PROPERTIES OF DUST AS AN ELECTRON AND ION ATTACHMENT SITE FOR U-ETC(U)

OCT 81 H P COLE, M G HEAPS

UNCLASSIFIED ERADCOM/ASL-TR-8098

END DATE FILMED 04-82
PROPERTIES OF DUST AS AN ELECTRON AND ION ATTACHMENT SITE FOR USE IN D REGION ION CHEMISTRY

OCTOBER 1981

By

Henry P. Cole
National Research Council Research Associate
US Army Atmospheric Sciences Laboratory
White Sands Missile Range, New Mexico 88002

Melvin G. Heaps
US Army Atmospheric Sciences Laboratory
White Sands Missile Range, New Mexico 88002

Approved for public release; distribution unlimited.

US Army Electronics Research and Development Command
Atmospheric Sciences Laboratory
White Sands Missile Range, NM 88002
NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The citation of trade names and names of manufacturers in this report is not to be construed as official Government endorsement or approval of commercial products or services referenced herein.

Disposition

Destroy this report when it is no longer needed. Do not return it to the originator.
Numerous observations of D region electron and ion density profiles have been difficult to interpret with chemical models based upon our present knowledge of a simple gas-phase chemistry. Often the presence of submicrometer sized particulates has been tentatively suggested as a cause of these enigmatic properties of the D region. The numerous observations of noctilucent clouds and mesospheric scattering layers are evidence for particulate matter in the D region, although the origin, composition, and size distribution of such particulates can only be estimated within rather broad ranges. This report...
establishes some basic properties of single particulates such as the electron-particulate and ion-particulate attachment rates, recombination rates, and photodetachment rates. A derivation of attachment coefficients for particulates acting en masse in the D region plasma is next examined. The limitations to this approach are outlined along with a discussion of preferred charge loading distributions on the particulates under various ambient conditions. Finally, illustrative examples are given of the effect of particulates on D-region electron density profiles and charge balance.
LIST OF FIGURES

1. A plot of the capture rate modification function (F) against the absolute charge, Z, on a dust particle of radius 0.1 μm to 0.001 μm. .. 12

2. A plot showing the magnitude of k_D^e, the dust-electron attachment coefficient (left ordinate), for various radii dust of charge $Z = -1, 0, +1$. ... 15

3. A plot showing the magnitude of v_D^e, the dust-electron attachment frequency (left ordinate), for various radii dust of charge $Z = -1, 0, +1$. .. 28

4. Values of the effective attachment coefficients of 0.001 μm and 0.01 μm dust to electrons, k_D^e, and positive ions, k_D^+, for populations of electrons and ions .. 23

5. A plot of observed electron densities .. 29

LIST OF TABLES

1. k_D^e AND k_D^+, ELECTRON AND POSITIVE ION ATTACHMENT COEFFICIENTS FOR A SINGLE DUST PARTICLE AT $T = 150^\circ$K .. 13

2. PERCENT OF DUST POPULATION WITH A PARTICULAR NUMBER OF ELECTRONS FOR $T = 150^\circ$K .. 21

3. VARIATION IN ELECTRON DENSITY AT 80 km DUE TO VARIABLE DUST CONCENTRATION AND PHOTODETACHMENT .. 26

4. SELECTED DUST PROFILES .. 27
NOTATIONS

a Radius of dust particles, centimeters
z Number of electronic charges on dust, a positive or negative integer
e Electronic charge
T Absolute temperature
C Mean thermal speed of ions or electrons. For ions, assume a mass of 50 amu.
 Therefore \(\bar{C}_+ = 2.6 \times 10^7 \text{ cm s}^{-1} \). For electrons, \(\bar{C}_e = 300 \bar{C}_+ \).
F Geometric modification shape factor

\(N_e \) Number density of electrons, centimeter\(^{-3} \)
\(N_+ \) Number density of positive ions, centimeter\(^{-3} \)
\(N_- \) Number density of negative ions, centimeter\(^{-3} \)
\(N_D \) Number density of dust, centimeter\(^{-3} \)

\(\nu_z \) Frequency of capture of positive ions by dust particles with a charge \(z \), second\(^{-1} \)
\(\nu_e \) Frequency of capture of electrons by dust particles with a charge \(z \), second\(^{-1} \)
\(\nu_- \) Frequency of capture of negative ions by dust particles with a charge \(z \), second\(^{-1} \)

\(\nu_{ph} \) Photodetachment frequency, second\(^{-1} \)

\(P_z \) Fraction of dust particles which carry a charge \(z \)

\(k_{eD}^+ \) Coefficient of attachment of an electron to a single dust particle, centimeter\(^3\) second\(^{-1} \)
\(k_+^D \) Coefficient of attachment of a positive ion to a single dust particle, centimeter\(^3\) second\(^{-1} \)

\(K_{eD} \) Effective attachment coefficient of electrons in a distribution of dust particles, centimeter\(^3\) second\(^{-1} \)
\(K_+^D \) Effective attachment coefficient of positive ions in a distribution of particles, centimeter\(^3\) second\(^{-1} \)
1. INTRODUCTION

The D region is the lowest portion of the ionosphere and nominally encompasses the altitude range of 60 to 90 km. It represents a transition region for the ionospheric plasma composition. Above 80 to 85 km, daytime composition is limited to molecular ions such as NO$^+$ and O$_2^+$; while below 80 to 85 km, the simple molecular ions enter into clustering reactions which convert the positive ion composition into one dominated by water clusters. Electrons also undergo attachment processes in the D region to form negative ions; by day this attachment appears to take place below 70 to 75 km. By night it occurs as high as 90 km, but there are still many unanswered questions concerning the negative ion chemistry.

The sources of ionization within the D region are the "tail end" of the solar x-ray spectrum, mainly at wavelengths less than 1 nm and in the 3- to 10-nm range, and two strong solar emission lines, Lyman beta at 102.6 nm which ionizes O$_2$ and Lyman alpha at 121.6 nm which ionizes NO. Ionization from these sources occurs principally above 75 km. Below 70 km galactic cosmic rays are the main (though small) source of ionization. At higher latitudes charged particle precipitation and associated bremsstrahlung x-rays may occasionally be the dominant ionization source.

The deposition of micrometeors, at the altitude of the lower portion of the E region and upper portion of the D region, produces a concentration of metallic ion layers at 90 to 110 km and occasional occurrences of sporadic E reflection. Estimates have shown that this micrometeor flux may be sufficiently large to serve as source material for the mesospheric scattering layers and noctilucent clouds which are often observed in the 80 to 85 km range.'

Certain D region phenomena have been observed which have no ready explanation in terms of conventional ion chemistry; for example, electron density profiles have occasionally shown layers of sharply decreased concentration in the 90 to 90 km range, which could be interpreted as due to particulate layers which have the ability to attach electrons. This ability would suggest, therefore, that there is a large group of primarily negatively charged species, either

ions or particulates, present in the upper D region. And indeed, conductivity measurements throughout the stratosphere and mesosphere give evidence of light and "massive" ions, which may be interpreted to be charged particulates. D-region electron densities observed during some solar eclipses have indicated a surprisingly rapid electron density decrease which cannot be explained on the basis of current knowledge of electron-ion rates of recombination.

With these examples of anomalous behavior in mind, the purpose of this report is to establish properties of particulates necessary for use in predictive computer codes. These properties are electron-particulate and ion-particulate collision frequencies, attachment and recombination rates, and electron photodetachment rates. To achieve this result, the coefficients will be examined on three levels: (1) Coefficients will be derived for simple particles impacting with electrons or ions. (2) An "effective or real" attachment coefficient shall be derived which pertains to a population of dust mixed with ambient electrons and positive ions. This derivation follows the work of Parthasarathy and Rai and Parthasarathy but has certain limitations which shall be examined. This treatment is instructive since it derives the charge loading on a population of dust and outlines the sensitivity of the attachment coefficients to various parameters. (3) Particulates will be included and evaluated as electron or ion attachment sites within a full-time-dependent chemical code which includes all other competitive processes of D-region chemistry.

