CONTRACTOR REPORT ARLCD-CR-82006

INSULATION OF NITROCELLULOSE BOILING TUBS
AT RADFORD ARMY AMMUNITION PLANT

CHARLES H. JOHNSON
HERCULES INCORPORATED
RADFORD ARMY AMMUNITION PLANT
RADFORD, VA 24141

SAM M. MOY
PROJECT ENGINEER
ARRADCOM

MARCH 1982

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND
LARGE CALIBER
WEAPON SYSTEMS LABORATORY
DOVER, NEW JERSEY

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
The views, opinions, and/or findings contained in this report are those of the author and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other documentation.

Destroy this report when no longer needed. Do not return to the originator.

The citation in this report of the names of commercial firms or commercially available products or services does not constitute official endorsement or approval of such commercial firms, products, or services by the US Government.
INSULATION OF NITROCELLULOSE BOILING TUBS AT RADFORD ARMY AMMUNITION PLANT

Authors: Charles H. Johnson, Hercules Incorporated
Sam M. Noy, Project Engineer, ARRAICOM

Performing Organization:
Radford Army Ammunition Plant
Hercules Incorporated
Radford, VA 24141

Controlling Office:
ARRADCOM, TSD
STINFO Div (DRDA-R-TSS)
Dover, NJ 07801

Distribution Statement:
Approved for public release; distribution unlimited.

Supplementary Notes:
This project was accomplished as part of the U.S. Army's Manufacturing Methods and Technology Program. The primary objective of this program is to develop, on a timely basis, manufacturing processes, techniques, and equipment for use in production of Army materiel.

Key Words:
- Foamglas insulation
- Automatic steam control
- Boiling tub
- Propellant manufacturing
- Nitrocellulose purification
- MMT-Energy conservation
- Energy conservation

Abstract:
The sidewall of a stainless steel nitrocellulose (NC) boiling tub was thermally insulated with a 2-inch-thick layer of Foamglas®. Evaluation of steam usage was conducted and an energy saving of 155.8 kg steam per hour per tub was realized. No adverse effects on NC properties were detected due to boiling tub insulation. The design criteria information for insulating other NC boiling tubs was established.
CONTENTS

Introduction 1

Preliminary Study 1

Material Selection and Application for NC Purification 1
Tank Insulation 2
Steam Usage 3
Economic Analysis 5
NC Characterization 5

Conclusions and Recommendations 6

Appendixes

A Economic Analysis--Boiling Tub Top 19

B Economic Analysis--Boiling Tub Sides (Theoretical) 23

Distribution List 27
TABLES

1 Normal steam consumption—manually controlled uninsulated boiling tub 7
2 Steam measurements during on-boil cycle 8
3 Nitrocellulose characterization 9

FIGURES

1 Typical boiling tub cycle 13
2 Idealized poacher cycle 14
3 Boiling tub insulation details 15
4 Top of boiling tub 16
5 Steam monitoring and control of one boiling tub 17
INTRODUCTION

The purpose of this project was to select, install, and evaluate a thermal insulation system for stainless steel boiling tubs at Radford Army Ammunition Plant (RAAP) and other Army Ammunition Plants.

The boiling and poaching operations of nitrocellulose (NC) purification require a series of hot water boils requiring boiling times from 1 hour to 84 hours (figs. 1 and 2). The water/NC slurry is heated with 40 pounds of steam either by percolation or by injecting the steam into the slurry. During the time that boiling and poaching tubs are being brought to the proper temperature, and the time this temperature is maintained, heat is lost through conduction and radiation from the stainless steel sides. In view of the escalating cost of energy, it was apparent that a substantial energy savings could be effected if a safe insulating system could be designed. The design criteria for the insulation system and the economic analysis of the energy saved were necessary to make a valid assessment.

PRELIMINARY STUDY

A foam-type insulation was applied to boiling tubs at Indiana Army Ammunition Plant in the 1950s. The tops of the tubs were not insulated; therefore, splash shields were installed at the periphery of the top edge to prevent NC from collecting between the insulation and tub sides. This insulation system was unsuccessful because it did not prevent NC collection; consequently, fires occurred between the insulation and tub sides on process startup in 1969. This required that all insulation be removed from boiling tubs.

