THE FEE, A NEW TUNABLE HIGH RESOLUTION SPECTRUM ESTIMATOR. (U)
FEB 82 H E WEBB, D C YOULA, O M GUPTA

UNCLASSIFIED RADC-TR-81-397
THE FEE, A NEW TUNABLE HIGH RESOLUTION SPECTRUM ESTIMATOR

Haywood E. Webb, Jr.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 13441
This report has been reviewed by the Technical Review Board and is releasable to the National Technical Information Service. It will be releasable to the general public upon completion.

RADC-TR-81-397 has been reviewed and is approved for publication.

APPROVED:
David A. Riemondy, Lt Colonel, USAF
Chief, C2 ARCH Technology Branch
Command and Control Division

APPROVED:
Alan R. Barnum
Assistant Chief
Command and Control Division

FOR THE COMMANDER:
John P. Hugg
Acting Chief, Plans Division

If your address has changed or if you wish to be removed from the C2 ARCH mailing list, or if the addresses in your mailing list are no longer correct or complete, please notify RADC (COTU) Griffiss AFB NY 13441. This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or action on a specific document requires that it be returned.
THE FEE, A NEW TUNABLE HIGH RESOLUTION SPECTRUM ESTIMATOR

Part one addresses a software implementation in an interactive mode. Examples are given.
3. Part three generalizes the scaler problem of Part 1 to the multi-dimensional vector cases.
PREFA
CE

In problems of the sort treated here, one is given a projection (segment) of a non-negative definite function. The problem is to extend (continue) the function over all its domain in such a way that it is even and non-negative definite. Subsequently, the Fourier transform of an even and non-negative definite function is even and non-negative, we have generated a spectrum. In the problem of spectral estimation, the given segment of data is from a covariance function, so that the Fourier transform of it together with its extension, is a power spectrum. All solutions considered here have the property of consistency, that is, the inverse Fourier transform of the estimated spectrum reproduces itself over the given data interval.

This report represents work accomplished under the technical direction of the undersigned with the support of the RADC Laboratory Director's fund.

HAYWOOD E. WEBB, Jr.
PART I
BACKGROUND THEORY AND DERIVATION
by
DANTE C. YOULA
Polytechnic Institute of N.Y. Farmingdale N.Y.

PART II
A DIGITAL IMPLEMENTATION
by
OM Gupta
Digicomp Corporation Ithaca N.Y.

PART III
MULTI CHANNEL CASE
by
DANTE C. YOULA
Polytechnic Institute of N.Y. Farmingdale N.Y.

PART IV
SOME OBSERVATIONS AND
SUGGESTIONS FOR NEW WORK
by
HAYWOOD E. WEBB Jr.

iii
PART I - BACKGROUND THEORY
AND DERIVATION

by

D.C. YOULA
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td></td>
</tr>
<tr>
<td>I. INTRODUCTION AND PRELIMINARY RESULTS</td>
<td>1</td>
</tr>
<tr>
<td>II. "TUNED" SPECTRAL ESTIMATORS</td>
<td>16</td>
</tr>
<tr>
<td>III. THE DESIGN OF TUNED FEE'S</td>
<td>20</td>
</tr>
<tr>
<td>APPENDIX A - NETWORK FOUNDATIONS</td>
<td>22</td>
</tr>
<tr>
<td>APPENDIX B - PHASE INTERPOLATION WITH A REGULAR ALL-PASS</td>
<td>26</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>35</td>
</tr>
<tr>
<td>FIGURE 1</td>
<td>36</td>
</tr>
</tbody>
</table>
The FEE, or Flat-Echo Estimator, represents an entirely new solution to the problem of spectrum recovery from a given finite set of error-free covariance samples. In concept it is based squarely on frequency-domain network-theoretic ideas and its principal features are the following.

1) Numerical robustness, as defined in this report, can be assigned in advance by the adjustment of a single parameter.

2) It is possible to "tune" the estimator to produce selective amplification of a finite number of desired frequencies without impairing either its interpolatory character or its numerical robustness. Enhanced resolution is to be expected.

3) For the parameter setting which yields maximum robustness, the FEE coincides with the MEE, the Maximum-Entropy Estimator.

In addition to providing a rather leisurely account of some of the network ideas behind the FEE, this research report also contains two appendices, A and B. The first supplies an explicit and compact formula for the class of all interpolatory spectral densities, while the second is devoted to the design of minimum-degree regular all-passes with prescribed phase at a given finite set of frequencies.
I. INTRODUCTION AND PRELIMINARY RESULTS

Suppose that we have a discrete-time random process \(x_t \) where \(x_t \) can traverse all positive and negative integers. Let us also suppose that the process is zero-mean and second-order stationary. Then, \(E(x_t \overline{x}_{t+k}) = C(k), \ |k| = 0 \to \infty \),

\[(1) \]

is the associated covariance function. Clearly, for all integers \(k \),

\[C(-k) = E(x_t \overline{x}_{t-k}) = E(x_{t+k} \overline{x}_t) = C(k). \quad (2) \]

As is well known [1],

\[C(k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-jk\theta} dF(\theta) \quad (3) \]

where \(F(\theta) \) is monotone-nondecreasing, continuous from the left and of bounded-variation:

\[\text{Var} F = \int_{-\pi}^{\pi} dF(\theta) = 2\pi C(0) < \infty. \quad (4) \]

Further, the derivative

\[K(\theta) = \frac{dF(\theta)}{d\theta} \geq 0 \quad (5) \]

exists for almost all \(\theta \), is \(L_1 \) over \(-\pi \leq \theta \leq \pi \) and defines the spectral density of the process. Evidently, if \(F(\theta) \) is absolutely continuous,

\[C(k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-jk\theta} K(\theta) d\theta. \quad (6) \]

Let us assume first that \(F(\theta) \) is absolutely continuous and that \(K(\theta) \) satisfies the Paley-Wiener criterion,

\[\int_{-\pi}^{\pi} \ln K(\theta) d\theta > -\infty. \quad (7) \]

\(a = \) complex conjugate of \(a \).
Then, there exists [1] a unique function
\[B(z) = \sum_{r=0}^{\infty} b_r z^r, \quad b_0 > 0 \] (8)
which is analytic and devoid of zeros in $|z| < 1$ and is such that(2)
\[\sum_{r=0}^{\infty} |b_r|^2 < \infty \] (9)
and(3)
\[K(\theta) = |B(e^{j\theta})|^2, \quad a.e. \] (10)
Moreover, x_t can be realized as the output of a causal digital filter with a square-summable impulse response(4)
\[h_r = \overline{b_r}, \quad r = 0, \infty \] (11)
driven by an appropriate white noise source sequence u_t:
\[x_t = \sum_{r=0}^{\infty} h_r u_{t-r}, \quad (-\infty < t < \infty) \] (12)
\[E(u_r) = 0, \quad E(u_r u_m) = \delta_{rm}, \quad (-\infty < r, m < \infty) \] (13)
\[E(\overline{x_t} x_{t+k}) = C(k) = \sum_{r=0}^{\infty} h_{r+k} h_r, \quad (-\infty < k < \infty) \] (14)

(2) $B(z)$ is of class H_2.

(3) $B(e^{j\theta}) = \lim_{r \to 1^{-0}} B(re^{j\theta})$ exists for almost all θ.

(4) $\sum_{r=0}^{\infty} |h_r|^2 = \sum_{r=0}^{\infty} |b_r|^2 < \infty$.
We can now pose and solve several problems in spectral estimation.

Problem 1. It is known that $F(\theta)$ is absolutely continuous and that the spectral density $K(\theta) = \frac{dF(\theta)}{d\theta}$ satisfies the Paley-Wiener condition (7). Under the assumption that the $n+1$ covariance samples $C(0), C(1), \ldots, C(n)$ are known absolutely and without error, determine, if it exists, a compatible $K(\theta)$ which maximizes h_o in the input-output model (12).

Solution. Let the numbers $C(k), k = n+1 \rightarrow \infty,$ constitute any admissible completion of the given data $C(0), C(1), \ldots, C(n)$ and let $K(\theta)$ be the corresponding spectral density.

Let

$$d_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-jk\theta} f nK(\theta)d\theta \quad ,$$

(15)

$k = 0 \rightarrow \infty,$ let $a_0 = 1$ and let the coefficients $a_k, k = 1 \rightarrow \infty,$ be determined from the equation

$$\exp\left(\sum_{r=1}^{\infty} d_r z^r \right) = \sum_{k=0}^{\infty} a_k z^k \quad .$$

(16)

Then [1],

$$h_r = \bar{a}_r \exp(d_0/2) \quad , \quad r = 0 \rightarrow \infty \quad .$$

(17)

Theorem 1. To construct an admissible completion $C(k), k = n+1 \rightarrow \infty,$ which maximizes

$$h_o = \exp(d_o/2) \quad ,$$

(18)

is equivalent to choosing $K(\theta)$ to maximize

$$d_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} \ln K(\theta)d\theta \quad .$$

(19)

But [9] this leads immediately to the MEE, the unique maximum-entropy estimator, $K_{ME}(\theta),$ Eqs. (73) and (74).

Comment 1. What does it mean to maximize h_o and is it also possible to select spectral density estimators which maximize other meaningful

I-3
functionals defined on the impulse response sequence \(\{h_n\} \)? These questions deserve to be studied and one possible approach is to combine (17) with the following explicit formulas for the \(a_k \)'s and \(d_k \)'s \([2]\):

\[
a_1 = d_1, \quad a_2 = d_2 + \frac{d_1^2}{2}, \quad a_3 = d_3 + d_3 d_1 + \frac{d_1^3}{6}
\]

and in general, \((5)\)

\[
a_r = \frac{1}{r!} \det \begin{bmatrix}
 d_1 & -1 & 0 & \ldots & 0 \\
 2d_2 & d_1 & -2 & \ldots & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 (r-1)d_{r-1} & (r-2)d_{r-2} & (r-3)d_{r-3} & \ldots & d_1, -(r-1) \\
 rd_r & (r-1)d_{r-1} & (r-2)d_{r-2} & \ldots & 2d_2, d_1
\end{bmatrix}, \quad r \geq 1,
\]

\[
= d_r + d_1 d_{r-1} + \ldots, \quad r > 2
\]

Problem 2. Let \(F(\theta) \) and \(K(\theta) \) be subject to the same constraints as in problem 1 and assume once again that the covariance samples \(C(0), C(1), \ldots, C(n) \) are known absolutely and without error. Provide, if feasible, a geometric time-domain interpretation of the process whereby every admissible completion \(C(k), k = n+1 \rightarrow \infty \), is generated.

Solution. As is well known \([2]\), under the given hypotheses, \((6)\)

\[
\Delta_k = \begin{vmatrix}
 C(0) & C(1) & \ldots & C(k) \\
 C(-1) & C(0) & \ldots & C(k-1) \\
 \vdots & \vdots & \ddots & \vdots \\
 C(-k) & C(-k+1) & \ldots & C(0)
\end{vmatrix} > 0, \quad k = 0 \rightarrow \infty,
\]

for any possible admissible extension \(C(k), k = n+1 \rightarrow \infty \), where

\((5)\) \(\det A = |A| = \) determinant of square matrix \(A \).

\((6)\) The Paley-Wiener condition (7) precludes the possibility \(\Delta_k = 0 \).
Thus, at the first step, $C(n+1)$ must be chosen from the set of values ξ which satisfy the inequality

$$\Delta_{n+1}(\xi) > 0 .$$

However, it is not difficult to show [2] that this set is the interior of a circle Θ_n with radius

$$r_n = \frac{\Delta_n}{\Delta_{n-1}}$$

and center

$$\xi_n = \frac{(-1)^{n-1}}{\Delta_{n-1}} \cdot \begin{vmatrix} C(1) & C(2) & C(n) & 0 \\ C(0) & C(1) & \ldots & C(n-1) & C(n) \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ C(-n) & C(-n+1) & \ldots & C(0) & C(1) \end{vmatrix} .$$

In fact, if Δ_k' denotes the minor of Δ_k that is obtained by striking out its first column and last row, it follows from a fundamental determinantal result\(^{(7)}\) applied to $\Delta_{n+1}(\xi)$ that

$$|\Delta_{n+1}(\xi)|^2 = \Delta_n^2 - \Delta_{n-1}\Delta_{n+1}(\xi) .$$

But as is clear from (25) and (26),

$$\Delta_{n+1}'(\xi) = (-1)^n \Delta_{n-1} \cdot (\xi - \xi_n)$$

\(^{(7)}\) If D is any determinant, and S is the second minor obtained from it by striking out its ith and kth rows and its jth and lth columns, and if we denote by A_{ij} the cofactor of the element which stands in the ith row and jth column of D, then [3],

$$\begin{vmatrix} A_{ij} & A_{il} \\ A_{kj} & A_{kl} \end{vmatrix} = (-1)^{i+j+k+l} DS .$$
and (28) yields,

\[|\xi - \xi_n|^2 = r_n^2 - \frac{\Delta_{n+1}(\xi)}{\Delta_n} < r_n^2 \]

(30)

since \(\Delta_{n+1}(\xi)\) and \(\Delta_n\) are both positive.

Once having chosen \(C(n+1) = \xi\) consistent with (30), \(C(n+2)\) is then selected from the interior of a circle of radius \(r_{n+1} = \Delta_{n+1}/\Delta_n\) and center \(\xi_{n+1}\) given by (27) with \(n\) replaced by \(n+1\), etcetera. Evidently, except for \(r_n\) and \(\xi_n\) which are uniquely determined by the prescribed data \(C(0), C(1), \ldots, C(n)\), all successive \(r_k\) and \(\xi_k\) depend on the particular rule used to pick \(C(k+1)\) from the interior of \(\Theta_k\), \(k = n+1 \rightarrow \infty\).

Theorem 2. Under the conditions prevailing in problem 1, the following is true.

1) Let \(C(k), k = n+1 \rightarrow \infty\), denote any admissible completion of the initial covariance data \(C(0), C(1), \ldots, C(n)\) and let \(K(\theta)\) be the corresponding spectral density estimator. Let \(K(\theta) = |B(e^{i\theta})|^2\) where \(B(z)\), Eq. (8), is the associate Wiener-Hopf factor. Then, the sequence of radii \(r_k, k = n \rightarrow \infty\), generated by this completion is always monotone-nonincreasing and

\[
\lim_{k \rightarrow \infty} r_k = \lim_{k \rightarrow \infty} \frac{\Delta_k}{\Delta_{k-1}} = b_o^2 = h_o^2 > 0
\]

(31)

In addition, for the sequence of centers, \(\xi_{k'}, k = n \rightarrow \infty\),

\[
\limsup_{k \rightarrow \infty} |\xi_k| \leq b_o^2 \leq \frac{\Delta_n}{\Delta_{n-1}}
\]

(32)

2) The maximum-entropy estimator \(K_{\text{ME}}(\theta)\) is the (unique) spectral density that is obtained by identifying each \(C(k+1)\) in the completion with the center of circle \(\Theta_k\):

\[C(k+1) = \xi_k, \quad k = n \rightarrow \infty \]

(33)

Under this ME rule,

\[
\lim_{k \rightarrow \infty} \xi_k = 0
\]

(34)
and all circles Θ_k possess the same maximum possible radius r_n:

$$r_n = \frac{\Delta_n}{\Delta_{n-1}} = \frac{\Delta_k}{\Delta_{k-1}} = r_k , \quad k = n \to \infty .$$

Proof (in outline). Given any admissible completion and its corresponding spectral density estimator $K(\theta) = |B(e^{j\theta})|^2$ where $B(z)$ is the associate Wiener-Hopf factor, it is well known [4] that

$$\lim_{k \to \infty} \frac{\Delta_k}{\Delta_{k-1}} = b_0^2 > 0 . \quad (36)$$

Furthermore, from (28) with n replaced by k,

$$r_{k+1} = \frac{\Delta_{k+1}}{\Delta_k} = \frac{\Delta_k}{\Delta_{k-1}} \left(1 - \left|\frac{\Delta_{k+1}'}{\Delta_k'}\right|^2\right) \leq \frac{\Delta_k}{\Delta_{k-1}} = r_k , \quad (37)$$

and it is clear that the sequence r_k, for $k = n \to \infty$, is monotone-nonincreasing. Thus,

$$b_0^2 = \lim_{k \to \infty} \frac{\Delta_k}{\Delta_{k-1}} \leq \frac{\Delta_n}{\Delta_{n-1}} = r_n \quad (38)$$

with equality iff

$$\Delta_{k+1}' = 0 , \quad k = n \to \infty . \quad (39)$$

Since $K(\theta)$ is integrable,

$$\lim_{k \to \infty} C(k+1) = 0 \quad (40)$$

which implies that all circles Θ_k contain the origin as an interior point for k sufficiently large. Hence, for large enough k,

$$|\xi_k| < r_k \leq r_n \quad (41)$$

so that

$$\limsup_{k \to \infty} |\xi_k| \leq \lim_{k \to \infty} r_k = b_0^2 \leq r_n = \frac{\Delta_n}{\Delta_{n-1}} . \quad (42)$$
To establish 2), observe that (39) and (29) lead to the conclusion that b_0 assumes its maximum possible value

$$ (b_0)_{\text{MAX}} = \sqrt{\frac{\Delta_n}{\Delta_{n-1}}} $$

(43)

iff for every $k = n \to \infty$,

$$ \xi = C(k+1) = \xi_k, $$

(44)

the center of circle Θ_k. But according to (11) and (18), $b_0 = \exp(d_0/2)$ so that $(b_0)_{\text{MAX}}$ is necessarily paired with the estimator $K(\theta) = K_{\text{ME}}(\theta)$ which maximizes the entropy

$$ d_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} \ln K(\theta) d\theta. $$

(45)

Lastly, since the ME completion rule identifies ξ_k with $C(k+1)$ for every $k > n$, it is evident that

$$ \lim_{k \to \infty} \xi_k = \lim_{k \to \infty} C(k+1) = 0, $$

(46)

Q.E.D.

Comment 2. Theorem 2 suggests that the ME estimator $K_{\text{ME}}(\theta)$ achieves good performance because its completion rule possesses a kind of optimal robustness against loss of positive-definiteness. Or, stated somewhat differently, since each additional covariance sample is chosen at the center of its circle of admissibility, it appears plausible to conjecture, on the grounds of symmetry, that the ME rule possesses a fair degree of self-correction in the face of (unsystematic) sample error. Admittedly, these considerations are heuristic in nature but they seem to be reinforced even more by the realization that the initial data $C(0), C(1), \ldots, C(n)$ must actually be estimated from samples of the random process x_t itself.

Problem 3. Under the assumption that $C(k)$ is real, place the general problem of spectral estimation from a prescribed set of error-free covariance samples $C(0), C(1), \ldots, C(n)$, in a network-theoretic setting involving positive-real functions.
Solution. First, it is easily seen that $C(k)$ real implies that the function

$$Z(z) = C(0) + \sum_{k=1}^{\infty} 2C(k)z^k$$ \hspace{1cm} (47)

is positive-real (pr) in $|z| < 1$, i.e., $Z(z)$ is real for z real and

$$\operatorname{Re} Z(z) = \frac{Z(z) + \overline{Z(z)}}{2} \geq 0, \quad |z| < 1.$$ \hspace{1cm} (48)

The proof is quite simple.

In fact, it follows readily from the reality of $C(k)$ and (3) that(8)

$$Z(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{j\theta} + z}{e^{j\theta} - z} dF(\theta), \quad |z| < 1.$$ \hspace{1cm} (49)

Hence,

$$\operatorname{Re} Z(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1}{|e^{j\theta} - z|^2} \cdot |z|^2 \cdot dF(\theta) \geq 0, \quad |z| < 1,$$ \hspace{1cm} (50)

since $dF(\theta) > 0$, Q.E.D.

It can be shown [5], that for almost all θ, the "interior" radial limit

$$Z(e^{j\theta}) \equiv \lim_{r \to 1-0} Z(re^{j\theta})$$ \hspace{1cm} (51)

exists and that

$$K(\theta) = \operatorname{Re} Z(e^{j\theta}).$$ \hspace{1cm} (52)

However, even more is true. Let $F_s(\theta)$ denote the singular part(9) of $F(\theta)$ and let the countable set of discontinuities of $F(\theta)$ occur at $\theta=\theta_i$ with jumps $\rho_i > 0$, $i=1,\infty$. Then, (49) may be rewritten as

$$Z(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{j\theta} + z}{e^{j\theta} - z} dF_s(\theta) + \frac{1}{2\pi} \sum_{i=1}^{\infty} \rho_i \frac{e^{j\theta_i} + z}{e^{j\theta_i} - z} + \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{j\theta}}{e^{j\theta} - z} K(\theta) d\theta$$

$$= Z_s(z) + Z_F(z) + Z_a(z).$$ \hspace{1cm} (53)

(8) The interchange of summation and integration is justified by dominated convergence.

(9) $F_s(\theta)$ is monotone-nondecreasing and its derivative equals zero almost everywhere [6].
Clearly,

\[\frac{p_i}{\pi} = \lim_{z \to e^{j\theta_i}} (1 - ze^{-j\theta_i}) Z(z), \quad i = 1, \infty, \quad (55) \]

and the \(p_i \)'s emerge as residues of \(Z(z) \) at its poles \(z_i = e^{j\theta_i} \) (all simple) on \(|z| = 1 \). These poles are revealed by the presence of the Foster reactance

\[Z_F(z) = \frac{1}{2\pi} \sum_{i=1}^{\infty} \frac{p_i}{e^{j\theta_i} + z} e^{j\theta_i} - z. \quad (56) \]

Of course,

\[\Re Z_F(e^{j\theta}) = 0 \quad (57) \]

and since \(F(\theta) \) is of bounded-variation,

\[\sum_{i=1}^{\infty} p_i < \infty \quad (58) \]

so that the infinite sum in (56) is well-defined.

Thus, given \(C(k), \quad k = 0 \to n \), the problem of spectral estimation is equivalent to that of generating all pr functions

\[Z(z) = C(0) + 2C(1)z + \ldots + 2C(n)z^n + O(z^{n+1}) \quad . \quad (59) \]

We shall now present an elementary solution based on the synthesis of ideal TEM transmission-line cascades [7, 8].

The Interpolatory Cascade. With the given data of real numbers \(C(k), \quad k = 0 \to n \), construct the real symmetric \((n+1) \times (n+1) \) matrix

\[T_n = \begin{bmatrix} C(0) & C(1) & \ldots & C(n) \\ C(1) & C(0) & \ldots & C(n-1) \\ \vdots & \vdots & \ddots & \vdots \\ C(n) & C(n-1) & \ldots & C(0) \end{bmatrix} \quad . \quad (60) \]

(10) Phrased differently, find all pr function \(Z(z) \) such that \(d^kZ(0)/dz^k, \quad k = 0 \to n \), are prescribed real numbers.

I-10
An admissible completion \(C(k), k = n+1 \to \infty \), exists, if and only if \(T_n \geq 0 \) \((k)\).

Two cases must be distinguished when this criterion is satisfied.

Case 1: \(\Delta_n = \det T_n > 0 \). Then, rank \(T_n = n+1 \) and all interpolatory \(pr \) solutions \(Z(z) \) are constructed in the following manner.