2. PROPERTIES OF MESOSPHERIC PARTICLES

Noctilucent clouds (NLC) have long provided the most direct and visual evidence that particulates, most likely pure ice or ice coated dust, tend to layer at the summer mesopause. The rare observation of NLC during stratospheric warmings indicates layering in winter also. OGO-6 satellite observations indicate that particulate layers near the 82 km upper bound of the mesosphere may be a persistent high latitude feature, while global lidar observations show a sodium layer in this same region. Witt and Fogle and Rees have calculated NLC particulate sizes to be of the order of 0.1 μm to 0.2 μm in radius with number densities of the order of 1 cm⁻³. Donahue et al also estimate that 0.13 μm radius particles with number densities of 15 to 40 cm⁻³ would successfully explain their scattering observations. An earlier work by Divari based upon rocket samples states that particulate concentrations in the mesosphere are an inverse function of size down to 0.05 μm. Also model calculations by Hunten et al indicate a similar inverse size and concentration relationship in the 80- to 90-km altitude range for particles less than 0.001 μm.

There are three alternatives for the origin of NLC particulates: (1) They are terrestrial and ascend by the action of turbulence, (2) they are formed from in-situ ion clusters, or (3) they are meteoritic.

The first possibility seems unlikely considering the insufficient magnitude of the eddy diffusion coefficient in the stratosphere and mesosphere (see, for example, Hunten). As for the second possibility, Witt proposed that water

cluster ions in the mesosphere serve as condensation or sublimation nuclei. Such a clustering mechanism has been investigated for aerosols in general. However, the mechanism whereby clusters of ten or fewer molecules could grow or combine to form the size of particulates nominally present in the D region (hundreds or thousands of molecules) has not yet been identified. Assisted by a model calculation, Reid has argued that if a substratum of small particulates of nominal 0.001 μm size exists, then the growth of ice needles of a detectable size (0.13 μm) is possible under constraints of mesospheric temperatures and low water vapor. The idea that meteoritic dust particles could be sufficiently numerous to form layers dense enough for NLC also has been theoretically supported by Chapman and Kendall. Hunten et al. showed that a nominal meteor flux of $10^{-1} \text{ cm}^{-2} \text{s}^{-1}$ is sufficient to provide a source of particulates with sizes of the order of 0.001 μm and number densities of 10^4 cm^{-3}. Also the source of particles may be multiple and seasonally dependent as suggested by data of Clemesha et al. Thus, mesospheric particulate sizes and their number densities can apparently range from an upper bound of 0.1 μm radius with number densities on the order of 10^3 cm^{-3} or less, to a lower bound of 0.001 μm sized particulates with number densities on the order of 10^1 cm^{-3}. This range of concentrations and sizes will be used as representative in the subsequent calculations and modeling in this report.

3. ELECTRON AND ION ATTACHMENT TO SINGLE DUST PARTICLES

The first quantitative steps towards examining the properties of dust in the presence of charged particles were taken in 1960 by Natanson,22 who formulated a kinetic approach to the charging of dust by electrons and ions. Parthasarathy and Rai2 used Natanson's approach to derive attachment coefficients for dust particles with electrons and positive ions in the mesosphere. This work was extended by Parthasarathy3 to include a probabilistic formulation of the basic equilibrium equations including an explicit photodetachment term.

A dust particle is charged when an electron or ion collides with and is captured by the particle. The capture frequency, ν, equal to the collision frequency (with a collision efficiency of I), may be expressed as

$$\nu = \alpha \cdot N \cdot C \cdot F \quad (s^{-1}),$$

where α is the geometric cross section of the particle, N is electron or ion density, C is mean velocity, and F is a capture rate modification function or "shape factor" which modifies the geometric cross-section and whose value depends upon the resident charge of the particle and its radius. This shape factor, F, expresses the attractive (or repulsive) effects of charged dust particles to approaching electrons or ions (figure 1).

Several points should be noted. First, the F factor for uncharged dust particles enhances the geometric cross section, an effect which increases as the particle shrinks. This effect is due to the setting up of an image charge within the particle as the electron or ion approaches its surface. Second, powerful repulsive effects lead to a practical limit of one charge for particles of approximately 0.01 μm in size or less. For such small particles, recombination or neutralization becomes greatly enhanced as the particle becomes charged. Only for particles larger than 0.1 μm does multiple charging become probable.

Figure 1. A plot of the capture rate modification function (F) against the absolute charge, Z, on a dust particle of radius 0.1μm to 0.001μm. The value of the capture rate modification function expresses the ratio of the "effective" capture cross section of a dust particle to the simple geometric cross section and is dependent upon electrostatic effects.
The dust charge attachment coefficient, \(k_D \), for an isolated particle is defined as

\[
k_D = \frac{v}{N} = \frac{a^2}{\sigma} F \quad (\text{cm}^3 \text{s}^{-1})
\]

(2)

where \(k_D \) is a function of particle size, resident charge, electron or ion mass, and velocity. \(k_D \) is to be treated as a standard chemical rate constant, where the term in the set of continuity equations becomes \(k_D [N_D] [N_e] \) or \(k_D^+ [N_D^+] [N_+] \). Table 1 lists representative values of the coefficients \(k_D^e \) and \(k_D^+ \) for a nominal mesospheric temperature \(T = 150^\circ\text{K} \).

Points which are apparent from table 1 are: (1) the smaller the dust, the more rapidly the electron attachment coefficient decreases with increasing negative charge, (2) the larger the particle, the greater tendency it will have to attach electrons and, hence, provide an electron sink. A single large particle (that is, radius >0.1\,\mu m) is therefore as effective as several smaller particles in perturbing the charge balance.

<table>
<thead>
<tr>
<th>Dust Radius (\mu m)</th>
<th>Charge (e)</th>
<th>(k_D^e) (\text{cm}^3 \text{s}^{-1})</th>
<th>(k_D^+) (\text{cm}^3 \text{s}^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>+1</td>
<td>2.6(-5)</td>
<td>1.3(-33)</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>3.3(-6)</td>
<td>1.0(-8)</td>
</tr>
<tr>
<td></td>
<td>-1</td>
<td>4.2(-31)</td>
<td>8.4(-8)</td>
</tr>
<tr>
<td></td>
<td>-2</td>
<td>2.3(-37)</td>
<td>1.6(-7)</td>
</tr>
<tr>
<td>0.01</td>
<td>+1</td>
<td>2.8(-4)</td>
<td>7.3(-11)</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1.2(-4)</td>
<td>3.9(-7)</td>
</tr>
<tr>
<td></td>
<td>-1</td>
<td>2.3(-7)</td>
<td>9.1(-7)</td>
</tr>
<tr>
<td></td>
<td>-2</td>
<td>1.1(-10)</td>
<td>1.7(-6)</td>
</tr>
<tr>
<td>0.1</td>
<td>+1</td>
<td>5.0(-3)</td>
<td>1.1(-5)</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>5.5(-3)</td>
<td>1.7(-5)</td>
</tr>
<tr>
<td></td>
<td>-1</td>
<td>3.4(-3)</td>
<td>1.5(-5)</td>
</tr>
<tr>
<td></td>
<td>-2</td>
<td>1.3(-3)</td>
<td>2.4(-5)</td>
</tr>
<tr>
<td></td>
<td>-3</td>
<td>5.2(-4)</td>
<td>3.2(-5)</td>
</tr>
<tr>
<td></td>
<td>-4</td>
<td>2.1(-4)</td>
<td>4.0(-5)</td>
</tr>
<tr>
<td></td>
<td>-5</td>
<td>8.3(-5)</td>
<td>4.9(-5)</td>
</tr>
<tr>
<td></td>
<td>-6</td>
<td>3.3(-5)</td>
<td>5.7(-5)</td>
</tr>
<tr>
<td></td>
<td>-7</td>
<td>1.3(-5)</td>
<td>6.5(-6)</td>
</tr>
<tr>
<td></td>
<td>-8</td>
<td>5.2(-6)</td>
<td>7.4(-6)</td>
</tr>
</tbody>
</table>
A further insight may be provided by a plot (figure 2) comparing the magnitudes of the attachment coefficients, k^a, for $z = -1, 0$, and $+1$ charged dust, as a function of particle radius, and the electron-ion recombination coefficients for NO$^+$ and water cluster ions. This figure shows that although normally the most important loss mechanism for electrons is recombination to cluster ions, electron attachment to particulates could be dominant if the dust number density were of the same magnitude as the ion number density and (a) dust was positively charged, (b) dust were neutral but larger than 0.1 μm, or (c) dust particle had a single negative charge and extended a Coulomb interaction. The inferences of dust size distribution in the mesosphere allow that there could be much dust at sizes of 0.1 μm or smaller. In that case, the probability of mesospheric dust affecting the D-region charge balance could be considerable through the formation of an electron sink.

