LIGHTER-TTHAN-AIR (LTA) VEHICLES:
A TECHNICAL BIBLIOGRAPHY

David B. Bailey and
Richard E. Adams
Aircraft and Crew Systems Technology Directorate
NAVAL AIR DEVELOPMENT CENTER
Warminster, Pennsylvania 18974

FINAL REPORT

AIRTASK NO. A03P-03PA-001B/F41-411

Approved for Public Release; Distribution Unlimited

7 OCTOBER 1981

Prepared for
Naval Air Systems Command
Department of the Navy
Washington, D.C. 20361
REPORT NUMBERING SYSTEM — The numbering of technical project reports issued by the Naval Air Development Center is arranged for specific identification purposes. Each number consists of the Center acronym, the calendar year in which the number was assigned, the sequence number of the report within the specific calendar year, and the official 2-digit correspondence code of the Command Office or the Functional Directorate responsible for the report. For example: Report No. NADC-78015-20 indicates the fifteenth Center report for the year 1978, and prepared by the Systems Directorate. The numerical codes are as follows:

<table>
<thead>
<tr>
<th>CODE</th>
<th>OFFICE OR DIRECTORATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Commander, Naval Air Development Center</td>
</tr>
<tr>
<td>01</td>
<td>Technical Director, Naval Air Development Center</td>
</tr>
<tr>
<td>02</td>
<td>Comptroller</td>
</tr>
<tr>
<td>10</td>
<td>Directorate Command Projects</td>
</tr>
<tr>
<td>20</td>
<td>Systems Directorate</td>
</tr>
<tr>
<td>30</td>
<td>Sensors & Avionics Technology Directorate</td>
</tr>
<tr>
<td>40</td>
<td>Communication & Navigation Technology Directorate</td>
</tr>
<tr>
<td>50</td>
<td>Software Computer Directorate</td>
</tr>
<tr>
<td>60</td>
<td>Aircraft & Crew Systems Technology Directorate</td>
</tr>
<tr>
<td>70</td>
<td>Planning Assessment Resources</td>
</tr>
<tr>
<td>80</td>
<td>Engineering Support Group</td>
</tr>
</tbody>
</table>

PRODUCT ENDORSEMENT — The discussion or instructions concerning commercial products herein do not constitute an endorsement by the Government nor do they convey or imply the license or right to use such products.

APPROVED BY: J. R. WOODS DATE: 11/25/81

CDR USN
Lighter-Than-Air (LTA) Vehicles: A Technical Bibliography

Approved for Public Release; Distribution Unlimited

This technical bibliography provides a systematic accounting of Lighter-Than-Air (LTA) documents. This report should enable rapid review of past and present activities for specific individual applications. Both author and subject indices are included.
ACKNOWLEDGEMENTS

The assistance of Mr. Michael Poli of this Center is gratefully acknowledged by the authors.
TABLE OF CONTENTS

I. INTRODUCTION ... iii

II. AUTHOR INDEX .. 1

III. SUBJECT CROSS REFERENCE: .. 74

APPENDIX A. ADDITIONAL (NEW) DOCUMENTS 115
I. INTRODUCTION

This document is intended to provide information for the Lighter-Than-Air (LTA) technical community. This bibliography is the result of numerous searches of both old and new literature on this topic since the fall of 1975. These searches have been conducted in support of investigations by the LTA Project Office (605B) at the Naval Air Development Center, Warminster, PA 18974. Hopefully, it will serve to assist the studies of others in this field by presenting in one volume a fairly complete listing of technical reports, papers, memoranda and articles.

The report format is organized to present an alphabetical authors index plus a cross-reference by subject.

Sources for the listings are suggested below. Note that any one or even two of the sources may not possess the entire collection. Sources are as follows:

a) Naval Air Systems Command
Technical Library (AIR-00D4)
Washington, DC 20361

b) History of Aviation Collection
The University of Texas at Dallas
P.O. Box 643
Richardson, TX 75080

c) Naval Aviation History Office
Washington Navy Yard, Bldg 146
Washington, DC 20374

d) Naval Operational Archives
Washington Navy Yard, Bldg 210
Washington, DC 20374

e) The University of Akron
Bierce Library - Archival Services
Akron, OH 44325

f) Naval Air Development Center
LTA Project (Code 605B)
Warminster, PA 18974

g) Defense Technical Information Center (DTIC)
Cameron Station, Alexandria, VA 22314

h) National Technical Information Service (NTIS)
U.S. Department of Commerce
Springfield, VA 22161
II. AUTHOR INDEX

5. AIR COORDINATING COMMITTEE REPORT Report to the Air Coordinating Committee Relative to the Commercial Possibilities of Lighter-Than-Air Aircraft, May 22, 1947.

30. Association d'Etude et de Recherche sur les Aéronefs allégés (AERALL)

31. AUSROYAS, R. A.

32. BAIIJLY, D. B.
Maritime Patrol Airship Study (MPAS), Naval Air Development Center and Summit Research Corporation, NADC Report No. 80149-60, March 19, 1980.

33. BALLEYGHIER, M. A.
A Practical Concept for Powered or Tethered Weight-Lifting LTA Vehicles, (Interagency Workshop on LTA Vehicles), Sept 1974.

34. BARKER, J. F.

35. BARTON, J. A.

37. Stress Analysis of Suspension System Model ZP2N-1 Airship, Goodyear Aircraft Corporation Report GER-5002, October 1, 1952.

38. BASSETT, P. R.
The "Hindenburg" - Some Measurements - U.S. Air Services Magazine, December 1936.

39. BEAUBOIS, H.

40. BEIER, G. J.
Roles for Airships in Economic Development (Interagency Workshop on LTA Vehicles), Sept 1974.

41. BELL, J. C.

42. BETANCOURT, G.

43. BIGGERS, J. V.

44. BINGHAM, G. K.

45. BIRD, W. G.
<table>
<thead>
<tr>
<th>No.</th>
<th>Author(s)</th>
<th>Title</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>BLAKEMORE, T. L.</td>
<td>Design Construction and Handling of Non-Rigids</td>
<td>Trans A.S.M.E., Apr/June 1929.</td>
</tr>
<tr>
<td>55</td>
<td>BOLDT, T. R.</td>
<td>Airship Stern Propulsion</td>
<td>(General Development Corporation), Jul 1953.</td>
</tr>
<tr>
<td>58</td>
<td>BOLSTER, C. M.</td>
<td>Mechanical Equipment for Handling Large Rigid Airships</td>
<td>Trans A.S.M.E., 1933.</td>
</tr>
<tr>
<td>62</td>
<td>BOYLE, J. F.</td>
<td>Non-Rigid Airships: Their Development</td>
<td>Aviation Engineering, April 1951.</td>
</tr>
<tr>
<td>No.</td>
<td>Author</td>
<td>Title</td>
<td>Source</td>
</tr>
<tr>
<td>-----</td>
<td>-------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>67.</td>
<td>BROOKS, R. D.</td>
<td>Lighter-Than-Air Vehicle Missions, Requirements, Scenarios, and Aircraft Suite (U), (Naval Air Development Center, SAE-DM-33-75), Sept 1975.</td>
<td></td>
</tr>
<tr>
<td>69.</td>
<td>BROOKS, P. R.</td>
<td>Study of Weight Distribution to Improve Trim of ZP2M-3 Airship</td>
<td>NAS, Lakehurst, AEC Report Serial No. 05-52, September 15, 1952.</td>
</tr>
</tbody>
</table>

80. Detail Specification for Model ZPG-1 Airship, SD-487-1, Department of the Navy, 2 October 1953.

82. Detail Specification for Model ZPG-3W Airship, SD-457-3W-1, Department of the Navy, 12 April 1956.

BUREAU OF AERONAUTICS (BUAER) AIRSHIP DESIGN MEMOS 1-401, LTA DESIGN GROUP:

87. HINSAKER, J. C. 1 - Standard Definitions Used in Design of ZR-1.

89. BURGESS, C. P. 5 - Comparative Longitudinal Strength of the ZR-1 and Other Rigid Airships.

90. MICOTTI, A. D. 6 - Distribution of Strength in L-49, R-38 and XR-1.

91. 7 - Detailed Longitudinal Strength Computation of Rigid Airship ZR-1.

92. 8 - Effect of Gas Pressure Upon the Netting and Longitudinals.

93. 9 - Transverse Strength of Airship ZR-1.

94. 10 - Aerodynamic Forces on Airship ZR-1.

95. 11 - Strength of the Fins and Control Surfaces of the Airship ZR-1.