Step 1. Let \(T_k \) denote the \((k+1) \times (k+1)\) Toeplitz matrix obtained by substituting \(k \) for \(n \) in (60), let

\[
\Delta_k = \det T_k, \quad k > 0, \tag{61}
\]

and let \(\Delta_k' \) denote the minor of \(\Delta_k \) obtained by striking out its first column and last row. Let \(N \) denote the 2-port reactance-cascade (Fig. 1) composed of \(n+1 \) ideal TEM lines all of the same 1-way delay \(\tau > 0 \) and positive characteristic impedances,

\[
R_0 = C(0) \tag{62}
\]

and

\[
R_k = R_{k-1} \cdot \frac{1 + (-1)^{k-1} \cdot \frac{\Delta_k'}{\Delta_k-1}}{1 - (-1)^{k-1} \cdot \frac{\Delta_k'}{\Delta_k-1}}, \quad k = 1 \to n. \tag{63}
\]

Then, under the identification\((12)\)

\[
z = e^{-2p\tau}, \tag{64}
\]

every admissible interpolatory solution \(Z(z) \) is obtained as the impedance seen looking into the input port of \(N \) with its output port closed on an arbitrary \(pr \) function \(W(z) \). (In Fig. 1, terminals cd are connected to ab.)

\((11)\) \(I_k \) and \(0_k \) denote the \(k \times k \) identity and zero matrices, respectively. For any matrix \(A \), \(\bar{A} \), \(A' \) and \(A^H = \bar{A}' \) denote its complex conjugate, transpose and adjoint. If \(A(-A') \) is \(k \times k \) and hermitean, \(A \geq 0_k \) \((\geq 0_k)\) means that it is positive-definite \((\text{nonnegative-definite})\). As usual \(z = \text{column-vector} \).

\((12)\) \(p = \sigma + j\omega \) is the standard complex-frequency variable used in network theory.
The quantities

\[
\begin{align*}
R_k &- R_{k-1} \\
R_k + R_{k-1}
\end{align*}
\]

\[
s_k = \frac{R_k - R_{k-1}}{R_k + R_{k-1}} = (-1)^{k-1} \cdot \frac{\Delta_k'}{\Delta_{k-1}}, \quad k = 1 \rightarrow n ,
\]

are the n junction reflection coefficients. Their physical significance is not difficult to grasp. Indeed, let the terminated structure depicted in Fig. 1 be excited by an input current source \(i(t) = \delta(t)\). This impulse immediately launches a voltage impulse \(C(0)\delta(t)\) of strength \(a_{0t} = C(0)\) into line 0 which then travels towards line 1.

After \(\tau\) secs., \(a_{0t}\) reaches the first junction separating line 0 and line 1 and part of it is reflected and part of it is transmitted. \(^{(13)}\) If \(a_{1R}\) and \(a_{1t}\) denote the strengths of these reflected and transmitted impulses, respectively, conventional transmission line theory yields,

\[
\left(\frac{a_{1R}}{a_{0t}}\right)^2 = s_1^2
\]

and

\[
\left(\frac{a_{1t}}{a_{0t}}\right)^2 = 1-s_1^2 .
\]

In the same way, after \(\tau\) more secs., \(a_{1t}\) reaches the second junction and is partly reflected and partly transmitted to generate \(a_{2R}\) and \(a_{2t}\) where

\[
\left(\frac{a_{2R}}{a_{1t}}\right)^2 = s_2^2
\]

and

\[
\left(\frac{a_{2t}}{a_{1t}}\right)^2 = 1-s_2^2 .
\]

In general therefore, upon reaching line \(k\), \(a_{(k-1)t}\) is divided into an impulse of strength \(a_{kR}\) reflected back into line \(k-1\) and one of strength \(a_{kt}\) transmitted into line \(k\). Clearly,

\[
\left(\frac{a_{kR}}{a_{(k-1)t}}\right)^2 = s_k^2 , \quad \left(\frac{a_{kt}}{a_{(k-1)t}}\right)^2 = 1-s_k^2 , \quad k = 1 \rightarrow n .
\]

\(^{(13)}\) It is convenient to label an impulse by its strength.
Moreover, since interaction with the passive load $W(z)$ commences only after the lapse of $(n+1)\tau$ secs., the input voltage response $v(t)$ over the time interval $0 \leq t < 2(n+1)\tau$ is determined solely by the $(n+1)$-line cascade. We can now relate the radii r_k to the squared amplitudes a_{kt}^2.

For according to Eqs. (26), (28) and (65),

$$1 - s_k^2 = 1 - \left(\frac{\Delta_k}{\Delta_{k-1}}\right)^2 = \frac{\Delta_{k-2} \Delta_k}{\Delta_{k-1}^2} = \frac{r_k}{r_{k-1}}, \quad k = 1 \rightarrow n , \quad (71)$$

Thus, since $r_0 = C(0) = a_{0t}$, a comparison of (71) with (70) immediately gives the important physical connection formula,

$$r_k = \frac{a_{kt}}{C(0)}, \quad k = 0 \rightarrow n . \quad (72)$$

Obviously then, since successive transmitted impulses can never increase in strength, the corresponding sequence of successive radii of the circles of admissibility must be monotone-nonincreasing.

It follows from this interpretation, that to avoid any decrease in circle radius for $k > n$, it is necessary that the last transmitted impulse in line n suffer no reflection upon reaching the load $W(z)$. But this is only possible if $W(z) = R_n$, the characteristic impedance of the last line in the $(n+1)$-line cascade.

Consequently, $K_{ME}(\theta)$ is the real part of the driving-point impedance of the $(n+1)$-line structure N closed on $W(z) = R_n$. Explicitly [9, 10, Appendix A],

$$K_{ME}(\theta) = \frac{1}{|P_n(e^{j\theta})|^2} , \quad (73)$$

where

$$P_n(z) = \frac{1}{\sqrt{\Delta_n \Delta_{n-1}}} \begin{vmatrix} C(0) & C(1) & \ldots & C(n) \\ C(1) & C(0) & \ldots & C(n-1) \\ \vdots & \vdots & \ddots & \vdots \\ C(n-1) & C(n-2) & \ldots & C(1) \\ z & z^{n-1} & \ldots & 1 \end{vmatrix} \quad (74)$$
is a degree \(n \) strict-Hurwitz polynomial.\(^{(14)}\)

Case 2: \(\Delta_n = \det T_n = 0 \). Now \(\operatorname{rank} T_n < n+1 \) and there exists a \(\mu < n \) such that \(\Delta_\mu = \det T_\mu > 0 \) but \(\Delta_{\mu+1} = \det T_{\mu+1} = 0 \). The interpolatory pr function \(Z(z) \) is unique, is Foster and is of degree \(\mu+1 = \operatorname{rank} T_n \). Thus, according to (53) and (54), \(Z_n(z) = Z_a(z) \equiv 0 \) and

\[
Z(z) = Z_F(z) = \frac{1}{2\pi} \sum_{i=1}^{\mu+1} \rho_i e^{\frac{j\theta_i+z}{j\theta_i-z}} .
\]

(75)

The poles \(z_i = e^{\frac{j\theta_i}{n}} \), and the residues \(\rho_i, i = 1 \rightarrow \mu+1 \), can be found in three steps:\(^{(15)}\)

1) Find a real nontrivial column-vector solution \(\mathbf{x} = (x_0, x_1, \ldots, x_{\mu+1})' \) of the homogeneous equation

\[
T_{\mu+1} \mathbf{x} = \mathbf{0} .
\]

(76)

(There exists only one such linearly independent \(\mathbf{x} \).)

2) The \(\mu+1 \) zeros of the polynomial

\[
x(z) = x_0 + x_1 z + \cdots + x_{\mu+1} z^{\mu+1}
\]

are all of unit modulus and are precisely the desired poles \(z_i = e^{\frac{j\theta_i}{n}}, i = 1 \rightarrow \mu+1 \).

3) With the \(e^{\frac{j\theta_i}{n}} \)'s known from 2), the quantities \(\rho_1, \rho_2, \ldots, \rho_{\mu+1} \) are determined as the unique solutions of the linear system of the Vandermonde type,

\[
C(k) = \sum_{i=1}^{\mu+1} \rho_i e^{-jk\theta_i} , \quad k = 0 \rightarrow \mu .
\]

(77a)

A much more enlightening physical interpretation of case 2 is available. Namely, since \(\Delta_\mu > 0 \) implies that \(T_\mu > 0 \), then

\[
\Delta_k > 0 , \quad k = 0 \rightarrow \mu .
\]

\((14)\) \(P_n(z) \neq 0, |z| < 1 \). Incidentally, observe that \(P_n(z) \) is the determinant of the matrix that results by replacing the last row in \(T_n \) by \(z^n, z^{n-1}, \ldots, z, 1 \).

\((15)\) This three-step rule goes back to F. Riesz \([2]\) but its use in the context of spectral estimation is of recent vintage \([11]\).
Hence, from (71),

\[s_k^2 < 1, \quad k = 1 \rightarrow \mu. \]

(79)

However, since \(\Delta_{\mu+1} = 0, s_{\mu+1}^2 = 1; \) i.e., \(s_{\mu+1} = \pm 1 \) and consequently, in view of (65), \(R_{\mu+1} = \infty \) or \(0. \) In other words, the interpolatory \(Z(z) \) is the input impedance of a cascade of \(\mu+1 \) TEM lines of characteristic impedances \(R_0, R_1, \ldots, R_\mu \) closed on either an open or short circuit (but not both!). This explains why the process terminates and why \(Z(z) \) is unique. Alternatively, we can say that the choice of covariance sample \(C(\mu+1) \) has been made from the boundary of the circle of admissibility \(\Theta_\mu \) and as a result the transient voltage impulse transmitted into line \(\mu+1 \) must be zero. This situation is realized only because the load that terminates line \(\mu \) is either an open or a short. (We conclude that the two associated real sample values \(C(\mu+1) \) are the two intersections of \(\Theta_\mu \) with the real axis.) \(^{(16)}\)

In the next section we shall undertake a much deeper study of the properties of the spectral estimator, especially with regard to its dependence on the choice of \(\rho(z) \). Nevertheless, for now we can assert that any selection of covariance sample made from the boundary of its circle of admissibility immediately forces \(Z(z) \) to be a unique Foster function of finite degree and \(C(k) \) to be a finite sum of pure tones \((F_{\mu}(\theta) = K(\theta) = 0): \)

\[C(k) = \frac{1}{2\pi} \sum_{i=1}^{\mu+1} \rho_i e^{-jk\theta_i}. \]

(80)

\(^{(16)}\) Since the data \(C(k), k = 0 \rightarrow \mu, \) are real, the center of \(\Theta_\mu \) lies on the real axis.
II. "TUNED" SPECTRAL ESTIMATORS

From this point on it is assumed that the given data \(C(k), k = 0 \rightarrow n \), are real and error-free, that \(T_n \) is positive-definite and that \(F(\theta) \) is absolutely-continuous. Thus, the objective is to estimate the spectral density \(K(\theta) = \frac{dF(\theta)}{d\theta} \) and we restrict our attention exclusively to estimators defined by rational \(pr \) functions \(W(z) \).

Let

\[
\rho(z) = \frac{W(z) - R_n}{W(z) + R_n} \tag{81}
\]

denote the reflection coefficient of the load normalized to \(R_n \), the characteristic impedance of the last line. Since \(W(z) \) is \(pr \), \(\rho(z) \) is bounded-real (br); i.e.,

\[
|\rho(z)| \leq 1, \quad |z| < 1. \tag{82}
\]

Let

\[
Z_{ME}(z) = \frac{2Q_n(z)}{P_n(z)} \tag{83}
\]

denote the input impedance \(Z(z) \) with \(W(z) = R_n \). Clearly, this corresponds to \(\rho(z) = 0 \) and \(P_n(z) \) is given by (74). It can be shown (Appendix A) that \(Q_n(z) \) and \(P_n(z) \) are two degree-\(n \) polynomials that satisfy the even-part condition, (17)

\[
Q_n(z)P_{n*}(z) + Q_{n*}(z)P_n(z) = 1. \tag{84}
\]

It is also a consequence of the same analysis that the even part of the impedance \(Z(z) \) seen looking into the \(n+1 \)-line cascade with the output closed on a general \(pr \) termination \(W(z) \) is given by

\[
\frac{Z(z) + Z_{\text{even}}(z)}{2} = \frac{1 - \rho(z)\rho(z)}{D_n(z)D_{n*}(z)} \tag{85}
\]

where

\[
D_n(z) = P_n(z) - z\rho(z)F_n(z) \tag{86}
\]

\((17) A_{\text{even}}(z) = A(1/z) \) for \(A(z) \) real and rational.

I-16
and \(^{(18)}\)

\[
\mathcal{F}_n(z) = z^n \mathcal{P}_n(z) \quad .
\]

Consequently, \(Z(z)\) generates the spectral estimator

\[
K(\theta) = \frac{1 - |\rho(e^{j\theta})|^2}{|D_n(e^{j\theta})|^2} \quad .
\]

Observe that if \(\rho(z) = 0\), we recover \(K_{\text{ME}}(\theta)\), Eq. (73). Clearly, under the assumption that \(F(\theta)\) is absolutely continuous, \(|\rho(e^{j\theta})| \neq 1\) and \(W(z)\) is non-Foster. In general, an estimator is said to be tuned if the associated reflection coefficient \(\rho(z)\) is nonconstant.

Let

\[
1 - \rho(z) \rho^*(z) = \Gamma(z) \Gamma^*(z)
\]

where \(\Gamma(z)\) is a real rational function analytic together with its inverse in \(|z| < 1\). (This Wiener-Hopf factor is uniquely determined by the normalization condition \(\Gamma(0) > 0\). Furthermore, \(\Gamma(0) < 1\) unless \(\rho(z) \equiv 0\).) Hence, from (85),

\[
K(\theta) = |B(e^{j\theta})|^2
\]

where

\[
B(z) = \frac{\Gamma(z)}{\bar{\Gamma}(z)}
\]

Since \(D_n(z)\) is free of zeros in \(|z| < 1\),\(^{(19)}\) \(B(z)\) is the Wiener factor for \(K(\theta)\).

Theorem 3. Let the pr function \(W(z)\) generate the spectral estimator \(K(\theta)\), given the error-free covariance data \(C(k), k = 0-n\). Let \(\{r_k\}\) denote the sequence of radii of the corresponding circles of admissibility. As we

\[\text{(18) } \mathcal{F}_n(z) \text{ is the polynomial reciprocal to } \mathcal{P}_n(z).\]

\[\text{(19) } \mathcal{P}_n(z) \text{ is strict Hurwitz and } 1 - z\rho(z) \frac{\mathcal{F}_n(z)}{\mathcal{P}_n(z)} \text{ is positive-real.}\]
know, \(r_k \mid r_\infty = b_0^2 \) where \(b_0 = B(0) \). In addition, from (11) and (17),

\[
d_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} \ln K(\theta) d\theta = 2\ln b_0 \tag{92}
\]

Thus, (91) yields \(^\text{(20)}\)

1) \[r_\infty(K) = \Gamma^2(0), \frac{\Delta n}{\Delta n-1} = \Gamma^2(0) \cdot r_\infty(K_{ME}) \leq r_\infty(K_{ME}) \tag{93} \]

with equality iff \(K(\theta) = K_{ME}(\theta) \).

2) \[\text{Entropy}(K) = \text{entropy}(K_{ME}) - \ln \frac{1}{\Gamma^2(0)} \leq \text{Entropy}(K_{ME}) \tag{94} \]

with equality iff \(K(\theta) = K_{ME}(\theta) \). Or, as an alternative to (94) we may also write,

\[\text{Entropy}(K) = \text{entropy}(K_{ME}) - \frac{1}{2\pi} \int_{-\pi}^{\pi} \ln \left(\frac{1}{1 - |\rho(e^{j\theta})|^2} \right) d\theta \tag{95} \]

We are now in a position to describe an entirely new type of spectral estimator with the capability of controlling both resolution and robustness (as measured by \(r_\infty \)) in a parametric fashion. To this end, observe that Eq. (95) permits us to define

\[\frac{1}{2\pi} \cdot \ln \left(\frac{1}{1 - |\rho(e^{j\theta})|^2} \right) \tag{96} \]

to be the entropy echo-loss density at angle \(\theta \). \(^\text{(21)}\)

A flat-echo estimator (an FEE) is one for which the entropy echo-loss density is independent of \(\theta \). According to (96), this requires that

\[|\rho(e^{j\theta})| = \text{constant} \] \(\tag{97} \)

But this is possible iff

\[\rho(z) = \mu d(z) \tag{98} \]

\(^\text{(20)}\) Bear in mind that \(D_n(0) = P_n(0) \).

\(^\text{(21)}\) The phrase "echo-loss" is taken from filter theory \[^7\].
where μ is a constant constrained to lie in the range

$$0 \leq \mu < 1,$$

(99)

and $d(z)$ is a regular all-pass; i.e., $d(z)$ is a real-rational function analytic in $|z| \leq 1$ which satisfies the paraunitary condition

$$d(z)d_\mu(z) = 1.$$ (100)
III. THE DESIGN OF TUNED FEE'S

Let us consider the properties of an FEE defined by the reflection coefficient \(\rho(z) = \mu d(z) \), \(d(z) \) a regular all-pass and \(0 \leq \mu < 1 \). Then,

\[
\Gamma(z) = \sqrt{1 - \mu^2} ,
\]

(101)

\[
r_\infty(K_{FE}) = (1 - \mu^2) \cdot r_\infty(K_{ME})
\]

(102)

and \(K_{FE}(\theta) = |B(e^{j\theta})|^2 \) where

\[
B(z) = \frac{\sqrt{1 - \mu^2}}{p_n(z) - \mu zd(z)\tilde{p}_n(z)}
\]

(103)

is the associate Wiener-Hopf factor. Thus,

\[
K_{FE}(\theta) = K_{ME}(\theta) \cdot \frac{1 - \mu^2}{|1 - \mu e^{j\theta} d(e^{j\theta}) U_n(e^{j\theta})|^2}
\]

(104)

where

\[
U_n(z) = \frac{\tilde{p}_n(z)}{p_n(z)}
\]

(105)

is also a regular all-pass (because \(p_n(z) \) is strict-Hurwitz). Clearly, \(U_n(z) \) is uniquely determined by the prescribed data \(C(k), k = 0 \to n \).

We can now list some of the anticipated advantages of an FEE.

A_1) Numerical robustness, as measured by \(r_\infty \), is assignable in advance by fixing the constant \(\mu \) and is unaffected by any subsequent tuning.

A_2) On \(|z| = 1 \), \(d(z) \) and \(U_n(z) \) are both of unit modulus so that

\[
d(e^{j\theta}) = \exp[j \psi(\theta)]
\]

(106)

and

\[
U_n(e^{j\theta}) = \exp[j \beta_n(\theta)]
\]

(107)
where \(\phi(\theta) \) and \(\beta_n(\theta) \) are real functions of \(\theta \). Thus, if
\[
\varphi(\theta) = \psi(\theta) + \beta_n(\theta) + \theta,
\]
the factor that multiplies \(K_{ME}(\theta) \) in Eq. (104) reduces to
\[
\frac{1-\mu^2}{1-2\mu \cos \varphi(\theta) + \mu^2}.
\]
Consequently,
\[
\frac{1-\mu}{1+\mu} \leq \frac{K_{FE}(\theta)}{K_{ME}(\theta)} \leq \frac{1+\mu}{1-\mu}
\]
and any such ratio can be realized at one or several prescribed values of \(\theta \) by an appropriate choice of all-pass \(d(z) \). The FEE is therefore capable of providing selective controlled magnification of different parts of the spectrum. In our opinion, if used properly, this estimator could prove enormously valuable in situations requiring exceptional resolution. (The design of \(d(z) \) is one of phase equalization with a regular all-pass and is explained in detail in Appendix B.)

A3) The poles of \(d(z) \) are zeros of \(B(z) \). Hence, the FEE not only includes the MEE as a limiting case (\(\mu = 0 = \) maximum robustness), but also yields exact model matching for a broader class of random processes than those generated by pure finite-order autoregressive schemes. (22)

A4) \(K_{FE}(\theta) > 0, -\pi \leq \theta \leq \pi \), a property that makes good physical sense whenever an exact spectral null is highly unlikely. (Such is usually the case if \(x_t \) is the sum of two or more independent random processes.)

Appendix B contains design formulas for a singly and doubly-tuned FEE. These realize maximum gain \((1+\mu)/(1-\mu) \), at one and two prescribed values of \(\theta \), respectively.

\[(22)\] The only zero of
\[
B_{ME}(z) = \frac{1}{P_n(z)}
\]
is \(z = \infty \).
APPENDIX A

NETWORK FOUNDATIONS

Let the reactance 2-port N' shown in Fig. 1 be described by its 2×2 scattering matrix $S(p)$ normalized to R_n on the right and R_0 on the left. Then [7],

\begin{equation}
S(p) = \frac{1}{g(z)} \begin{bmatrix}
 h(z) & e^{-np}\tau \\
 e^{-np}\tau & -z^n h_p(z)
\end{bmatrix} \equiv \begin{bmatrix}
 s_{11}(p) & s_{12}(p) \\
 s_{12}(p) & s_{22}(p)
\end{bmatrix} \tag{A1}
\end{equation}

where $z = e^{-2p}\tau$ and $h(z)$, $g(z)$ are two real polynomials of degree n in z, the latter being strict-Hurwitz. Moreover,

$$g(z)g_p(z) - h(z)h_p(z) = 1 \tag{A2}$$

Let a load with pr driving-point impedance $W(z)$ close terminals ab. Then, the load seen from terminals ef has a reflection coefficient normalized to R_n given by

\begin{equation}
s(z) = \frac{W(z) - R_n}{W(z) + R_n} \tag{A3}
\end{equation}

Hence [12],

\begin{equation}
s = s_{11} + \frac{s_{12}s_{21}s_{22}}{1 - s_{22}s_{22}} \tag{A4}
\end{equation}

is the resultant input reflection coefficient normalized to R_0. Making use of (A1) and (A2) we obtain,

\begin{equation}
s(z) = \frac{h(z) + zp(z)\bar{g}(z)}{g(z) + zp(z)\bar{h}(z)} \tag{A5}
\end{equation}

where $\bar{g} = z^n g_p$ and $\bar{h} = z^n h_p$.