4. EFFECTIVE CHARGE ATTACHMENT COEFFICIENTS

4.1 Derivation

The previous section explicitly derived the charge attachment frequency for an isolated dust particle of a given size and a known resident charge. However, in the D region, a population of dust particles will tend to possess a distribution of charge which will be established by the competitive attachment and detachment of electrons and ions. Parthasarathy and Pai"Parthasarathy" initially addressed the calculation of the attachment coefficients for dust "en masse." In this section we analyze the limitations of this approach but show that it provides knowledge of the resident charge distribution function of dust for various ambient conditions. Photodetachment is also included in this formulation as an explicit term, and suitable experimental values are examined.

Parthasarathy stipulates that the equilibrium condition of dust mixed with charged species is considered to be a statistically stationary distribution. This condition is formulated by stating that the frequency at which the fraction of dust particles with a charge z is being depleted by ion capture, electron capture, and photodetachment is equal to that frequency at which the fraction of dust particles with $z + 1$ charges are acquiring electrons or negative ions plus the frequency at which the fraction of dust particles with $z - 1$ charges are acquiring positive charges and suffering photodetachment of electrons (after Parthasarathy).
Figure 2. A plot showing the magnitude of k_D^e, the dust-electron attachment coefficient (left ordinate), for various radii of dust of charge $Z = -1, 0, +1$. For comparative purposes the electron-ion recombination coefficient for nitric oxide ions and water cluster ions is plotted on the right ordinate.
Expressed algebraically,

\[P_z (v_z^+ + v_z^e + v_z^- + v_{ph}) = P_{z+1} (v_{z+1}^e + v_{z+1}^-) + P_{z-1} (v_{z-1}^e + v_{ph}) \]

(3)

By setting \(P_z = 0 \) for a large value of charge (say \(z = -9 \), meaning that no dust has 9 or more electrons on it), and solving the other \(P_z \)'s in terms of \(P_{-8} \) and so forth, a recursion relation may be obtained. Then, after normalizing with \(\sum P_z = 1 \), solve for each \(P_z \). Neglecting negative ions for the daytime D region, the effective attachment coefficients are then defined as:

\[K_D^+ = \frac{1}{N_e} \sum P_z v_z^+ = \frac{1}{N_e} \sum P_z (v_z^e - v_{ph}) \]

(4)

\[K_D^e = \frac{1}{N_e} \sum P_z v_z^e - \frac{\sum P_z v_{ph}}{N_e} \]

(5)

The attachment coefficient for electrons, \(K_D^e \), is:

\[K_D^e = \frac{\sum P_z v_z^e}{N_e} \]

(6)

Substituting equation (6) into (5) and remembering \(\sum P_z = 1 \),

\[K_D^+ = K_D^e - \frac{v_{ph}}{N_e} \]

(7)

that is, the effective attachment coefficient for positive ions is equal to the effective attachment coefficient for electrons diminished by the photodetachment frequency divided by the ambient electron density.

This formulation incorporates the following assumptions and restrictions which limit its applicability to D region time dependent chemical codes:

a. This formulation is explicitly stationary. An equilibrium is assumed between the rate of attachment and detachment of ions and electrons for the
derivation of the P_z fractions and the coefficients. As such, these coefficients are unsuitable for use in time dependent programs designed for rapidly varying atmospheric conditions such as eclipse times, sunrise and sunset, or nuclear burst phenomena.

b. It is assumed that $N_e = zN_+$. This assumption of charge neutrality among electrons and ions is equivalent to the assumption that the number of particulates is too small to perturb the charge balance, which may be an unrealistic assumption for the mesosphere. Therefore, since the derived P_z values are functions of the N_e or zN_+ used, the calculation of new P_z's and the effective coefficients would have to be handled iteratively in a computer code each time new N_e and zN_+ were computed.

c. This formulation (equation 3) neglects competitive chemical attachment processes such as the recombination reactions between positive ions and electrons which would change P_z values and K_0 and K^+. Within these restrictions the values of K_0 and K^+ derived by Parthasarathy are useful for steady state chemical codes with a comparatively small number of particulates. But if no restriction is to be placed upon the size of the dust population or upon the concentrations of electrons or positive ions, then a set of stepwise reactions utilizing the coefficients for individual dust in various charge states is more appropriate (section 2). However, a benefit of the approach by Parthasarathy is to predict the range and stability of resident charge loading expected on a population of dust under various ambient conditions. Thus, the number of piecewise reactions sufficient for dust of a given size may be predicted for use in the chemical reaction code.

4.2 Choice of Photodetachment Coefficient for Dust

The photodetachment rate for the dust particle, ω_{ph}, is a key and governing parameter in these computations. Photodetachment yields of many materials are difficult to measure in a laboratory, and, in turn, whether such measurements would be valid for mesospheric conditions is difficult to assess. The best that may be done is to assume a likely composition for dust and establish a plausible range for the photoelectric yield over the incident solar wavelengths which exist in the mesosphere.

Photoelectric yield of a given material is a function of many parameters such as surface roughness, angle of incidence of photons, temperature, and possible adsorption of gases on the surface. For example, photoelectric yield will

increase with greater roughness and angle of incidence. Adsorption of gases such as molecular oxygen or hydrogen onto the surface may reduce the yield and shift the cutoff wavelength further into the ultraviolet; whereas very small amounts of gases may increase yield and shift the cutoff wavelength to longer wavelengths through the formation of surface "double layers" which allow the creation of surface states about 0.4 ev below the Fermi level.

If meteoritic material from galactic space, possibly ice coated, is assumed to be the constituent of the dust particles, then the photodetachment values for moon dust, nickel, or ice would be reasonable options. Presumably, a region meteoritic depositions would be of similar material to lunar surface dust. Willis et al. determined the photoelectric yield of samples of moon dust from the Apollo 14 and 15 missions. These determinations for moon dust were made at 10^-1 to 10^-2 torr, a more absolute vacuum than in the "region b" of five orders of magnitude. Impurities in the samples were baked out for 1 hour at 150°C. Auger electron spectroscopy and chemical analysis yielded a composition of: 48 percent of SiO₂, 18 percent of Na₂O, 11 percent of FeO, 10 percent of FeO, etc., which agrees with other determinations of composition for silicate-type meteors. Peak emission of 10^-1 electrons per photon occurs at 800 angstroms, with smaller values of 10^-2 at 2,500 angstroms to 10^-3 at 600 angstroms. For solar flux at the top of the earth's atmosphere, the composite yield is 2.8 x 10^-4 (e^-2) photoelectrons per second for lunar surface material, where e^-2 represents the surface area in square centimeters. Attenuation of solar flux in the Schumann-Runge Bands and Lyman α in the mesosphere reduces this photodetachment frequency of neutral dust at 80 km to about 1 x 10^-1 (e^-2) s^-1. Since iron and nickel meteorites have been commonly reported, the photoelectric yield for elemental nickel was obtained in Weissler. When the appropriate solar flux is used for Lyman α and the Schumann-Runge Bands attenuation at 80 km is accounted for, the resultant photodetachment for nickel is 1.5 x 10^-6 (e^-2) s^-1. Values of photodetachment for ice are 1.9 x 10^-5 (e^-2) s^-1. To bracket these previous determinations for different materials and to allow for the considerable uncertainty which still remains, the following values of photodetachment frequency are chosen to

be incorporated into the calculations of this report (expressed for zero optical depth): $2.8 \times 10^{-11} \ (\text{s}^{-1}), \ 2.8 \times 10^{-12} \ (\text{s}^{-1}), \ 2.8 \times 10^{-13} \ (\text{s}^{-1})$, and 0.