96. 12 - The Function of the Corridor Structure in Carrying Loads.
97. 13 - Shearing Forces and Bending Moments Due to Deflated Gas Cells in Fleet Airship ZR-1.
98. 14 - Further Consideration on the Comparative Longitudinal Strength of the ZR-1 and Other Rigid Airships.
99. 15 - Strength Calculations of the Airship R-38.
100. 16 - Comment on Mr. W. W. Pagon's Paper on the Primary and Secondary Stresses in Rigid Airships.
101. 17 - Capacity of Gas Valves in Airship ZR-1.
102. 18 - Shearing Forces and Bending Moments in the Airship ZR-1 When Lying to the Mooring Mast.
103. 19 - Shearing Forces and Bending Moments Due to Deflated Gas Cells in Special Light Load Condition of Fleet Airship ZR-1.
104. 20- Additions and Corrections to Design Memo No. 8.
105. 21 - The Use of Correction Factors in Applying Bending Theory in Rigid Airships.
106. 22 - Analysis of Tests Conducted by the Bureau of Standards Upon Test Girders of the Airship.
107. BURGESS, C. P. 23 - Stresses in the Corridor of the ZR-1 Due to Lateral Inclination of the Airship.
108. 24 - Comparison of Aerodynamic Forces on ZR-1 and German Airships by Use of Zeppelin Company's Coefficient.
109. 25 - Factors of Safety in Airship ZR-1 by the Zeppelin Method of Calculation.
110. 26 - Stresses Observed on Sixth Trial Flight of ZR-1, September 27, 1923.
111. 27 - Stresses Observed in the Seventh Trial Flight of Airship ZR-1 (Lakehurst to St. Louis and return), Oct 1 to 3, 1923, and in Shed Bending Tests.
112. 28 - Interpretation of Photo-Elastic Experiments on Celluloid Model of the ZR-1.
113. 29 - Bending Test of ZR-1.
114. 30 - Experimental Determination of the Resistance and Admiralty Constant of the USS SHENANDOAH.

116. 32 - Forces on Airships in Gusts.

117. 33 - Determination of the Size and Horsepower of Rigid Airships for Any Desired Performance.

118. 34 - Forces on an Airship Secured to a Mooring Mast on a Rolling Ship.

119. 35 - Structure and Gas Cell Tests on Fleet Airship ZR-1 February 19 to March 2, 1925.

120. 36 - A Study of the Influence of Size Upon the Scouting Efficiency of Naval Airships.

121. 37 - Effect of the Position of the Tail Surfaces Upon the Bending Moments in Rigid Airships.

122. 38 - Rules for Procedure in Case of Deflation of a Gas Cell in the U.S.S. SHENANDOAH.

123. 39 - Acceleration Forces Upon an Airship Moving in a Series of Sine Curves.

124. 40 - Use and Computation of the Quantity $E \sin^2 \theta$ in Airships Having Regular Polygonal Cross-Sections.

125. 41 - Admiralty Constants of the U.S.S. SHENANDOAH as Calculated from Engine Tests.

126. 42 - Comparative Weights of Airships ZR-1 and ZR-3.

127. 43 - Interpretation of the C-7 Pressure Distribution Experiments.

128. 44 - Comparison of Dynamic Lift and Pressure Distribution on the Airship LOS ANGELES by Observation and Experiment.

129. 45 - Preliminary Design Calculations for a Rigid Airship of 6,000,000 cu. ft. gas volume.

130. 46 - Comparative Efficiency of Different Methods of Carrying Airplanes on Airships.

131. 47 - Deceleration Tests of U.S.S. LOS ANGELES.

132. 48 - Factors Determining the Endurance of Airships.
BUREAU OF AERONAUTICS (BUAER) AIRSHIP
DESIGN MEMOS 1-401, LTA DESIGN GROUP:

133. BURGESS, C.P. (Continued)
134. 135. 136. 137. 138. 139. 140. 141. 142. 143. 144. 145. 146. 147. 148. 149. 150. 151. 152. 49 - Possible Advantages of Metalclad Airships.
50 - Towing Rigid Airships at Sea.
51 - Loading a Light Airship.
52 - Strength of Perforated Plate Webs in Metal Spars and Girders.
53 - Gas Pressure Bending Moment and Longitudinal Force in Airships.
54 - The Dynamical Stability of Airships.
55 - Strain Gage Tests on U.S.S. LOS ANGELES, May 25 to June 4, 1925.
56 - Comparative Weights of Main Frames of Rigid Airships With and Without Cross-Wiring.
57 - Photo-Elastic Experiments on Lengthened Model of U.S.S. SHENANDOAH.
58 - Deceleration Test of U.S.S. SHENANDOAH, 22 August 1925.
59 - Probable Performance of a Rigid Airship of 1,070,000 cu. ft. Volume.
60 - The Dynamic Lift Efficiency of Airships.
61 - Hydrogen and Coal Gas as Airship Fuels.
62 - Performance of Small Rigid Airships Designed by the Goodyear-Zeppelin Corporation.
63 - Strength and Pressure Tests on U.S.S. LOS ANGELES, April 6, May, 1926.
64 - Centrifugal Forces in the Kirsten-Boeing Propeller.
65 - The Comparative Explosibility of Liquid and Gaseous Fuels for Airships.
67 - Comparative Factors of Safety in Bridges and Aircraft.
68 - A Method of Testing a Stub Mooring Mast for Airships.
153. BURGESS, C. P. (Continued) 159. 75 - Relation Between Size and Performance of Large Airships.
154. 70 - Effect of Netting Tension on Gas Pressure Loads on Longitudinals.
155. 71 - The Use of Strain Gages on Structural Members Carrying Combined Bending and Axial Loads.
156. 72 - Torsional Strength of Two-Spar and Multi-Spar Wings.
157. 73 - Note on Deceleration Tests of French Airships.
158. 74 - Cross-Wing Force and Rate of Fall of Airships.
159. 75 - Relation Between Size and Performance of Large Airships.
160. 76 - Strength of British Airship R-100.
161. 77 - Stresses in U.S.S. LOS ANGELES Held Across a 20-Mile Wind.
162. 78 - Stresses in Deflation Test of U.S.S. LOS ANGELES.
163. 79 - Distribution of Dynamic Lift on U.S.S. LOS ANGELES.
164. 80 - Comparative Strength of Airships.
165. 81 - Forces on U.S.S. LOS ANGELES When Held at Portable Moving Mast.
166. 82 - Speed and Deceleration Trials of U.S.S. LOS ANGELES, September, 1927.
167. 83 - Forces in Airplane Landing Device for U.S.S. LOS ANGELES.
170. 86 - Forces on U.S.S. LOS ANGELES During Wind Shifts at Mooring Mast.
171. 87 - Gas Cells Sub-Division for Airship ZR-4.
172. 88 - Inflation and Strength Tests of Stern Section of Metalclad Airship MC-2.
173. 80 - Performance of a Nonrigid Airship of 320,000 cu. ft. Volume, Inflated with Helium and Fuel Gas.

174. 90 - The Properties of Cold Worked Duralumin.

175. 91 - A Discussion of Methods for Providing a View of the Bottom Fin and Rudder from the Control Car of the ZRS-4.

176. 92 - Static Bending Moments and Stresses in the U.S.S. LOS ANGELES as Designed and in Service in 1930.

178. 94 - Comparative Strength and Factors of Safety of U.S.S. LOS ANGELES as Designed and in Service in 1930.

179. 96 - Water Recovery Apparatus for Airships.

180. 97 - Comparison of the Proposed "100 Ton, 100 Mile" Metalclad Airship, and an Equivalent Rigid Airship of Conventional Design.

181. 98 - Stress Analysis of a Main Frame of Airship ZRS-4.

183. 100 - Internal vs. External Engines for Airships.

184. 101 - Effect of Slackening Gas Cell Wires on U.S.S. LOS ANGELES.

185. 102 - Progress in Airship Design From U.S.S. SHENANDOAH to U.S.S. AKRON.

186. 103 - External vs. Internal Radiators for Airships.

188. 105 - Theory of the Inherently Stiff Ring Frame for Airships.

189. 106 - The Strength of Airship Mooring Masts.

190. 107 - Methods of Supporting the Bow of an Airship While Mooring to a Mast.