Consequently, the input impedance is given by
\[Z(z) = R_0 \cdot \frac{1+s(z)}{1-s(z)} = \frac{2(Q_n + z\rho \tilde{Q}_n)}{P_n - z\rho \tilde{P}_n} \] (A6)

where

\[\frac{Q_n(z)}{\sqrt{R_0}} = \frac{g(z) + h(z)}{2}, \] (A7)

\[P_n(z) = \frac{g(z) - h(z)}{\sqrt{R_0}}. \] (A8)

Note, that with \(W(z) = R_n \), \(\rho(z) \equiv 0 \) and

\[Z(z) = Z_{ME}(z) = \frac{2Q_n(z)}{P_n(z)}. \] (A9)

Lastly, by a direct calculation,

\[Q_n P_n^* + Q_{n1} P_n = 1 \] (A10)

so that (A6) yields (details omitted),

\[\frac{Z + Z_{\psi}}{2} = \frac{1 - \rho \rho_{\psi}}{(P_n - z\rho \tilde{P}_n)(P_n - z\rho \tilde{P}_n)^*}. \] (A11)

Thus,

\[K(\theta) = \frac{Z(e^{j\theta}) + Z_{\psi}(e^{j\theta})}{2} = \frac{1 - |\rho(e^{j\theta})|^2}{|D_n(e^{j\theta})|^2}, \] (A12)

in which

\[D_n(z) = P_n(z) - z\rho(z) \tilde{P}_n(z). \] (A13)

Naturally, if \(\rho(z) = 0 \),

\[K(\theta) = K_{ME}(\theta) = \frac{1}{|P_n(e^{j\theta})|^2}. \] (A14)

and for the sake of completeness we shall verify the determinantal expression (74) for \(P_n(z) \).
From (A9) and (A10),

\[
\frac{Z_{ME}(z) + Z_{ME*}(z)}{2} = \frac{Q_n(z)}{P_n(z)} + \frac{Q_n*(z)}{P_n*(z)} = \frac{1}{P_n(z)P_n*(z)}.
\] \hspace{1cm} (A15)

Let

\[
P_n(z) = a_0 + a_1 z + \ldots + a_n z^n, \quad a_0 > 0.
\] \hspace{1cm} (A16)

Then, since

\[
Z_{ME}(z) = C(0) + \sum_{k=1}^{n} 2C(k)z^k + O(z^{n+1}),
\] \hspace{1cm} (A17)

(A15) and (A16) yield

\[
(C(0) + \sum_{k=1}^{\infty} C(k)z^{-k})\left(a_n + a_{n-1}z + \ldots + a_0z^n\right) = \frac{z^n}{P_n(z)}.
\] \hspace{1cm} (A18)

It follows easily from (A10) that \(P_n(z) \neq 0, \ |z| \leq 1 \), so that \(1/P_n(z) \) admits a power series expansion

\[
b_0 + b_1 z + b_2 z^2 + \ldots
\] \hspace{1cm} (A19)

whose radius of convergence is greater than unity. Of course,

\[
b_0 = \frac{1}{P_n(0)} = \frac{1}{a_0} > 0.
\] \hspace{1cm} (A20)

Consequently, we may compare the coefficients of \(1, z, z^2, \ldots, z^n \) on both sides of (A18) to obtain

\[
T_n \mathbf{a} = b_0 \mathbf{e}_n
\] \hspace{1cm} (A21)

where the Toeplitz matrix \(T_n \) is given by (60),

\[
\mathbf{a} = (a_n, a_{n-1}, \ldots, a_0)'
\] \hspace{1cm} (A22)

and

\[
\mathbf{e}_n = (0, 0, \ldots, 1)'
\] \hspace{1cm} (A23)
is composed of \(n \) 0's and a single 1 in the last row. Thus,

\[
P_n(z) = (z^n, z^{n-1}, \ldots, 1) \begin{bmatrix} a_0 \end{bmatrix} = b_0(z^n, z^{n-1}, \ldots, 1)_{\text{trans}}^{-1} e_n \tag{A24}
\]

\[
\begin{vmatrix}
C(0) & C(1) & \ldots & C(n) \\
C(1) & C(0) & \ldots & C(n-1) \\
\vdots & \vdots & \ddots & \vdots \\
C(n-1) & C(n-2) & \ldots & C(1) \\
z^n & z^{n-1} & \ldots & 1
\end{vmatrix}
\]

\[
= \frac{1}{a_0 \Delta_n} \tag{A25}
\]

However, if we now use Cramer's rule to solve Eq. (A21) for \(a_0 \) we obtain

\[
a_0 = \sqrt{\frac{\Delta_{n-1}}{\Delta_n}} \tag{A26}
\]

and (A25) immediately reduces to (74), Q.E.D.
APPENDIX B

PHASE INTERPOLATION WITH A REGULAR ALL-PASS

The phase of a regular all-pass can be made to assume any prescribed set of real values, mod 2\(\pi\), at given values of \(\theta = \theta_1, \theta_2, \ldots, \theta_l\). However, the degree of this all-pass can far exceed the integer \(l\) unless the phases and the angles \(\theta_i, i = 1 \rightarrow l\), are interrelated in a special way. In this appendix we investigate the possibility of designing a degree-\(l\) regular all-pass to interpolate at precisely \(l\) points. This of course represents the most economic general situation.

Any real rational regular all-pass \(d_l(z)\) of degree \(l \geq 0\) has the structure

\[
d_l(z) = \varepsilon \cdot \frac{F_l(z)}{E_l(z)} = \varepsilon \cdot \frac{z^l E_l^*(z)}{E_l(z)} \tag{B1}\]

where \(\varepsilon = \pm 1\) and

\[
E_l(z) = 1 + f_1 z + \cdots + f_{l-1} z^{l-1} + f_l z^l \tag{B2}\]

is a real strict-Hurwitz polynomial with lowest-order coefficient normalized to unity and \(f_l \neq 0\).

Since \(d_l(1) = \varepsilon\), the problem of most economic phase interpolation may be posed as follows: Let \(d_l(e^{j\theta}) = \exp[j \psi_l(\theta)]\). Then, \(\psi_l(\theta) = \frac{1 - \varepsilon}{2} \pi\) and

\[
\psi_l(\theta) = \psi_l(0) + \arg \frac{F_l(e^{j\theta})}{E_l(e^{j\theta})} \tag{B3}
\]

Given the two sequences

\[
0 = \theta_0 < \theta_1 < \cdots < \theta_l < \pi \tag{B4}
\]

and

\[
0 = \alpha_0, \alpha_1, \ldots, \alpha_l \tag{B5}
\]

where \(\alpha_k = \psi_l(\theta_k) - \psi_l(0)\), find \(E_l(z)\) such that
\[
\frac{E_k(e^{j\theta})}{E_k(e^{j\theta})_{*}} = e^{j\theta}, \quad k = 0 \rightarrow \ell \quad \text{(B6)}
\]

The original recursive p-plane solution to this problem is due to Rhodes [7, 13] and will repay careful study. Our own z-plane development of his approach places less emphasis on synthesis-theoretic ideas and has a somewhat different motivation.

For every \(r = 0 \rightarrow \ell \), let

\[
E_r(g) = 1 + \sum_{k=1}^{r} f(r)^{k} z^k \quad \text{(B7)}
\]

denote the real strict Hurwitz polynomial of degree \(r \) which interpolates correctly at \(\theta = \theta_0, \theta_1, \ldots, \theta_r \). Then, according to (B6) the difference

\[
\frac{E_{r+1}}{E_r} - \frac{E_r}{E_{r+1}} = e(d_{r+1} - d_r) \quad \text{(B8)}
\]

must vanish at \(z=1 \) and \(z=e^{j\theta_i}, \quad i = 1 \rightarrow r \). Thus, invoking reality,

\[
E_{r+1}(z) - E_r(z) = \frac{\eta_r(1-z) \cdot \prod_{i=1}^{r} (z^2 - 2z \cos \theta_i + 1)}{E_{r+1}(z)E_r(z)} \quad \text{(B9)}
\]

\(\eta_r \) a constant. Specifically, by setting \(z=0 \) it is immediately verified that

\[
\eta_r = f(r+1) - f(r) \quad \text{(B10)}
\]

Clearing fractions,

\[
E_{r+1}(z)E_r(z) - E_{r+1}(z)E_r(z) = \eta_r(1-z) \cdot \prod_{i=1}^{r} (z^2 - 2z \cos \theta_i + 1) \quad \text{(B11)}
\]

so that

\[
\frac{E_{r+2}E_{r+1} - E_rE_{r+2}E_{r+1}}{E_{r+1}E_r - E_{r+1}E_r} = \frac{\eta_{r+1}(z^2 - 2z \cos \theta_{r+1} + 1)}{\eta_r} = \Lambda_{r+1}(z) \quad \text{(B12)}
\]

I-27
A simple rearrangement now yields
\[
E_{r+1}(\xi r + 2 + \Lambda r + 1 \xi r) = \xi r + 1(E r + 2 + \Lambda r + 1 E r) ~ . \tag{B13}
\]

Since \(E_{r+1}(z)\) is strict Hurwitz, it is relatively prime to \(\xi r + 1(z)\) and must therefore divide \(E_{r+2}(z) + \Lambda r + 1(z)E_r(z)\) without remainder. Clearly, the quotient \(q(z)\) is at most of degree one and self-inversive; i.e., \(q(z) = \overline{q}(z)\). Consequently,
\[
q(z) = \xi r + 1(1+z) ~ , \tag{B14}
\]
where \(\xi r + 1\) is a real constant, and
\[
E_{r+2}(z) + \frac{\eta r + 1}{\eta r}(z^2 - 2z \cos \theta r + 1)E_r(z) = \xi r + 1(1+z)E_{r+1}(z) ~ . \tag{B15}
\]

Obviously,
\[
\xi r + 1 = 1 + \frac{\eta r + 1}{\eta r} = \frac{f(r+2) - f(r)}{r+2} \frac{1}{f(r+1) - f(r)} \frac{1}{r+1} \tag{B16}
\]
and (B15) takes the final convenient form,
\[
E_{r+2}(z) = \xi r + 1(1+z)E_{r+1}(z) + (1-\xi r + 1)(z^2 - 2z \cos \theta r + 1)E_r(z) ~ , \tag{B17}
\]

\[
E_0(z) = 1, \ E_1(z) = 1 + \frac{\sin \frac{1}{2}(\theta_1 - \alpha_1)}{\sin \frac{1}{2}(\theta_1 + \alpha_1)} \ . \tag{B18}
\]

Clearly,
\[
f_1^{(1)} = \frac{\sin \frac{1}{2}(\theta_1 - \alpha_1)}{\sin \frac{1}{2}(\theta_1 + \alpha_1)} \tag{B19}
\]
and \(E_1(z)\) is strict Hurwitz iff
\[
|f_1^{(1)}| < 1 ~ . \tag{B20}
\]
This granted, we now prove that the remaining polynomials are also strict-Hurwitz provided
\[0 < \xi_r < 1, \quad r = 1 \rightarrow l - 1. \]
(B21)

The proof is inductive in character and divides naturally into several parts.

1) From (B17), by direct calculation and iteration,
\[\xi_{r+2} \xi_{r+1} - \xi_{r+2} \xi_{r+1} = (\xi_{r+1} - 1)(z^2 - 2z \cos \theta_{r+1} + 1)(\xi_{r+1} \xi_r - \xi_{r+1} \xi_r) \]
(B22)
\[= \eta_{r+1}(1-z) \prod_{i=1}^{r+1} (z^2 - 2z \cos \theta_i + 1) \]
(B23)

where
\[\eta_{r+1} = (\xi_1 - 1) \prod_{i=1}^{r+1} (\xi_i - 1) \neq 0. \]
(B24)

Thus, \(E_k(z) \) has exact degree \(k, k = 0 \rightarrow l \).

2) Let us assume that all \(E_k(z), k = 1 \rightarrow r+1 \), are strict-Hurwitz and let us write \(E_{r+2}(z) = E_{r+2}(z, \xi_{r+1}) \) to stress its dependence on the choice of parameter \(\xi_{r+1} \).

Clearly, as is seen from (B17), \(E_{r+2}(z, 0) \) has two distinct zeros
\[z_1, z = \exp[\pm j \theta_{r+1}] \]
(B25)
on \(|z| = 1 \), while the remaining \(r \) lie in \(|z| > 1 \). As \(\xi_{r+1} \) is increased, \(z_1 \) and \(z_2 \) either slide together on \(|z| = 1 \), or move as a pair into \(|z| < 1 \), or penetrate jointly the region \(|z| > 1 \). In the first case, there exists \(\xi_{r+1} \), \(0 < \xi_{r+1} < 1 \), such that \(E_{r+2}(z, \xi_{r+1}) \) has a zero \(z = e^{j \theta} \) of unit modulus.

Since \(E_{r+2}(z, 1) \) has the zero \(z = -1 \) and \(r+1 \) zeros in \(|z| > 1 \), it is obvious that in case two, at least one root locus must leave the interior of the unit circle. Hence, again there exists a \(\xi_{r+1} \), \(0 < \xi_{r+1} < 1 \), such that \(E_{r+2}(z, \xi_{r+1}) \) has a zero \(z = e^{j \theta} \) of unit modulus.

Consider case three and suppose that for some \(\xi, 0 < \xi < 1 \), \(E_{r+2}(z, \xi) \) is not strict-Hurwitz. By continuity, this can only be realized if some root
locus located in $|z| > 1$ crosses the boundary $|z| = 1$ for some ξ_{r+1}'.

0 < $\xi_{r+1} < \xi$. \(^{\text{(1)}}\) In summary, the assumption that $E_{r+2}(z, \xi)$ is not strict-Hurwitz for some ξ in $0 < \xi < 1$, necessarily implies the existence of a ξ_{r+1}', $0 < \xi_{r+1} < 1$, for which $E_{r+2}(z, \xi_{r+1})$ has a zero $z = e^{j\theta}$ of unit modulus. This we now show is impossible.

3) If $z = e^{j\theta}$ is a zero of $E_{r+2}(z, \xi_{r+1})$, it is also a zero of $E_{r+2}(z, \xi_{r+1}^\prime)$, and according to (B23) and (B24), either $\theta = 0$ or it coincides with some θ_i, $i = 1 \rightarrow r+1$.

If $\theta = 0$, the zero is at $z = 1$ and (B17) yields

$$0 = \xi_{r+1}E_{r+1}(1) + (1 - \xi_{r+1})(1 - \cos \theta_{r+1})E_r(1). \quad \text{(B26)}$$

However, $E_r(0) = E_{r+1}(0) = 1$ so that $E_r(1) > 0$ and $E_{r+1}(1) > 0$. (If, say, $E_r(1) < 0$, then $E_r(z)$ must vanish for some z in $0 < z < 1$, a contradiction.) Consequently, the right-hand side of (B26) is a sum of positive terms and we have an inconsistency.

If $\theta = \theta_{r+1}$, $E_{r+2}(z, \xi_{r+1})$ has the zero

$$z = \exp[j\theta_{r+1}]$$

and (B17) gives

$$0 = \xi_{r+1}\cos \frac{\theta_{r+1}}{2} E_{r+1}(e^{j\theta_{r+1}}). \quad \text{(B27)}$$

But $\cos(\theta_{r+1}/2) \neq 0$ because $0 < \frac{\theta_{r+1}}{2} < \frac{\pi}{2}$ and (B27) is therefore invalid.

Lastly, suppose that for some i, $i = 1 \rightarrow r$, $\theta = \theta_i$. Then, from (B17),

$$0 = \xi_{r+1}(1 + e^{-i\theta_i})E_{r+1}(e^{j\theta_i}) + (1 - \xi_{r+1})(\cos \theta_i - \cos \theta_{r+1})E_r(e^{j\theta_i}). \quad \text{(B28)}$$

By construction and the fact that $i \leq r$,

$$\arg \frac{E_{r+1}(e^{j\theta_i})}{E_{r+1}(e^{j\theta_i})} = \arg \frac{E_r(e^{j\theta_i})}{E_r(e^{j\theta_i})}. \quad \text{(B29)}$$

\(^{\text{(1)}}\) The coefficient of the highest power of z in $E_{r+2}(z, \xi_{r+1})$ is unequal to zero for all ξ_{r+1} in $0 < \xi_{r+1} < 1$. This means that no root locus can pass from the exterior to the interior of the unit circle, or vice-versa, by escaping through the point at infinity.

I-30
and since for any k

$$\arg E_k(e^{j\theta}) = k\theta - \arg E_k(e^{i\theta}) ,$$

we deduce from (B29) that

$$\arg E_{r+1}(e^{j\theta}) = \frac{\theta_i}{2} + \arg E_r(e^{j\theta}) .$$

With the aid of (B31), Eq. (B28) is now reduced to the purely real form,

$$0 = \xi r+1 \cos \frac{\theta_i}{2} \cdot \left| E_{r+1}(e^{j\theta}) \right| + (1 - \xi r+1)(\cos \theta_i - \cos \theta r+1) \cdot \left| E_r(e^{j\theta}) \right| .$$

But a moment's thought reveals that we are once again faced with a contradiction because $0 < \theta_i < \theta r+1 < \pi$ implies that,

$$\cos \theta_i - \cos \theta r+1 > 0 .$$

Thus, it has finally been established that every polynomial $E_r(z)$, $r = 0 \rightarrow t$, is strict-Hurwitz, Q.E.D.

The restrictions

$$0 < \xi r < 1 , \ r = 1 \rightarrow t - 1 ,$$

impose constraints on the admissible interpolatory pairs (θ_i, α_i), $i = 0 \rightarrow t$. These constraints reflect the well-known fact that the frequency variation of a regular all-pass is not entirely arbitrary.

For example, as a consequence of the strict-Hurwitz character of $E_k(z)$ we can easily prove that

$$\frac{d}{d\theta} \arg \frac{E_k(e^{j\theta})}{E_k(e^{i\theta})} = \frac{d\psi_k(\theta)}{d\theta} \geq 0$$

and

$$\psi_k(\pi) - \psi_k(0) = k\pi .$$

Thus, the α's must at least form a monotone-increasing sequence:
\[0 = \alpha_0 < \alpha_1 < \ldots < \alpha_k < \ell \pi . \] (B37)

Unfortunately, (B37) does not always guarantee (B34) and the general situation is rather complicated. Nevertheless, because of their great practical importance, we shall carry out the designs for a single and doubly-tuned FEE in detail. Recall that according to Eqs. (104), (108) and (109),

\[K_{FE}(\theta) = K_{ME}(\theta) \cdot \frac{1-\mu^2}{1-2\mu \cos \phi + \mu^2} \] (B38)

where

\[\phi(\theta) = \psi(\theta) + \beta_n(\theta) + \theta , \] (B39)

and \(\psi(\theta), \beta_n(\theta) \) are the phase angles of \(d(e^{j\theta}) \) and \(U_n(e^{j\theta}) \), respectively.

Design of a Singly-Tuned FEE. Suppose that maximum gain

\[\frac{1+\mu}{1-\mu} \] (B40)

is desired at some single suspected peak observed in \(K_{ME}(\theta) \), say, at location \(\theta = \theta_1 \). Clearly, we must have \(\phi(\theta_1) = 0, \mod 2\pi, \) and this we attempt to achieve with a regular all-pass \(d_1(z) \) of degree one.

Let

\[\gamma_1 = \beta_n(\theta_1) + \theta_1, \mod 2\pi , \] (B41)

so that \(0 \leq \gamma_1 < 2\pi \) and let

\[\epsilon = \text{sign}(\gamma_1 - \pi) . \] (B42)

If \(\epsilon = 0 \) we pick \(d_1(z) = -1. \) Otherwise, if \(\epsilon = +1 \) we choose \(\arg \psi_1(\theta_1) = \alpha_1 = 2\pi - \gamma_1 \) and if \(\epsilon = -1 \) we set \(\psi_1(\theta_1) = \pi + \alpha_1 = 2\pi - \gamma_1 \). Thus, from (B18),

\[(2) \]

\[\text{sign } x = \begin{cases}
1, & x > 0 \\
0, & x = 0 \\
-1, & x < 0
\end{cases} \]

I-32
\[E_1(z) = 1 + \frac{\sin \frac{1}{2} (\theta_1 + \gamma_1 + \frac{1-\epsilon}{2} \pi)}{\sin \frac{1}{2} (\theta_1 + \gamma_1 + \frac{1-\epsilon}{2} \pi)} \cdot z \]
(B43)

and

\[d_1(z) = \frac{E_1(z)}{E_1(z)} \cdot \epsilon \]
(B44)

It is easily confirmed that

\[f_1(1) = \frac{\sin \frac{1}{2} (\theta_1 + \gamma_1 + \frac{1-\epsilon}{2} \pi)}{\sin \frac{1}{2} (\theta_1 - \gamma_1 + \frac{1-\epsilon}{2} \pi)} \]
(B45)

has magnitude less than one, as required.

Design of a Doubly-Tuned FEE. Let us now attempt to achieve maximum gain at two locations \(\theta_1 \) and \(\theta_2 \), \(0 < \theta_1 < \theta_2 < \pi \), with a regular all-pass \(d_2(z) \) of degree two. Let

\[\gamma_i = \beta_n(\theta_i) + \theta_i, \mod 2\pi, \]
(B46)

\[i = 1, 2, \]

Since \(\psi_2(\theta_1) - \psi_2(0) = \alpha_1 \) and \(\psi_2(\theta_2) - \psi_2(0) = \alpha_2 \) and since the phase angle \(\psi_2(\theta) - \psi_2(0) \) of the regular all-pass \(E_2(z)/E_2(z) \) must be monotone-increasing, it is necessary that \(\alpha_1 < \alpha_2 \).

This latter observation leads to the following assignment.

1) If \(\gamma_1 \geq \gamma_2 ; \quad \epsilon = 1, \quad \alpha_i = 2\pi - \gamma_i, \quad i = 1, 2. \)

2) If \(\gamma_1 < \gamma_2, \quad \gamma_1 \leq \pi, \quad \gamma_2 \geq \pi; \quad \epsilon = -1, \quad \alpha_1 = \pi - \gamma_1, \quad \alpha_2 = 3\pi - \gamma_2. \)

3) Any other case is impossible with a degree-two regular all-pass. (3)

In cases 1) and 2), \(E_1(z) \) is given by Eq. (B43).

To calculate \(E_2(z) \) we can use (B17) with \(r = 0: \)

\[E_2(z) = E_1(z) + (1 - E_1(z))(z^2 - 2z \cos \theta_1 + 1) \]
(B47)

(3) The maximum phase increment attainable with \(d_2(z) \) over \(0 < \theta < \pi \) equals \(2\pi \) and occurs at \(\theta = \pi \).
Of course, ξ_1 is unknown and must be determined from the interpolatory condition,

$$\arg \frac{e^{j\theta_2}}{E_2(e^{j\theta_2})} = \alpha_2. \quad (B48)$$

Clearly,

$$E_2(e^{j\theta_2}) = \xi_1(1+e^{j\theta_2})E_1(e^{j\theta_2}) + 2(1-\xi_1)e^{j\theta_2}(\cos \theta_2-\cos \theta_1)$$

and we find that

$$e^{j\alpha_2} = \frac{y+x}{y+x} \quad (B49)$$

where

$$y = E_1(e^{j\theta_2})e^{-j\theta_2/2}, \quad x = \frac{1-\xi_1}{\xi_1} \cdot \frac{(\cos \theta_2-\cos \theta_1)}{\cos \frac{\theta_2}{2}}. \quad (B50)$$

Finally, solving for ξ_1 with the help of (B43) we get (algebra omitted),

$$\xi_1^{-1} = 1 + \frac{\cos \frac{\theta_2}{2}}{\cos \frac{\theta_2}{2} - \cos \theta_2} \cdot \frac{\sin \frac{1}{2}(\theta_2+\gamma_2+\frac{1-\varepsilon}{2} \pi) - f_1^{(1)} \sin \frac{1}{2}(\theta_2-\gamma_2-\frac{1-\varepsilon}{2} \pi)}{\sin \frac{1}{2}(\gamma_2+\frac{1-\varepsilon}{2} \pi)} \quad (B51)$$

Let us check to see if $0 < \xi_1 < 1$ when $\varepsilon=1$. For this it suffices that

$$\frac{\sin \frac{1}{2}(\theta_2+\gamma_2)}{\sin \frac{1}{2}(\theta_2-\gamma_2)} - \frac{\sin \frac{1}{2}(\theta_1+\gamma_1)}{\sin \frac{1}{2}(\theta_1-\gamma_1)} \leq 0, \quad (B52)$$

depending on whether

$$\theta_2 - \gamma_2 \geq 0 \quad (B53)$$

respectively. These inequalities are not automatic and we shall attempt to clarify this matter in Part II.
REFERENCES

I-35
\[a_{0f} = R_0 = C(0); \quad z = e^{-2p\tau}; \quad p = \sigma + j\omega \]

[Diagram]

\[W(z) = \text{DRIVING-POINT IMPEDANCE OF PASSIVE LOAD.} \]
\[Z(z) = \text{INPUT IMPEDANCE OF CASCADE WITH TERMINALS cd CLOSED ON ab.} \]

For \(i(t) = \delta(t) \), \(v(t) = C(0)\delta(t) + \sum_{r=1}^{n} 2C(r)\delta(t - 2r\tau) + \cdots \)

Fig. 1
PART II

A DIGITAL IMPLEMENTATION

by

OM Gupta
Digicomp Corporation Ithaca NY
1. Introduction

The solution to the problem of the spectral estimation as proposed by Professor Youla of Brooklyn Polytechnic offered many attractive features. One of them is the ability to tune the spectrum at desired frequencies. The technique, called Flat Echo Estimator (FEE) is described in a paper by Professor Youla.1 A computer program, described in the following, was developed to implement this technique in FORTRAN IV on MULTICS. The brief description of the algorithm is followed by the block diagram, description of various subroutines and a listing of the FORTRAN program itself. A user documentation to run this program is also provided in this report.