Since mesospheric particles may possess a negative or positive charge, the question arises as to whether an electrostatic potential on a dust particle would modify the photodetachment yield from that dust. Manka explored the result of having an electrostatic charge on the surface of dust and the resultant Coulomb retarding of the photoelectron current. He was specifically interested in dust on the lunar surface and showed, for example, that the current density of photoelectrons suffered a reduction of 26 percent in emitted electrons with a single positive charge. Our calculations are not adjusted for this small effect. In the case of a negative potential, the magnitude of the photoelectron current was not modified. That is, negatively charged dust will provide the same photoelectron current as neutral dust and obey the same wavelength dependence. Photoemission will not be enhanced.

A final comment is necessary about the differences in photoemission between single molecules and a solid composed of many molecules: It was considered possible that dust could photoemit in the visible, a fact suggested by analogy in the work of Woo et al. who described photoelectron detachment from the O_2 molecule by visible wavelengths. This idea was supported by Chanin et al. who showed that electrons attaching to molecular oxygen to form O_2^- could possibly enter a $\nu = 1$ vibrational state, described by a repulsive potential energy curve, which could then lead to autodetachment. However, in the case of a solid dust particle, such surface metastable states of high energy would not exist since the energy of the impacting electron would quickly dissipate as momentum and heat through neighboring atoms. The "extra" electron causing the unbalanced negative charge on a dust particle would be indistinguishable from any other electron occupying normal bound conduction states. Photoemission would always operate against the work function of the material and exhibit the same cutoff frequency for irradiation as that for an uncharged surface. Therefore, it would not be likely for dust to photoemit in the visible.

4.3 Charge Loading on Dust

The first result of performing the calculation of the effective attachment coefficients, K_D^0 and K_D^+, is the determination of the fractions of the dust

population which carry a particular charge. Table 2 lists the percentages of the total dust population which carry given numbers of electrons for dust of radii 0.001 µm, 0.01 µm, and 0.1 µm under various ambient electron densities.

The tabulation reveals some of the most graphic aspects of dust behavior in the D region: For example, the charge for dust of radius 0.01 µm, or smaller, is one electron per dust particle. These results are similar to those of figures 3 and 4 in Parthasarathy. This loading holds for a wide range of ambient electron number densities of 100 to 10,000 centimeter$^{-3}$ and photodetachment values of 0 to 10$^{-3}$ s$^{-1}$. Under similar ambient conditions, dust sized midway between 0.01 µm to 0.1 µm holds a more or less stable charge of 2 to 3 electrons which shifts to 1 electron or no electrons at high photodetachment rates. Dust of radius 0.1 µm presents a less clear-cut picture. The normal loading is a broad distribution of -1, 0, +1, or -2 electrons which is displaced to positive values of charge where photodetachment value >1 s$^{-1}$ and electron densities below 1000 cm$^{-3}$ are used. In each of these cases, photodetachment does not exert an influence until it exceeds about 10$^{-2}$ s$^{-1}$.

This insensitivity to photodetachment rates below a certain threshold is an important result since a rigorous number for dust photodetachment rates has been hard to obtain, and this difficulty had been an area of uncertainty in chemical models. A further result is that the smaller dust sizes will exist in the D region with only a single negative charge if they are charged at all.

As an alternate way to illustrate the competing elements of this situation, figure 3 shows a plot of photodetachment frequency for moon dust and ice along with electron attachment frequency for dust charged $Z = 1$, 0, $+1$ and frequency for the recombination of electrons with NH$^+$ and hydrated water cluster ions. An ambient electron and ion density of 1000 cm$^{-3}$ has been used for this illustration.

From an examination of figure 3, a number of points are apparent:

a. Positively charged dust of any size can competitively acquire electrons when compared to normal electron-ion recombination processes. Uncharged dust of radius > 0.002 µm can compete effectively for electrons even when the positive ions are water clusters (as is the case for altitudes below 80 km). Negatively charged dust can only compete effectively for electrons if the particles have a radius > 0.02 µm. Dust with radii on the order of 0.1 µm could attach several electrons, but because of the nominally low number densities of 0.1 µm radius dust (< 10 cm$^{-3}$), the overall electron attachment to dust of this size is probably of secondary importance when compared to the normal electron-ion recombination processes, a point already noted by Parthasarathy. However, if dust particles of much smaller sizes were present in large numbers, as is most likely the case, then dust could appreciably alter the ambient electron and ion equilibrium densities. The precise effect

TABLE 2. PERCENT OF DUST POPULATION WITH A PARTICULAR NUMBER OF ELECTRONS FOR $T = 150^\circ K$*

<table>
<thead>
<tr>
<th>Dust Particle Radius (μm)</th>
<th>Ambient Electron Density</th>
<th>0.001</th>
<th>0.01</th>
<th>0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>1000</td>
<td>10,000</td>
</tr>
<tr>
<td>Photodetachment Charge (e$^-$)</td>
<td>Z</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>-4</td>
<td>7</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>-5</td>
<td>28</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>-6</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>-7</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>-8</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>$2.8 \times 10^4 (e^{-2})$</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>-1</td>
<td>97</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>-2</td>
<td>8</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>-3</td>
<td>36</td>
<td>8</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>-4</td>
<td>28</td>
<td>9</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>-5</td>
<td>20</td>
<td>39</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>-6</td>
<td>4</td>
<td>17</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>-7</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>$2.8 \times 10^5 (e^{-3})$</td>
<td>0</td>
<td>22</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>-1</td>
<td>76</td>
<td>95</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>-2</td>
<td>8</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>-3</td>
<td>36</td>
<td>8</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>-4</td>
<td>28</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>-5</td>
<td>39</td>
<td>39</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>-6</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>-7</td>
<td>4</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>$2.8 \times 10^6 (e^{-4})$</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-2</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-3</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-4</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-5</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-6</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-7</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$2.8 \times 10^7 (e^{-5})$</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-2</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-3</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-4</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-5</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-6</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-7</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-8</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-9</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Columns may not always total 100 due to rounding and to neglecting states with less than 0.5 percent.
Figure 3. A plot showing the magnitude of v_D^e, the dust-electron attachment frequency (left ordinate) for various radii of dust of charge $Z = -1, 0, +1$. The electron-cluster ion and electron-nitric oxide ion recombination frequency is plotted on the right ordinate. An electron density of 10^4 cm$^{-3}$ is assumed. Values of photoemission frequencies for various radii of moon dust and ice-coated moon dust are represented on the right ordinate.
EFFECTIVE ATTACHMENT COEFFICIENT, K_D^e & K_D^+ FOR DUST OF RADIUS .001 μm

EFFECTIVE ATTACHMENT COEFFICIENT, K_D^e & K_D^+ FOR DUST OF RADIUS .01 μm

CONCENTRATION OF ELECTRONS (Ne) OR POSITIVE IONS (N+), cm⁻³

Figure 4. Values of the effective attachment coefficients of 0.001μm and 0.01μm dust to electrons, K_D^e, and positive ions, K_D^+, for populations of electrons and ions ranging from 10 to 10^5 cm⁻³.
would depend on the rate of photoemission of the electrons from the negatively charged dust.

b. During twilight or nighttime, smaller particulates (radius < 0.01 m) become negatively charged. Hence, in large numbers, small dust particles could compete effectively with ion-electron recombination and provide a means of maintaining (rather than neutralizing) negative charge. Referring to the right side of equation (6), the \(\kappa_e \) term will dominate the tendency to load all particles negatively; the photoemission term \(\kappa_i \) will tend to counter this. They may, if sufficiently large, keep the charged particles neutral or even render them positive. At night, or for moderate illumination levels, \(\kappa_e \) will dominate and drive a large fraction of the particulates neutral.

c. Dust which is ice coated photoemits an order of magnitude less well than uncoated dust. This difference would mean that under polar conditions with noctilucent clouds, a larger number of electrons could be associated to the ice coated dust than at other times of the year, resulting in a sharper reduction in the free electron density.