191. 108 - Significance of the Tests of the Metal Models of Airships ZRS-4 and MC-38 in the Variable Density Wind Tunnel.
192. BURGESS, C. P. (Continued)
109. - Internal Radiators for Airships.
110. - Effect of Adding One Main Bay to the ZRS-5.
112. - Comparison of Static Bending Tests of Airships LOS ANGELES and AKRON.
113. - Resistance of a Core Radiator Enclosed in a Duct.
114. - Strength of Expeditionary Mooring Masts.
115. - Forces on the Airplane Trapeze for U.S.S. AKRON.
116. - Speed, Resistance and Fuel Consumption of U.S.S. AKRON.
118. - Forces on U.S.S. AKRON During Ground Handling.
119. - Analyses of the Goodyear-Zeppelin's Company Proposals to Reduce the Drag of the Airship MACON.
120. - Steam Power Plant for Airships, Proposed by the Great Lakes Aircraft Corporation.
121. - Calculation of Stresses in Three Bridle System of Stern Handling Lines for U.S.S. AKRON.
122. - Use of Dynamic Lift in the U.S.S. AKRON in Deflated Gas Cell Conditions.
123. - Resistance of the Bare Hull of the U.S.S. AKRON.
124. - Note on the Variation of Wind Velocity with Altitude.
125. - Air Cooling vs. Water Cooling for Mayback Engine Manifolds.
126. - Cooling of Airship Radiators by Circulation of Internal Air.
127. - Stress in a Ring Subjected to Two Opposite Forces.
128. - The Vibration of Structures.
130. - Improvements in Mark IV Water Recovery Apparatus.
215. 132 - The Aerodynamic Control of Airships.
216. 133 - Bow Elevators for Airships.
217. 134 - Local vs. General Loads on Airship Girders.
220. 137 - A Useful Beam and Column Relation.
221. 138 - Airship Outer Cover Tension and Loads on Longitudinals.
222. 139 - The Relative Weights of Metalclad and Fabric Airships.
223. 140 - Aileron Controlled Bow Elevators.
224. 141 - Stresses in Two-Spar Cantilever Wings.
225. 142 - Comparative Bending Strength and Weight of Structural and Pressure Airships.
226. 143 - Transverse Strength of Flying Boats.
227. 144 - Torsional Stresses in Box Beams.
228. 145 - Analysis of Flat Plate and Stiffener Combinations Tested by Consolidated Aircraft Corporation.
229. 146 - Maybach Engines and Water Recovery Versus Diesel Engines and Hydrogen Balloons in U.S.S. MACON.
230. 147 - Reply to Criticism of Metalclad Airship Corp. on Design Memorandum No. 142.
231. 148 - Shearing Forces in Airships.
232. 149 - The Effect of Double Drag Bracing in Biplanes.
233. 150 - Liquid Hydrogen as Fuel for Airships.
234. 151 - The Bending Strength of Metalclad Airships.
235. 152 - The Rigidity of Intermediate Supports for Columns.
236. BURGESS, C. P. (Continued) 153 - The Distribution of Torsion Between the Spars and Drag Bracing of Cantilever Wings.

237. 154 - Strength and Weight of the Spar-Type Airship.

238. 155 - Development of Spot Welding of Al clad by the Aluminum Company of America.

239. 156 - Characteristics of Hydrogen - Propane Fuel Gas Mixtures.

241. 158 - Stress Analysis of Biplane Wing Trusses.

242. 159 - Ratio of Arc to Chord When the Angle Subtended is Small.

243. 160 - Obtaining Water Ballast From the Atmosphere or Engine Exhaust by Means of Silica Gel.

244. 161 - Simple Expressions for the Strength of Thin-Walled Cylinders in Bending or Compression.

245. 162 - The Stress Analysis of Rings.

246. 163 - The Diving Planes of Submarine Vessels.

247. 164 - The Critical Stresses of Thin Curved and Flat Plates.

248. 165 - The Solution of Numerical Simultaneous Equations of the First Degree.

250. 167 - The Strength of an Euler Column with One Fixed and One Pinned End.

251. 168 - A Method of Determining the Best Airplane Wing Proportions.

252. 169 - Airship Fin and Rudder Loads.

253. 170 - The Elastic Axis of Stressed Skin Wings.

254. 171 - Bending Stresses in Monocoques.

255. 172 - The Tension in a Fabric Surface Due to Normal Pressure.
256. BURGESS, C. P. (Continued)
257.
258.
259.
260.
261.
262.
263.
264.
265.
266.
267.
268.
269.
270.
271.
272.
273.
274.
275.
276.
277.

173 - Variations of the Modulus of Elasticity in Redundant Structures.

174 - Compartmentation in Airships and Surface Ships.

175 - Duralumin Masts.

176 - Performance of 1,200,000 ft.³ Metalclad Airship.

177 - Helium versus Air as a Cooling Medium for Radiators.

178 - Some Characteristics of Induced Drag.

179 - Wing Truss and Spar Analysis of Bureau Aero. Design No. 133.

180 - The Lift-Drag of Airships.

181 - Variation of the Properties of a Structural Section with Shift of the Neutral Axis.

182 - The Calculation of the Beam and Torsional Frequencies of Vibration of Cantilever Wings.

183 - Range with Relay System.

184 - Relation Between Length of Voyage and Revenue of Commercial Carriers.

185 - Comparative Efficiency of Airship Fuel Gases.

186 - On Worms and Wedges.

187 - Vent holes for Seaplane Floats.

188 - Gust Required to Carry Away Fins of U.S.S. MACON.

189 - Center Tunnel Airship Proposed by the Virginia Airship Company.

190 - Comparative Strength of Rigid Airships.

191 - The Structure of Rigid Airships.

192 - Forces on the U.S.S. LOS ANGELES at a Mooring Mast.

193 - Requirements for Proposed Airship K-2.

194 - Discussion of the Report of the Airworthiness of Airships Panel (British Aeronautic Research Committee R. & M. No. 970).
BUREAU OF AERONAUTICS (BUAER) AIRSHIP
DESIGN MEMOS 1-401, LTA DESIGN GROUP:

278. BURGESS, C. P. (Continued)
279.
280.
281.
282. HOOPER, A. G.
283.
284.
285.
286.
287.
288.
289.
290.
291.
292.
293.
294.
295.
296.
297.
298.
299.
300.
301.
302.
303.
304.
305.
306.
307.
308.
309.
310.
311.
312.
313.
314.
315.
316.

195 - Comparative Efficiency of Various Closed Hollow Sections in Torsion.
196 - Effect of Turning on Forces on an Airship in a Gust.
197 - Time Taken and Distance Covered by Airships in Deceleration.
198 - Proposal for a Novel Type of Rigid Airship.
199 - An Improved Mooring Mast Mechanism.
200 - Contribution of the Hull to the Effective Fin Area in Airships.
201 - The Induced Drag of Airships.
202 - Note on the Stern Forces and Bending Moments in Airships.
204 - Nonrigid Airships in the Navy Since the War.
206 - Strength of Plate and Stringer Combination Against Water Pressure.
207 - Application of Rayleigh's Principle to the Stability and Vibrations of Structures.
208 - Hydrovanes for Flying Boats.
209 - Direction of Gust Producing the Maximum Force on an Aircraft.
210 - The Variety of Bending Moments in Airships.
211 - A Simple Solution of Column and Vibration Problems.
212 - Local Aerodynamic Forces on Airships.
213 - Vibrations in Simple Harmonic Motion.
214 - The Strength Weight Ratio of Gas Tight Fabrics.
215 - A Summary of Useful Expressions for Combined Bending and Compression.
216 - Forces on Planing Surfaces. (Condensed from R.G.M. No. 1646).
300. BURGESS, C. P. 217 - Damping the Vibrations of Aircraft Structures. (Continued)

301. 218 - Possible Performance of the China Clipper.

302. 219 - Maximum Range of Airplanes at Wide Open Throttle.

303. 220 - Stress Analysis by "Joint Relaxation."

304. 221 - Loads on Fins and Control Surfaces of Airships ZRS-4 and 5.

305. 222 - Comparative Fin Loads on Airships R-101 and AKRON-MACON.

306. 223 - Effect of Damping on the Period and Amplitude of Vibrations.

307. 224 - Influence of End Position Flexity Upon Strength of Thin Plates Against Normal Pressure.

308. 225 - The Magnification Factor in Forced Vibration.

309. 226 - The Frequencies of Cantilever Wings in Beam and Torsional Vibrations.

311. 228 - Variation of Wind Velocity Near the Surface of Water.

312. 229 - Tubular Girders for Airships.

313. 230 - Class "K" Airship Form.

314. 231 - Professor R. H. Smith on Boundary Layer Control.

315. 232 - A Visit to M. I. T.

316. 233 - Calculation of the Second and Higher Harmonics of Beam Vibrations in Tapered Cantilever Wings.

317. 234 - Stability of the Center Spar in a Spar Type Airship.

318. 235 - Proposed Airplane Carrier Airship.

319. 236 - Alternative Methods of Carrying Airplanes on Airships.

321. 238 - Comparative Resistances of Airships R-101 and MACON.
NADC-80216-60

BUREAU OF AERONAUTICS (BUAER) AIRSHIP
DESIGN MEMOS 1-401, LTA DESIGN GROUP:

322. BURGESS, C. P. 239 - The Bending of Thin Walled Tubes.

323. 240 - Deflection of Cantilever Wing Spurs.

324. 241 - L/D and Range of Aircraft.

325. 242 - Comparative Rigidity of Deep Ring and Wire Braced Frames.

326. 243 - Comparison of 7.8 Million cu. ft. Airship Proposed by Goodyear-Zeppelin Corp. and U.S.S. MACON.

327. 244 - Progress in Flying Boats, 1933-1936.

328. 245 - The Influence of the Air in Damping Wing Vibrations.

329. 246 - Effect of Slenderness Ratio Upon Structural Weight of Airships.

331. 248 - Isolation of Airplane Engine Vibrations.

332. 249 - Airships vs. Surface Ships as Carriers of Airplane Bombers.