A Foamglas\(^1\) insulation system, applied to the surfaces of large stainless steel tanks used in kraft paper manufacturing, was examined at Champion International Corporation, Canton, North Carolina. Champion solved the problem of material's collecting between the insulation and tank sides by insulating the tops of each tank to prevent the flow of material into these areas. However, the tops of the boiling tubs at RAAP could not be insulated and sealed because of the openings in the tops. To prevent the NC from getting between the tank wall and the insulation, a flange was placed at the top of the tank to extend the top out beyond the insulation.

Material Selection and Application for NC Purification

The insulating material had to meet the following criteria to be included as a candidate:

\(^1\) Manufactured by Pittsburg-Corning.
1. Zero permeability per ASTM C355
2. Low thermal expansion
3. High relative compressive strength
4. Lightweight
5. Impervious to nitric and sulfuric acids
6. Noncombustible per ASTM-E-136
7. Possess thermal insulating qualities

Foamglas was the only material that met all of these requirements even though its insulating potential is less than other materials evaluated.

Particular attention was given to material selection that would prevent tank surface corrosion and provide positive tank surface contact. Also, the material should not permit NC or moisture penetration if it becomes contaminated with the slurry.

A final requirement was that the NC stability remain unaffected by the reduced energy required by this purification process.

Tank Insulation

The tank was prepared to receive the insulation by welding two flanges around the periphery of the tank at the top and bottom (fig. 3). The bottom flange served as a support for the insulation during the application, while the top flange was designed to direct any water or water/NC slurry from the tank top over the insulation. This minimized the probability of material’s collecting between the tank and insulation.

The 2-inch-thick Foamglas contacts the tub surface, and a thin coat of Pittcote-300 mastic is then applied to the Foamglas. A fiberglass cloth is then laid over the entire surface as a reinforcing material, after which a second coat of Pittcote-300 mastic is applied. A 0.02-inch-thick stainless steel sheeting envelopes the entire tub side and serves as a protection against insulation damage.

Insulation was not applied to the boiling tub top which contains many appurtenances, each of which presents a sealing problem (fig. 4). The probability that NC can collect between the insulation and the top and become a fire and/or explosive hazard could not be reduced to an acceptable level.
The energy conservation sacrifice due to the elimination of the top insulation (app A) represents a maximum of 34,825 Btu/hour per tub or 28.9% of the total potential savings.

The bottom of the boiling tub was not insulated because of:

1. The obvious difficulties in applying the insulation around the dunnage

2. The relatively small area of the tub bottom not covered by dunnage and exposed for insulating

3. The problems in obtaining a satisfactory seal between the tub dunnage and insulation

4. The difficulty in visually inspecting the integrity of the seal.

Because the tubs contain a false bottom and because of the nature of the percolating action, the temperature at the bottom of the tub is less than at the sides. These features tend to minimize the heat lost through the bottom.

Steam Usage

The theoretical energy required to bring a tub up to boil and to maintain the on-boil temperature, both before and after insulation was applied, is shown in appendix B. A maximum energy saving of 116,275 Btu/hour per tub or approximately 8.187×10^5 Btu/year at mobilization is theoretically realized with insulation.

A schematic of the equipment used to measure the steam required to bring a boiling tub to the on-boil temperature and the steam necessary to maintain this temperature is shown in figure 5. Automatic controls were required because of the difference in the steam usage between operators while maintaining on-boil temperature which made it difficult to measure and compare the amount of steam used before and after insulation. The boiling tub was instrumented to measure the amount of steam used during manual control compared with automated controls and the amount required to process NC after the tub was insulated.

The quantity of steam used in this tub was measured by an in-line orifice plate that creates a differential in-line pressure proportional to steam flow. The pressure is detected by a differential pressure transducer that activates a chart recorder.

Two recorders were used, one for steam flow between 0 and 680 kg/hr (0 lb and 1500 lb/hr), and a second one for flows between 680 kg and 3402 kg/hr (1500 lb and 7500 lb/hr). A Mercoid switch was used to switch charts at appropriate times. The control system contained a low signal limiter that allowed the control valve to remain slightly open at all times. This was necessary for the tub to maintain a percolating action and be more effective in removing the nitricating acids from the NC.
The amount of steam required to process various types of NC in a manually controlled, uninsulated tub is given in Table I. The steam usage varied from 3.49 kg of steam per kg of NC for P-7 pulp to 8.06 kg of steam per kg of NC for BL-7 cotton. These measurements on the uninsulated, manually controlled tub gave an average steam usage of 857 kg/hr (1889 lb/hr) during the three on-boil cycles for the four types of NC.

