTN: G. Hall
ATTN: M/S 42-33, J. Kennedy

Booz-Allen & Hamilton, Inc
ATTN: B. Wilkinson

University of California at San Diego
ATTN: H. Booker

Charles Stark Draper Lab, Inc
ATTN: J. Gilmore
ATTN: D. Cox

Computer Sciences Corp
ATTN: F. Eisenbarth

Comsat Labs
ATTN: G. Hyde
ATTN: D. Fang

Cornell University
ATTN: D. Farley, Jr
ATTN: M. Kelly

E-Systems, Inc
ATTN: R. Berezdivin

Electrosp ace Systems, Inc
ATTN: H. Logston

ESL, Inc
ATTN: J. Marshall
ATTN: R. Ibaraki
ATTN: R. Heckman
ATTN: J. Lehman
ATTN: E. Tsui

General Electric Co
ATTN: A. Harcar

General Electric Co
ATTN: C. Zierdt
ATTN: A. Steinmayer

General Electric Co
ATTN: F. Reibert

General Electric Co
ATTN: G. Millman

General Research Corp
ATTN: J. Ise, Jr
ATTN: J. Garbarino

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

Harris Corp
ATTN: E. Knick

Horizons Technology, Inc
ATTN: R. Kruger

HSS, Inc
ATTN: D. Hansen

IBM Corp
ATTN: H. Ulander

University of Illinois
ATTN: Security Supervisor for K. Yeh

Institute for Defense Analyses
ATTN: E. Bauer
ATTN: H. Gates
ATTN: H. Wolfhard
ATTN: J. Aein

International Tel & Telegraph Corp
ATTN: W. Rice
ATTN: Technical Library

JAYCOR
ATTN: J. Sperling

JAYCOR
ATTN: J. DonCarlos

Johns Hopkins University
ATTN: T. Potemra
ATTN: J. Phillips
ATTN: T. Evans
ATTN: J. Newland
ATTN: P. Komiske

Kaman Tempo
ATTN: W. Knapp
ATTN: T. Stephens
ATTN: DASIC
ATTN: W. McNamara

Linkabit Corp
ATTN: I. Jacobs

Litton Systems, Inc
ATTN: R. Grasty

Lockheed Missiles & Space Co, Inc
ATTN: W. Imhof
ATTN: R. Johnson
ATTN: M. Walt

Lockheed Missiles & Space Co, Inc
ATTN: Dept 60-12
ATTN: C. Old/Dept 68-21
ATTN: D. Churchill/Dept 81-11

M.I.T. Lincoln Lab
ATTN: D. Towle

Magnavox Govt & Indus Electronics Co
ATTN: G. White

42
DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

Martin Marietta Corp
ATTN: R. Hefiner

McDonnell Douglas Corp
ATTN: H. Spitzer
ATTN: R. Halprin
ATTN: W. Olson

Meteor Communications Consultants
ATTN: R. Leader

Mission Research Corp
ATTN: R. Hendrick
ATTN: Tech Library
ATTN: D. Sappenfield
ATTN: F. Fajen
ATTN: S. Gutsche
ATTN: R. Kilb
ATTN: R. Bogusch

Mitre Corp
ATTN: C. Callahan
ATTN: B. Adams
ATTN: A. Kymmel
ATTN: G. Harding

Mitre Corp
ATTN: M. Horrocks
ATTN: W. Foster
ATTN: W. Hall
ATTN: J. Wheeler

Pacific-Sierra Research Corp
ATTN: F. Thomas
ATTN: E. Field, Jr
ATTN: H. Brode

Pennsylvania State University
ATTN: Ionospheric Research Lab

Photometrics, Inc
ATTN: I. Kofsky

Physical Dynamics, Inc
ATTN: E. Fremouw

Physical Research, Inc
ATTN: R. Deliberis

R & D Associates
ATTN: W. Wright
ATTN: R. Turco
ATTN: M. Gantsweg
ATTN: R. Lelevier
ATTN: W. Karzas
ATTN: B. Gabbard
ATTN: H. Ory
ATTN: F. Gilmore
ATTN: C. Greiffinger
ATTN: P. Haas

R & D Associates
ATTN: B. Yoon

Rand Corp
ATTN: E. Bedrozian
ATTN: C. Crain

DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

Riverside Research Institute
ATTN: V. Trapani

Rockwell International Corp
ATTN: R. Buckner

Rockwell International Corp
ATTN: S. Quilici

Santa Fe Corp
ATTN: D. Paolucci

Science Applications, Inc
ATTN: C. Smith
ATTN: D. Hamlin
ATTN: E. Straker
ATTN: L. Linson

Science Applications, Inc
ATTN: SZ

Science Applications, Inc
ATTN: J. Cockayne

SRI International
ATTN: G. Smith
ATTN: M. Baron
ATTN: R. Livingston
ATTN: C. Rino
ATTN: W. Jaye
ATTN: R. Leadabrand
ATTN: W. Chesnut
ATTN: D. Nellson
ATTN: J. Petrickes
ATTN: R. Tsonoda
ATTN: A. Burns
4 cy ATTN: G. Price
4 cy ATTN: V. Hatfield

Sylvania Systems Group
ATTN: I. Kohlberg
ATTN: J. Concordia
ATTN: R. Steinhoff

Technology International Corp
ATTN: W. Boquist

Tri-Com, Inc
ATTN: D. Murray

TRW Electronics & Defense Sector
ATTN: R. Plebuch
ATTN: D. Dee

Utah State University
ATTN: J. Dupnik
ATTN: L. Jensen
ATTN: K. Baker

Visidyne, Inc
ATTN: J. Carpenter
ATTN: C. Humphrey

43