333. 250 - Performance of the HINDENBURG as a Carrier for Bombing Airplanes.

334. 251 - Bending Moment Due to Axial Stress in a Ring.

335. 252 - Discussion of Airship Structural Model Test by Goodyear Tire & Rubber Co.

337. 254 - Use of an Easily Liquifiable Fuel Gas for Buoyancy Control in Airships.

338. 255 - A Relation Between Weight and Variation of Horsepower with Speed.

339. 256 - Comparative Performance of Nonrigid and Metalclad Airships of 750,000 cu. ft. Vol.

340. 257 - Comparative Weights of the Respess and Zeppelin Type Airships.

341. 258 - Relation Between Speed, Weight and Horsepower of Gliding Craft.

18
342. BURGESS, C. P. (Continued)

259 - Circumferential Reinforcing Bands on Thin-Shell Pressure Vessels.

260 - Comparison of Tests of Airships Hull Models in the NACA and NPL Variable Density Wind Tunnels.

261 - Analysis of a Radially Braced Continuous Ring by the Three Moment Equation.

262 - Forces on Airships in Gusts.

263 - The Required Strength of Airships.

264 - Boundary Layer Control in Airships.

265 - Comparative Performances of Commercial Airships Inflated with Hydrogen and with Helium.

266 - Ballasting an Airship by Removing Hydrogen from a Helium-Hydrogen Mixture.

267 - Temperature Stresses in Structures of Steel and Aluminum Alloy in Combination.

268 - Performance of Respess Airships.

269 - Progress of Corrosion in Metalclad Airships ZMC-2.

270 - The Stability of an Airship Structure Considered as a Stiffened Shell.

271 - Airships as Airplane Carriers.

272 - The Economic Efficiencies of Airships and Flying Bouts.

273 - Economic Efficiencies of the China Clipper and the German Seaplane HA-139.

274 - The Ultimate Airship.

275 - The Relation Between the Weight, Efficiency and Size of Structures and Machines.

276 - The Surface Area of Ellipsoids.

277 - Preliminary Analysis of Structural Tests of 7.5 Million cu. ft. Airship Model.

278 - The Support of Flat Plates Against Normal Pressure.

279 - The Theory of Flexure Plates.

364. 281 - An Airplane Carrier Airship.

365. 282 - Preliminary Design Calculations for 9,500,000 cu. ft. Airplane Carrier Airship.

366. 283 - The Resistance and Prismatic Coefficient of Streamline Bodies.

367. 284 - Fighter Airplanes on Airships.

369. 286 - The Development of Airship Girders from 1916 to 1937.

370. 287 - A Note on Reynolds Number and Skin Friction.

371. 288 - Permissible Roughness of Airship Hulls.

372. 289 - Possibility of a Man-Power Airship.

373. 290 - Accelerations of Nonrigid Airships.

374. 291 - Airplane Wing Loading.

375. 292 - The Energy of Rubber Cords.

376. 293 - The Goodyear-Zeppelin Version of the Class K Airship Form.

377. 294 - The Performance of an Airship-Based Dive Bomber.

378. 295 - Methods of Storing Energy on Aircraft.

379. 296 - Optimum Wing Thickness Ratio.

380. 297 - Relative Shear Stiffness Provided by Sheet and Diagonal Members.

381. 298 - Airplane Carrying Capacity of a 3,000,000 cu. ft. Airship.

382. 299 - Picking Up Sea-Water Ballast.

384. 301 - Comparative Aerodynamic Efficiencies of Liquid and Air Cooled Engines.

20
BUREAU OF AERONAUTICS (BUAER) AIRSHIP
DESIGN MEMOS 1-401, I.TA DESIGN GROUP:

385. BURGESS, C. P. 302 - Skin Friction of Smooth and Rough Flat Plates.
 (Continued)

386. 303 - The Influence of Flexibility on the Strength of Airships.

387. 304 - Pressure and Density of the Air in the Stratosphere.

388. 305 - Stern Propellers for Airships.

389. 306 - The Design of Developable Surfaces.

391. 308 - Compressed Oxygen for Propulsion of Submarines.

393. 310 - Strength of the U.S.S. LOS ANGELES.

394. 311 - Short Column Formulas.

395. 312 - Discussion of Four Airship Proposals Submitted by the Goodyear-Zeppelin Corporation.

396. 313 - Discussion of Specification for Metalclad Airship Submitted by the Metalclad Airship Corporation

397. 314 - Metalclad Airships Proposed by the American Mechanical Engineering Co.

399. 316 - Three Fundamental Velocities of Gases.

400. 317 - An Alternative to Barrage Balloons.

401. 318 - Experimental Aluminum Alloy and Stainless Steel Airship Girders.

402. 318A - Comments on Design Memo #318 by Goodyear-Zeppelin.

403. 319 - Developable Surfaces in Naval Architecture.

404. 320 - The Tail Surfaces on Non-Rigid Airships.

405. 321 - One Million cu. ft. Rigid Airship with 10 Gas Cells, Proposed by Goodyear-Zeppelin Corp.

406. 322 - Sailing Airships at Sea.
BUREAU OF AERONAUTICS (BUREAR) AIRSHIP
DESIGN MEMOS 1-401, LTA DESIGN GROUP:

407. BURGESS, C. P. (Continued)

324 - The Compressibility Correction of Calculated Flutter Speed.

325 - The Fundamentals of Flutter Models.

326 - Stress Due to Applying Compound Curvature to Flat Material.

327 - Analysis of Wind Tunnel Test of Munk Airship Control Surfaces.

328 - The Position of the Axis of Rotation in Free Torsional Vibration of a Cantilever Wing.

329 - Comment on Goodyear Aircraft Corp. Proposal for an 800,000 cu.ft. Nonrigid Airship.

330 - The Slant Height Correction to the Surface Areas of Streamline Bodies.

332 - The Drag of Nonrigid Airships.

333 - Combined Bending and Compression of Rectangular Steel Bars.

334 - Propeller Theory.

335 - The Maximum Power of Windmills.

336 - Hydrogen for Barrage Balloons.

337 - Effect of Gas Purity on Barrage Balloon Ceiling.

338 - Fairing Curve by Difference.

339 - Trim of K Class Airships.

340 - Direct Drive vs. Geared Engines for K Type Airships.

341 - The Generation of Hydrogen from Calcium Hydride.

342 - The Effect of Shot Holes in a Nonrigid Airship.

343 - Tapered Struts and Booms.

344 - Barrage Balloons for Advanced Bases.
BURGESS, C. P. (Continued)

345 - Progress in Rigid Airships 1927 to 1942.

346 - An Airplane for Airship Carriers.

347 - Airships vs. Airplanes as Cargo Carriers.

348 - The Optimum Size of Balloons.

349 - Comparative Performance of K and M Airships.

350 - Bow Mooring for Nonrigid Airships.

351 - CV vs. ZRV.

352 - The Limiting Disc and Power Loading of Helicopters.

353 - The Take-Off Run of Airships.

354 - Most Economical Speed and Ratio of Fuel to Pay Load for Maximum Ton-Miles per Hour in Cargo Airships.

355 - Limiting Power and Span Loadings of Airplanes and Helicopters.

356 - The Weights of Nonrigid Airships.

357 - Models K and M Airships as Cargo Carriers.

358 - Mooring Airships to Escort Aircraft Carriers at Sea.

359 - Aerodynamic Stability of Airship ZNP-1 According to Wind Tunnel Data.

360 - Application of MacCoul's Delivery Factor to Airships and Steamships.

361 - The Longitudinal Strength of Rigid Airships.

362 - The Static Ceiling of Captive Balloons.

363 - A High Altitude Nonrigid Airship.

364 - Suggestions for New Prototype ZNP.

365 - Performance of a High Pressure Constant-Volume Balloon.

366 - Limits of Speed and Gas Pressure in ZNP-K Airships.
 (Continued)
452. 368 - The Endurance of a Free Balloon with Automatic Pressure and Ballast Control;
453. 369 - The Decay of Axial Force in a Uniformly Supported Member.
454. 370 - Torsion of a Box Spar with One Fixed End.
455. 371 - Small, Long Range Spherical Balloons.
456. 372 - Control Forces on Airships.
457. 373 - The Side Panel Wiring of Rigid Airships.
458. 374 - An Observation Airplane for Airships.
459. 375 - Water Mooring Gear for Model ZNPK Airships.
460. 376 - Comparison of Airship and Slow Flying Airplane.
461. 379 - Boundary Layer Control for Airships.
462. 380 - Operating Costs of Transport Airships.
463. 381 - Operating Costs of Transport Airships.
465. 383 - The Coning and Bending of an Airship Propeller with Hinged Blades.
466. 384 - Resistance vs. Weight in Model XZIPN Airship.
467. 385 - Comparative Weights of Models XZPM And XZPN Airships.
468. 386 - Characteristics of Airship Tail Surfaces.
470. 388 - The Vulnerability of Airships.
471. 389 - The Fuel Required to Transport Fuel.
472. 390 - Increase in Range of Airships by Dynamic Lift at Take-Off.
473. 391 - A Note on Fortisan Rayon Fabric.
24
473. BURGESS, C. P.
(Continued)
392 - The Ballonet Trimming Moments of K, M, and N Airships.