The boiling tub was set up to use one temperature sensor port for the normal temperature measurement and the other port for the automatic temperature control system. The amount of steam used for the on-boil cycle with the single-sensor autocontrol averaged 647 kg/hr (1426 lb/hr) (test 1, Table 2). This was a reduction of 210 kg/hr (463 lb/hr) over the manually controlled uninsulated tub.

Steam usage with the single sensor autocontrol and insulated tub for the on-boil cycle averaged 521 kg/hr (1148 lb/hr) (test 2, Table 2). This was a reduction of 126 kg/hr (277 lb/hr) over the uninsulated tub. At times during the on-boil cycle of tests 1 and 2, the temperature of the manual sensor was different from the autocontrol sensor indicating a temperature difference from one side of the tub to the other. During manual operation, both sensors are used and the steam adjusted to keep the lowest temperature above 96°C (205°F). With the single autocontrol sensor, there were times when the manual sensor indicated the on-boil temperature was less than 96°C. At other times, the autocontrol sensor had the steam valve open when the manual sensor showed more than 96°C. The single sensor autocontrol was not satisfactory; therefore, an improved system was designed (Fig. 5) which used two temperature sensors located on opposite sides of the tub. The outputs from these sensors are transmitted in the form of 3 to 15 psig pressure to a low signal selector which selects and relays the signals representing the lowest temperature sensor to the controller. The controller opens and closes the valve based on the magnitude of these signals. In addition, a low signal limiter allows a continuous steam flow to the tub. By this mechanism, the tub is maintained at the minimum on-boil temperature, yet maintains percolating action within the tub.

While the equipment for the newly designed autosensor was on order, the insulated tub was operated with manual controls. The amount of steam required to maintain the on-boil temperature in the insulated tub was reduced to 701 kg/hr (1545 lb/hr) (test 3, Table 2). This is a reduction of 155.8 kg/hr (344 lb/hr) from the average on-boil steam usage for the four tests (Table 1) in the same tub before insulation.

The dual temperature sensor automatic control equipment was received and installed on the insulated tub. Considerable adjustments were required to obtain the optimum operating parameters for these controls, but the 30.7 hours of on-boil operations (test 4, Table 2) showed the steam usage could be reduced to 309 kg/hr (681 lb/hr). This represented a steam reduction of 547.8 kg/hr (1208 lb/hr) from the uninsulated, manually controlled steam rates and 392 kg/hr (864 lb/hr) steam reduction from the manually controlled insulated tub. The operation at the optimum setting was of short duration because C-line operations were shut down after this test and were not scheduled to resume in 1981. The automatic control valve would be expected to use about the same quantity of steam coming up to boil as the manually controlled valve. Some benefits would be obtained from
the insulated tub coming up to boil, but the exact amount of steam saved was not measured.

Economic Analysis

The economic analysis of the savings effected by the use of the insulated tub is based on actual steam measurements at mobilization rates, calculated as follows:

<table>
<thead>
<tr>
<th>Tub</th>
<th>Steam usage</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/hr</td>
<td>lb/hr</td>
</tr>
<tr>
<td>Without insulation</td>
<td>856.8</td>
<td>1,889</td>
</tr>
<tr>
<td>With insulation</td>
<td>701.0</td>
<td>1,545</td>
</tr>
<tr>
<td>Reduction</td>
<td>155.8</td>
<td>344</td>
</tr>
</tbody>
</table>

Savings at mobilization rate = 65.32 x 10^6 kg/yr (144 x 10^6 lb/hr)
Average time per cycle = 44.54 hr
Cycles per year = 4,920

Steam savings = 155.8 kg/hr x 44.54 hr/cycle x 4,920 cycles/yr = 34,141,513 kg/yr

Monetary savings using 1981 steam rate of $4.87 per 488.8 kg = 34,141,513 kg/yr x $4.87/488.8 kg = $340,158/yr

The cost of insulating one boiling tub house (30 tubs) is estimated to be $405,280 based on 1981 costs.

One line at mobilization rates has a steam savings of $340,158 = $340,158/yr

Insulation payback for one line = $405,280 = 117.8 years

The calculated steam savings, based on actual data, compare favorably with the average theoretical savings of 30,223,081 kg/yr projected in appendix B.