4.4 Effective Dust Attachment Coefficients

Figure 4 shows one instructive example of the derived \(\kappa_e \) and \(\kappa_i \) values for 0.001 m and 0.01 m size dust plotted against electron density \(N_e \) and their photodetachment values. The abscissa for Figure 4 is \(N_e \) (or \(N_i \) since, by the requirement of charge neutrality, they must be held equal in the calculations). Immediately apparent from this graph is the great variability of \(\kappa_e \) and \(\kappa_i \) with changing electron and positive ion densities and photodetachment. Specifically: (a) \(\kappa_e \) exceed \(\kappa_i \) since electrons move 300 times as fast as positive ions and hence have a higher collisional frequency. (b) Higher values of photodetachment rates, \(v_{ph} \), result in higher \(\kappa_e \) values since photodetachment tends to keep a particle uncharged (or positively charged), which means that impacting electrons will not feel a repulsive force. (c) As the numbers of ambient electrons and ions increase, the \(\kappa_e \) and \(\kappa_i \) values converge to a common asymptote because the extreme ambient densities negate the effects of photodetachment. However, the fact that \(\kappa_e \) and \(\kappa_i \) are so highly dependent upon ambient electron and ion densities requires that they be entered iteratively into computer codes, a less efficient procedure than using a set of \(\kappa_e \) and \(\kappa_i \) for the individual charging reactions for dust.
5. THE EFFECTS OF DUST ON D REGION CHEMISTRY AND CHARGE BALANCE THROUGH THE USE OF A FULL CHEMICAL CODE

5.1 Runs at 50 km with Variable Dust Concentration and Photodetachment Frequencies

The results of the previous sections have been organized as piecewise calculations designed to gain insight into the behavior of dust in the mesosphere. In this final section, dust is entered as a full partner into an electron-ion reaction set to quantify the effects on the charge balance. The treatment of this topic is not exhaustive, but it is included in this report to establish the qualitative nature of the effect of dust in the D region. The chemistry reaction set is that of DAIRCHEM, and the dust attachment coefficients used are $k_d = 1.2 \times 10^{-4}$ cm3 s$^{-1}$ for 0.01 cm dust (table 1). Dust is entered in several concentrations: 100, 1000, and 10,000 cm$^{-3}$, and the resulting values in electron density, N_e, and the sum of the hydrated water cluster ions are listed in table 3, examples 1 through 4. In these examples the photodetachment value is held at the value derived from Willis et al., 2.8×10^2 (-3) s$^{-1}$, and the dust concentration is varied by 4 orders of magnitude. A second set of examples, 5 through 7, tests the results using photodetachment rates which vary from 0.01 to 100 times the above value.

Examples 1 through 4 show that as the dust population increases from 0 to 1000 cm$^{-3}$ and 10,000 cm$^{-3}$, the electron density decreases from a high of 453 to 191 and 54 cm$^{-3}$, respectively. Sixty-four percent of dust remains uncharged at high concentrations (10,000 cm$^{-3}$), and 29 percent is negatively charged. Besides the effect of reducing the electron density, another major change is the marked increase in water cluster ion population. This increase is due to the removal of electrons which would recombine with the cluster ions directly (that is, due to the lower ion-dust recombination rate). Total charge neutrality is maintained in the chemistry of these runs, although only a small subset of positive ion species entered in DAIRCHEM is listed in this table. (For example, nitric oxide clusters and other minor positive ion species are omitted.)

Examples 5 through 7 show that the variation in photodetachment is significant in modifying the free electron density. High photodetachment rates drive the dust more positive and hence release electrons. For an increase in photodetachment of 4 orders of magnitude, the free electrons increase from 118 to 749 cm$^{-3}$. For the most probable value of photodetachment (Willis' value of 2.8×10^2 (-3) cm3 s$^{-1}$), the electron density increases more than 60 percent over its value with no photodetachment.

TABLE 3. VARIATION IN ELECTRON DENSITY AT 80 km DUE TO VARIABLE DUST CONCENTRATION AND
PHOTODETACHMENT. RADIUS = 0.01 μm. DAIRCHM COMPUTER MODEL MIDLATITUDE
CASE. \(v_{ph} \) IS LISTED FOR ZERO OPTICAL DEPTH AND AN UNCHARGED PARTICLE.

<table>
<thead>
<tr>
<th>Photodetachment, (v_{ph})</th>
<th>Example</th>
<th>Dust Entered</th>
<th>Uncharged Dust</th>
<th>Dust(+)</th>
<th>Dust(-)</th>
<th>Electron Density</th>
<th>(NO) Ion Density</th>
<th>Sum Water Cluster Ions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.8 (\times 10^*) (μa²)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>463</td>
<td>102</td>
<td>207</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>100</td>
<td>23</td>
<td>1</td>
<td>76</td>
<td>406</td>
<td>103</td>
<td>232</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1000</td>
<td>384</td>
<td>13</td>
<td>603</td>
<td>191</td>
<td>111</td>
<td>507</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>10000</td>
<td>6423</td>
<td>759</td>
<td>2818</td>
<td>54</td>
<td>117</td>
<td>1818</td>
</tr>
<tr>
<td>2.8 (\times 10^7) (μa²)</td>
<td>5</td>
<td>1000</td>
<td>11</td>
<td>10^-3</td>
<td>989</td>
<td>118</td>
<td>114</td>
<td>823</td>
</tr>
<tr>
<td>2.8 (\times 10^8) (μa²)</td>
<td>6</td>
<td>1000</td>
<td>384</td>
<td>13</td>
<td>603</td>
<td>141</td>
<td>111</td>
<td>507</td>
</tr>
<tr>
<td>2.8 (\times 10^{11}) (μa²)</td>
<td>7</td>
<td>1000</td>
<td>524</td>
<td>443</td>
<td>33</td>
<td>749</td>
<td>94</td>
<td>118</td>
</tr>
</tbody>
</table>
In each set of test runs the NO\(^+\) population is comparatively stable. In addition to the reactions listed below, a set of attachment reactions of positive ions to neutral, negatively charged, and positively charged dust was also used.

\[
\begin{align*}
D + e & \rightarrow D^- \quad (8) \\
D^+ + e & \rightarrow D \quad (9) \\
D^- + h\nu & \rightarrow D + e \quad (10) \\
D + h\nu & \rightarrow D^+ + e \quad (11)
\end{align*}
\]

5.2 Comparison of the Effect of Four Dust Profiles (r = 0.01\(\mu\)m and r = 0.001\(\mu\)m) upon D-region Ion Chemistry.

As a more graphic test of the possibility of dust modifying the electron profiles of the D region, four dust distributions were included in the DAIRCHEM code, and computations were made at a series of altitudes. As a basis of comparison for the modeling, a standard type of observed electron density profile from daytime, \(x = 60^\circ\) at Wallops Island, VA, in December is presented. Secondly, the electron density profile computed by DAIRCHEM with no dust included is plotted. The other curves are computed electron densities using 0.01\(\mu\)m dust at constant concentrations of 100 and 1000 \(\text{cm}^{-3}\) and 0.001\(\mu\)m dust at concentrations of 1000 and 5000 \(\text{cm}^{-3}\). These values bracket the estimates generally accepted for dust concentrations in that region. The values are tabulated in table 4. A photodetachment value of \(2.8 \times 10^7\text{s}^{-1}\) was used for dust for all runs.

TABLE 4. SELECTED DUST PROFILES

<table>
<thead>
<tr>
<th>Altitude (km)</th>
<th>A</th>
<th>B No Dust</th>
<th>C 0.01(\mu)m</th>
<th>D 0.001(\mu)m</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0</td>
<td>100</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>90</td>
<td>0</td>
<td>100</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>85</td>
<td>0</td>
<td>100</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>80</td>
<td>0</td>
<td>100</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>75</td>
<td>0</td>
<td>100</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>70</td>
<td>0</td>
<td>100</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>60</td>
<td>0</td>
<td>100</td>
<td>1000</td>
<td>1000</td>
</tr>
</tbody>
</table>

The dust profiles used as input to the code represent a plausible range of values. However, since the distribution of dust in the upper mesosphere is a very open question, these profiles were felt to be adequate in a preliminary demonstration of the DAIRCHEM results to dust, particularly the charge...
balance. A "step" profile of dust (i.e., a sharp ledge of dust at a given altitude) has been conjectured in the literature. This effect may easily be seen by the comparison, at any altitude, of the dust case with the no dust case.