474.
393 - R-1300 vs. R-1340 Engines in Model ZPM Airships.

475.
394 - Calculations for an Apparatus to Distill Three Gallons of Water Per Hour for an Airship.

476.
395 - Weight of Airship ZP2K-93.

477.
396 - Strength of Airship Seats.

478.
397 - Comparative Performance of ZPN Airship with Cotton and Fortisan-Rayon Envelopes.

479.
400 - Effect of a Jet Thrust Augmenter on a ZPM Airship.

480.
401 - Maximum Towing Forces of K, M, and N Airships.

481. BURGESS, C. P.
Bending Moments, Envelope and Cable Stresses in Non-Rigid Airships, (NACA TR No. 115), 1921.

482.
Forces on Airships in Gusts, (NACA Report No. 204), 1924.

483.

484.

485.
New 6,000,000 cubic foot Airship for Our Navy, Scientific American, Dec 1926.

486.

487.
Flight Tests on USS LOS ANGELES, Part II - Stress and Strength Determination, (NACA TR No. 325), 1929.

488.

489.
Progress in Aeronautics, Mechanical Engineering, Jan 1930.

490.

491.

492.
NADC-80216-60

498. CABOT, L. Some Aerodynamic Problems Raised by the Airship, Foreign Technology Division, Wright-Patterson Air Force Base, Ohio, AD-A014 401, July 1975.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Author(s)</th>
<th>Title / Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>523.</td>
<td>CIVIL AVIATION AUTHORITY LONDON</td>
<td>British Civil Airworthiness Requirements: Section Q - Non-Rigid Airships, December 17, 1979.</td>
</tr>
</tbody>
</table>

528. CORNISH, J. J. Application of Full Scale Boundary Layer Measurements to Drag Reduction of Airships, (Mississippi State University), AD317134, Jan 1960.

535. CROCCO, G. A. The Dead-Weight of the Airship & the Number of Passengers that can be Carried, NACA TM 80, 1922.

537. Mooring Airships, NACA TM 283, 1924.

538. Replacing the Weight of Materials Consumed on Airships, NACA TM 211, 1923.

539. Structural & Economic Limits to the Dimensions of Airships, NACA TM 274, 1924.

| 543. | CURTISS, H. C., JR.
| | HAZEN, D. C.
| 545. | CURTISS, H. C., JR.
| | PUTMAN, W. F.
| 546. | CURTISS, H. C., JR.
| | PUTMAN, W. F.
| 548. | DALTON, C.
| | ZEDAN, M. F. | Use of the Inverse Method to Determine Low-Drag Axisymmetric Shapes, University of Houston, AIAA Technical Paper No. 79-1589, July 12, 1979. |
| 552. | DAVIS, S. J.
| 553. | DAVEY, M. J. B. | Handbook of the Collections Illustrating Lighter-Than-Air Craft, Published by the Science Museum. |
| 557. | DEFRANCE, S. J.
| | BURGESS, C. P. | Speed and Deceleration Trials of the U.S.S. LOS ANGELES, NACA TR 318, 1929. |
| 558. | DELAURIER, J.

562. DMITRIYEV, Yu Revival of Dirigible Building in the USSR, (Army Foreign Science and Technology Center), AD469117, July 1965.

566. DUNCAN, R. E. Assist the Naval Air Development Center on Airship Dounced Scanning Sonar, NAS, Lakehurst, AEC Report Serial No. 01-53, April 24, 1953.

571. DURR The American Airship ZR-3, NACA TM 286, Wa., 1924.

584. EVERHART, E. JR. Fabric Data for ZP2N Airship Envelopes (D-496 through D-499), Goodyear Aircraft Corporation Report GER-5339, April 24, 1953.

589. FISHER, R. R.

590. FLETCHER

591. FLOMENHOFT, H. I.
Gust Loads on Airship Fins, (McLean Development Labs), June 1957.

592. FOERSTER, A. J.

593. FORD, BACAN & DAVIS, INC.

594. FRAZER, R. A.

595. FREE, I. J.
Antisubmarine Warfare (ASW) - A Specific Naval Mission for the Airship, (Interagency Workshop on LTA Vehicles), Sept 1974.

596. FREEMAN, H. B.

597.

598.
Pressure Distribution Measurements on the Hull and Fins of a 1/40-Scale Model of the U.S. Airship AKRON, NACA TR 443.

599. FRITSCHIE, C. B.

600.

601.
ZMC-2, Aircraft Engineering, June 1930.

602.
The Metalclad Airship, (Aircraft Development Corporation), 1931.

603.

604. FULTON, G.

605.

606.
Some Matter Relating to Large Airships Trans. Soc. of Naval Arch. and Marine Eng., p. 187, 1925.

609. Some Features of a Modern Airship (U.S.S. Akron), Trans. Soc. of Naval Arch. and Marine Eng., 1931.

611. GALL, E. S.

612. GENERAL DEVELOPMENT CORPORATION

615. GENERAL, J. A.

616. GIBBENS, R. P.

617. GIBSON, M. M.

618. GLINES

619. Glod, J. E.

620. CLOVER, R. P.

621. GOODYEAR AEROSPACE CORPORATION

624. An Investigation of a Boundary Layer Controlled Airship AD307767, Oct 1957.

625. Airship Nuclear Propulsion Study (U), May 1958.

<table>
<thead>
<tr>
<th>No.</th>
<th>Source</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>639</td>
<td>GOODYEAR AEROSPACE CORPORATION</td>
<td>Feasibility of Modern Airships, Phase II, Vol. III:</td>
</tr>
<tr>
<td></td>
<td>(Continued)</td>
<td>Naval Airship Feasibility Study - Book IV Preliminary Assessment of the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1977.</td>
</tr>
<tr>
<td>640</td>
<td></td>
<td>Feasibility Study of Modern Airships, Phase II, Executive Summary</td>
</tr>
<tr>
<td>641</td>
<td></td>
<td>Army, Navy, and Commercial Airships Manufactured by Goodyear, Unpublished</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Goodyear Working Notes, Undated.</td>
</tr>
<tr>
<td>642</td>
<td></td>
<td>United States Navy M-Type Airships: Erection Manual, U.S. Navy Contracts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOa(s) 146 and NOa(s) 3529, October 1944.</td>
</tr>
<tr>
<td>643</td>
<td></td>
<td>Engineering Study for U.S. Navy ASW Airship Model A-15N, Goodyear</td>
</tr>
<tr>
<td>644</td>
<td></td>
<td>Airborne Early Warning Airship Study, Goodyear Aircraft Corporation</td>
</tr>
<tr>
<td>645</td>
<td></td>
<td>Aerological Survey of the Ocean Area off the East Coast of the North</td>
</tr>
<tr>
<td>646</td>
<td></td>
<td>GER-4569 November 1, 1952, ZP4K Airship, Structural Analysis of Flight</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control.</td>
</tr>
<tr>
<td>647</td>
<td></td>
<td>ZP4K: Structural Analysis of Empennage - Volume I, Analysis of Fins,</td>
</tr>
<tr>
<td>648</td>
<td></td>
<td>ZP4K: Structural Analysis of Empennage - Volume II, Analysis of Rudder,</td>
</tr>
<tr>
<td>649</td>
<td></td>
<td>Summary Report of Electronic System Study for Airborne Early Warning</td>
</tr>
<tr>
<td>650</td>
<td></td>
<td>Structural Principles and Preliminary Stress Report on the AEW Airship,</td>
</tr>
<tr>
<td>651</td>
<td></td>
<td>Aerodynamic Report AEW Airship, Goodyear Aircraft Corporation Report</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No. GER-5049, December 19, 1952.</td>
</tr>
<tr>
<td>652</td>
<td></td>
<td>Design Summary Report on Alternate AEW Airship Model GZ-13A, Goodyear</td>
</tr>
<tr>
<td>653</td>
<td></td>
<td>Design Summary Report on AEW Airship Model GZ-13, Report No. GER-5046,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>December 30, 1952.</td>
</tr>
</tbody>
</table>
655. GOODYEAR AEROSPACE CORPORATION (Continued)

664. GER-5119, October 27, 1953, Stress Analysis of Nacelle Outrigger and Engine Mount Nacelle.

666. GER-5119, December 8, 1953, Stress Analysis of Nacelle Outrigger and Engine Mount Summary.

668. GER-5968, March 9, 1954, Envelope and Ballonet Pressure Tests of Model XZP5K Airship.

669. GER-5116, March 9, 1954, Stress Analysis of Suspension System Model XZP5K-1.

670. GER-5118, March 26, 1954, Stress Analysis of Car Model XZP5K Airship Sec. 8 Strength Criteria.
671. GOODYEAR AEROSPACE CORPORATION
(Continued)

672.