NC Characterization

A primary requirement of the study was that the stabilization of the NC be unaffected by a reduction in the amount of energy required to effect the purification process. Laboratory results from all NC processed through the insulated boiling tub are shown in table 3. No adverse stabilization effects were detected as a result of the reduction in energy.
CONCLUSIONS AND RECOMMENDATIONS

The composite insulation system performed as predicted in conserving energy in the boiling tub purification process. No adverse effects on NC properties were detected due to boiling tub insulation.

It is recommended that Foamglas be used on all boiling tubs insulated in the future, and Pittcote-300, fiberglass mesh, and 0.020-inch-thick stainless steel be used to apply the insulation.

Since the payback time for insulating a boiling tub is less than 4 years, it is recommended that tubs required for the present level of production be insulated.
Table 1. Normal steam consumption—manually controlled uninsulated boiling tub

<table>
<thead>
<tr>
<th>Type NC</th>
<th>Cycle</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount, kg (lb)</td>
<td></td>
<td>13,500 (30,000)</td>
<td>13,500 (30,000)</td>
<td>9,000 (20,000)</td>
<td>9,000 (20,000)</td>
<td></td>
</tr>
<tr>
<td>Time on acid boil (hr)</td>
<td></td>
<td>40</td>
<td>20</td>
<td>40</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Steam consumption</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Up to boil, kg (lb)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Neutral boil</td>
<td></td>
<td>9,423 (20,939)</td>
<td>8,712 (19,359)</td>
<td>7,898 (17,550)</td>
<td>8,284 (18,409)</td>
<td>8,579 (19,064)</td>
</tr>
<tr>
<td>2 Acid boil</td>
<td></td>
<td>9,183 (20,407)</td>
<td>7,765 (17,255)</td>
<td>7,901 (17,558)</td>
<td>7,410 (16,467)</td>
<td>8,065 (17,922)</td>
</tr>
<tr>
<td>3 Acid boil</td>
<td></td>
<td>10,818 (24,484)</td>
<td>7,317 (16,259)</td>
<td>9,287 (20,638)</td>
<td>7,308 (16,241)</td>
<td>8,733 (19,406)</td>
</tr>
<tr>
<td>On boil, kg/hr (lb/hr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acid boil*</td>
<td></td>
<td>823 (1,829)</td>
<td>823 (1,829)</td>
<td>823 (1,829)</td>
<td>823 (1,829)</td>
<td>823 (1,829)</td>
</tr>
<tr>
<td>5-hour boils</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>945 (2,101)</td>
<td>611 (1,358)</td>
<td>1,043 (2,317)</td>
<td>894 (1,977)</td>
<td>872 (1,938)</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>—</td>
<td>769 (1,708)</td>
<td>1,015 (2,256)</td>
<td>782 (1,738)</td>
<td>855 (1,901)</td>
</tr>
<tr>
<td>Average on-boil consumption</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>856.8</td>
</tr>
<tr>
<td>kg/hr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lb/hr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,889</td>
</tr>
</tbody>
</table>

* Average of 1829 lb/hr based on 15 acid-boil cycles ranging from 473 kg/hr to 1,394 kg/hr (1050 lb/hr to 3097 lb/hr).
Table 2. Steam measurements during on-boil cycle