2. Algorithm

Youla has shown that the maximum entropy spectral estimates $K_{\Phi\Theta}(\theta)$, for the finite sequence of error-free covariance samples $C(1), C(2), \ldots, C(n+1)$ given by

$$K_{\Phi\Theta}(\theta) = \frac{1}{|p_n(e^{j\theta})|^2}$$

(1)

can be viewed as the real part of the driving-point impedance of a cascade of $(n+1)$ commensurate lines terminated on a load $W(z) = R_n$. The resistance R_n is the same as the characteristic impedance of the last line in the cascade. He showed that any other positive-real load termination will also provide an admissible spectral estimate for the same covariance sample sequence. If the load network is an all-pass network with reflection factor

$$r(e^{j\theta}) = \frac{\rho(e^{j\theta})}{\rho_\Phi(e^{j\theta})} = \frac{\rho(e^{j\theta})}{\rho_\Theta(e^{j\theta})}$$

(2)

the spectral estimates provided will be $K_{\Phi\Theta}(\theta)$ and could be derived to be

$$K_{\Phi\Theta}(\theta) = K_{\Phi\Theta}(\theta) \cdot \frac{1-u^2}{1-2u \cos \phi + u^2}$$

(3)

Where

$$\phi(\theta) = \psi(\theta) + \delta_n(\theta) + \theta$$

The phase factor $\delta_n(\theta)$ is given by the expression

$$\exp[j \delta_n(\theta)] = \frac{P_n(z)}{P_{n}(1/z)} = \frac{z^n P_n(1/z)}{P_n(z)}$$

(4)
The polynomial $P_n(z)$ here is the same as that in the equation (1) and is given by

$$P_n(z) = \frac{1}{\sqrt{\Delta_n \Delta_{n-1}}} \begin{bmatrix} C(1) & C(2) & \cdots & C(n+1) \\ C(2) & C(1) & \cdots & C(n) \\ \vdots & \vdots & \ddots & \vdots \\ C(n) & C(n-1) & \cdots & C(2) \\ z^n & z^{n-1} & \cdots & 1 \end{bmatrix}$$

(5)

The determinant Δ_k is given by

$$\Delta_k = \begin{bmatrix} C(1) & C(2) & \cdots & C(k+1) \\ C(2) & C(1) & \cdots & C(k) \\ \vdots & \vdots & \ddots & \vdots \\ C(k+1) & C(k) & \cdots & C(1) \end{bmatrix}$$

(6)

The factor $G(\theta)$

$$G(\theta) = \frac{1 - \mu^2}{1 - 2\mu \cos \psi(\theta) + \mu^2}$$

(7)

in the expression for $K_{FE}(\theta)$ is similar to a tuned amplifier gain factor. The maximum entropy thus can be tuned to provide for peaks at any desired frequency by a proper choice of the all-pass load network's phase characteristics $\psi(\theta)$. The choice of $0 \leq \theta \leq 1$ provides for adjusting the amplitude of the peak. It should be noted that $\mu=0$ reduces K_{FE} to K_{ME} and represents the maximum numerically robust choice.

3. Computer Program

The flow chart to compute $K_{FE}(\theta)$ for a given sequence $C(1), C(2), \ldots, C(n+1)$ is shown in Figure 1. The first step to obtain $K_{FE}(\theta)$ is to compute $K_{ME}(\theta)$, the spectral estimates by the maximum entropy method, then design an all-pass network and finally compute $G(\theta)$. The multiplication of $G(\theta)$ and $K_{ME}(\theta)$ will provide the value of $K_{FE}(\theta)$. It should be noted that we don't have to find the actual element values of the all-pass network.
FIG. 1: FLOW CHART TO ESTIMATE SPECTRUM BY FLAT ECHO ESTIMATOR METHOD
Rather, the computation of an appropriate all-pass bounded-real function
\(d(z) \) (see equation 2) will be enough.

3.1 Computation of \(K_{ME}(0) \)

The \(K_{ME}(0) \), the spectral estimate by maximum entropy method is
computed as follows. First a matrix \(t_n \) is formed from the covariance
coefficients \(C(1), C(2), \ldots, C(npts) \) as

\[
\begin{bmatrix}
 C(1) & C(2) & \cdots & C(npts) \\
 C(2) & C(1) & \cdots & C(npts-1) \\
 \vdots & \vdots & \ddots & \vdots \\
 C(npts-1) & \cdots & C(2) & C(1)
\end{bmatrix}
\]

Then the coefficients of a polynomial \(Q_n(z) \) (which is the same as \(P_n(z) \)
except for the constant multiplying factor \(= 1/\sqrt{\Delta_n \Delta_{n-1}} \) in eqn. (5))
are obtained as the determinant of a matrix \(t_{n_i} \) formed by deleting an
appropriate column \(i \) of matrix \(t_n \).

The coefficient of \(z^n \) for example, is found as the determinant of a
matrix \(t_{n_1} \) obtained by deleting the first column of \(t_n \). The reason for
doing so can be seen by noting that \(Q_n(z) \) is the determinant of the
matrix formed by \(t_n \) appended by a vector \([z^n, z^{n-1}, \ldots, 1] \) as its last
row, i.e.,

\[
\sqrt{\Delta_n \Delta_{n-1}} \ P_n(z) = Q_n(z) = \begin{bmatrix}
 t_{n_1} & t_{n_2} & \cdots & t_{n_{npts}} \\
 z^{npts-1} & z^{npts-2} & \cdots & 1
\end{bmatrix}
\]

\[
= \sum_{m=1}^{npts} \ (-1)^m \ |t_{n,m}|^2
\]

The computation of \(\det [t_{n,m}] \) is performed by calling the subroutine
\texttt{det}. A constant multiplying factor \(\texttt{mult} \) is obtained as the product of
\(\det n (=\Delta_n) \) and \(\Delta_{n-1} \). It can be seen that \(\Delta_{n-1} \) is same as the constant
term in \(Q_n(z) \). The determinant \(\Delta_n \) is obtained in the do loop to
compute coefficients of \(Q_n(z) \).
Finally, the coefficients "coef" of polynomial $P_n(z)$ are obtained from the coefficients of $Q_n(z)$ by dividing each one of them by $1/v'\text{mult}$.

The spectrum $K_{ME}(\theta)$ may be obtained at this point as $\frac{1}{|P_n(e^{j\theta})|^2}$ if so desired. The flow chart to compute $K_{ME}(\theta)$ is shown in Figure 2.

3.2 Computation of FEE Spectral Estimates

Our goal is to obtain $K_{FE}(\theta)$. Therefore, instead of simply obtaining $K_{ME}(\theta)$ at the above step, a subroutine spectral estimator is called. This subroutine first queries if only K_{ME} is desired or K_{FE} is desired. For K_{FE}, it asks further questions as to singly tuned or doubly tuned, the value of these frequencies (in radians) and the maximum robustness factor AM. It then calls an appropriate subroutine design-all-pass or design-all-pass-2 to determine a first order or second order all-pass reflection factor. The subroutine "response" is used to compute the spectrum $nres$ points for θ between 0.0 and "thmax". Upon return from spectral-estimator, the results can be written in an output file to provide for readouts and/or plotted on Tek screen by calling plot routines appropriately. The flow chart of the computer programs is shown in Figure 3.

4.

Subroutine Description

The computer program has been broken down into very many smaller programs called subroutines. A list of subroutines used herein is shown with their interconnection in Figure 4. A brief description of various subroutines is provided in the following:

4.1 Subroutine "Spectral-Estimator"

4.1.1 Purpose: The purpose of this subroutine is to query the user if FEE or MEM spectral estimates are required. In case FEE is desired, it queries the user about the robustness factor AM and the tuned frequencies. It then designs an appropriate all-pass reflection coefficient (first order for singly tuned by calling "design-all-pass" or second order for doubly tuned by calling "design-all-pass-2". The queries for FEE parameters and the design of all-pass network is skipped if only MEM is desired. It then calls "response" to compute the spectral estimates using equation (3). The flow diagram of this subroutine is shown in Figure 5.

4.1.2 List of Variables: Following is the list of variables used in "Spectral Estimator"

- $nf\text{oe}$ - integer variable $= 0$ for MEM
 $= 1$ for singly tuned FEE
FORM THE MATRIX \([t_n]\) FROM SAMPLES

COMPUTE COEFF. OF \(Q_n(Z)\)

DIVIDE COEFF. OF \(Q_n(Z)\) BY \(\sqrt{\Delta_n \Delta_{n-1}}\) TO FORM \(P_n(Z)\)

\[
K_{ME}(\theta) = \frac{1}{|P_n(e^{j\theta})|^2}
\]

FIG. 2: FLOW CHART TO COMPUTE \(K_{ME}(\theta)\)
FIG. 3: OVERALL PROGRAM—FLOW DIAGRAM
FIG. 4: INTERCONNECTION OF VARIOUS SUBROUTINES
FEE? NO

YES

GET \(\mu \) AND THE TUNED FREQUENCIES

SINGLY TUNED

YES

DESIGN FIRST ORDER ALL PASS

NO

DOUBLY TUNED

ERROR

YES

DESIGN SECOND-ORDER ALL PASS

COMPUTE SPECTRAL ESTIMATES

FIG. 5: FLOW CHART - SUBROUTINE SPECTRAL ESTIMATOR
2 for doubly tuned FEE

amu - the numerical robustness factor
peak - a vector of frequencies (in radians) at which tuning of the spectrum is desired. The frequencies are arranged in the increasing order. The smallest desired frequency must be peak (1).
error - a flag to indicate that all-pass network function cannot be obtained
npts-d - the order of the polynomial \(E_k(z) \) in the all-pass reflection factor

\[
d(z) = \frac{E_k(z)}{E_k(z)}
\]

npts-d = 2 for singly tuned case
= 3 for doubly tuned case
cf-d - the coefficients of the polynomial

4.2 Subroutine Design all pass

4.2.1 Purpose: This subroutine is to design a first order all-pass network function \(d(z) \) whose phase is prescribed at one frequency (peak (1)). This computer program is based on the algorithm provided by Youla in Reference 1. First the phase \(\Gamma = [\psi(\theta_1) + \theta_1] \mod 2\pi \) at \(\theta_1 = \text{peak (1)} \) is computed. The all-pass phase function is to be chosen in such a way that \(\psi(\theta_1) + \Gamma = [0] \mod 2\pi \) where \(\psi(\theta_1) \) is the phase of the all-pass \(d(z) \) at peak (1).

4.3 Subroutine amp-arq

4.3.1 Purpose: Given a polynomial \(R(z) \)

\[
R(z) = a_0 + a_1(z) + a_2 z^2 + ... + a_n z^n
\]

This subroutine computes the amplitude and phase of \(R(z) \) for any given \(z = e^{j \theta} \)

The subroutine polyval is used to compute the complex value of polynomial \(R(z) \) and argmt is used to determine the phase of \(R(z) \) between 0 and \(2\pi \).

It is frequently desired in this program to evaluate the phase of the all-pass function.

\[
d(z) = e^{j\gamma} \frac{E_k(z)}{E_k(z)} = e^{j\gamma} z^n \frac{E_k(1/z)}{E_k(z)}
\]

\[
\arq[d(z)] = \gamma + (n-1)\theta + \arq[E_k(z^*)] - \arq[E_k(z)]
= \gamma + (n-1)\theta - 2a(\theta)
\]

and \(\gamma \) is some constant phase (0 or \(2\pi \))
4.4 Subroutine Polyval

This subroutine computes the value (complex) of a polynomial.

\[R(z) = a_1 + a_2 z + a_3 z^2 + \ldots + a_n z^{n-1} \]

for complex \(z \). The coefficients \(a_i \) are real.

4.5 Subroutine Argument

This subroutine calculates the argument of a complex number. The result is between 0 and \(2\pi \) depending upon the signs of the real and imaginary parts.

4.6 Subroutine "response"

This subroutine calculates the spectral estimates for \(K_{FE} \) or \(K_{PE} \) using appropriate expressions at nres points for \(\theta \) ranging from 0 to "\(\theta_{max} \)". For maximum entropy, \(K_{ME} \) is given by

\[f_X(i) = K_{ME}(\theta i) = \frac{1}{|P_n(e^{i\theta i})|^2} \]

For \(K_{PE} \), \(K_{ME} \) is multiplied by a factor \(A_{mult} \) given by equation (7). Most of the variables used in this routine are self-explanatory.

4.7 Subroutine design-all-pass.2:

4.7.1 Design of a doubly tuned FEE

The purpose of this routine is to design an all-pass network whose phase has been prescribed at two frequencies. Except for some minor changes, the algorithm used is the same as provided by Youla in Reference (1). The first step in the process is to compute the desired phases \(\Gamma_1 \) and \(\Gamma_2 \). (eq. B(46) of Reference (1)) at peak (1) and peak (2). Then the phases \(\alpha_1 \) and \(\alpha_2 \) are computed depending upon the relative values of \(\Gamma_1 \) and \(\Gamma_2 \).

We know that (see eq. B48 of Reference (1))

\[
\begin{align*}
\frac{E_2(z)}{E_2(z)} & = 2\pi e^{j\alpha_2} \\
\frac{z^2 E_2(1/z)}{E_2(z)} & = e^{2\arg(E_2(z)/z)} = e^{j\alpha_2} \\
\end{align*}
\]
\[
\arg[E_2(z)]_{z=e^{j\theta_2}} = \theta_2 - \alpha_2/2, \ldots \ldots \ldots \ldots (4.7.2)
\]

But also (see eq. (B-47) of Reference (1))

\[
E_2(e^{j\theta_2}) = \xi_1 (1+e^{j\theta_2}) \cdot E_1(e^{j\theta_2}) + (1-\xi_1)(e^{j\theta_2} - 2e^{-2\theta_2/2} \cos \theta_1 + 1)
\]

\[
= 2{\xi_1}(\cos \theta_2/2 \cdot e^{j\theta_2}) E_1(e^{j\theta_2}) + (1-\xi_1)e^{j\theta_2}(2\cos \theta_2 - 2\cos \theta_1)
\]

\[
= 2\xi_1 \cos \theta_2/2 e^{j\theta_2} (E_1(e^{j\theta_2}) e^{1-\xi_1} \cdot \frac{\cos \theta_2 - \cos \theta_1}{\cos \theta_2/2}
\]

\[
\arg E_2(z)_{z=e^{j\theta_2}} = \arg[e^{j\theta_2}(y+x)] \ldots \ldots \ldots \ldots \ldots (4.7.3)
\]

where

\[
y = E_1(e^{j\theta_2}) e^{j\theta_2/2} \ldots \ldots \ldots \ldots (4.7.4)
\]

\[
x = \frac{1-\xi_1}{\xi_1} \cdot \frac{\cos \theta_2 - \cos \theta_1}{\cos \theta_2/2} \ldots \ldots \ldots (4.7.5)
\]

From eq. (4.7.2)

\[
\theta_2 - \alpha_2/2 = \theta_2 + \arg(y+x)
\]

or

\[
\arg(y+x) = \alpha_2/2 = \alpha
\]

i.e.,

\[
\Re(y+x) = R \cos \Lambda
\]

\[
\Im(y+x) = R \sin \Lambda
\]

but

\[
E_1(z) = 1 + f_1z = 1 + f_1 e^{j\theta_2}
\]

\[
y = E_1(z)e^{-j\theta_2/2} = e^{-j\theta_2/2} + f_1 e^{j\theta_2}
\]
\[
y = \cos \theta_2/2 - j \sin \theta_2/2 + f_1 \cos \theta_2/2 + f_1 j \sin \theta_2/2
\]
\[
y = (1 + f_1) \cos \theta_2/2 + j(f_1-1) \sin \theta_2/2 \tag{4.7.6}
\]

Therefore from eq. (4.7.6)
\[
x + (1+f_1) \cos \theta_2/2 = R \cos \alpha \tag{4.7.7}
\]
\[
(f_1-1) \sin \theta_2/2 = R \sin \alpha \tag{4.7.8}
\]

Since \(f_1 \) is known (being the coefficient of \(z \) in \(E_1(z) \) of singly tuned case), \(R \) can be determined from eq. (4.7.8). This \(R \) is then substituted in eq. (4.7.7) to obtain \(x \).

Once \(x \) is known, \(f_1 \) can be computed as, from eq. (4.7.5)
\[
\frac{1-f_1}{f_1} \frac{x \cos \theta_2/2}{\cos \theta_2 - \cos \theta_1} = B
\]

Then the coefficients of polynomial \(E_2(z) \) are determined by eq. B(47), proof in Ref (1), as
\[
E_2(z) = \epsilon_1 (1+z)(1+f_1(z)) + (1-\epsilon_1)(z^2 - 2z \cos \theta_1 + 1)
\]
\[
= \epsilon_1 [1+(1+f_1)z + f_1 z^2] + (1-\epsilon_1) (1-2z \cos \theta_1 + z^2)
\]
\[
= 1 + z[\epsilon_1 (1+f_1) - 2 \cos \theta_1 (1-\epsilon_1)] + z^2(\epsilon_1 f_1 + (1-\epsilon_1))
\]

4.4.2 List of Variables:

The variables used in this subroutine are fairly self-explanatory.

Vector \(\text{cf-d} \) = coefficients values of polynomial \(E_2(z) \)
\(\text{npts-d} \) = number of coefficients of \(E_2(z) \)
\(=3 \) for doubly tuned case
\(\text{ar} = A \) of eq. (4.7.6)
\(\text{br} = B \) of eqn. (4.7.9)
5. User Instructions

The computer program is implemented in FORTRAN IV and the listing is shown in Appendix A. The program is named as FEE2 on Multics. Before running the program, the user must make sure that the graphics mode for his system is turned on. A typical user session is described below. The system's response or questions are marked as "S" whereas the user response is marked as "U". (see figure 7)

S: y
U: fee2
S: enter two digit file number (note 1)
 enter number of parts to be used
S: enter 0 for mem, 1 for singly tuned and 2 for doubly tuned fee (note 2)
U: 0, 1, or 2
The following questions are not asked if the user enters 0 in the above response.
S: enter robustness factor - amu
U: any real number, 0<\mu<1 (note 3)
S: enter desired resonant peaks (in radians)
U: any real number between 0 and 1 (note 4)
S: The estimated spectral plots are plotted, the \mu and resonant peak values printed and then, the following statement typed: If you wish to make a hard copy, do it now.
 Then type 1, if you wish to plot the phase of the all pass network.
 Else, type in 0.
U: 0 or 1
S: depending upon the user's response to the above question, the phase of the all pass FEE network load is plotted
S: Stop
S: y

5.1 Notes:

5.1.1 Note 1: The program at this stage is asking you to input two digits XX (=25 in test case) of the file XX on the terminal. The program assumes that the following input data is pre-stored in file XX (file 25, for example).
 Input data in file XX:
 (i) nres (number of points at which estimated spectral response is to be evaluated in format I4)
(ii) \(\text{thmax} \) (the maximum value of \(\theta \) (in radians) up to which spectral estimates are to be computed in format E18,10)

(iii) \(\text{npts} \) (in format I2, the number of error-free covariance sample data points)

(iv) The covariance values at npts points (in the format E18,10)

For the test case, the data stored in file 25 is shown in fig.6. The MEM and FEE spectral estimates are shown in figures 8 through 11.

5.1.2 Note 2: The program at this point is asking if the maximum entropy spectral estimates or FEE estimates are desired. If the user types in 0 (for MEM), the program does not ask any further questions, and simply plots the MEM spectral estimates on the terminal screen. In the case of FEE (user response of 1 for singly tuned and 2 for doubly tuned), the user has to type in the robustness factor \(\nu \) and the desired resonant peaks.

5.1.3 Note 3: The robustness factor \(\nu \) should be a real number, between 0.0 and 1.0. If you type 0.0, the vector will be the same as MEM estimates. The program would bomb if \(\nu = 1.0 \).

5.1.4 Note 4: The values of resonant peaks in radians that you are asked to input (real numbers) must be 1 for singly tuned and 2 for doubly tuned case. Furthermore, the peaks for doubly tuned case must be in increasing order, i.e. the first input value must be less than the second input value.