GER-5118, March 31, 1954, Stress Analysis of Car Model XZPSK Airship Section Three Frame Analysis.

673.

GER-5118, March 31, 1954, Stress Analysis of XZPSK-1 Car Shear and Bending Model XZPSK-1, ZPSK-1.

674.

GER-6028, April 1954, Static Test of Landing Gear-Aerol 9313 for Goodyear Aircraft Corp. Model ZPSK-1 Airship.

675.

GER-5950, April 9, 1954, XZPSK Ground and Flight Test Program Power Plant Demonstration.

676.

GER-5951 April 9, 1954, XZPSK Ground and Flight Test Program Armament Demonstration.

677.

GER-5949, April 12, 1954, XZPSK Ground and Flight Test Program Aerodynamic Demonstration.

678.

GER-5948, April 13, 1954, XZPSK Ground and Flight Test Program Structural Demonstration.

679.

680.

681.

GER-5118, May 20, 1954, Stress Analysis of Car Model XZPSK Airship Sec. 5 Armament Section.

682.

683.

GER-5118, June 30, 1954, Stress Analysis of XZSG-1 (XZPSK-1) Car Sec. 7 Miscellaneous Structure.

684.

GER-6236, August 18, 1954, Dynamic Test of ZSG-4 (AP4K-1) Envelope Rip Cord.

685.

GER-6389, October 25, 1954, Weight Status Reports Model XWG-1 Airship.

686.

GER-6524, June 1, 1955, Shock-Load Tests of the XZSC-1, Towing Structure.

687.

37
688. GOODYEAR AEROSPACE CORPORATION (Continued)

690. GER-7804, August 2, 1956, Study of Transmissibility of Electromagnetic Energy Through Airship Envelope Fabrics.

691. GER-6904, September 20, 1956, Analysis of NACA Wind Tunnel Pressure Distribution Measurements of the Empennage of the 1/15 XZS2G.

692. GER-7477, March 20, 1957, Stress Analysis of Car Model ZPG-3W Airship Sec. 4 Suspension Joint Analysis.

694. GER-7477, May 22, 1957, Stress Analysis of Car Model ZPG-3W Airship Sec. 5 Miscellaneous Analysis.

695. GER-7477, June 25, 1957, Stress Analysis of Car Model ZPG-3W Airship Sec. 6 Shop Handling Analysis.

697. GER-8334, August 27, 1957, Structural Test Reports Status for For Model ZP(W) AEW Airship.

698. GER-8288, September 1, 1957, Airship Tactical Tracking and Control System (ATTRACS) For ZPG-3W Airship.

700. GER-8491, January 1, 1958, Model Studies of Possible Interference with AEW Radar From Catenary Cables in ZPG-2W And ZPG-3W.

GER-8288, June 22, 1958, Airship Tactical Tracking and Control System (ATTRACS) for ZPG-3W Airship.

GER-9312, Preliminary Investigation for a Combined AHW-ASW Airship Configuration, April 1959.

719. GUGGENHEIM INSTITUTE
(Continued)
05, Wind Tunnel Tests on Goodyear-Zeppelin Airship
Model 6R0123 with Protuberance (R.03).
720.
06, Wind Tunnel Tests on Goodyear-Zeppelin Airship
Model 6R0123 with Bow Elevators (R.04).
721.
07, Wind Tunnel Tests on Goodyear-Zeppelin "Fishtail"
Type Airship Model (R.05).
722.
08, Tests to Determine Resonance of a Cylinder in
an Air Stream (R.06).
723.
10, Wind Tunnel Tests on New Goodyear-Zeppelin Rail
Car Models with Symmetric Ends (R.08).
724.
13, Acoustic Separation of Gaseous Mixtures, by
C. W. Bantor.
725.
18b, Atmospheric Turbulence (Weather Bureau Copy).
726.
02.19, Report on Measurements on an Airship Model
in Curved Flight, Item 1, Contract Nos-47286.
727.
20, Stern Flow Measurements on USS MACON with V/P/Y
Hot-Wire Anemometer.
728.
21, First Progress Report on Studies under Contract
51610, Feb 13, 1937.
729.
22, Flow about an Airship Model During Passage Through
Vertical Gusts, Item 4a, Contract Nos-47286 (Pre-
liminary Report).
730.
731.
24, Progress Report on Gust Studies under Contract
5161C, June 15, 1937.
732.
25, Description of Airship Model, Item 20, Con-
tract 47286.
733.
26, Measurement of Forces During Passage Through
Artificial Gusts, Item 5, Contract Nos-47286.
734.
27, Measurement of Fin Forces During Passage Through
Artificial Gusts, Item 4, Contract Nos-47286.
735.
31, Measurement of Forces on the Fins of an Airship
Model During Passage Through an Artificial Gust.
736.
32, Measurement of Forces on an Airship Model During
Its Passage Through an Artificial Gust.
737. GUGGENHEIM INSTITUTE
(Continued)
.33, Progress Report (Covering Third Quarter of Contract) on Gust Studies Under Contract 51610.

738.
.34, Report on Item 5a of Contract Nos-47286.

739.
.34a, Measurement of Bending Moment in the Hull of an Airship Model During Its Passage Through an Artificial Gust, Contract Nos-47286.

740.
.34b, Progress Report (Covering 4th Quarter) on Gust Studies under Contract 51610.

741.
02.35, Report on Items 7 and 8, Contract Nos-47286.

742.

743.

744.

745.

746.

747.

748.

749.

750.
.42, Progress Report (Covering 1st Quarter) on Gust Studies under Schedule 500-538 (Contract of 51610).

751.
.45, Report on Amendment of Aug 28, 1937 to Contract 51610 Covering Measurements on Horizontal and Vertical Loads in Gusty Weather on the Airship LOS ANGELES while the Airship is Moored to the Mast.

752.

753.
.47, Progress Report (Covering Second Quarter) on Gust Studies under Schedule 500-538.

754.
02.48, Description of Free Flight Model for Use in the Water Tank Report on Item 12, Contract Nos-47286.

755.
756. GUGGENHEIM INSTITUTE (Continued)

757.

758.

.54, Progress Report on Gust Studies (Covering Third Quarter), Schedule 500-538, Nov 10, 1939.

759.

.55, Progress Report "Tests on Potential Ice Formation on Airfoils."

760.

761.

762.

02.58, Description of Test Models ... Used in Deicing Tests Conducted for the B. F. Goodrich Co., Mar 1940.

763.

.59, Description of Airship Model and Fins to be Used for Tests in Fulfillment of Contract Nos-72506, Schedule 500-1530 Aero.

764.

.60, Summary Report on a Group of Tests on the Basic Conditions for Ice Formation, June 1940.

765.

.67, Wind Tunnel Tests on a 1/150 Scale Model of ZRS-4 Airship with Mark II Fins and with Airfoil Type Rudders with Bilge Keel Fins, Item 2, Contract Nos-72506, July 1940.

766.

767.

768.

.72, Final Report on Gust Studies Schedule 500-538, September 1940.

769.

42
770. GUGGENHEIM INSTITUTE (Continued)

.74, Measurements of Flight Paths and Hull Bending Moments with a Self-Propelled Akron Model Equipped with two types of Control Surfaces, Part 1 of Item 2, Contract Nos-78742, February 1941.

771.

.75, Descriptions of Fins Constructed for Water Tank Tests with Self-Propelled Free Flight Akron Model, Item 1, Contract Nos-78742, March 1941.

772.

.76, Pressure Distribution on a Group of Plain Airfoils and Airfoils with Duplicated Deicers, Goodrich, Feb 1941.

773.

774.

775.

776.

777.

.81, Progress Report on Gust Studies, Contract Nos-82609, Sept 1941.

778.

.82, Measurement of the Forces and Moments Caused by an Artificial Gust on Different Types of Control Surfaces on the 1/150 Akron Model, Report on Item 4, Contract Nos-78742, Sept 1941.

779.

780.

.84, Tests on the Stability of a Towed Body (undertaken under the auspices of the NHC).

781.

.85, Measurement of the Forces and Moments Caused by an Artificial Gust Acting on the Type 4 and Mark II Control Surfaces on the 1/150 Akron Model, Item 5, Contract Nos-78742, Oct 1941.

782.

.87, Two Nomograms for Expressing Per Cent Deflection of Cylinders and Parallelepipeds in Terms of the Pressure, a Form Factor and Stiffness, Repoff.

783.