<table>
<thead>
<tr>
<th>Test</th>
<th>Hours measured</th>
<th>Steam used</th>
<th>Rate/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>kg</td>
<td>lb</td>
</tr>
<tr>
<td>1</td>
<td>Single sensor autocontrol without insulation</td>
<td>87</td>
<td>56,282</td>
</tr>
<tr>
<td>2</td>
<td>Single sensor autocontrol with insulation</td>
<td>70</td>
<td>34,233</td>
</tr>
<tr>
<td>3</td>
<td>Manual control with insulation</td>
<td>79.85</td>
<td>55,960</td>
</tr>
<tr>
<td>4</td>
<td>Dual sensor autocontrol with insulation</td>
<td>36.7</td>
<td>11,345</td>
</tr>
<tr>
<td>Lot No.</td>
<td>Type NC</td>
<td>Nitrogenb (N2), (%)</td>
<td>Solubilityb (%)</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>C-3979</td>
<td>BL-7 (Linters)</td>
<td>12.55</td>
<td>99+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.55</td>
<td></td>
</tr>
<tr>
<td>C-3826</td>
<td></td>
<td>12.62</td>
<td>99+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.60</td>
<td></td>
</tr>
<tr>
<td>C-3845</td>
<td></td>
<td>12.60</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.63</td>
<td></td>
</tr>
<tr>
<td>C-3778</td>
<td></td>
<td>12.58</td>
<td>99+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.59</td>
<td></td>
</tr>
<tr>
<td>C-426c</td>
<td></td>
<td>12.61</td>
<td>99+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.63</td>
<td></td>
</tr>
<tr>
<td>C4117</td>
<td></td>
<td>12.65</td>
<td>99+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.67</td>
<td></td>
</tr>
<tr>
<td>C4165</td>
<td></td>
<td>12.53</td>
<td>99+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.55</td>
<td></td>
</tr>
<tr>
<td>C-3890</td>
<td></td>
<td>12.65</td>
<td>99+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.65</td>
<td></td>
</tr>
<tr>
<td>C-4106</td>
<td></td>
<td>12.59</td>
<td>99+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.56</td>
<td></td>
</tr>
<tr>
<td>CF-3814</td>
<td>P-1 (Pulp)</td>
<td>13.36</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13.36</td>
<td></td>
</tr>
<tr>
<td>CF-3834</td>
<td></td>
<td>13.43</td>
<td>99+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.43</td>
<td></td>
</tr>
<tr>
<td>CF-3764</td>
<td></td>
<td>13.41</td>
<td>99+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13.41</td>
<td></td>
</tr>
<tr>
<td>CF-4349</td>
<td></td>
<td>13.41</td>
<td>99+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13.41</td>
<td></td>
</tr>
<tr>
<td>CF-4363</td>
<td></td>
<td>13.42</td>
<td>99+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13.42</td>
<td></td>
</tr>
</tbody>
</table>

aTable 3. Nitrocellulose characterization

bNitrogen and Solubility
<table>
<thead>
<tr>
<th>Lot No.</th>
<th>Type NC</th>
<th>Nitrogenb (N\textsubscript{2}), (%)</th>
<th>Solubilityb (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF-4376</td>
<td>P-1 (Pulp)</td>
<td>13.42, 13.42, 13.43</td>
<td></td>
</tr>
<tr>
<td>CF-4215</td>
<td></td>
<td>13.41, 13.41</td>
<td></td>
</tr>
<tr>
<td>CF-4233</td>
<td></td>
<td>13.46, 13.46</td>
<td></td>
</tr>
<tr>
<td>CF-4151</td>
<td></td>
<td>13.47, 13.47, 13.45</td>
<td></td>
</tr>
<tr>
<td>CF-3942</td>
<td></td>
<td>13.46, 13.46</td>
<td></td>
</tr>
<tr>
<td>CF-3956</td>
<td></td>
<td>13.48, 13.48</td>
<td></td>
</tr>
<tr>
<td>CF-4082</td>
<td></td>
<td>13.42, 13.45</td>
<td></td>
</tr>
<tr>
<td>CF-3788</td>
<td>P-7 (Pulp)</td>
<td>12.51, 12.51, 12.51</td>
<td>99+</td>
</tr>
<tr>
<td>CF-4247</td>
<td></td>
<td>12.74, 12.74</td>
<td>99+</td>
</tr>
<tr>
<td>CF-4280</td>
<td></td>
<td>12.65, 12.65</td>
<td>99+</td>
</tr>
<tr>
<td>CF-4298</td>
<td></td>
<td>12.71, 12.71, 12.68</td>
<td>99+</td>
</tr>
</tbody>
</table>

b
Table 3. (cont)

<table>
<thead>
<tr>
<th>Lot No.</th>
<th>Type NC</th>
<th>Nitrogen<sup>b</sup> (N<sub>2</sub>), (%)</th>
<th>Solubility<sup>b</sup> (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF-4014</td>
<td>P-7 (Pulp)</td>
<td>12.58, 12.58, 12.61</td>
<td>99+, 99+, 99+</td>
</tr>
</tbody>
</table>

^a Stability—30 min German test.