5.1.5 Note 5: At this point, the system has computed and plotted the desired spectral estimates. It has also printed the other useful information, such as \(\nu \) and peak values for the hard copy records. The program can also plot the phase of the all pass function \(d(z) \). It asks the user if he wishes to plot this phase. Since the program shall blank out the screen before plotting this all pass phase function, the user must make a hard copy of spectral estimates before responding to this question.
<table>
<thead>
<tr>
<th>l, p</th>
<th>1024</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.283184</td>
<td>2.020000</td>
</tr>
<tr>
<td>1.622277</td>
<td>1.076796</td>
</tr>
<tr>
<td>0.516477</td>
<td>0.117178</td>
</tr>
<tr>
<td>0.012131</td>
<td>0.095929</td>
</tr>
<tr>
<td>0.346192</td>
<td>0.509848</td>
</tr>
<tr>
<td>0.728907</td>
<td>0.743116</td>
</tr>
<tr>
<td>0.596789</td>
<td>0.396138</td>
</tr>
<tr>
<td>0.190008</td>
<td>0.043111</td>
</tr>
<tr>
<td>0.004463</td>
<td>0.035287</td>
</tr>
<tr>
<td>0.127353</td>
<td>0.217394</td>
</tr>
<tr>
<td>0.268148</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 6: Data for Test Example (contained in file 25)
Setup graphics-table tek 4014
segment Setup-graphics not found.
r 1217 0.055 1.750 50

Setup graphics-table tek 4014
r 1213 0.351 3.906 62

fee2
enter two digit file number
25
enter 0 for mem, 1 for singly and 2 for doubly tuned fee
2
enter robustness factor -- amu
0.5
enter desired resonant peak (in radians)
0.6035
enter desired resonant peak (in radians)
2.502

Fig. 7: A typical user session
FIG. 8a: SPECTRAL ESTIMATES—DOUBLY TUNED FEE
(SEE FIG. 6 FOR TEST DATA)
FIG. 9: SPECTRAL ESTIMATES—MAXIMUM ENTROPY METHOD
(SEE FIG. 6 FOR TEST DATA)
FIG. 10: SPECTRAL ESTIMATES—SINGLY TUNED FEE
(SEE FIG. 6 FOR TEST DATA)
FIG. 11: SPECTRAL ESTIMATES—SINGLY TUNED FEE WITH $\mu = 0$

(Notice that the estimates are same as by maximum entropy (Fig. 9))
REFERENCES

dimension c(20), tn(20,20), peak(20)
dimension coef (20), fx(1024), thi(1024)
character*16 header (3)
complex z, fz, cxep, cth
common/respos/ph_allpass(1024)
external plot_setup(descriptors)
external plot_(descriptors)
external ioa (descriptors)
external read_list_(descriptors)
external write_list_(descriptors)
header (1) - "Maximum Entropy"
header (2) - "Singly tuned FEE"
header (3) - "Doubly tuned FEE"
call ioa_(enter two digit file number)
call read_list_(nfil)
read(nfil,113) nres
read(nfil,111) themax
113
format(I4)
read(nfil,110) npts
do 10 i=1, npts
10
read(nfil,111) c(i)
110
format(I2)
111
format(E18,10)
nptsi=npts-1
do 40 jr=1,nptsi
do 20 i=1,jr
20
tn(jr,i) = c(jr+1-i)
k= npts-jr+1
do 30 i=2,kd
jc=jr+i-1
30
tn(jr,jc)=c(i)
40
continue
nfilot=18
nsign=1
deln=0.0
do 60 i=1,npts
call pmcof(nptsi,i,tn,cf)
coef(nptsi-i+1)=nsign*cf
dsin = (nsign*c(nptsi-i+1)*cf)+deln
nsign = -nsign

Appendix - Fortran Program Listing

A-1
60 continue
40 write(nfilot,114)
72 format(8x,"Spectral Estimates follow")
114 cmult = deln * coef(1)
30 amult = abs(cmult)
30 cmult = 1.0 / cmult
120 cmult = sqrt(cmult)
50 do 75 i=1, npts
75 coef(i) = amult * coef(i)
50 call spectral_estimator(thi,fx,coef,thmax,amu,peak,
50 npts,nres,nfes)
50 do 80 i=1,nres
80 write(nfilot,115) i, thi(i), fx(i), ph_allpass(i)
115 format(14, 5x, E12.4, 4(2x,E14.5))
50 continue
50 call plotSsetup(header(nfee+1),"freq","spectral
50 value",3,10.0,1,0)
60 call plot_(thi,fx,1024,1,)
60 if(nfee.eq.0)go to 95
50 call ioa ("robustness factor and peak freq are")
50 call write list_(amu)
50 do 90 i=1,nfee
90 call write list (peak(i))
50 call ioa("Input data is in
50 file No.")
50 call write list_(nfil)
95 continue
50 call ioa ("If you wish to make a hard copy, do it now")
50 call ioa ("Then type i if you wish to plot")
50 call ioa ("the phase of all pass fee network")
50 call ioa ("else type in 0")
50 call read list_(ntemp)
60 if(ntemp .ne. 1) go to 96
60 call plotSsetup("phase of tuned fee network","freq",
60 "phase",1,10.0,1,0 /c)
60 call plot_(thi,ph_allpass,1024,1, " ")
96 continue
60 close(nfil)
60 close(nfilot)
60 stop
60 end
subroutine spectral_estimator (thi, fx, cf, thmax, amu
peak, npts, nres, nfee)
dimension thi(1024), fx(1024), peak(20), cf(20), cf-d(20)
external ioa-(descriptors)
external read-list-(descriptors)
call ioa-("enter 0 for mem, 1 for singly and 2 for
doubly tuned fee")
call read-list-(nfee)
if(nfee.eq.0) go to 20
call ioa-("enter robustness factor -= amu")
call read-list-(amu)
do 10 i=1,nfee
call ioa-("enter desired resonant peak(in, millions")
call read-list-(peak(i))
10 continue
call design-allpass (npts, npts-d, cf, peak, cphase-d, cf-d)
if(nfee,eq,1) go to 20
if(peak(2).gt.peak(1)) go to 15
call ioa-("error: 2nd res freq less than 1st res freq.
Treated as singly tuned")
go to 20
15 nerror = 0
call design-allpass-2(npts, npts-d, nerror, cf, peak,
cphase-d, cf-d)
if(nerror,eq, 0) go to 20
call ioa-("error: All pass can not be designed. Treated
as singly tuned")
continue
20 continue
call response (nres, nfee, npts, npts-d, cf, thmax, cf-d,
cphase-d, amu, fx, thi)
return
end
subroutine response (nres, nfee, npts, npts-d, cf, thmax,
cf-d, cphase-d, amu, fx, thi)
common/respos/ph-allpass(1024)
nfee = 0 if mem is desired, = number of resonant
peaks for fee)
dimension fx(1024), thi(1024), cf(20), cf-d(20)
delth=nres
delth=thmax/delth
amu=sq-amu
amult-num = 1.0e+00 - amusq
(Appendix, continued)

```

amult-den = 1.0e+00 + amusq
amu2 = amu + amu

do 80 i=1,nres

th = i*delth

thi(i) = th

cphase = 0.0e+00

20 continue

a = (peak(1)-alphal)/2.0e+00
b = (peak(1)+alphal)/2.0e+00

cf-d(2) = sin(a)/sin(b)

cf-d(1) = 1.e+00

npts-d = 2

30 do 30 i=3,20

cf-d(i) = 0.e+00

30 continue

npts-d = 2

call amp-arg(npts-d,cf-d,peak(i),cphase-d,amp,phase-d,all-phase-d)

nfil=40

101 format(2x,"Design" ,4x5E13.6)

th =0.e+00

close(nfil)

return

end

function twopi-mod(a)

twopi = 6.283184e+00

na = a/twopi

_twopi-mod = na*twopi + a

if (twopi-mod.lt.0.e+00) twopi-mod = twopi+twopi-mod

return

end

subroutine design-all-pass-2(npts,npts-d,kerror,

    cf,peak,cphase-d,cf-d)

dimension cf(20),cf-d(20),peak(20)

...This subroutine assumes that singly tuned has been called once

pi = 3.141592e+00

twopi = 6.283184e+00

threepi = 9.424696e+00

cphase = 0.e+00

call amp-arg(npts,cf,peak(1),cphase,amp1,phase1,all-phase1)

call amp-arg(npts,cf,peak(2),cphase,amp2,phase2,all-phase2)

gammal = all-phase1 + peak(1)
```

A-4
(Appendix, continued)

gamma2 = all-phase2 + peak(2)
gamma1 = twopi-mod(gamma1)
gamma2 = twopi-mod(gamma2)
nfil=40

 call amp-arg(npts-d,cf-d,peak(2),cphase-d,amp,
 ph2,aph2)
 call amp-arg(npts-d,cf-d,peak(1),cphase-d,al,aphl,aph1)

 alpha1 = twopi - gamma1
 alpha2 = twopi - gamma2
 eps = 0.0e+00

 if(gamma1 .ge. gamma2) go to 10
 if(gamma1 .gt. pi) go to 100
 if(gamma2 .lt. pi) go to 100
 eps = 1.0e+00
 alpha1 = pi - gamma1
 alpha2 = threepi - gamma2
 continue

 nfil=40

 ar = -0.5e+00 * alpha2
 r = (cf-c(2)-1.e+00)*sin(peak(2)/2.0e+00)/sin(ar)
 x = (cf-c(2)+1.0e+00)*cos(peak(2)/2.0e+00)
 x = -x + (r*cos(ar))
 br = x*cos(-(peak(2)/2.0e+00))/(cos(peak(2))-cos(peak(1)))
 epsi = 1.e+00/(1.e+00 + br)
 epsmi = 1.0e+00 - epsi
 cf-d(3) = epsmi + (epsl*cf-d(2))
 cf-d(2) = (epsl*(1.e+00+cf-d(2)) - 2.0e+00*cos(peak(1)))
 *epsmi
 cphase-d = eps * pi

 npts-d = 3
 call amp-arg(npts-d,cf-d,peak(2),cphase-d,amp,ph2d,
 aph2d)
PART III

MULTI CHANNEL CASE

by

D.C. Youla
Polytechnic Institute of NY Farmingdale NY
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>1</td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. FORMULATION</td>
<td>3</td>
</tr>
<tr>
<td>III. THE 2m-PORT INTERPOLATORY CASCADE</td>
<td>5</td>
</tr>
<tr>
<td>IV. THE CLASS OF ALL SPECTRAL ESTIMATORS</td>
<td>30</td>
</tr>
<tr>
<td>V. THE MULTICHANNEL FLAT-ECHO ESTIMATOR</td>
<td>37</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>40</td>
</tr>
<tr>
<td>APPENDIX A</td>
<td>41</td>
</tr>
<tr>
<td>APPENDIX B</td>
<td>44</td>
</tr>
</tbody>
</table>
ABSTRACT

Let \(x_t \) denote a discrete-time, zero-mean, second-order stationary, full-rank \(m \)-dimensional random vector process. Let us assume that the spectrum of \(x_t \) is absolutely continuous and let \(K(\theta) \) and \(C(k) \) denote the associated \(mm \) spectral density and covariance matrices, respectively.

Suppose that the partial information \(C(0), C(1), \ldots, C(n) \) is known in advance without error. The first major contribution of this research report is contained in theorem 2 which supplies, via Eqs. (173) and (174), a general explicit parametric formula for the class of all spectral densities \(K(\theta) \) consistent with the given \(n+1 \) (matrix) pieces of covariance data.

The free parameter is an \(mm \) matrix function \(\rho(z) \) which is analytic in \(|z| < 1 \) and of euclidean norm less than unity almost everywhere on \(|z| = 1 \). Thus, \(\rho(z) \) is essentially an arbitrary passive scattering matrix.

Most of the numerical calculations can be carried out efficiently and recursively. Indeed, our algorithm can be constructed around the generalized Levinson recursions for the left-right matrix orthogonal polynomials generated by the sequence \(C(0), C(1), \ldots, C(n) \). Consequently, all the highly developed and sophisticated software that has come into existence during the last decade because of the intense effort devoted to Burg's maximum-entropy estimator, can be used intact.

The second major contribution is the identification of the FEE or Flat-Echo Estimator. The FEE is based squarely on frequency-domain concepts and represents an entirely new particular solution to the problem of spectrum recovery. It emerges by an appropriate restriction of the functional form of the parameter \(\rho(z) \). Some of its principal advantages are the following.

1) "Numerical robustness" can be assigned in advance by the adjustment of \(m^2 \) numerical parameters.

2) It is possible to "tune" the estimator to produce selective spectral amplification at a finite number of desired frequencies without impairing either its interpolatory character or its numerical robustness. Enhanced resolution is to be expected.
3) For the setting of the numerical parameters which yields maximum robustness, namely \(p(z) = 0 \), the FEE coincides with the MEE.

In conclusion, we should like to mention that our development of the general parametric formula for \(K(\theta) \) alluded to above, constitutes the solution to a long open problem which some researchers, Burg included, have considered to be prohibitively difficult.
I. INTRODUCTION

In a previous publication [1] the author developed an entirely new solution to the problem of spectrum recovery from a given set of covariance samples of a single random process.

The flat-echo estimator (the FEE) incorporates the following important features:

1) Numerical robustness is assignable in advance by the adjustment of a scalar parameter and can be traded off against resolution.

2) It is possible to "tune" the estimator to provide selective amplification at any set of prescribed frequencies without impairing either its interpolatory character or its numerical robustness.

3) For the parameter setting which yields maximum robustness, the FEE coincides with the MEE, the maximum-entropy estimator.

Our principal objective in this continuing study is to generalize the FEE to the multichannel case and we therefore assume that the reader is familiar with the geometric and analytic points of view adopted in Ref. 1. Moreover, since this is a research report, our demands on his knowledge will vary widely but we have nonetheless attempted to be tutorial whenever possible.

With regard to the matter of notation, most of it is standard and self-explanatory. However, let us point out that \overline{A}, A', A^* ($\equiv \overline{A}'$) and $\det A$ denote, in the same order, the complex conjugate, transpose, adjoint and determinant of the matrix A.

Column-vectors are written \mathbf{z}, \mathbf{x}, etc., or as

$$\mathbf{x} = (x_1, x_2, \ldots, x_n)'$$

whenever it is desirable to exhibit the components. Further, I_m is the mxm identity, $0_{m,k}$ the mxk zero matrix and 0_m is the m-dimensional column-vector.

As usual, if $A = A^*$ is hermitean, $A \geq 0 (> 0)$ means that $\mathbf{x}^* A \mathbf{x} \geq 0 (> 0)$ for every vector $\mathbf{x} \neq 0$. We then say that A is nonnegative or positive-definite, as the case may be.
In this paper, we distinguish carefully between the right-half p-plane and the interior of the unit circle since some of our arguments are couched in both analogue and digital terms.

Thus, if $W(p,z)$ denotes a matrix whose entries are meromorphic functions of both $p = \sigma + j\omega$ and $z = r e^{j\theta}$, it is convenient, for typographical reasons, to set

$$W_p(p, z) = W^*(\overline{p}, 1/\overline{z}) .$$

(0.2)

Clearly, for $p = j\omega$ and $z = e^{j\theta}$, w and θ real,

$$W_p(j\omega, e^{j\theta}) = W^*(j\omega, e^{j\theta})$$

(0.4)

and the sub-star coincides with the top-star.

Let x stand for either p or z and let \mathcal{R} denote either the open right-half p-plane, $\text{Re} p > 0$, or the open unit-circle, $|z| < 1$.

An $m \times m$ matrix $Z(x)$ is said to be positive if 1) it is analytic in \mathcal{R} and 2),

$$\frac{Z(x) + Z^*(x)}{2} \geq 0 , \ x \in \mathcal{R} .$$

(0.6)

Similarly, an $m \times m$ matrix $W(x)$ is said to be bounded if 1) it is analytic in \mathcal{R} and 2),

$$\frac{1}{m} - W(x)W^*(x) \geq 0 , \ x \in \mathcal{R} .$$

(0.8)

If in addition, $Z(x)$ or $W(x)$ is real for all real $x \in \mathcal{R}$, it is said to be positive-real or bounded-real, respectively.

A positive matrix $Z(x)$ which is a.e. skew-hermitean on the boundary of \mathcal{R} is said to be lossless while a bounded matrix $W(x)$ which is a.e. unitary on the boundary of \mathcal{R} is said to be regular paraconjugate unitary. If $Z(x)$ is also real, it is Foster and if $W(x)$ is real it is regular paraunitary.

III-2
II. FORMULATION

Let x_t denote a discrete-time m-dimensional random vector process where t can traverse all positive and negative integers. Let us also suppose that the process is zero-mean and second-order stationary. Then,

$$E(x_t x_{t+k}) = C(k), \quad |k| = 0 \to \infty,$$

is the associated $m \times m$ covariance function. Clearly, for all integers k,

$$C(-k) = E(x_t x_{t-k}) = E(x_{t+k} x_t) = C^*(k).$$

As is well-known [2], if the power spectrum $F(\theta)$ of the process is absolutely continuous, there exists an $m \times m$ hermitean nonnegative-definite spectral density matrix $K(\theta)$, whose entries are absolutely integrable over $-\pi \leq \theta \leq \pi$ and is such that,

$$C(k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-jk\theta} K(\theta) d\theta.$$

Hence,

$$K(\theta) \sim \sum_{k=-\infty}^{\infty} C(k) e^{jk\theta},$$

and the $m \times m$ covariance samples $C(k), \quad |k| = 0 \to \infty$, emerge as the Fourier coefficient of $K(\theta)$.

Moreover, if the process is free of essentially determined components, $K(\theta)$ satisfies the Paley-Wiener criterion,

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \ln \det K(\theta) d\theta > -\infty.$$

1. Very often, we do not distinguish between the function $C(k)$ and the particular sample $C(k)$. Hopefully, when taken in context this should never cause confusion.

2. For short, $K(\theta) \in L^1$.

111-3
Clearly, such a process automatically obeys the full-rank condition,

\[
\det K(\theta) \neq 0, \text{ a.e.,} \tag{5a}
\]

but not conversely.

From the inequality \(K(\theta) \geq 0 \) it is easily shown [6] that

\[
T_n \equiv \begin{bmatrix}
C(0) & C(1) & \cdots & C(n) \\
C(-1) & C(0) & \cdots & C(n-1) \\
\cdots & \cdots & \cdots & \cdots \\
C(-n) & C(-n+1) & \cdots & C(0)
\end{bmatrix} \geq 0, \ n = 0 \to \infty. \tag{5b}
\]

Furthermore, if the process is full-rank (and, a fortiori, if it satisfies Paley-Wiener), only the inequality sign prevails.

Unless stated explicitly otherwise, we shall adhere to two main working assumptions.

\(A_1 \) The power spectrum \(F(\theta) \) of the process is absolutely continuous, i.e.,

\[
dF(\theta) = K(\theta)d\theta
\]

where \(K(\theta) \in L_1 \) and

\[
K(\theta) = K^\theta(\theta) \geq 0. \tag{7}
\]

\(A_2 \) Either the process is full-rank or it satisfies the Paley-Wiener condition (5) or both. The precise situation can always be ascertained from the context.

Our primary task is to develop a physically insightful solution to the problem of estimating \(K(\theta) \) from a knowledge of \(n+1 \) given error-free \(m \times m \) covariance samples \(C(0), C(1), \ldots, C(n) \).
III. THE 2m-PORT INTERPOLATORY CASCADE

By way of motivation, let us recall the properties of a cascade N of n ideal TEM lines which have the same 1-way delay $\tau > 0$ but arbitrary positive characteristic impedances $R_0, R_1, \ldots, R_{n-1}[1]$.

Let $S_N(p)$ denote the scattering matrix of N normalized to R_0 at the input and any positive port number at the output. Then, $S_N(p)$ is completely parametrized by the specification of a single arbitrary real polynomial $h(z)$ of the form

$$h(z) = z h_1 + z^2 h_2 + \ldots + z^n h_n.$$ \hspace{1cm} (8)

Explicitly,

C_1) with $h(z)$ so prescribed, choose the real polynomial $g(z)$ (of degree $\leq n-1$) to be the strict-Hurwitz solution of the equation

$$g(z)g(-z) = 1 + h(z)h(-z).$$ \hspace{1cm} (9)

This Wiener-Hopf factor is analytic together with its inverse in $|z| \leq 1$ and is uniquely determined under the restriction $g(0) > 0$.

C_2) Let

$$z = e^{-2p\tau}.$$ \hspace{1cm} (9a)

Then,

$$S_N(p) = \frac{1}{g(z)} \begin{bmatrix} h(z) & e^{-np\tau} \\ e^{-np\tau} & -z^n h_N(z) \end{bmatrix}.$$ \hspace{1cm} (10)

It is readily seen that $S_N(p)$ is a real meromorphic matrix function of p that is analytic in $\text{Re} \, p \geq 0$ and satisfies the identity

$$S_N(p)S_N^*(p) = 1.$$ \hspace{1cm} (11)

Thus, $S_N(p)$ is regular paraunitary.

3The property $h(0) = 0$ reflects the fact that the input-side normalization number has been chosen equal to R_0, the characteristic impedance of the first line.
The immediate goal is to generalize the above construction to the 2m-port case, \(m \geq 1 \). However, due to the lack of commutativity of matrix multiplication, several subtleties arise for \(m > 1 \) which can only be dealt with by modifying the procedure in a substantial way.

Lemma 1. Let \(H(z) \) denote an arbitrary (and not necessarily real) \(m \times m \) polynomial matrix of degree \(\leq n \) of the form
\[
H(z) = zH_1 + z^2H_2 + \cdots + z^nH_n .
\] (12)

There exist two \(m \times m \) polynomial matrices \(G_1(z) \) and \(G_2(z) \) of degrees \(\leq n-1 \) such that
1) \(\det G_1(z) \cdot \det G_2(z) \neq 0, \quad |z| \leq 1 \). (13)

2) The matrix
\[
L(z) = G_1^{-1}(z)H(z)G_2(z)
\] (14)
is polynomial.

3) Under the identification \(z = e^{-2\pi \tau}, \quad \tau > 0 \), the \(2m \times 2m \) matrix
\[
S_N(p) = \begin{bmatrix}
G_1^{-1}(z)H(z) & e^{-np\tau}G_1^{-1}(z) \\
e^{-np\tau}G_2^{-1}(z) & -z^nG_2^{-1}(z)H_k(z)
\end{bmatrix}
\] (15)
is meromorphic in \(p \), analytic in \(\text{Re}\ p \geq 0 \) and paraconjugate unitary:
\[
S_N(p)S_N^*(p) = 1_{2m} .
\] (16)

Proof. Let \(G_1(z) \) and \(G_2(z) \) be chosen as the \(m \times m \) Wiener-Hopf factors of the two matrix equations
\[
G_1(z)G_1^*(z) = 1_m + H(z)H_k(z) ,
\] (17)
\[
G_2(z)G_2^*(z) = 1_m + H_k(z)H(z) .
\] (18)

Clearly, because of the form (12) of \(H(z) \), both \(H(z)H_k(z) \) and \(H_k(z)H(z) \) are paraconjugate hermitean matrices with powers of \(z \) restricted to lie between -(n-1) and n-1.
From a classical result [3], \(G_1(z) \) and \(G_2(z) \) are polynomial and uniquely determined up to multiplication on the right by arbitrary constant \(m \times m \) unitary matrices. In addition, their degrees do not exceed \(n-1 \) and they are minimum-phase, i.e.,

\[
det G_1(z) \cdot det G_2(z) \neq 0, \quad |z| < 1. \tag{19}
\]

But, as it is obvious that the right-hand sides of (17) and (18) are also nonsingular for all \(z = e^{j\theta} \), \(\theta \) real, we actually have the stronger inequality (13) which includes the boundary of the unit-circle, \(|z| = 1 \).

If we now observe that

\[
S_N(p) = \begin{bmatrix} G_1^{-1}(z) & 0_m \\ 0_m & G_2^{-1}(z) \end{bmatrix}, \quad \begin{bmatrix} H(z) & e^{-\eta_p T_1 m} \\ e^{-\eta_p T_1 m} & -z^n H_*(z) \end{bmatrix}, \tag{20}
\]

it is straightforward to verify (16) with the aid of (17) and (18). Thus, \(S_N(p) \) is meromorphic and regular paraconjugate unitary.