.90, Progress Report on Gust Studies, Contract Nos-82609, March 1942, POM.
<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>784</td>
<td>GUGGENHEIM INSTITUTE (Continued)</td>
</tr>
<tr>
<td>785</td>
<td>.97, Wind Tunnel Tests on an "M" Type Airship Model, Goodyear Aircraft 29149, Dec 15, 1942.</td>
</tr>
<tr>
<td>786</td>
<td>.99, Progress Report on Gust Studies, USN Contract No. NXs-5496, Jan 1943 P.O.H.</td>
</tr>
<tr>
<td>790</td>
<td>.117, Air Mass Gust Studies, Contract NOA(s) - 1709, P.O.H, June 1914.</td>
</tr>
<tr>
<td>792</td>
<td>.122, Description of Free Flight Airship Model for Test with Automatically Controlled Bow Elevators, Item 7, Contract Nos-78742, June 1944, F.G.C.</td>
</tr>
<tr>
<td>793</td>
<td>.124, Directional Stability Wind Tunnel Tests on an "M" Type Airship Model, GA283689, July 29, 1944 R.S.R.</td>
</tr>
<tr>
<td>795</td>
<td>.126, Barrage Balloon Tests in Water Channel - Ross.</td>
</tr>
<tr>
<td>797</td>
<td>.142, Wind Tunnel "M" Ship.</td>
</tr>
<tr>
<td>798</td>
<td>.143, Pressure Distribution Tests on Goodyear Aircraft Corp. Models, P-23, P-25, P-25B.</td>
</tr>
<tr>
<td>799</td>
<td>.146, Item No. 1 Description of 1/150 Scale Akron Model Used in Shear Tests Cont. No. 4390.</td>
</tr>
<tr>
<td>800</td>
<td>.147, Item No. II Shear Force Tests Contract No. 4390.</td>
</tr>
<tr>
<td>801</td>
<td>.151, Aerodynamic Characteristics of a Low Aspect Ratio Triangular Multiple-Wing on a Streamline Body of Fineness Ratio 8 from Wind Tunnel Tests D. W. R. H.F.</td>
</tr>
</tbody>
</table>
801. GUGGENHEIM INSTITUTE (Continued) \(\cdot\) Shear Force Tests on a Free Flight Airship Model under the Influence of an Artificial Gust in a Water Channel, G.B.

812. HARDT, K. M. The Dirigible Again Draws Attention to Itself, (Foreign Technology Division, Wright-Patterson AFB), AD476833, Jun 1966.

818. HARTDOORN, R. The Airship, the Missing Link in the Transport Chain, Holland Shipbuilding, p. 50, Mar 1971.

822. The Drag of Airships, Drag of Bare Hull, II, NACA TN 248, October 1926.

826. HELFRICH, R. J. Stress Analysis of the Bow Stiffening Model X2PSK, Goodyear Aircraft Corporation Report No. GER-5117, April 1, 1953.

834. HOEFL, R. W. Evaluation of the All-Weather Capabilities of Airships, (NAS South Weymouth), March 1957.

837. HOLLAND Historic Airships, Phila., 1928.

841. HORNBSRUGH, P. Environic Implications of Lighter Than Air Transportation, (Interagency Workshop on ITA Vehicles), Sept 1974.

842. HOVGAARD, W. The Longitudinal Strength of Rigid Airships, Trans. Soc. of Naval Arch. and Marine Eng., 1922.

851. Uses of Airships with the Fleet, U.S. Air Services, April 1919.

852. HESS, P. O. Memorandum on Gusts Related to Airship Design Specifications, (Daniel Guggenheim Airship Institute, Report No. 126), April 1945

855. HYLANDER Cruisers of the Air, NY 1931.

858. JOHNSON, E. L. R. 100 Trip to Canada, Aircraft Engineering, Nov 1930.

860. JONER, B. A. Skin Friction and the Drag of Streamline Bodies, ARC R&M 1199, December 1928.

862. JONES, R. The Aerodynamical Characteristics of the Airship As Deduced from Experiments on Models with Application to Motion In a Horizontal Plane, Journal of the Royal Aeronautical Society, February 1924.

863. JONES, R. The Distribution of Normal Pressures on a Prolate Spheroid, ARC R&M 1061, December 1925.

865. JONES, R. Experiments on a Model of the Airship R. 101, ARC R&M 1168, September 1926.

866. JONES, R. The Distribution of Pressure Over the Hull and Fins of a Model of the Rigid Airship R.101 and a Determination of the Hinge Moments on the Control Surface, ARC R&M 1169, July 1927.

876. KISTLER, R.E. The Zeppelin in the Atomic Age, University of Illinois Press., 1957.

882. KLIKOFF, W. A. Pressure in Airships, Trans, A.S.M.F., p. 29, Jan/Mar 1933.

887. KRESSE, O. F. Propulsion System Model XZPSK-1 Airship, (Goodyear Aerospace), May 1953.

904. LIEHMANNE, E. A. Zeppelin Kapitän, Frankfurter Societats, Druderei GmbH, 1937.

<table>
<thead>
<tr>
<th>No.</th>
<th>Author/Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>Author</td>
</tr>
<tr>
<td>------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>946</td>
<td>McSURELY, A.</td>
</tr>
</tbody>
</table>
948. MELLBURG, L. E.
KOBAYASHI, R. T.

Airships as Naval ASW Surveillance Platforms,

949. MENDEHLSON, W. K., JR.

950. MENKE, J. A.

A Revolutionary and Operational Tethered Aerostat System Illustrating New LTA Technology, (Interagency Workshop on LTA Vehicles), Sept 1974.

951. MELLAM, P.
HANSEN, D.
BYRNE, R. W.
CHABOT, C.

Study of Civil Markets for Heavy-Lift Airships,
Booz-Allen Applied Research, NASA CR-152202,
December 1978.

952. MELLAM, P. J.
HANSEN, D.
BYRNE, R. W.

A Study of Civil Markets for Heavy Lift Airships,

953. MYERS, D. N.

954. MILLER, W. M., JR.

The Dynairship, (Interagency Workshop on LTA Vehicles), Sept 1974.

955. MILLER, W. M. JR.
PUTNAM, W. F.

The Aercon Dynairship for Long-Endurance Naval Missions, (Aercon Corporation, AER/1-75/CRN; NADC Contract N.62269-75-C-0584, July 1975.

956 MILLIS, W. J.

957. MOFFETT, W. A.

958.

All Honor to the Germans, They Lead the World In Lighter-Than-Air; Aeronautics Review, Nov 1920.

959.

Five Progressive Years on Naval Aviation, Aero. Digest p. 34, March 1931.

960.

961.

968. MOSHER, C. F. Balloon Logging with the Inverted Skyline (Interagency Workshop on LTA Vehicles), Sept 1974.

970. The Airfloat Heavy Lift Project, (Interagency Workshop on LTA Vehicles), Sept 1974.

974. The Aerodynamic Forces on Airship Hulls, NACA TR 184, 1924.

976. NAATZ, H. Recent Researches in Airship Construction - I Forces of Flow on a Moving Airship and the Effect of Control Surfaces, NACA TM 275, August 1924.

977. Recent Researches in Airship Construction - II Bending Stresses on an Airship in Flight, NACA TM 276, August 1924.

979. NAVAL AIR DEVELOPMENT CENTER, JOHNSVILLE

980. NAVAL AIR MATERIAL CENTER

982. NAVAL AIR STATION
Airship Accidents: World War II, Naval Air Station, Lakehurst (Training and Experimental Command), Sept 1945.

984. Course of Study for Non-Pilot School (Airship) - Class C, Naval Air Station, Lakehurst, April 1951.

985. History of United States Navy Airships Since World War II, Naval Air Station, Lakehurst (Commander Fleet Airship Wing One), undated (probably early 1960's).

989. Model ZPN Airship (BUONO I), Stability and Control Phase, AD10494, Apr 1953.

56
Assist the Naval Air Development Center on Airship Dunked Scanning Sonar., AEC Report Serial No. 01-53, April 24, 1953.

Type S-5 Automatic Pilot Installed in ZP2K (ZSG-2), ZPM, ZPN, ZP2N-1 (ZPG-2), and ZP2N-1W (ZPG-2W) Aircraft, NAVAIR 0S-45AL-3, September 1953, Changed October 1959.

Type S-5 Automatic Pilot Installed in ZSG-4 and ZS2G-1 Aircraft, NAVAIR 0S-45AL-508, April 1956, Revised January 1959.

LTA Aircraft Accident Summary, U.S. Naval Aviation Safety Center, Analysis and Research Department, June 1960.

U.S. Navy (Board of Inspection and Survey Washington) Report of Service Acceptance Trials of Model ZSG-4 Airship, April 9, 1956.

Airship Rescue Operations, U.S. Navy (Fleet Airships Atlantic), September, 1945.