The results of these inputs to DAIRCHEM are plotted in figure 5. Curve 1 is the Wallops Island observation of electron density for December with \(\nu = 60^\circ \). This profile shows the abrupt change in slope at 82 km that is commonly observed in many electron density profiles in the D region under quiet conditions. Curve 2 is the computed electron density profile using DAIRCHEM with no dust. Note the divergence of these two curves at 87 to 75 km. Curves 3 and 4 are 0.01\(\mu \)m dust at concentrations of 100 cm\(^-3\) and 1000 cm\(^-3\). A reduction in electron concentration is apparent at 85 to 78 km, particularly for the 1000 cm\(^-3\) distribution. Below 78 km, the reduction in electron density exceeds the observed curve 1, possibly suggesting that dust may be confined in a relatively narrow ledge. For example, the best fit using 0.01\(\mu \)m dust would be in excess of 1000 cm\(^-3\) from 85 to 77 km and dropping to about 200 cm\(^-3\) by 70 km. Curves 5 and 6, 0.001\(\mu \)m dust at 1000 and 5000 cm\(^-3\), bracket the observed values of electron density down to 77 km. Optimum concentration for 0.001\(\mu \)m dust would be 3000 to 4000 cm\(^-3\). Below 77 km the reducing action of this dust is clearly excessive, thus suggesting values near 200 cm\(^-3\) at 70 km.

Although these calculations were run at each 5 km in altitude and with a limited number of cases, the results clearly show that a judicious choice of dust concentration can allow the modeled electron density to reproduce the heretofore "anomalous bite-outs" in electron density often observed around 80 km. The controlling rule is: if the particle concentration equals or exceeds the model electron density computed by vapor phase reactions alone, such as in the case below 85 km, a reduction to observed values is apparent. Most runs of DAIRCHEM indicate the best fit is with a variable concentration of dust with altitude.

6. SUMMARY AND CONCLUSIONS

The purpose of this report has been to examine, through a series of piecwise calculations and comparisons, the importance of electron-dust attachment to D region chemistry, particularly in competition with electron-ion recombination. In the course of the argument, we have examined the preferred charge loadings on a population of dust and generated two different (but related) sets of coefficients for electron or positive ion dust attachment calculations. The discrete attachment coefficients, \(k_e^* \) and \(k_D^* \), should generally be used in chemical computer codes since they result in knowledge of the precise charge loading of individual dust particles.

Dust of radius less than 0.01\(\mu \)m acquires only one electron under mesospheric conditions. Dust of radius 0.1\(\mu \)m may acquire as many as five or six resident electrons, and in this size range photodetachment does not perturb the distribution of charge loading too greatly. The size of dust therefore seems to predetermine a unique charge loading for each dust particle over a wide range of photodetachment values. An accurate measurement of dust size and
Figure 5. A plot of observed electron densities at Wallops Island, VA, for December (curve 1), model computation by DAIRCHEM from the case of no dust (curve 2), 0.01μm dust concentrations of 100 cm⁻³ and 1000 cm⁻³ at all altitudes (curves 3 and 4), and 0.001μm dust at concentrations of 1000 cm⁻³ and 5000 cm⁻³ (curves 5 and 6).
concentration could permit one to reasonably estimate its effect upon the chemistry due to this unique property. The full understanding of the role of dust, however, requires the use of the ion kinetic reaction scheme.

This report ameliorates some uncertainty in photodetachment rates by running a set of calculations of DAIRCHEM using \(v_{ph} \) orders of magnitude lower and higher than the value used by previous researchers and showing resultant stability in the computed electron densities. Nevertheless, the previous value, obtained from moon dust, seems to be the most logical for use in further D region chemistry runs. Based upon the limited computations made for this study, dust indeed does appear to compete strongly for electrons, particularly at dust concentrations of around 1000 cm\(^{-3}\).

Figure 5 represents the most advanced set of calculations of this report and demonstrates that it is possible, with a proper choice of a dust profile and size, to approximate several heretofore "anomalous features" in electron density profiles.

The concentrations of dust included here for use at 80 km were consistent with reports from the literature. The next step in pursuing this topic must be the analytic derivation of a dust size concentration profile starting, most logically, with meteor flux estimates at 150 km. This present model has been run strictly for daytime chemistry and has purposely neglected nighttime processes and the attachment of negative ions to dust at night. Until this other important step is taken and an extensive series of runs is made, a description of the role of dust in D region chemistry will remain incomplete.
REFERENCES

ELECTRO-OPTICS DISTRIBUTION LIST

Commander
US Army Aviation School
Fort Rucker, AL 36362

Commander
US Army Aviation Center
ATTN: ATZQ-D-MA (Mr. Oliver N. Heath)
Fort Rucker, AL 36362

Commander
US Army Aviation Center
ATTN: ATZQ-D-MS (Mr. Donald Wagner)
Fort Rucker, AL 36362

NASA/ Marshall Space Flight Center
ATTN: ES-B3 (Otha H. Vaughan, Jr.)
Huntsville, AL 35812

NASA/ Marshall Space Flight Center
Atmospheric Sciences Division
ATTN: Code ES-81 (Dr. William W. Vaughan)
Huntsville, AL 35812

Nichols Research Corporation
ATTN: Dr. Lary W. Pinkley
4040 South Memorial Parkway
Huntsville, AL 35802

John M. Hobbie
C/o Kentron International
2003 Byrd Spring Road
Huntsville, AL 35802

Mr. Ray Baker
Lockheed-Missile & Space Company
4800 Bradford Blvd
Huntsville, AL 35807

Commander
US Army Missile Command
ATTN: DRSMI-OG (Mr. Donald R. Peterson)
Redstone Arsenal, AL 35809

Commander
US Army Missile Command
ATTN: DRSMI-OGA (Dr. Bruce W. Fowler)
Redstone Arsenal, AL 35809

Commander
US Army Missile Command
ATTN: DRSMI-REL (Dr. George Emmons)
Redstone Arsenal, AL 35809

Commander
US Army Missile Command
ATTN: DRSMI-REQ (Mr. Oliver N. Heath)
Redstone Arsenal, AL 35809

Commander
US Army Missile Command
ATTN: DRSMI-REO (Mr. Donald Wagner)
Redstone Arsenal, AL 35809

Commander
US Army Missile Command
ATTN: DRSMI-REC (Dr. Huey F. Anderson)
Redstone Arsenal, AL 35809

Commander
US Army Missile Command
ATTN: DRSMI-RED (Mr. Maxwell W. Harper)
Redstone Arsenal, AL 35809

Commander
US Army Missile Command
ATTN: DRSMI-REQ (Mr. Gene Widenhofer)
Redstone Arsenal, AL 35809

Commander
US Army Missile Command
ATTN: DRSMI-RHC (Dr. Julius Q. Lilly)
Redstone Arsenal, AL 35809

Commander
US Army Missile Command
Redstone Scientific Information Center
ATTN: DRSMI-RPRD (Documents Section)
Redstone Arsenal, AL 35809

Commander
US Army Missile Command
ATTN: DRSMI-RRA (Dr. Oskar Essenwanger)
Redstone Arsenal, AL 35809

Commander
US Army Missile Command
ATTN: DRSMI-RRO (Mr. Charles Christensen)
Redstone Arsenal, AL 35809

Commander
US Army Missile Command
ATTN: DRSMI-RRD (Dr. George A. Tanton)
Redstone Arsenal, AL 35809
Commander
US Army Communications Command
ATTN: CC-OPS-PP
Fort Huachuca, AZ 85613

Commander
US Army Intelligence Center & School
ATTN: ATS1-CD-CS (Mr. Richard G. Cundy)
Fort Huachuca, AZ 85613

Commander
US Army Intelligence Center & School
ATTN: ATS1-CD-MD (Mr. Harry Wilder)
Fort Huachuca, AZ 85613

Commander
US Army Intelligence Center & School
ATTN: ATS1-CS-C (2LT Coffman)
Fort Huachuca, AZ 85613