Since a right-inverse is also a left-inverse, (16) implies that

\[
S_{N^*}(p)S_N(p) = I_{2m}. \tag{21}
\]

In turn, (21) yields

\[
(G_2 G_{2*})^{-1} + H_*(G_1 G_{1*})^{-1} H = I_m, \tag{22}
\]

\[
H(G_2 G_{2*}) - (G_1 G_{1*}) H = 0_m, \tag{23}
\]

\[
(G_1 G_{1*})^{-1} + H(G_2 G_{2*})^{-1} H_* = I_m. \tag{24}
\]

From (23),

\[
G_1^{-1}(z) H(z) G_2(z) = L(z) = G_{1*}(z) H(z) G_{2*}^{-1}(z). \tag{25}
\]

\(^4 \) It follows from (13) that \(G_1^{-1}(z) \) and \(G_2^{-1}(z) \) are analytic in \(|z| < 1 \) so that the domain of analyticity of \(S_N(p) \) includes the \(j\omega \)-axis in the \(p \)-plane.

\(^5 \) Arguments are omitted wherever convenient.
But the right-hand side of (25) is analytic in $|z| > 1$ whereas the left-hand side is analytic in $|z| < 1$ and this means that $L(z)$ is analytic in the entire finite z-plane. By Liouville's theorem, $L(z)$ is a polynomial matrix and the proof of lemma 1 is complete, Q. E. D.

Comment 1. If $H(z)$ is chosen real, $G_1(z)$ and $G_2(z)$ can also be constructed real and $S_N(p)$ is a real regular paraunitary matrix.

Let us now suppose that a $2m$-port N of generic type defined in lemma 1 is closed on its output side on a passive m-port load with normalized scattering matrix description $\Gamma(z)$. Of course, $\Gamma(z)$ is $m \times m$ and bounded and therefore analytic in $|z| < 1$.

Let the four $m \times m$ partitions in (15) be labeled $S_{11}(p)$, $S_{12}(p)$, $S_{21}(p)$ and $S_{22}(p)$. Then, from first principles [4],

$$S = S_{11} + S_{12} \Gamma(1_m - S_{22} \Gamma)^{-1} S_{21}$$

is the normalized scattering matrix of the resultant m-port N_M.

Thus, making the appropriate substitutions and using (17),

$$S(z) = G_1^{-1} H + z^n G_1^{-1} \Gamma(1_m + z^n G_2^{-1} H \Gamma)^{-1} G_2$$

$$= G_1^{-1} (HG_2(1_m + z^n G_2^{-1} H \Gamma) + z^n \Gamma)(G_2 + z^n H \Gamma)^{-1}$$

$$= G_1^{-1} (HG_2 + z^n (1_m + HH \Gamma))(G_2 + z^n H \Gamma)^{-1}$$

$$= G_1^{-1} (HG_2 + z^n G_1 G_1 \Gamma)(G_2 + z^n H \Gamma)^{-1}$$

$$= (L + z^n G_1 \Gamma)(G_2 + z^n H \Gamma)^{-1}$$

$$= (L(z) + \bar{\sigma}_1(z) \Gamma(z))(G_2(z) + \bar{A}(z) \Gamma(z))^{-1}$$

where $L(z) = G_1^{-1}(z) H(z) G_2(z)$ and 6

$$\bar{\sigma}_1(z) = z^n G_1 \Gamma(z)$$

6 $\bar{\sigma}_1(z)$ and $\bar{A}(z)$ are the $m \times m$ matrix polynomials reciprocal to $G_1(z)$ and $H(z)$, respectively.
\(\hat{\mathbf{f}}(z) = z^n \hat{H}_{\mathbf{f}}(z) \) .

Consequently, since it has been shown in lemma 1 that \(L(z) \) is polynomial,

\[
S = (L + \hat{G}_1 \Gamma)(G_2 + z\hat{H})^{-1}
\]

appears as a bilinear matrix transform of \(\Gamma \) with polynomial matrix coefficients that depend on \(z \) alone.

Lemma 2. Let

\[
\Gamma(z) = z\rho(z)
\]

where \(\rho(z) \) is an arbitrary \(mxm \) bounded matrix in \(z \). Then, the first \(n+1 \) coefficients in the power-series expansion of

\[
S = (L + z\hat{G}_1 \rho)(G_2 + z\hat{H})^{-1}
\]

about \(z = 0 \) are independent of the choice of \(\rho(z) \).

Proof. Let \(S_0(z) \) denote \(S(z) \) with \(\rho(z) \equiv 0 \). It suffices to prove that

\[
S(z) - S_0(z) = 0(z^{n+1})
\]

in the neighborhood of \(z = 0 \).

Evidently,

\[
S_0(z) = L(z)G_2^{-1}(z) = G_1^{-1}(z)H(z)
\]

since \(G_1 L = HG_2 \). Thus,

\[
S - S_0 = (L + z\hat{G}_1 \rho)(G_2 + z\hat{H})^{-1} - G_1^{-1}H
\]

so that

\[
G_1(S - S_0)(G_2 + z\hat{H}) = G_1(L + z\hat{G}_1 \rho) - H(G_2 + z\hat{H})
\]

\[
= z(G_1 \hat{G}_1 - H\hat{H})\rho
\]

\[
= z^{n+1}\rho
\]

Such a \(\Gamma(z) \) is automatically bounded. Moreover, every \(S(z) \) generated by (37) is also bounded if \(\hat{c}(z) \) is bounded.
from (17). Or,
\[S - S_0 = z^{n+1} G_1^{-1} \alpha(G_2 + z\alpha P)^{-1} \quad (44) \]

However, because \(G_1(0) \) and \(G_2(0) \) are nonsingular and \(\alpha(z) \) is analytic in \(|z| \leq 1 \), (44) implies the desired result (38), Q. E. D.

Comment 2. Since \(S(z) \) is bounded,
\[Z(z) = (1_m + S(z))(1_m - S(z))^{-1} \quad (45) \]
is positive whenever it exists. Clearly, as is seen from (37) and (12),
\[S(0) = L(0)G_2^{-1}(0) = G_1^{-1}(0)H(0) = 0_m \quad (46) \]
so that neither \(1_m + S(z) \) nor \(1_m - S(z) \) are identically singular. Thus, \(Z(z) \) and \(Z^{-1}(z) \) are both well-defined.

Let us write
\[Z(z) = 1_m + \sum_{k=1}^{n} 2C(k)z^k + 0(z^{n+1}) \quad (47) \]

According to lemma 2, the maximum coefficients \(C(k), k = 1 \rightarrow n \), are independent of the particular choice of bounded \(\alpha(z) \) and are therefore calculable from the power-series expansion of
\[Z_0(z) = (1_m + S_0(z))(1_m - S_0(z))^{-1} \quad (48) \]

Since the factors in (48) commute we can also write
\[Z_0 = (1_m - S_0)^{-1}(1_m + S_0) \quad (49) \]
\[= (1_m - G_1^{-1}H)^{-1}(1_m + G_1^{-1}H) \quad (50) \]
\[= (G_1 - H)^{-1}(G_1 + H) = 2P_n^{-1}Q_n \quad (51) \]

where
\[P_n(z) = G_1(z) - H(z) \quad (52) \]
and

III-10
\(Q_n(z) = \frac{G_1(z) + H(z)}{2} \). \hspace{1cm} (53)

By direct calculation and Eq. (17),
\(P_n(z)Q_n^*(z) + Q_n(z)P_n^*(z) = 1_m \)
\(\hspace{1cm} (54) \)

and we are now ready for the remarkable lemma 3.

Lemma 3. 1) The polynomial matrices \(P_n(z) \) and \(Q_n(z) \) are nonsingular in the closed unit circle, i.e.,
\(\det P_n(z) \cdot \det Q_n(z) \neq 0, \ |z| \leq 1. \)
\(\hspace{1cm} (55) \)

2) \(\frac{Z_o(z) + Z_{o*}(z)}{2} = (P_n^*(z)P_n(z))^{-1} \).
\(\hspace{1cm} (56) \)

3) The coefficients \(C(k), k = 1 \rightarrow n \), determine the interpolatory 2m-port \(N \) completely up to within a frequency insensitive all-pass cascaded at the output side.

Proof. 1) Suppose first that for some \(z_o, |z_o| < 1, \det P_n(z_o) = 0 \). Then, there exists a nontrivial m-vector \(\mathbf{a} \) such that \(\mathbf{a}^*P_n(z_o) = 0_m \).

Thus, from (51) and the analyticity of \(Z_o(z) \) in \(|z| < 1 \),
\(\mathbf{a}^*P_n(z_o)Z(z_o) = 0'_m = \mathbf{a}^*Q_n(z_o) \).
\(\hspace{1cm} (57) \)

Therefore, invoking (52) and (53),
\(\mathbf{a}^*(P_n(z_o) + 2Q_n(z_o)) = \mathbf{a}^*G_1(z_o) = 0'_m \)
\(\hspace{1cm} (58) \)

which is impossible because \(G_1(z_o) \) is nonsingular in \(|z| \leq 1 \).

On the other hand, if \(|z_o| = 1, P_n^*(z_o) = P_n^*(z_o), Q_n^*(z_o) = Q_n^*(z_o) \) and (54) evaluated at \(z = z_o \) reads
\(P_n(z_o)Q_n^*(z_o) + Q_n(z_o)P_n^*(z_o) = 1_m \).
\(\hspace{1cm} (59) \)

III-11
Thus, by multiplying (59) on the left and right by \(\bar{z}^* \) and \(z \), respectively, we obtain \(\bar{z}^* z = 0 \), another contradiction.

2) According to (51) and (54),

\[
\frac{Z_0 + Z_0^*}{z} = P_n^{-1}(P_n Q_n z + Q_n P_n z) P_n^{-1} = (P_n^* P_n)^{-1} .
\]

(60)

3) Let

\[
P_n(z) = A_0 + A_1 z + \ldots + A_n z^n ,
\]

(61)

where the A's remain to be determined in terms of the C's.

From (60),

\[
\frac{Z_0(z) + Z_0^*(z)}{z} . \bar{P}_n(z) = z^n . P_n^{-1}(z)
\]

(62)

where

\[
\bar{P}_n(z) = z^n P_n^*(z) = A_n^* + A_{n-1}^* z + \ldots + A_0^* z^n .
\]

(63)

Part 1) permits us to conclude that \(Z_0(z) \) and \(P_n^{-1}(z) \) are both analytic in \(|z| < 1 \) and it is therefore legitimate to set \(z = e^{j\theta} \), \(\theta \) real, and to equate coefficients of \(e^{jk\theta} \) on both sides of (62), all \(k \).

Carrying this out for \(k = 0 \rightarrow n \) we obtain the linear system,

\[
A_0^* X T_n = \begin{bmatrix} 1_m & 0_m \cdots & 0_m \end{bmatrix}
\]

(64)

where

\[
X = [A_0 \ A_1 \ \ldots \ A_n]
\]

(65)

and\(^8\)

\[
T_n = \begin{bmatrix}
1_m & C(1) & \ldots & C(n) \\
C(-1) & 1_m & \ldots & C(n-1) \\
\cdots & \cdots & \cdots & \cdots \\
C(-n) & C(-n+1) & \ldots & 1_m
\end{bmatrix} = \begin{bmatrix}
1_m & E_n \\
E_n^* & T_{n-1}
\end{bmatrix} .
\]

(66)

\(^8\)For any \(k \), \(C(-k) = C_0^\theta(k) \). Matrices which possess the structure in (66) are said to be normalized block Toeplitz.
Since
\[K_0(\theta) = \frac{Z_0(e^{j\theta}) + Z_0^*(e^{j\theta})}{2} = (P_n^*(e^{j\theta})P_n(e^{j\theta}))^{-1} \] (67)
is obviously positive-definite and \(L_1 \) over \(-\pi \leq \theta \leq \pi\), and since it also satisfies the Paley-Wiener criterion (5), it follows [6] that
\[T_n = T_n^* > 0. \] (68)
The solution of (64) is now routine.

Let \(A_0 \) be determined from the Gauss factorization
\[A_0^*A_0 = (1_m - E_n^T_n^{-1}E_n^*)^{-1} \] (69)
and let \((T_n^{-1})_1 \) denote the matrix formed with the first \(m \) rows of \(T_n^{-1} \). Then,
\[X = (A_0^*)^{-1} \cdot (T_n^{-1})_1; \] (70)

Equation (69) fixes \(A_0 \) uniquely up to multiplication on the left by a constant \(m \times m \) unitary matrix \(U \). In view of (70), \(P_n(z) \) is then also unique up to within the same pre-factor. The next step is to produce a formula for the coefficients of \(Q_n(z) \).

Let
\[Q_n(z) = F_0 + F_1z + \cdots + F_nz^n \] (70a)
and let
\[Y = [F_0 \ F_1 \ \ldots \ F_n]. \] (71)
From (51),
\[2Q_n(z) = P_n(z)Z_0(z) \] (72)
and a comparison of coefficients of like power of \(z^k \), \(k = 0 \to n \), yields
\[2Y = X\Sigma_n \] (73)
where

III-13
Thus, $Q_n(z)$ is also uniquely determined up to within the unitary premultiplier U.

Consequently, $H(z) = \frac{1}{2} P_n(z) - Q_n(z)$ and $G_1(z) = \frac{1}{2} P_n(z) + Q_n(z)$ are both determined up to multiplication on the left by U, and then $G_2(z)$ can be found as the minimum-phase polynomial solution of (18). As mentioned previously, $G_2(z)$ is unique up to multiplication on the right by an arbitrary constant $m \times m$ unitary matrix V.

If we now return to (15), it is immediately seen that $S_{11}(p)$ is unique, $S_{12}(p)$ is unique up to the right multiplier U^*, $S_{21}(p)$ up to the left multiplier V^* and $S_{22}(p)$ up to the left-right multipliers V^* and U^*, respectively. But this can be interpreted to mean [4] that every compatible interpolatory $2m$-port N is obtained from a particular one, N_p, say, by cascading N_p on the right in a $2m$-port all-pass with normalized scattering description

$$\begin{bmatrix} 1_m & U^* \\ V^* & 1_m \end{bmatrix}$$

This completes the proof, Q.E.D.

The preceding lemma suggests a very natural definition.

Def. 1. A set of $m \times m$ matrices $C(k)$, $k = 1 \rightarrow n$, is said to admit the strong interpolation property (the SIP), if there exist two $m \times m$ polynomial matrices $P_n(z)$ and $Q_n(z)$ of degrees less or equal to n such that,

$$I_1. \quad \text{det} P_n(z) \cdot \text{det} Q_n(z) \neq 0, \quad |z| \leq 1$$

$$I_2. \quad P_n(z) Q_n^*(z) + Q_n(z) P_n^*(z) = 1_m$$
For $|z| \leq 1$,

$$Z_0(z) = 2P_n^{-1}(z)Q_n(z) = 1_m + \sum_{k=1}^{n} 2C(k)z^k + O(z^{n+1}) ;$$

$I_4.$ $Z_0(z)$ is positive.

Lemma 4. A set of $m \times m$ matrices $C(k), k = 1 \rightarrow n$, admits the SIP iff

$$T_n = \begin{bmatrix}
1_m & C(1) & \cdots & C(n) \\
C(-1) & 1_m & \cdots & C(n-1) \\
\vdots & \vdots & \ddots & \vdots \\
C(-n) & C(-n+1) & \cdots & 1_m
\end{bmatrix} > 0.$$ \hspace{1cm} (76)

Proof. Let the data admit the SIP. Then, from I_1, I_2, and the definition of $Z_0(z)$,

$$K_0(\theta) = \frac{Z_0(e^{j\theta}) + Z_0^*(e^{j\theta})}{2} = (P_n^*(e^{j\theta})P_n(e^{j\theta}))^{-1}$$ \hspace{1cm} (77)

is L_1 and positive-definite over $-\pi \leq \theta \leq \pi$.

Furthermore, in view of I_3,

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-jk\theta} K_0(\theta) d\theta = C(k), \hspace{0.5cm} -n \leq k \leq n,$$ \hspace{1cm} (78)

and since it is obvious that $K_0(\theta)$ is nonsingular for all θ, it follows from the discussion at the end of Section II that $T_n > 0$.

Sufficiency. A review of the proof of lemma 3 shows that the polynomials $P_n(z)$ and $Q_n(z)$ must be given by the formulas,

$$P_n(z) = X \xi(z), \hspace{0.5cm} Q_n(z) = Y \xi(z)$$ \hspace{1cm} (79)

where X and Y are determined by means of Eqs. (69)-(74) and

$$\xi(z) = [1_m \hspace{0.5cm} z \hspace{0.5cm} 1_m \hspace{0.5cm} \cdots \hspace{0.5cm} z^n \hspace{0.5cm} 1_m]' .$$ \hspace{1cm} (80)
Of course, the positive-definiteness of T_n guarantees that $P_n(z)$ and $Q_n(z)$ are well-defined and it remains to be shown that they possess all the requisite properties.

Note first that I_2 is equivalent to

$$\frac{1}{2}(\xi \xi^* + \Sigma_n \Sigma^*_n)X^* = 1_m.$$ \hfill (81)

But, as is easily seen,

$$\xi(z)\xi^*(z) = 1 + \Omega(z) + \Omega(z)$$ \hfill (82)

where

$$\Omega(z) = \begin{bmatrix}
0_m \\
z1_m & 0_m \\
z^21_m & z1_m \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
z^n1_m & z^{n-1}1_m & \ldots & z1_m & 0_m
\end{bmatrix}.$$ \hfill (83)

Hence, since

$$T_n = \frac{1}{2}(\Sigma_n + \Sigma^*_n)$$ \hfill (84)

and Ω_x commutes with Σ_n, \footnote{To a great extent, it is this commutativity that is responsible for so many of the remarkable properties exhibited by Toeplitz matrices.} we find that

$$\frac{\xi \xi^* + \Sigma_n \Sigma^*_n}{2} = T_n + \frac{1}{2}(\Omega + \Omega_x)\Sigma_n + \frac{1}{2} \Sigma_n (\Omega + \Omega_x)$$ \hfill (85)

$$= T_n + \Omega_x \cdot \frac{\Sigma_n + \Sigma^*_n}{2} + \frac{\Sigma_n + \Sigma^*_n}{2} \cdot \Omega$$ \hfill (86)

$$= T_n + \Omega_x T_n + T_n \Omega.$$ \hfill (87)
Now, by using the explicit formula \(X = (A_0^*)^{-1} \cdot (T_n^{-1})_1\); we obtain, in succession,

\[
XT_n X^* = (A_0^*)^{-1} \cdot (A_0^*) = 1_m
\]

and

\[
XT_n \Omega = (A_0^*)^{-1} \cdot [1_m 0_m \ldots 0_m] \Omega = 0
\]

Thus, \(I_2\) is validated.

The remaining three properties can be disposed of almost simultaneously by proving that \(Z_0(z) = 2 F_n^{-1}(z) Q_n(z)\) is positive in \(|z| < 1\).

First, \(P_n(0) = A_0\). But, in view of (69) and the premise \(T_n > 0\), \(A_0\) is nonsingular so that \(\det P_n(z) \neq 0\). Thus, \(Z_0(z)\) is well-defined and analytic in some neighborhood of \(z = 0\).

By construction, its power series expansion about \(z = 0\) must be of the form

\[
Z_0(z) = 1_m + \sum_{k=1}^{\infty} 2C(k)z^k
\]

where \(C(1), C(2), \ldots, C(n)\) constitute the prescribed data. Let \(r > 0\) denote the radius of convergence of (91). Of course, since we have not yet established that \(P_n(z)\) is minimum-phase, i.e., that \(\det P_n(z) \neq 0, \ |z| < 1\), it cannot be asserted that \(r \geq 1\).

Nevertheless, by equating coefficients on both sides of the identity

\[
\left(\sum_{l=0}^{n} A_l z^l \right) (1_m + \sum_{k=1}^{\infty} 2C(k)z^k) = 2 \sum_{l=0}^{n} F_l z^l
\]

we obtain the formulas,
where Σ_L is given by (74) with n replaced by L,

$$
\Sigma_L = 2a_{L-1}^* b_L^* , \quad L = 0 \to \infty ,
$$

and

$$
\alpha_L = \begin{bmatrix}
A_0 & A_1 & \cdots & A_L \\
A_0 & \cdots & A_{L-1} \\
\vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots \\
& & \ddots & A_0
\end{bmatrix}
$$

and

$$
\beta_L = \begin{bmatrix}
F_0 & F_1 & \cdots & F_L \\
F_0 & \cdots & F_{L-1} \\
\vdots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & F_0
\end{bmatrix}
$$

(The matrices α_L and β_L are upper-triangular block Toeplitz.)

Our aim is to prove that

$$
T_L = \frac{1}{2} (\Sigma_L + \Sigma_L^*) = a_L^{-1} (\alpha_L \beta_L + \beta_L \alpha_L^*) (a_L^*)^{-1} > 0
$$

for all $L > 0$. Or, equivalently, that

$$
\gamma_L = a_L \beta_L + \beta_L a_L^* > 0 , \quad L = 0 \to \infty .
$$

By hypothesis, $T_n > 0$ and (97) is correct for $L = 0 \to n$. Clearly then, the desired result $\gamma_L > 0$, $L > n$, follows trivially if it can be shown that for all such L,

$$
\gamma_L = \frac{1}{m(L-n+1)} \gamma_{n-1}.
$$
THE FEE, A NEW TUNABLE HIGH RESOLUTION SPECTRUM ESTIMATOR. (U)
FEB 82 H E WEBB, D C YOULA, O M GUPTA

UNCLASSIFIED RADC-TR-81-397
To accomplish this we shall exploit the already-derived "even-part" condition,
\[P_n(z)Q_n(z) + Q_n(z)P_n(z) = 1_m. \]

We leave it to the reader to show that a direct comparison of like powers of \(z \) on both sides of (99) leads to the 1-step update,
\[\gamma_n = 1_m + \gamma_{n-1}. \]

Since (100) is (98) with \(l = n \), the natural way to proceed is by induction.

Evidently,
\[a_{l+1} = \begin{bmatrix} A_0 & A_{12} \\ a_l \end{bmatrix} \quad \text{and} \quad \beta_{l+1} = \begin{bmatrix} F_0 & F_{12} \\ \beta_l \end{bmatrix}, \]

where
\[A_{12} = [A_1 A_2 \cdots A_{l+1}] \]

and
\[F_{12} = [F_0 F_1 \cdots F_{l+1}]. \]

By direct calculation,
\[\gamma_{l+1} = a_{l+1} \beta_{l+1} + \beta_{l+1} a_{l+1} = \begin{bmatrix} \gamma_{11} & \gamma_{12} \\ \gamma_{12} & \gamma_l \end{bmatrix} \]

in which,
\[\gamma_{11} = \sum_{k=0}^{l+1} (A_k F_k^* + F_k A_k^*) \]

and
\[\gamma_{12} = [A_1 A_2 \cdots A_{l+1}] \beta_l^* + [F_1 F_2 \cdots F_{l+1}] a_l^*. \]

\(10\) For \(l > n \), \(A_l = F_l = 0_m. \)
If we now take stock of the previous footnote, it is quickly observed that (105) and (106) reduce to

\[\gamma_{11} = \sum_{k=0}^{n} (A_k F_k^* + F_k A_k^*) \]

(107)

and

\[\gamma_{12} = [A_1 A_2 \ldots A_n] F_{n-1}^* + [F_1 F_2 \ldots F_n] A_{n-1}^* \]

(108)

respectively.