^b Acceptable limits:

<table>
<thead>
<tr>
<th>Type NC</th>
<th>Nitrogen Range</th>
<th>Solubility</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL-7</td>
<td>12.45 to 12.75</td>
<td>No Specification Requirement</td>
</tr>
<tr>
<td>P-1</td>
<td>13.35 minimum</td>
<td>99+</td>
</tr>
<tr>
<td>P-7</td>
<td>12.45 to 12.75</td>
<td>99+</td>
</tr>
</tbody>
</table>
Figure 1. Typical boiling tub cycle
Figure 2. Idealized poacher cycle
3/16" - Type 347 S. St. Boiling Tub

1/2" Wide S. St. Band (Typ)

3" x 1/8" Flg - Cover End

Fiberglass Screen

Pittcote-300 Mastic

Pittcote-300 Finish

Approx. 18" x 24" x 2" Thick Foamglas Insulation Required

See Det. A

Figure 3. Boiling tub insulation details
Figure 4. Top of boiling tub
Figure 5. Steam monitoring and control of one boiling tub
APPENDIX A

ECONOMIC ANALYSIS--BOILING THE TOP
1. Energy loss through top of uninsulated boiling tub

\[Q = UA\Delta T \]
\[Q = (1.4) (\pi r^2) (200-85) \]
\[Q = 40,970 \text{ Btu/hr} \]

Where: \(U = 1.4 \text{ Btu/hr/sq ft/°F} \) for bright nickel horizontal surfaces at a 100°F temperature difference

2. Energy loss through top of insulated boiling tub

\[Q = UA\Delta T \]
\[Q = (0.21) (\pi r^2) (200-85) \]
\[Q = 6,145 \text{ Btu/hr} \]

Where: \(U = 0.21 \text{ Btu/hr/sq ft/°F} \) for 2 inches of Foamglas insulation at 100°F temperature difference

3. Energy loss through two uninsulated 4 ft by 4 ft tank lids in the top of the tub

\[Q = UA\Delta T \]
\[Q = (1.4) (2 \times 4 \times 4) (200-85) \]
\[Q = 5,152 \text{ Btu/hr} \]

Where: \(U = 1.4 \text{ Btu/hr/sq ft/°F} \) for bright nickel horizontal surface at 100°F temperature difference

4. Energy sacrifice per boiling tub—uninsulated top (Btu/hr)

a. Uninsulated top

\[
\begin{align*}
40,970 & \text{ uninsulated top} \\
5,152 & \text{ uninsulated lids} \\
46,122 & \text{ total}
\end{align*}
\]

b. Insulated top

\[
\begin{align*}
6,145 & \text{ insulated top} \\
5,152 & \text{ uninsulated lids} \\
11,297 & \text{ total}
\end{align*}
\]

c. Net loss

\[
\begin{align*}
46,122 \\
11,297 \\
34,825
\end{align*}
\]
5. Steam usage—annual basis

Maximum = 8,760 hr/yr x 0.893 (\% time on steam) = 7,823 hr/yr
Minimum = 8,760 hr/yr x 0.816 (\% time on steam) = 7,148 hr/yr

6. Energy sacrificed per boiling tub

Maximum = 7,823 hr/yr x 34,825 Btu/hr = 27.24 \times 10^7 \text{ Btu/yr}
Minimum = 7,148 hr/yr x 34,825 Btu/hr = 24.89 \times 10^7 \text{ Btu/yr}

7. Energy sacrifice based on mobilization

Maximum = 27.24 \times 10^7 \text{ Btu/yr/tub} \times 90 \text{ tubs} = 24.52 \times 10^9 \text{ Btu/yr}
Minimum = 24.89 \times 10^7 \text{ Btu/yr/tub} \times 90 \text{ tubs} = 22.40 \times 10^9 \text{ Btu/yr}
APPENDIX B

ECONOMIC ANALYSIS—BOILING TUB SIDES

(THEORETICAL)
Energy Consumption

1. Bases

 a. Maximum NC boiling tub cycle
 Minimum NC boiling tub cycle
 Maximum time on steam during one cycle
 Minimum time on steam during one cycle
 Maximum percentage of time on steam for one cycle
 Minimum percentage of time on steam for one cycle

 Maximum NC boiling tub cycle: 84 hr
 Minimum NC boiling tub cycle: 49 hr
 Maximum time on steam during one cycle: 75 hr
 Minimum time on steam during one cycle: 45 hr
 Maximum percentage of time on steam for one cycle: 89.3%
 Minimum percentage of time on steam for one cycle: 81.6%

 b. Heat transmission coefficient, U -

 (1) Carrier Handbook of Air Conditioning System Design
 McGraw Hill
 (2) United Coatings, Spokane, Washington

2. Calculations

 a. Heat losses for an uninsulated boiling tub (side only)

 \[Q = UA(T - T_a) \]
 \[Q = 1.7 \times 18 \times 12 \times (200 - 85) \]
 \[Q = 132,663 \text{ Btu/hr heat loss} \]

 Where: \(U = 1.7 \text{ Btu/hr/sq ft/°F} \) for bright nickel surface
 at a \(100°F \) temperature difference for vertical surface.