Commander
US Army Yuma Proving Ground
ATTN: STEYP-MSA-TL
Bldg 2105
Yuma, AZ 85364

Northrop Corporation
Electro-Mechanical Division
ATTN: Dr. Richard D. Tooley
500 East Orangethorpe Avenue
Anaheim, CA 92801

Commander
Naval Weapons Center
ATTN: Code 3918 (Dr. Alexis Shlanta)
China Lake, CA 93555

Hughes Helicopters
Army Advanced Attack Helicopter Weapons
ATTN: Mr. Charles R. Hill
Centinela and Teale Streets
Bldg 305, MS T-73A
Culver City, CA 90230

Commander
US Army Combat Developments
Experimentation Command
ATTN: ATEC-PL-M (Mr. Gary G. Love)
Fort Ord, CA 93941

SRI International
ATTN: K2060/Dr. Edward E. Uthe
333 Ravenswood Avenue
Menlo Park, CA 94025

SRI International
ATTN: Mr. J. E. Van der Laan
333 Ravenswood Avenue
Menlo Park, CA 94025

John May
Naval Environmental Prediction
Research Facility (NEPRF)
ATTN: Library
Monterey, CA 93940

Sylvania Systems Group,
Western Division
GTE Products Corporation
ATTN: Technical Reports Library
P.O. Box 205
Mountain View, CA 94042

Sylvania Systems Group
Western Division
GTE Products Corporation
ATTN: Mr. Lee W. Carrier
P.O. Box 188
Mountain View, CA 94042

Pacific Missile Test Center
Geophysics Division
ATTN: Code 3250-3 (R. de Violini)
Point Mugu, CA 93042

Pacific Missile Test Center
Geophysics Division
ATTN: Code 3253 (Terry E. Battalino)
Point Mugu, CA 93042

Effects Technology Inc.
ATTN: Mr. John D. Carlyle
5383 Hollister Avenue
Santa Barbara, CA 93111

Commander
Naval Ocean Systems Center
ATTN: Code 532 (Dr. Juergen Richter)
San Diego, CA 92152

Commander
Naval Ocean Systems Center
ATTN: Code 5322 (Mr. Herbert G. Hughes)
San Diego, CA 92152

Commander
Naval Ocean Systems Center
ATTN: Code 4473 (Tech Library)
San Diego, CA 92152
Commander
US Army Armor Center and Fort Knox
ATTN: ATZK-CD-MS
Fort Knox, KY 40121

Commander
US Army Armor Center and Fort Knox
ATTN: ATZK-CD-SD
Fort Knox, KY 40121

Aerodyne Research Inc.
ATTN: Dr. John F. Ebersole
Crosby Drive
Bedford, MA 01730

Commander
Air Force Geophysics Laboratory
ATTN: OPA (Dr. Robert W. Fenn)
Hanscom AFB, MA 01731

Commander
Air Force Geophysics Laboratory
ATTN: OPI (Dr. Robert A. McClatchey)
Hanscom AFB, MA 01731

Massachusetts Institute of Technology
Lincoln Laboratory
ATTN: Dr. T. J. Goblick, B-370
P.O. Box 73
Lexington, MA 02173

Massachusetts Institute of Technology
Lincoln Laboratory
ATTN: Dr. Michael Gruber
P.O. Box 73
Lexington, MA 02173

Raytheon Company
Equipment Division
ATTN: Dr. Charles M. Sonnenschein
430 Boston Post Road
Wayland, MA 01778

Commander
US Army Ballistic Research Laboratory/
ARRADCOM
ATTN: DRDAR-BLB (Mr. Richard McGee)
Aberdeen Proving Ground, MD 21005

Commander
Chemical Systems Laboratory
US Army Armament Research
& Development Command
ATTN: DRDAR-CLB-PS (Dr. Edward Stuebing)
Aberdeen Proving Ground, MD 21010

Commander
Chemical Systems Laboratory
US Army Armament Research
& Development Command
ATTN: DRDAR-CLB-PS (Mr. Joseph Vervier)
Aberdeen Proving Ground, MD 21010

Commander
Chemical Systems Laboratory
US Army Armament Research
& Development Command
ATTN: DRDAR-CLB-PS (Mr. Ronald Pennsyl)
Aberdeen Proving Ground, MD 21010

Commander
US Army Ballistic Research Laboratory/
ARRADCOM
ATTN: DRDAR-TS8-S (STINFO)
Aberdeen Proving Ground, MD 21005

Commander
US Army Electronics Research
& Development Command
ATTN: DRDEL-CCM (W. H. Pepper)
Adelphi, MD 20783

Commander
US Army Electronics Research
& Development Command
ATTN: DRDEL-CG/DRDEL-DC/DRDEL-CS
2800 Powder Mill Road
Adelphi, MD 20783

Commander
US Army Electronics Research
& Development Command
ATTN: DRDEL-CT
2800 Powder Mill Road
Adelphi, MD 20783

Commander
US Army Electronics Research
& Development Command
ATTN: DRDEL-PAD (M. Singleton)
2800 Powder Mill Road
Adelphi, MD 20783
Commander
US Army Concepts Analysis Agency
ATTN: CCAA-SMC (Mr. Hal E. Hock)
8120 Woodmont Avenue
Bethesda, MD 20014

Dr. A. D. Belmont
Research Division
Control Data Corporation
P.O. Box 1249
Minneapolis, MN 55440

Director
US Army Engr Waterways Experiment Station
ATTN: WDSEN (Mr. James Mason)
P.O. Box 631
Vicksburg, MS 39180

Dr. Jerry Davis
Department of Marine, Earth
and Atmospheric Sciences
North Carolina State University
Raleigh, NC 27650

The Johns Hopkins University
Applied Physics Laboratory
ATTN: Dr. Michael J. Lun
John Hopkins Road
Laurel, MD 20810

Science Applications Inc.
ATTN: Mr. G. O. Currie
15 Research Drive
Ann Arbor, MI 48103

Science Applications Inc.
ATTN: Dr. Robert E. Turner
15 Research Drive
Ann Arbor, MI 48103

Commander
US Army Tank-Automotive Research
& Development Command
ATTN: DRDTA-ZSC (Mr. Harry Young)
Warren, MI 48090

Commander
US Army Armament Research
& Development Command
ATTN: DRDAR-AC (Mr. James Greenfield)
Dover, NJ 07801
Commander
US Army Armament Research & Development Command
ATTN: DRRP-D (Mr. John M. Bialo)
Dover, NJ 07801

Commander
US Army Armament Research & Development Command
ATTN: DRRP-AMSEL (Mr. Peteris Jansons)
Dover, NJ 07801

Deputy Joint Project Manager
for Navy/NSWC SACLANT
ATTN: DRRP-LANKV (CPT Joseph Miceli)
Dover, NJ 07801

Commander/Director
US Army Combat Surveillance & Target Acquisition Laboratory
ATTN: DELCS-1 (Mr. David Longinottil)
Fort Monmouth, NJ 07703

Commander/Director
US Army Combat Surveillance & Target Acquisition Laboratory
ATTN: DELCS-CC (Mr. Ben A. Di Camplil)
Fort Monmouth, NJ 07703

Commander/Director
US Army Combat Surveillance & Target Acquisition Laboratory
ATTN: DELCS-P-1 (Mr. Donald L. Folani)
Fort Monmouth, NJ 07703

Director
US Army Electronics Technology & Devices Laboratory
ATTN: DELET-DD (S. Danko)
Fort Monmouth, NJ 07703

Project Manager
FIREINDER/REMBASS
ATTN: DRRCPM-FFR-TM (Mr. John M. Bialo)
Fort Monmouth, NJ 07703

Commander
US Army Electronics Research & Development Command
ATTN: DELEA (Dr. Walter S. Melfee)
Fort Monmouth, NJ 07703