However, by equating the (1, 1) and (1, 2) blocks on the two sides of (100) it is found that \(\gamma_{11} = 1 \) and \(\gamma_{12} = 0 \) whence,

\[\gamma_{l+1} = 1 \cdot \gamma_l \]

(109)

But from the induction hypothesis,

\[\gamma_{l} = 1 \cdot (l-n+1)^+ \gamma_{n-1} \]

(110)

so that (109) expands into

\[\gamma_{l+1} = 1 \cdot (l-n+1)^+ \gamma_{n-1} = 1 \cdot (l-n)^+ \gamma_{n-1} \]

(111)

and the induction step is completed. Thus,

\[T_l > 0 \quad l = 0 \rightarrow \infty \]

(112)

According to a generalization of a theorem of Schur (Appendix A), (112) is a sufficient condition for the power-series

\[1 \cdot \sum_{k=1}^{\infty} 2C(k)z^k \]

(113)

to define a positive function of \(z \) in \(|z| < 1 \).

However, since this series and \(Z_0(z) \) coincide in \(|z| < r \), they must, by analytic continuation, coincide in all of \(|z| < 1 \). We have therefore shown that \(Z_0(p) = 2F_n^{-1}(z)Q_n(z) \) is positive and it remains to check property \(I_1 \).
The positivity of \(Z_0(z) \) automatically guarantees its analyticity in \(|z| < 1\). Hence, as shown in lemma 3, if for some \(z_0 \), \(|z_0| < 1\), there exists a nontrivial vector \(a \) such that \(a^*P_n(z_0) = 0 \), then necessarily, \(a^*Q_n(z_0) = 0 \).

Consequently, from (99),

\[
a^*P_n(z_0)Q_n(z_0) + a^*Q_n(z_0)P_n(z_0) = z_0 a^* = 0
\]

which implies that \(z_0 = 0 \). But this is a contradiction because \(P_n(0) = A_0 \) is nonsingular.

Similarly, since it follows immediately from Eq. (59) that \(P_n(z) \) and \(Q_n(z) \) are both nonsingular on the boundary of the unit circle, the assumption \(|z_0| = 1\) is equally untenable. Finally, by observing that

\[
Z_0^{-1}(z) = \frac{1}{2} Q_n^{-1}(z) P_n(z)
\]

is also positive, we can apply exactly the same reasoning to establish the nonsingularity of \(Q_n(z) \) in \(|z| \leq 1\), Q.E.D.

Corollary. Let the \(mxm \) matrices \(C(k) \), \(k = 1 \rightarrow n \), admit the SIP. Then, there exists an interpolatory 2m-port \(N \) such that

\[
Z_0(z) = 1_m + \sum_{k=1}^{n} 2C(k)z^k + O(z^{n+1})
\]

Furthermore, \(N \) is unique up to a frequency-insensitive 2m-port all-pass cascaded on its output-side.

Proof. Let us employ the procedure described in lemma 4 to construct \(P_n(z) \) and \(Q_n(z) \) from the prescribed data. Then we know,

\[
det P_n(z) \cdot det Q_n(z) = 0 \quad |z| < 1
\]

and \(Z_0(z) = 2P_n^{-1}(z)Q_n(z) \) is positive.
As before, let

\[G_1(z) = \frac{1}{2} P_n(z) + Q_n(z) \]

(118)

and

\[H(z) = \frac{1}{2} P_n(z) - Q_n(z) \]

(119)

Since property I_2 is satisfied,

\[G_1(z)G_{1*}(z) = \frac{1}{m} + H(z)H_{x}(z) \]

(120)

and it remains to prove that \(G_1(z) \) is minimum-phase.

Obviously, the positivity of \(Z_0(z) \) implies that of \(\frac{1}{m} + Z_0(z) \) and this entails that the latter be nonsingular in \(|z| < 1 \). But in view of (118),

\[\det \left(\frac{1}{m} + Z_0(z) \right) = 2^m \frac{\det G_{1}(z)}{\det P_{n}(z)} \]

(121)

and it follows that \(\det G_{1}(z) \) is free of zeros in \(|z| < 1 \). \(^{11}\)

The construction of \(N \) is now completed by determining \(G_2(z) \) as the minimum-phase solution of (18). Of course, the arbitrary constant unitary matrix right-multiplier \(V \) can again be absorbed in an output 2m-port all-pass, Q. E. D.

Comment 3. The recursion in (98) was discovered (in the scalar case) by the author and published for the first time in Reference 7. It is another manifestation of the incredibly rich substructure exhibited by block-Toeplitz matrices.

It is also important to understand that the integer \(n \) is determined by the number of data and serves only as an upper bound on the degrees of \(P_{n}(z) \) and \(Q_{n}(z) \). For example, the set \(C(k) = 0 \), \(k = 1 \rightarrow n \), admits the SIP since

\[T_n = 1 > 0 \]

(122)

\(^{11}\) Actually, \(\det G_{1}(z) \neq 0 \) in \(|z| \leq 1 \).
Clearly, in this case

\[(T_n^{-1})_{1; t} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ m & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ m & m & \cdots & m \end{bmatrix} \]

(123)

and

\[E_n = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ m & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ m & m & \cdots & m \end{bmatrix} \]

(124)

so that

\[A_0 = 1_m \]

(125)

and

\[P_n(z) = 1 = 2Q_n(z) \]

(126)

are compatible choices. Thus, \(P_n(z) \) and \(Q_n(z) \) are constants and total degree reduction has occurred.

At this stage we are ready to state and prove our first major theorem which serves as the foundation stone for the multichannel spectral estimation technique developed in the next section. However, we must first insert another definition.

Def. 2. A matrix \(Z(z) \) is said to be **full-passive** if it is positive and

\[K(\theta) = \frac{Z(e^{j\theta}) + Z^*(e^{-j\theta})}{2} \]

(127)

is nonsingular for almost all \(\theta \) in \(-\pi \leq \theta \leq \pi\); i.e., if

\[\det K(\theta) \neq 0, \text{ a.e.} \]

(128)

Similarly, an \(m \times m \) matrix \(\Gamma(z) \) is **full-bounded** if it is bounded and

\[\det(1_m - \Gamma^*(e^{j\theta})\Gamma(e^{j\theta})) \neq 0, \text{ a.e.} \]

(129)

Theorem 1. Let \(C(k), k = 0 \rightarrow n \), be any given set of \(n+1 \) constant \(m \times m \) matrices such that \(C(0) = 1_m \) and \(T_n > 0 \), and let \(N \) denote the (unique) associated interpolatory \(2m \)-port defined in the corollary to lemma 4.
Let \(\mathcal{E}_n \) stand for the collection of all \(m \times m \) full-passive matrices

\[
Z(z) = 1_m + \sum_{k=1}^{n} 2C(k)z^k + O(z^{n+1}) .
\]

(130)

(Any such \(Z(z) \) is said to interpolate to the prescribed data.)

Then, the class \(\mathcal{E}_n \) coincides with the set of all \(m \times m \) positive matrices \(Z(z) \) generated by formulas (45) and (37) in which \(\rho(z) \) is an arbitrary \(m \times m \) full-bounded matrix.

Proof. For \(n = 0 \), \(\mathcal{E}_0 \) is the set of all full-passive \(m \times m \) matrices \(Z(z) \) such that \(Z(0) = 1_m \). Hence, in particular,

\[
S(z) = (Z(z) - 1_m)(Z(z) + 1_m)^{-1}
\]

is bounded and equal to \(0_m \) for \(z = 0 \). Thus, by Schwartz's lemma,

\[
S(z) = z\rho(z)
\]

(132)

\(\rho(z) \) bounded.

In other words, all positive \(Z \)'s that satisfy the interpolation constraint \(Z(0) = 1_m \) are obtained by letting \(\rho(z) \) range over all bounded \(m \times m \) matrices in the formula,

\[
Z = (1_m + z\rho)(1_m - z\rho)^{-1} .
\]

(133)

But Eq. (132) is (37) with \(H(z) = 0_m \) and \(G_1(z) = G_2(z) = 1_m \) so that the corresponding interpolatory 2m-port \(N \) has the normalized scattering description,

\[
S_n(p) = \begin{bmatrix} 0_m & 1_m \\ 1_m & 0_m \end{bmatrix} .
\]

(134)

Algebraic manipulation of Eq. (133) yields,

\[
(1_m - e^{j\beta} \rho(e^{j\beta}))^* K(\beta)(1_m - e^{-j\beta} \rho(e^{-j\beta})) = 1_m - \rho^*(e^{j\beta}) \rho(e^{-j\beta}) .
\]

(135)

\[12\] Let \(\Gamma(z) \) be an \(m \times m \) bounded matrix such that \(\Gamma(0) = 0_m \). Then [9], \(\Gamma(z)/z \) is also bounded.

III-24
Consequently, \(Z(z) \) is full-passive iff \(\rho(z) \) is full-bounded and the case \(n=0 \) is verified. For \(n \geq 1 \) we proceed by induction.

First, \(Z(z) \in \mathcal{O}_n \) obviously implies that \(Z(z) \in \mathcal{O}_{n-1} \). Let the \(2m \)-port interpolatory cascade \(N_1 \) constructed with the data \(C(k), k = 0 \rightarrow n-1 \), be parametrized as described in lemma 1 by the \(mxm \) polynomial matrix \(H_1(z) \).

Of course, degree \(H_1(z) \leq n-1 \) and \(H_1(0) = 0_{m \times m} \). Let \(G_{11}(z) \) and \(G_{12}(z) \) denote the companion left-right \(mxm \) polynomial Wiener-Hopf factors:

\[
G_{11} G_{11}^* = 1_m + H_1 H_1^* \quad (136)
\]
\[
G_{12} G_{12}^* = 1_m + H_1^* H_1 \quad (137)
\]

Also, let

\[
L_1(z) = G_{11}^{-1}(z) H_1(z) G_{12}(z) \quad (138)
\]

The induction hypothesis permits us to assert that

\[
Z = (1_m + S)(1_m - S)^{-1} \quad (139)
\]

where (Eq. (37)),

\[
S = (L_1 + z G_{11} \eta)(G_{12} + z H_1^* \eta)^{-1} \quad (140)
\]

and \(\eta(z) \) is some full-bounded \(mxm \) matrix. Thus, making the appropriate substitutions in Eq. (44) and replacing \(n \) by \(n-1 \) we obtain,

\[
\frac{S(z) - S_{10}(z)}{z^n} = G_{11}^{-1} \eta(G_{12} + z H_1^* \eta)^{-1} \quad (141)
\]

in which

\[
S_{10}(z) = G_{11}^{-1}(z) H_1(z) \quad (142)
\]

According to lemma 2, the power-series expansions of \(S(z) \) and \(S_{10}(z) \) about \(z = 0 \) agree up to \(z^{n-1} \) and this means that the quotient on the left-hand

\[12^n T_n > 0 \text{ implies that } T_{n-1} > 0. \text{ Incidentally, we already know from lemma 4 that } \mathcal{O}_n \text{ is not empty.}
\]

\[13^n \text{ This } H_1(z) \text{ must not be confused with the constant matrix } H_1 \text{ appearing in (8).}
\]
side of (141) is analytic in \(|z| < 1\). However, (139) determines the power-series expansion of \(S(z)\) up to \(z^n\) because that of \(Z(z)\) is known up to \(z^n\).

If we couple this with the observation that \(S_{10}(z)\) is completely fixed by the data \(C(k), k = 0 \rightarrow n-1\), it is concluded from (141) that

\[
\eta(0) = G_{11}(0) \cdot \frac{S(z) - S_{10}(z)}{z^n} \bigg|_{z=0} \cdot G_{12}(0)
\]

is a known quantity. Hence, \(\eta(z)\) must be selected from the class of \(m \times m\) bounded matrices which at \(z = 0\) interpolate to the prescribed value given in (143).

Clearly, \(\eta(z)\) bounded implies that \(\|\eta(0)\| < 1\) but actually, \(\|\eta(0)\| < 1\). Suppose otherwise. Then, \(1_m - \eta^*(0)\eta(0)\) is singular and there exists a vector \(\mathbf{a}\) of unit norm such that

\[
\mathbf{a} = \eta^*(0)\eta(0)\mathbf{a}.
\]

Or,

\[
\mathbf{a} = \eta^*(0)\mathbf{b}
\]

where

\[
\mathbf{b} = \eta(0)\mathbf{a}.
\]

Evidently,

\[
\mathbf{a}^*\mathbf{a} = \mathbf{b}^*\mathbf{b} = 1.
\]

Construct two constant \(m \times m\) unitary matrices \(V\) and \(U\) which incorporate \(\mathbf{a}\) and \(\mathbf{b}\), respectively, into their first columns and let

\[
\delta(z) = U^* \eta(z) V
\]

The matrix \(\delta(z)\) is \(m \times m\) and bounded and \(\delta_{1,1}(0) = 1\).

Since all elements of \(\delta(z)\) are analytic and bounded by unity in \(|z| < 1\), we conclude by maximum-modulus that \(\delta_{1,1}(z) = 1\). In turn, the requirement

\[
l_m - \delta^*(z)\delta(z) \geq 0, \quad |z| < 1,
\]

III-26
then forces all the other entries in the first row and column of \(\delta(z) \) to be identically zero so that

\[
\delta(z) = 1_1 + \delta_1(z)
\]

Thus, \(\delta_1(z) \) an \((m-1)x(m-1)\) bounded matrix. Thus,

\[
1_m - \eta^* \eta = V^*(1_m - \delta^* \delta)V = V^*(0_1 + (1_m - \delta^* \delta_1))V
\]

is clearly singular for all \(|z| < 1\) which contradicts the full-bounded character of \(\eta(z) \). Consequently,

\[
1_m - \eta^*(0) \eta(0) > 0
\]

and the renormalization scheme described in Appendix B becomes available.

Let \(R_a \) and \(R_b \) be any pair of hermitean matrix solutions of the Eqs.,

\[
R_a^2 = 1_m - \eta(0) \eta^*(0)
\]

\[
R_b^2 = 1_m - \eta^*(0) \eta(0)
\]

Then, from Schwartz's lemma and the renormalization theorem in Appendix B,

\[
R_a (1_m - \eta \eta^*(0))^{-1} (\eta - \eta(0)) R_b^{-1} = z \rho(z)
\]

\(\rho(z) \) an \(mxm \) bounded matrix. In addition, it is seen from Eq. (B10) that \(\eta(z) \) is full-bounded iff \(\rho(z) \) if full-bounded. The last step is to solve (155) for \(\eta(z) \), substitute into (140) and then rearrange properly.

The end result is

\[
S = (L + z \tilde{G}_1 \rho)(G_2 + z \tilde{H} \rho)^{-1}
\]

where

\[
H = R_a^{-1}(H_1 + z \eta(0) \tilde{G}_2) \quad G_1 = R_a^{-1}(G_1 + z \eta(0) \tilde{L}_1)
\]
The proof that $G_1(z)$ and $G_2(z)$ are minimum-phase is easy. For example, since

$$G_1 = R_a^{-1}(1_m + z\eta(0)\tilde{L}_1G_{11}^{-1})G_{11}$$

(159)

it is clear that G_1 is minimum-phase iff the middle factor in (159) is minimum-phase. But $L_1 = G_{11}^*H_1G_{12}^{-1}$ so that $\tilde{L}_1 = G_{12}^{-1}\tilde{H}_1G_{11}$ and

$$\tilde{L}_1G_{11}^{-1} = G_{12}^{-1}\tilde{H}_1$$

(160)

However, from (137) and maximum-modulus it is seen that $G_{12}^{-1}(z)\tilde{H}_1(z)$ is bounded. Thus, since $\|z\eta(0)\| < 1$, for $|z| < 1$,

$$1_m + z\eta(0)\tilde{L}_1(z)G_{11}^{-1}(z)$$

(161)

is a positive matrix and its determinant is necessarily devoid of zeros in $|z| < 1$. A similar proof applies of course to $G_2(z)$.

Equations (157) and (158) can be combined into the single matrix version,

$$\begin{bmatrix} G_1 & H \\ L_2 & G_2 \end{bmatrix} = T(z) \begin{bmatrix} G_{11} & H_1 \\ L_1 & G_{12} \end{bmatrix}$$

(162)

where

$$T(z) = (R_a^{-1} + R_b^{-1}) \begin{bmatrix} 1_m & z^n\eta(0) \\ z^{-n}\eta^*_0 & 1_m \end{bmatrix}$$

(163)

Let

$$\sigma_p = \begin{bmatrix} 1_m & 0_m \\ 0_m & -1_m \end{bmatrix}$$

Then, by direct verification,
and
\[L_{12} = G_{12}^* G_{12} = G_{12}^* H_1 G_{11}^* G_{11}^* H_1^{-1} G_{12}^* G_{12}^{-1} = G_{12}^* (H_1 G_{11}^*) G_{12}^{-1} = -1_m. \] (164a)

Hence,
\[
\begin{bmatrix}
G_1 & H \\
L_1 & G_2^*
\end{bmatrix}
\in P
\begin{bmatrix}
G_1 & H \\
L_1 & G_2^*
\end{bmatrix}
= \in P ;
\] (165)

i.e.,
\[G_1 G_1^* = 1_m + H H_1^* , \] (166)

\[G_2 G_2^* = 1_m + H_1^* H . \] (167)

and
\[L = G_1^{-1} H G_2 = G_1^* H G_2^{-1} . \] (168)

In short, it has been shown that every member of \(\mathcal{N} \) can be synthesized by an appropriate full-bounded termination of the output-side of the 2m-port \(N \) defined by \(H(z) \).\(^{14}\) Since part 3) of lemma 3 assures us that this 2m-port is an essentially unique construct from the full set of coefficients \(C(0), C(1), \ldots, C(n) \), the proof of theorem 1 is complete, Q.E.D.

In the next section the procedure developed in theorem 1 will be given a condensed algorithmic formulation and then applied to the problem of spectral estimation.

\[^{14}\text{Note that degree } H(z) \leq n \text{ and } H(0) = 0_m.\]
IV. THE CLASS OF ALL SPECTRAL ESTIMATORS

Let us now suppose that we have available \(n+1 \) error-free \(mxm \) covariance samples \(C(0), C(1), \ldots, C(n) \) of an \(m \)-dimensional full-rank random vector process \(\mathbf{x}_t \). We shall produce a parametric formula for the class of all spectral densities \(K(\theta) \) consistent with the given data.

Theorem 2 (The Master Result). Let \(\mathbf{x}_t \) denote a full-rank \(m \)-dimensional random vector-process and suppose that its first \(n+1 \) matrix \(mxm \) covariance samples \(C(0), C(1), \ldots, C(n) \) are known without error.

Let \(T_n \) and \(T_n(-1) \) denote the Toeplitz matrices constructed on \(C(0), C(1), \ldots, C(n) \) and on the \"reversed\" data \(C(0), C(-1), \ldots, C(-n) \), respectively. (Clearly, \(T_n(-1) \) is obtained by replacing each block \(C(k) \) in \(T_n \) by \(C(-k) \), \(k = 0 \to n \).)

Let

\[
\mathbf{F}(z) = \begin{pmatrix} 1 & z_1 & \cdots & z_m \\ & 1 & \cdots & 0 \\ & & \ddots & \vdots \\ & & & 1 \\ \end{pmatrix}
\]

(169)

Then, the following 3-step algorithm generates all spectral density matrices \(K(\theta) \) compatible with the given data.

1) Affect the (unique) Gauss factorizations,

\[
T_n = \Delta_n^* \Delta_n, \quad T_n(-1) = \Delta_n^*(-1) \Delta_n(-1)
\]

(170)

where \(\Delta_n \) and \(\Delta_n(-1) \) are both lower-triangular with positive diagonal scalar entries. Let \(M_n \) and \(M_n(-1) \) represent the two submatrices formed with the first \(m \) columns of \(\Delta_n^{-1} \) and \(\Delta_n^{-1}(-1) \), respectively.

2) Define two \(mxm \) polynomial matrices

\[
P_n(z;1) = M_n^* \mathbf{F}(z)
\]

(171)

and

\[
P_n(z;-1) = \mathbf{F}^t(z) M_n(-1)
\]

(172)

of degrees \(\leq n \) and let

\[
P_n(z;-1) = z^n P_n^*(z;-1).
\]

III-30
Then, \(D_n(z) = P_n(z;1) - zp(z)\overline{P_n(z;-1)} \) \hspace{1cm} (173)

3) Then, \(16\)

\[
K(\theta) = D_n^{-1}(e^{i\theta})\left(1_m - \rho(e^{i\theta}) \rho^*(e^{i\theta})\right)D_n^{-1}(e^{i\theta})
\] \hspace{1cm} (174)

where \(\rho(z) \) is an arbitrary full-bounded \(m \times m \) function.

Proof. Assume that \(C(0) = 1_m \) and let us show that \(P_n(z;1) = P_n(z) \).

As we known, \(P_n(z) = X_n(z) \) where

\[
X = (A^*_n)^{-1} \cdot (T_n^{-1})_1;
\] \hspace{1cm} (175)

and

\[
A^*_nA_0 = (1_m - E_nT_n^{-1}E^*_n)^{-1}.
\] \hspace{1cm} (176)

But clearly, from \(T_n^{-1} = \Delta_n^{-1}(\Delta_n^*)^{-1} \) and the lower-triangular character of \(\Delta_n \), it follows immediately that

\[
(T_n^{-1})_1 = \Delta_0^{-1} \cdot M^*_n
\] \hspace{1cm} (177)

where \(\Delta_{00} \) is the upper left-hand corner \(m \times m \) piece in \(\Delta_n \). Furthermore, since the matrix on the right-hand side of (176) is the upper left-hand corner \(m \times m \) piece in \(T_n^{-1} \), we can also make the identification,

\[
A^*_0 = \Delta_0^{-1}.
\] \hspace{1cm} (178)

Thus,

\[
X = \Delta_{00} \cdot \Delta_0^{-1} \cdot M^*_n = M^*_n
\] \hspace{1cm} (179)

and \(P_n(z) = M^*_n_x(z) = P_n(z;1) \). To arrive at an understanding of the meaning of \(P_n(z;-1) \) we must derive a general expression for \(K(\theta) \).

Let \(C(k) \) denote the covariance function of the full-rank process \(\mathcal{X}_t \). Then necessarily,

\[
D_{n\theta}(e^{i\theta}) = D_n^{\theta}(e^{i\theta}), \ \theta \ \text{real}.
\]

III-31
\[T_k > 0 \quad \text{and} \quad T_k(-1) > 0 \quad , \quad k = 0 \to \infty \quad . \]

Hence, invoking the multivariable Schur theorem,

\[Z(z) = 1_m + \sum_{k=1}^{\infty} 2C(k) z^k \quad (181) \]

is a positive \(mxm \) matrix.

Clearly,

\[K(\theta) = \sum_{k=-\infty}^{\infty} C(k) e^{ik\theta} = \frac{Z(e^{i\theta}) + Z^*(e^{i\theta})}{2} \quad (182) \]

where

\[Z(e^{i\theta}) = \lim_{r \to 1-0} Z(re^{i\theta}) \quad . \quad (183) \]

To describe all spectral densities \(K(\theta) \) consistent with the data it is sufficient to exhibit a formula for the hermitean parts of all full-passive \(mxm \) matrices,

\[Z(z) = 1_m + \sum_{k=1}^{\infty} 2C(k) z^k + 0(z^{n+1}) \quad . \quad (184) \]

As a preliminary step we shall use lemma 2 to generate all corresponding \(mxm \) bounded functions,

\[S(z) = (Z(z) - 1_m)(Z(z) + 1_m)^{-1} \quad . \quad (185) \]

Indeed, every such \(S(z) \) is given by Eq. (37) with \(\phi(z) \) an arbitrary full-bounded \(mxm \) matrix. Nevertheless, it turns out to be more convenient to work with the equally valid expression

\[S(z) = (G_1 + z\phi L)^{-1}(H + z\phi G_2) \quad , \quad (186) \]

that is obtained by reducing

III-32
\[S = S_{11} + S_{12}(1_m - \Gamma S_{22})^{-1} \Gamma S_{21} \]

instead of (26).