 \(A = \text{Area of surface} \)

 \(T - T_a = \text{Difference in temperature of tank surface and ambient air} \)

 b. Heat losses from an insulated boiling tub. Heat loss through insulated side of 18 ft diameter x 12 ft high tub.

 \[Q = UA(T - T_a) \]
 \[Q = 0.21 \times 18 \times 12 \times (200 - 85) \]
 \[Q = 16,388 \text{ Btu/hr lost} \]

 Where: \(U = 0.21 \text{ Btu/hr/sq ft/°F} \) typical value for 2 inches
 of Foamglas insulation at 200°F temperature.
3. Energy saved per boiling tub

<table>
<thead>
<tr>
<th>Tub</th>
<th>Heat loss (Btu/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uninsulated</td>
<td>132,663</td>
</tr>
<tr>
<td>Insulated</td>
<td>16,388</td>
</tr>
<tr>
<td>Difference</td>
<td>116,275</td>
</tr>
</tbody>
</table>

4. Steam usage--annual basis

Maximum = 8760 hr/yr x 0.893 (% on steam) = 7823 hr/yr
Minimum = 8760 hr/yr x 0.816 (% on steam) = 7148 hr/yr

5. Energy saved per boiling tub--annual basis

Maximum = 90.96 x 10^7 Btu/yr/tub
Minimum = 83.11 x 10^7 Btu/yr/tub

6. Energy savings from facility implementation (90 tubs on 3 NC lines)

Maximum = 8.186 x 10^{10} Btu/yr
Minimum = 7.48 x 10^{10} Btu/yr
Average = 7.833 x 10^{10} Btu/yr

Pounds of steam = \(\frac{7.833 \times 10^{10} \text{ Btu/yr}}{1175.6 \text{ Btu/lb steam}} = 66.6 \times 10^6 \text{ lb/yr} \)

\[\text{kg} = \frac{66.6 \times 10^6 \text{ lb/yr}}{2.2046 \text{ kg/lb}} = 30.22 \times 10^6 \text{ kg/yr} \]
DISTRIBUTION LIST

Commander
U.S. Army Armament Research and
 Development Command
 ATTN: DRDAR-TSS (5)
 DRDAR-LCM-S (10)
 Dover, NJ 07801

Administrator
Defense Technical Information Center
 ATTN: Accessions Division (12)
 Cameron Station
 Alexandria, VA 22314

Director
U.S. Army Materiel Systems
 Analysis Activity
 ATTN: DRXSY-MP
 Aberdeen Proving Ground, MD 21005

Commander/Director
Chemical Systems Laboratory
U.S. Army Armament Research and
 Development Command
 ATTN: DRDAR-CLJ-L
 DRDAR-CLB-PA
 APG, Edgewood Area, MD 21010

Director
Ballistics Research Laboratory
U.S. Army Armament Research and
 Development Command
 ATTN: DRDAR-TSB-S
 Aberdeen Proving Ground, MD 21005

Chief
Benet Weapons Laboratory, LCWSL
U.S. Army Armament Research and
 Development Command
 ATTN: DRDAR-LCB-TL
 Watervliet, NY 12189

Commander
U.S. Army Armament Materiel
 Readiness Command
 ATTN: DRSAR-LEP-L
 DRSAR-IR
 DRSAR-IS
 Rock Island, IL 61299
Director
Industrial Base Engineering Activity
ATTN: DRXIB-MT (2)
Rock Island, IL 61299

Commander
U.S. Army Munitions Production
Base Modernization Agency
ATTN: SARPM-PBM-EC (2)
SARPM-CE
DOVER, NJ 07801

Commander
USDRC Installations and
Services Agency
ATTN: DRCIS-RI
Rock Island, IL 61299

Commander
Radford Army Ammunition Plant
ATTN: SARRA-HN (2)
Radford, VA 24141

Commander
Badger Army Ammunition Plant
ATTN: SARBA-CE
Baraboo, WI 53913

Commander
Indiana Army Ammunition Plant
ATTN: SARIN-OR
Charlestown, IN 47111

Commander's Representative
Sunflower Army Ammunition Plant
Box 640
ATTN: SARSU-O
DeSoto, KS 66018