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-AMSEL
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-LANKV
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-P-1
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-CC
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-P-1
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-CC
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-P-1
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-CC
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-P-1
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-CC
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-P-1
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-CC
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-P-1
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-CC
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-P-1
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-CC
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-P-1
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-CC
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-P-1
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-CC
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-P-1
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-CC
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-P-1
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-CC
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-P-1
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-CC
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-P-1
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-CC
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-P-1
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-CC
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-P-1
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-CC
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-P-1
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-CC
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-P-1
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-CC
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-P-1
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-CC
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-P-1
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-CC
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-P-1
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-CC
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-P-1
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-CC
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-P-1
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-CC
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-P-1
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-CC
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-P-1
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-CC
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-P-1
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-CC
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-P-1
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-CC
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-P-1
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-CC
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-P-1
Dover, NJ 07801

President & CEO
US Army Armament Research & Development Command
ATTN: DRRP-CC
Defense Documentation Center
ATN: DOC-TCA
Camren Station Bldg 5
Alexandria, VA 22314

Ballistic Missile Defense Program Office
ATTN: DAROS-WMT (Colonel Harry F. Ennis)
5001 Eisenhower Avenue
Alexandria, VA 22333

Defense Technical Information Center
ATTN: DDA-2 (Mr. James F. Shafer)
Camren Station, Bldg 5
Alexandria, VA 22314

Commander
US Army Materiel Development & Readiness Command
ATTN: DRCDRS (Mr. Albert Giambalvo)
5001 Eisenhower Avenue
Alexandria, VA 22333

Commander
US Army Materiel Development & Readiness Command
ATTN: DRC-OC (Mr. James Render)
5001 Eisenhower Avenue
Alexandria, VA 22333

Defense Advanced Rsch Projects Agency
ATTN: Steve Zakanyez
1400 Wilson Blvd
Arlington, VA 22209

Defense Advanced Rsch Projects Agency
ATTN: Dr. James Tegnellia
1400 Wilson Blvd
Arlington, VA 22209

Institute for Defense Analyses
ATTN: Mr. Lucien M. Riberman
400 Army-Navy Drive
Arlington, VA 22202

Institute for Defense Analyses
ATTN: Dr. Ernest Bauer
400 Army-Navy Drive
Arlington, VA 22202

Institute for Defense Analyses
ATTN: Dr. Hans G. Wolfhard
400 Army-Navy Drive
Arlington, VA 22202

System Planning Corporation
ATTN: Mr. Daniel Friedman
1500 Wilson Boulevard
Arlington, VA 22209

System Planning Corporation
ATTN: COL Hank Shelton
1500 Wilson Boulevard
Arlington, VA 22209

US Army Intelligence & Security Command
ATTN: Edwin Speakman, Scientific Advisor
Arlington Hall Station
Arlington, VA 22212

Commander
US Army Operational Test & Evaluation Agency
ATTN: CS1E-FD (Mr. Floyd I. Hill)
5600 Columbia Pike
Falls Church, VA 22041

Commander and Director
US Army Engineer Topographic Laboratories
ATTN: ETL-GS-A (Mr. Thomas Neidringhaus)
Cort Belvoir, VA 22060

Director
US Army Night Vision & Electro-Optics Laboratory
ATTN: DELNV-L (Dr. Rudolf G. Buser)
Fort Belvoir, VA 22060

Director
US Army Night Vision & Electro-Optics Laboratory
ATTN: DELNV-L (Dr. Robert S. Rodhe)
Fort Belvoir, VA 22060

Director
US Army Night Vision & Electro-Optics Laboratory
ATTN: DELNV-VI (Mr. Joseph R. Moulton)
Fort Belvoir, VA 22060

Director
US Army Night Vision & Electro-Optics Laboratory
ATTN: DELNV-VI (Luanne P. Obert)
Fort Belvoir, VA 22060
Director
US Army Night Vision & Electro-Optics Laboratory
ATTN: DELNV-VI (Mr. Thomas W. Cassidy)
Fort Belvoir, VA 22060

Commander
US Army Training & Doctrine Command
ATTN: ATCD-AN
Fort Monroe, VA 23651

Commander
US Army Training & Doctrine Command
ATTN: ATCD-AN-M
Fort Monroe, VA 23651

Commander
US Army Training & Doctrine Command
ATTN: ATCD-F-A (Mr. Chris O'Connor, Jr.)
Fort Monroe, VA 23651

Commander
US Army Training & Doctrine Command
ATTN: ATCD-IE-R (Mr. David M. Ingram)
Fort Monroe, VA 23651

Commander
US Army Training & Doctrine Command
ATTN: ATCD-M-1/ATCD-M-A
Fort Monroe, VA 23651

Commander
US Army Training & Doctrine Command
ATTN: ATDOC-TA (Dr. Marvin P. Pastel)
Fort Monroe, VA 23651

Department of the Air Force
OL-1, AWS
Fort Monroe, VA 23651

Department of the Air Force
HQS 5 Weather Wing (MAC)
ATTN: 5 WW/ON
Langley Air Force Base, VA 23655

Commander
US Army INSCOM/Quest Research Corporation
ATTN: Mr. Donald Wilmot
6845 Elm Street, Suite 407
McLean, VA 22101

General Research Corporation
ATTN: Dr. Ralph Zirkind
7655 Old Springhouse Road
McLean, VA 22102

Science Applications, Inc.
8400 Westpark Drive
ATTN: Dr. John E. Cockayne
McLean, VA 22102

US Army Nuclear & Chemical Agency
ATTN: MONA-WE (Dr. John A. Berberet)
7500 Backlick Road, Bldg 2073
Springfield, VA 22150

Director
US Army Signals Warfare Laboratory
ATTN: DELSW-EA (Mr. Douglas Harkleroad)
Vint Hill Farms Station
Warrenton, VA 22186

Director
US Army Signals Warfare Laboratory
ATTN: DELSW-OS (Dr. Royal H. Burkhardt)
Vint Hill Farms Station
Warrenton, VA 22186

Commander
US Army Cold Regions Test Center
ATTN: STECR-TD (Mr. Jerold Barger)
APO Seattle, WA 98733

HQDA (SAUS-OR/Hunter M. Woodall, Jr./Dr. Herbert K. Fallin)
Rm 2E 614, Pentagon
Washington, DC 20301

COL Elbert W. Friday, Jr.
OUSDRE
Rm 3D 129, Pentagon
Washington, DC 20301

29. Duncan, Louis D., and Mary Ann Seagraves, "Applications of Empirical

30. Miers, Bruce T., and Steve Weaver, "Applications of Meteorological
Satellite Data to Weather Sensitive Army Operations," ECOM-5594, May
1976.

31. Sharenow, Moses, "Redesign and Improvement of Balloon ML-566," ECOM-5595,
June 1976.

32. Hansen, Frank V., "The Depth of the Surface Boundary Layer," ECOM-5596,
June 1976.

33. Pinnick, R. G., and E. B. Stenmark, "Response Calculations for a

34. Mason, J., and G. B. Hoidale, "Visibility as an Estimator of Infrared

35. Bruce, Rufus E., Louis D. Duncan, and Joseph H. Pierluissi, "Experimental
Study of the Relationship Between Radiosonde Temperatures and

36. Duncan, Louis D., "Stratospheric Wind Shear Computed from Satellite

38. Bruce, Charles, "Development of Spectrophones for CW and Pulsed Radiation
Sources," ECOM-5802, September 1976.

40. Blanco, Abel J., and Larry E. Taylor, "Artillery Meteorological Analysis

41. Miller, Walter, and Bernard Engebos, "A Mathematical Structure for

42. Gillespie, James B., and James D. Lindberg, "A Method to Obtain Diffuse
Reflectance Measurements from 1.0 and 3.0um Using a Cary 171

43. Rubio, Roberto, and Robert O. Olsen, "A Study of the Effects of
Temperature Variations on Radio Wave Absorption," ECOM-5807,
November 1976.

53. Rubio, Roberto, and Mike Izquierdo, "Measurements of Net Atmospheric Irradiance in the 0.7- to 2.8-Micrometer Infrared Region," ECOM-5817, May 1977.

54

151. Brewer, R. J., C. W. Bruce, and J. L. Mater, "Optoacoustic Spectroscopy of C\textsubscript{2}H\textsubscript{4} at the 9\textmu m and 10\textmu m C\textsubscript{2}H\textsubscript{2}O Laser Wavelengths," ASL-TR-0080, March 1981.

DATE
11

FILMED
4-8