A straightforward calculation with the aid of (186) yields, for \(|z| = 1\),

\[(G_1 + z\rho \tilde{L})(1_m - SS^*)(G_1 + z\rho \tilde{L})^* = 1_m - \rho \rho^* . \]

(188)

Or, since

\[\frac{Z + Z^*}{2} = (1_m - S)^{-1}(1_m - SS^*)(1_m - S^*)^{-1} \]

and

\[1_m - S = (G_1 + z\rho \tilde{L})^{-1}(G_1 - H - z\rho(\tilde{G}_2 - \tilde{L})) , \]

we obtain

\[\frac{Z + Z^*}{2} = D_n^{-1}(1_m - \rho \rho^*)D_n^* , \quad |z| = 1 \]

(191)

where

\[D_n(z) = G_1(z) - H(z) - z\rho(z)(\tilde{G}_2(z) - \tilde{L}(z)) . \]

Hence,

\[D_n(z) = P_n(z;1) - z\rho(z)\tilde{P}_n(z;-1) \]

(193)

if it can be demonstrated that

\[P_n(z;-1) = G_2(z) - L(z) \]

agrees with (172).

From Eqs. (25) and (39),

\[L G_2^{-1} = G_1^{-1} H = S_0 \]

(195)

so that

III-33
\[Z_0 = (1_m + S_0)(1_m - S_0)^{-1} = (G_2 + L)(G_2 - L)^{-1} \] \hspace{1cm} (196)

Thus,
\[\frac{Z_0 + Z_0^*}{2} = ((G_2 - L)(G_2^* - L^*))^{-1} \] \hspace{1cm} (197)

i.e.,
\[(G_2 - L) \cdot \frac{Z_0 + Z_0^*}{2} = Z^n \cdot (G_2 - L)^{-1} \] \hspace{1cm} (198)

Since
\[G_2^*(z)G_2(z) = 1_m + L_\omega(z)L(z) \] \hspace{1cm} (199)

it follows that \(\| S_0(z) \| < 1, |z| < 1 \). Hence,
\[(1_m - S_0(z))G_2(z) = G_2(z) - L(z) \] \hspace{1cm} (200)

is nonsingular in \(|z| < 1 \) and the exact same reasoning used in lemma 3 to derive (171) also yields (172) when applied to (198).

To complete the proof we must remove the restriction \(C(0) = 1_m \) and this is accomplished by exploiting the following series of observations.

\(O_1 \). There exists a lower-triangular matrix \(R_0 \) with positive diagonal entries such that
\[(R_0^*)^{-1}C(0)R_0^{-1} = 1_m \] \hspace{1cm} (201)

\(O_2 \). The use of (174) in conjunction with the normalized data
\[(R_0^*)^{-1}C(k)R_0^{-1}, \ k = 0 \rightarrow n \] \hspace{1cm} (202)

is tantamount to reconstructing all admissible normalized spectral densities,
\[(R_0^*)^{-1}K(\theta)R_0^{-1} \] \hspace{1cm} (203)

III-34
The lower-triangular factorizations associated with the "forward" and "reverse-direction" Toeplitz matrices constructed on these normalized samples equal, respectively, $\Lambda_n(1)$ and $\Lambda_n(-1)$ multiplied on the right by

$$\Lambda_o^{-1} = (R_o \uparrow R_o \uparrow \ldots \uparrow R_o)^{-1}.$$ \hspace{1cm} (204)

Thus,

$$M_n(1) \to \Lambda_o M_n(1),$$ \hspace{0.5cm} (205)

$$M_n(-1) \to \Lambda_o M_n(-1),$$ \hspace{0.5cm} (206)

$$P_n(z;1) \to M_n^*(1) \Lambda_o^* \xi(z),$$ \hspace{0.5cm} (207)

$$P_n(z;-1) \to \xi^*(z) \Lambda_o M_n(-1)$$ \hspace{0.5cm} (208)

and

$$D_n(z) \to M_n^*(1) \Lambda_o^* \xi(z) - z \rho(z) M_n^*(-1) \Lambda_o^* \xi^*(z) \equiv \hat{D}_n(z).$$ \hspace{0.5cm} (209)

Since

$$(R_o^*)^{-1} K R_o^{-1} = \hat{D}_n^{-1} (1 - \rho \phi^*) \hat{D}_n^*,$$ \hspace{0.5cm} (210)

we see that

$$K = \frac{D_n^{-1} (1 - \rho \phi^*) \hat{D}_n^*}{\hat{D}_n}$$ \hspace{0.5cm} (211)

where

$$\hat{D}_n(z) = \hat{D}_n \cdot (R_o^*)^{-1} = M_n^*(1) \xi(z) - z \rho(z) M_n^*(-1) \xi^*(z) = P_n(z;1) - z \rho(z) \hat{P}_n(z;-1) = \hat{D}_n(z).$$ \hspace{0.5cm} (212)

Q.E.D.

Comment 4. The simplicity of the general formula (174) is truly remarkable, especially when it is realized that $P_n(z;1)$ and $P_n(z;-1)$ are intimately related to the right and left matrix orthogonal polynomials defined by the sequence $C(k), k = 0 \to n$. This means [6, 10] that both can be generated recursively (and simultaneously) by readily available and highly efficient algorithms of the Levinson type, thereby obviating any need to compute the inverses Δ_n^{-1} and $\Delta_n^{-1}(-1)$.

III-35
Although we intend to resume our studies of these matters in depth we shall nevertheless give the explicit connection formulas for the benefit of the reader who wishes to proceed directly to the numerical implementation of (174).

Namely, if $\Delta^{(n)}_{00}$ and $\Delta^{(n)}_{00}(-1)$ denote the upper left-hand corner $m \times m$ blocks in Δ_n and $\Delta_n(-1)$, respectively, and if $Q^{(n)}(z)$ and $R^{(n)}(z)$ represent, in the same order, the monic left and right degree-n matrix orthogonal polynomials alluded to above, then [6],

$$Q^{(n)}(z) = \tilde{P}^{(n)}_n(z;1)\Delta^{(n)}_{00}$$

(212a)

and

$$R^{(n)}(z) = \Delta^{(n)*}_{00}(-1)\tilde{P}^{(n)}_n(z;-1)$$

(212b)

Consequently, Eqs. (136)-(142) in Reference 6 become immediately available after a suitable 1-1 map of some of the symbols.
V. THE MULTICHANNEL FLAT-ECHO ESTIMATOR

Under the assumption that x_t is a full-rank random vector-process with absolutely continuous spectral function, a knowledge of its covariance samples $C(0)$, $C(1)$, ..., $C(n)$ permits us to assert that all admissible interpolatory $K(\theta)$ are given by (174) where $\rho(z)$ is any full-bounded $m \times m$ function.

Evidently, as is seen from this expression, $K(\theta)$ satisfies Paley-Wiener iff the same is true of

$$1_m - \rho(e^{j\theta}) \rho^*(e^{j\theta}) .$$

This granted, there exists [6] an $m \times m$ bounded matrix function $B_\rho(z)$ which is analytic together with its inverse in $|z| < 1$, such that

$$1_m - \rho(e^{j\theta}) \rho^*(e^{j\theta}) = B_\rho(e^{j\theta})B_\rho^*(e^{j\theta})$$

(213)

for almost all θ in $-\pi < \theta < \pi$.

From (213) and (174) it follows that

$$K(\theta) = B(e^{j\theta})B_\rho^*(e^{j\theta})$$

(214)

where

$$B(z) = D_n^{-1}(z)B_\rho(z)$$

(215)

is also analytic together with its inverse in $|z| < 1$. Hence, formula (215) constitutes a complete parametrization of the set of all admissible spectral density Wiener-Hopf factors consistent with the given data, in terms of the free bounded matrix-function parameter $B_\rho(z)$.

Since

$$B(0) = D_n^{-1}(0)B_\rho(0) = P_n(0;1)B_\rho(0) = P_n(0)B_\rho(0)$$

(216)

and

$$1_m - B_\rho(0)B_\rho^*(0) \geq 0$$

(217)

Remember that $P_n(z)$ and $P_n(z;1)$ are identical.

III-37
we see that
\[P_n(0)P_n^*(0) - B(0)B^*(0) = P_n(0)(1_m - B^*(0)B(0))P_n^*(0) \geq 0. \] (218)

In particular, \(^{18}\)
\[|\det P_n(0)| \geq |\det B(0)|. \] (219)

Furthermore, because \(P_n(0)\) is nonsingular, equality in (219) is possible iff \(B^*(0)\) is a unitary matrix. But then, it follows routinely from maximum-modulus that \(B^*(z) = B(0)\) for all \(z\) and this in turn implies that
\[\rho(z) = 0_m. \] (220)

According to (173) and (174), \(\rho(z) = 0_m\) corresponds to the choice of estimator
\[K_{ME}(\theta) = (P_n(\theta P_n(\theta P_n^*(\theta P_n^*(\theta))))^{-1} \] (221)

and invoking the result\(^ {19}\)
\[2\ln |\det P_n(0)| + 2\ln |\det B(0)| = 2\ln |\det B(0)| = \frac{1}{2\pi} \int_{-\pi}^{\pi} \ln \det K(\theta) d\theta = \text{Entropy} (K), \] (222)

it is immediately concluded that \(K_{ME}(\theta)\) is the maximum-entropy estimator \([11]\). In other words, \(K_{ME}(\theta)\) is obtained by the termination of the basic interpolatory \(2m\)-port \(N\) in a matched \(m\)-port load, \(\Gamma(z) = 0_m\).

Alternatively, it is seen from (174) that the entropy of any admissible \(K(\theta)\) associated with the choice of bounded function \(\rho(z)\) is given by, \(^ {20}\)
\[\text{Entropy}(K) = \text{Entropy}(K_{ME}) - \frac{1}{2\pi} \int_{-\pi}^{\pi} \ln \det^{-1} (1_m - \rho(e^{i\theta})^* \rho(e^{i\theta})) d\theta \leq \text{Entropy}(K_{ME}). \] (223)

\(^{18}\)If \(A\) and \(B\) are both hermitean nonnegative-definite, \(\det(A + B \geq \det A + \det B\).

\(^{19}\)Apply Cauchy's theorem to the analytic function \(\ln \det B(z)\) and observe that
\[\det K(\theta) = |\det B(e^{i\theta})|^2. \]

\(^{20}\)Since \(1_m - \rho(e^{i\theta})^* \rho(e^{i\theta}) \geq 0\), a.e., the reciprocal of its determinant is a number which is greater than unity for almost all \(\theta\).
Clearly, equality is possible iff \(\rho(e^{j\theta}) = 0 \) a.e. in \(-\pi \leq \theta \leq \pi\); i.e., iff \(K(\theta) = K_{ME}(\theta) \).

In view of (223), it is legitimate to define

\[
\frac{1}{2\pi} \ln \det^{-1}(1_m - \rho(e^{j\theta})\rho^*(e^{j\theta}))
\]

(224)
to be the entropy echo-loss density at angle \(\theta \). A flat-echo estimator (an FEE) is one for which this density is a constant independent of \(\theta \).

One particularly simple (and numerically effective way) to generate FEE's is to choose

\[
\rho(z) = \mu d(z)
\]

(225)
where \(\mu \) is an arbitrary constant \(m \times m \) matrix such that

\[
1_m - \mu \mu^* > 0
\]

(226)
and \(d(z) \) is an arbitrary rational \(m \times m \) regular paraconjugate unitary matrix.

Thus, for this subset of FEE's,

\[
K_{FE}(\theta) = D_n^{-1}(e^{j\theta})(1_m - \mu \mu^*)D_n^{-1}(e^{j\theta})
\]

(227)
where

\[
D_n(z) = P_n(z) - z \mu d(z) \bar{P}_n(z; -1)
\]

(228)
and

\[
\text{Entropy}(K_{FE}) = \text{Entropy}(K_{ME}) - \ln \det^{-1}(1_m - \mu \mu^*)
\]

(229)
Note, that the entropy of \(K_{FE}(\theta) \) can be fixed in advance by an appropriate assignment of \(\mu \) and \(d(z) \) can then be designed to accomplish the necessary tuning. The latter emerges as a problem of interpolation with regular \(m \times m \) matrix all-passes.

Although a complete (recursive) solution has already been obtained for the case \(m = 1 \) [1], much work remains to be done for general \(m \).

\[d(z)d_\phi(z) = \phi_\phi(z)d(z) = 1_m \text{ and } d(z) \text{ is analytic in } |z| \leq 1.\]
REFERENCES

III-40
APPENDIX A

The Multivariable Schur Theorem. The power series

\[Z(z) = 1_m + \sum_{k=1}^{\infty} z^k C(k) \]

defines an \(m \times m \) positive matrix in \(|z| < 1 \), iff \(T_k > 0, \ k = 1 \rightarrow \infty \).

Proof. Suppose that \(Z(z) \) is positive. Then, by definition, \(Z(z) \) is analytic in \(|z| < 1 \) and

\[\frac{Z(z) + Z^*(z)}{2} > 0, \ |z| < 1. \]

Hence, for every fixed \(r, \ 0 < r < 1 \), and for every \(m \times m \) trigonometric polynomial matrix

\[f(\theta) = f_0 + f_1 e^{-j\theta} + \ldots + f_k e^{-jk\theta}, \]

\(\theta \) real, \(k \geq 1 \),

\[\frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta) \cdot \frac{Z(re^{j\theta}) + Z^*(re^{-j\theta})}{2} \cdot f(\theta) d\theta > 0. \]

Or, carrying out the integration,

\[\sum_{k \geq 1} r^k |q| \cdot r^k \cdot C(q-k) f_q > 0 \]

where \(C(0) = 1_m \).

In the limit as \(r \rightarrow 1 - 0 \) with \(k \) held fixed, (A6) goes into

\[\sum_{k \geq 1} r^k \cdot C(q-k) f_q > 0 \]

III-41
and because of the arbitrary character of the \(m \times m \) matrices \(f_0, f_1, \ldots, f_k \), we conclude that \(T_k > 0 \).

Sufficiency. From \(T_k > 0 \) we deduce, in particular, that

\[
\begin{bmatrix}
1_m & C(k) \\
C^*(k) & 1_m
\end{bmatrix} \geq 0 ;
\]

i.e., for every \(k \geq 0 \),

\[
\| C(k) \| \leq 1 .
\]

Thus, if \(Z(z) \) is defined by (A1) we obtain the estimate,

\[
\| Z(z) \| \leq 1 + \sum_{k=1}^{\infty} 2 \| C(k) \| \cdot |z|^k \leq 1 + \sum_{k=1}^{\infty} 2 |z|^k = \frac{1 + |z|}{1 - |z|} < \infty ,
\]

\(|z| < 1 \). Consequently, \(Z(z) \) is analytic in \(|z| < 1 \) and it only remains to demonstrate its positivity.

This can be achieved by observing [5] that

\[
\frac{Z(z) + Z^*(z)}{2(1-zz)} = \sum_{l=0}^{\infty} z^l \frac{\sum_{k=0}^{\infty} C(k)z^k + \sum_{k=1}^{\infty} C(-k)z^{-k}}{z^{l+k} - z^{l-k}}
\]

\[
= \sum_{l=0}^{\infty} \sum_{k=0}^{\infty} C(k)z^{l+k} + \sum_{l=0}^{\infty} \sum_{k=1}^{\infty} C(-k)z^{l-k}
\]

\[
= \sum_{\alpha=0}^{\infty} \sum_{\beta=0}^{\infty} C(\alpha - \beta)z^{\alpha} \bar{z}^{\beta} + \sum_{\alpha=0}^{\infty} \sum_{\beta=\alpha+1}^{\infty} C(\alpha - \beta)z^{\alpha} \bar{z}^{\beta}
\]

III-42
\[\lim_{\alpha, \beta \to 0} \sum_{k=0}^{\infty} f_{\beta} C(\alpha-\beta) f_{\alpha} > 0\]

where

\[f_{\alpha} = z^{\alpha} \lambda^{m} \text{, } \alpha = 0 \to \infty\]

(In reaching (A15) we have used (A7) and have also noted that the first sum in (A14) contains all the elements on and above the main diagonal of the doubly-infinite array

\[\{C(\alpha-\beta)z^{\alpha-\beta}\} \text{, } \alpha, \beta = 0 \to \infty\]

while the second contains all those strictly below.)

Since \(1 - |z|^2 > 0\) for \(|z| < 1\), (A15) yields

\[\frac{Z(z) + Z^*(z)}{2} > 0 \text{, } |z| < 1\]

and \(Z(z)\) is positive, Q. E. D.
APPENDIX B

Our proof of theorem 1 made use of the following interesting result long known to network theorists.

The Renormalization Theorem. Let C_o be any constant $m \times m$ matrix such that $\|C_o\| < 1$. Let R_a and R_b denote, respectively, any pair of hermitean $m \times m$ matrix solutions of the two equations,

\[R_a^2 = 1_m - C_o C_o^* \tag{B1} \]

and

\[R_b^2 = 1_m - C_o^* C_o \tag{B2} \]

Then, if $W(z)$ is an $m \times m$ bounded matrix, so is

\[\Gamma(z) = R_a (1_m - WC_o^*)^{-1} (W - C_o) R_b^{-1} \tag{B3} \]

Proof. The obvious identity

\[C_o^* (1_m - C_o C_o^*)^{-1} = (1_m - C_o^* C_o)^{-1} C_o^* \tag{B4} \]

eyields,

\[C_o^* R_a^{-2} = R_b^{-2} C_o \tag{B5} \]

Hence, upon multiplying both sides of (B5) on the left by C_o we obtain

\[R_a^{-2} = 1_m + C_o R_b^{-2} C_o \tag{B6} \]

Similarly,

\[R_b^{-2} = 1_m + C_o^* R_a^{-2} C_o \tag{B7} \]

To establish the boundedness of $\Gamma(z)$ it is necessary to prove that

\[1_m - \Gamma(z) \Gamma^*(z) \geq 0 \quad |z| < 1 \tag{B8} \]
From (B3), (B1), and (B2) we obtain,

\[
\begin{align*}
(1_m - WC_0^*) R_a^{-1} (1_m - \Gamma^*) R_a^{-1} (1_m - C_0 W^*) &= (1_m - WC_0^*) R_a^{-2} (1_m - C_0 W^*) (W - C_0) R_b^{-2} (W - C_0^*) \\
&= R_a^{-2} W R_b^{-2} W^* - C_0 W R_b^{-2} C_0^* + W C_0^* R_a^{-2} C_0 W^* \\
&+ C_0 R_b^{-2} W^* - R_a^{-2} C_0 W^* + W R_b^{-2} C_0^* - W C_0^* R_a^{-2} \\
&= 1_m - W W^*.
\end{align*}
\]

(B9)

Thus,

\[
1_m - \Gamma^* = R_a (1_m - WC_0^*)^{-1} (1_m - W W^*) (1_m - C_0 W^*)^{-1} R_a > 0
\]

(B10)

since \(1_m - W W^* > 0\) (by hypothesis), Q.E.D.

The proof of the following impedance version is considerably simpler and is therefore omitted [8].

Corollary. Let \(C_0\) be a constant \(m \times m\) matrix such that

\[
R_o = \frac{C_0 + C_0^*}{2} > 0.
\]

(B11)

Let \(R_o^{1/2}\) equal the (unique) hermitean positive-definite square-root of \(R_o\).

Then, if \(W(z)\) is an \(m \times m\) positive matrix,

\[
\Gamma(z) = R_o^{-1/2} (W - C_0) (W + C_0^*)^{-1} R_o^{1/2}
\]

is an \(m \times m\) bounded matrix.

NOTE: By inverting (B12) we obtain

\[
W(z) = R_o^{1/2} (1_m + \Gamma) (1_m - \Gamma) R_o^{1/2} + \frac{C_0 - C_0^*}{2}.
\]

(B13)

In particular, if \(C_0\) is also hermitean, \(R_o = C_0\) and

\[
W(z) = C_o^{1/2} (1_m + \Gamma) (1_m - \Gamma)^{-1} C_o^{1/2}.
\]

(B14)

1 By starring both sides of (B5) we get \(R_a^{-2} C_0 = C_o R_b^{-2} \).

III-45
PART IV

Some Observations and Suggestions for New Work

by

Haywood E. Webb Jr.
IV. SOME OBSERVATIONS AND SUGGESTIONS FOR NEW WORK

The discussion on The Interpolatory Cascade, in Part I indicates that every admissible spectral estimator can be interpreted as the real part of the driving point impedance of a cascade of uniform transmission lines of characteristic impedances given by (63) terminated in an arbitrary load impedance \(W(Z) \) as shown in Fig 1. For given sample covariance data, it is a different load impedance that corresponds to a different spectral estimator. The FEE is a particular class of estimators which provides a set of "tuning" parameters. The setting of all the work here is in a discrete setting. It is the digital computer implementation that drives the discrete setting. We recall that a process with a continuous covariance function, in order to be non deterministic, must satisfy the continuous analogue of (7) Part 1.

\[
\int \left| \log A(w) \right| \frac{dw}{1+w^2} < \infty \tag{1}
\]

Where \(A(w) \) is here the spectrum obtained from the Fourier transform of the covariance. But note also, that any function which satisfies (1) is not bandlimited, so that a discrete sampling representation introduces aliasing errors at the outset, and the problem, from a continuous viewpoint, is improperly formulated. The concept of entropy does not make sense.

In the network formulation of the spectral estimation problem, the discrete cascade, can be generalized to a distributed continuous transmission line. Again, we conjecture, that every admissible spectrum obtainable by a "continuation" of a segment of the covariance function, can be obtained by a non-uniform transmission line with a shunt capacitor, terminated in an arbitrary positive real load impedance. It would be interesting to maximize the continuous analogue (1) in this section to (7) in Part 1.

Note that under these circumstances that (1) of Part IV cannot become infinite under the assumptions. After all, (1) of Part IV is a necessary and sufficient condition that the inverse Fourier transform of \(A(w) \) not be quasi-analytic i.e., not be uniquely deterministic over its domain from its derivatives at a point.

It is proposed that further exploration of the continuous problem be made, and that after understanding it, that digital computer implementations be considered in the light of the results.
MISSION

of

Rome Air Development Center

RADC plans and executes research, development, test and selected acquisition programs in support of Command, Control, Communications and Intelligence (C3I) activities. Technical and engineering support within areas of technical competence is provided to EDP Program Offices (POs) and other EDP elements. The principal technical mission areas are communications, electromagnetics guidance and control, surveillance of ground and air-based objects, information data collection and handling, information network design, ionospheric propagation, solar-terrestrial relations, physics and electronic reliability, automation, and compatibility.