1009. NAVY, COMOPTEVFOR

1016. NEBIKER, F. R.

1017. NEELY, K. K.
Noise Levels in Various Types of Aircraft, Part II., DRML Report No. 27-6, Aug. 54.

1018. VANDERWATER, D. K.

1019. HOUSE, P. W.

1020. NEUMANN, R. D.
LTA Bibliography, (Interagency Workshop on LTA Vehicles), Sept 1974.

1021. NEUMANN, R. D.

1022. NEWMAN, D. E.

1023. NICHOLS, J. B.
The Basic Characteristics of Hybrid Aircraft, (Interagency Workshop on LTA Vehicles), Sept 1974.

1024. NIEDERMAYER, E. J.
<table>
<thead>
<tr>
<th>ID</th>
<th>Author</th>
<th>Title</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1025</td>
<td>NOBILE, U.</td>
<td>Navigating the Norge from Rome to the North Pole and Beyond, (National Geographic), Aug 1927.</td>
<td></td>
</tr>
<tr>
<td>1026</td>
<td>NORFLEET, J. P.</td>
<td>One Rigid Airship has the Military Value of Two Battle-cruisers, U.S. Air Services, p. 15, Aug 1920.</td>
<td></td>
</tr>
<tr>
<td>1030</td>
<td>PANNEL, J. R.</td>
<td>Experiments on Model Airships, ARC RGM 246, October 1916.</td>
<td></td>
</tr>
<tr>
<td>1033</td>
<td>PARKER, H. F.</td>
<td>Airplane and Airship Their Spheres of Economic Usefulness, Jor. S.A.H., Vol. 18, No. 2, p. 175, Feb 1926.</td>
<td></td>
</tr>
</tbody>
</table>

1052. PRICIKETT, R. S. The Modernized Rigid Airship As A Multipurpose Systems Platform (Preliminary Study), (Technical Military Planning Operation, Santa Barbara, CA), November 1960.

1058. RAND CORPORATION The Use of Airship Post-Attack Command and Control (U), AD730932, Jan 1962.

1073. RICHMOND, V. C. Full Scale Pressure Plotting Experiments on Hull and Fins of J.M.A.R.33, ARC R&M 1044, April 1926.

1075. RIZZO A Study of Static Stability of Airships, NACA TN 204, Wa., 1924.

1081. ROGERS, G. S. Helium, the New Balloons Gas, National Geographical, May 1919.

1084. Exhortation: Where Do We Go From Here? (LTA Vehicles), (Interagency Workshop on LTA Vehicles), Sept 1974.

62
1088. ROSENDAHL, C. E.
(Continued)

1089.

1090.

1091.

1092. ROSS, R., DR.
Lighter-Than-Air Vehicle Technology, (Goodyear Aerospace), Nov 1969.

1093. ROSS, S.A.
McCULLOUGH, J. K.

1094. ROSS, S. A.

1095. ROSS, S.A.
LIEBERT, H.R.

1096. ROSSALL, C. N.
MEYER, F. R.
FUCHS, A. L.

1097. ROYAL AERONAUTICAL SOCIETY

1098. RUSSELL, R. A.

1099. RYNISH, M. J.

1100. SAMPATH, S. G.
Battelle Columbus Labs
BREWER, W. N.
Goodyear Aerospace Corp.
WORKMAN, G. H.
Applied Mechanics, Inc.

1101. SANDFORD, W. T.

1102. SCHEETZ, F. L.

1116. SETTLE, T. G. W. Merchant Airships a Few Predictions and One Strong Hope, U.S. Air Services, p. 15, May 1936.

1124. SIMMONS, L. F. G. Note Relating to Two Oscillation Methods in Use for Determining Rotary Derivatives of Models, ARC RQM 711, January 1921.

1125. SIMS, W. L. The Value of Rigid Dirigibles for Naval Operations, Air Power, April 1919.

1127. SLATE, C. C. Cargo Handling SMD-100 Slate All-Metal Dirigible (Claude C. Slate Co., Glendale, CA), undated.

1128. The Cost Breakdown on All Metal Airship (SMD-100), Ltr dated June 1963.

1129. The Slate All-Metal Airship, (Interagency Workshop on LTA Vehicles), Sept 1974.

1136. SONSTEGAAARD, M. H. Airships for Transporting Highly Volatile Commodities, (Interagency Workshop on LTA Vehicles), Sept 1974.

1149. STAFFER Comparison of Non-Rigid & Semi-Rigid Airships, NACA TM 163, 1922.

1152. STONE, R. S. KOOPMAN, B. O. Potential ASW Missions for Lighter Than Air Ships, (Interagency Workshop on LTA Vehicles), Sept 1974.

1175. UNITED STATES AIR FORCE Communications Report: Vol. II Aerospace Platform Applications (II), AD730931, Jan 1964.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Author</th>
<th>Title</th>
<th>Publication Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1188.</td>
<td></td>
<td>Metal Clad Rigid Airship Development</td>
<td>(SAE Journal 18), Feb 1926.</td>
</tr>
</tbody>
</table>

Observations on the Method of Determining the Velocity of Airships, NACA TM 24, Wa., 1921.

Calculation of Pressure Distribution on Airship Hulls, NACA TM 574, Wa., 1930.

The Daniel Guggenheim Airship Institute, 3 vols., NY, 1933/35.

Investigation of Powered Lighter-Than-Air Vehicles, (Goodyear Aerospace), AD680829, Nov 1968.

1217. WARD, G. B. Resistance and Control of Submerged Bodies at Subsonic Speeds, (An Annotated Bibliography) (Bureau of Ships, David Taylor Model Basin), Sept 1956.

1220. The Future of the Airship, NACA TM 121, Wa., 1922.

1222. WEISS "Schutte-Lanz" Airship Projects after the War, NACA TM 335, WA, 1925.

1224. WESSEL, P. R. PETRONE, F. J. Special Problems and Capabilities of High Altitude Lighter Than Air Vehicles, (Interagency Workshop on LTA Vehicles), Sept 1974.

1230. The Value of Airships, (U.S. Naval Proceedings), May 1934.

1235. WINGFOOT LIGHTER-THAN-AIR SOCIETY Preliminary Inventory, Akron University Library, Akron, Ohio.

1241. WOOD, R. H. All Weather Capabilities of the Airship, (NAS South Weymouth), Jan 1956.

1245. WRIGHT-PATTERSON AIR FORCE BASE, OHIO Soviet Nuclear Blimps, Foreign Technology Division, AD-A014 310, July 1975.

1248. The Drag of C Class Airship Hull with Varying Length of Cylindric Midships, (NACA TR No. 138), 1922.

1249. Air Forces, Moments and Damping on Model or Fleet Airship Shenandoah, NACA TR 215, 1925.

1252. Stress Analysis of a ZP4K Envelope, (General Development Corporation), Nov 1953.

III. SUBJECT CROSS REFERENCE

OUTLINE

A. Requirements
 1. Applications/Economics
 2. Missions Analysis
 3. Specifications

B. Design Considerations
 1. Parametric Analysis/Methodology
 2. Vehicle Point Designs
 3. Technologies
 a) Aerodynamics
 b) Aerostatics
 c) Structures/Materials
 d) Propulsion
 e) General
 f) Stability and Control
 g) Human Factors
 h) Support Equipment
 i) Manufacturing
 4. Performance Estimates

C. Fabrication
 1. Past
 2. Present/Future

D. Test and Evaluation
 1. Ground
 2. Flight
NADC-80216-60

E. **Acceptance Tests**

F. **Operation**

1. Flight Handbooks/Procedures

2. Evaluations
 a) Vehicle
 b) Sensors
 c) Weapons
 d) Fleet Evaluations
 e) Support Equipment

3. Mission Performance
 a) ASW
 b) AEW
 c) Other

4. Ground Handling

5. Vulnerability
 a) Weather
 b) Hostile Action

6. History

7. Environmental Data/Considerations

G. **Costing**
A. Requirements

1. Applications/Economics:

5, 15, 21, 22, 23, 24, 30, 31, 40, 52, 64, 72, 73, 76, 267, 355, 356, 377,
400, 431, 438, 441, 462, 495, 501, 505, 508, 515, 531, 532, 554, 562, 573,
574, 575, 579, 587, 588, 594, 599, 603, 619, 640, 804, 812, 818, 819, 820,
832, 841, 853, 854, 859, 860, 870, 871, 873, 874, 875, 876, 898, 899, 907,
908, 914, 915, 916, 917, 918, 946, 950, 951, 952, 954, 968, 969, 970, 971,
972, 1004, 1019, 1021, 1032, 1033, 1036, 1043, 1044, 1048, 1050, 1052, 1064,
1071, 1076, 1083, 1084, 1099, 1112, 1115, 1116, 1118, 1120, 1121, 1125,
1136, 1137, 1150, 1151, 1152, 1179, 1180, 1181, 1182, 1185, 1190, 1196,
1211, 1220, 1229, 1230, 1245.
A. Requirements (cont)

2. Missions Analysis:

A. Requirements (cont)

3. Specifications:

66, 80, 81, 82, 84, 276, 277, 346, 523, 1024
B. Design Considerations

1. Parametric Analysis/Methodology:

B. Design Considerations (cont)

2. Vehicle Point Designs:

B. Design Considerations (cont)

3. Technologies:

a) Aerodynamics:

B. Design Considerations (cont)

3. Technologies (cont):

b) Aerostatics:

8. Design Considerations (cont)

3. Technologies (cont):

c) Structural/Materials:

8, 12, 25, 30, 34, 35, 36, 37, 63, 65, 89, 90, 91, 92, 93, 95, 96, 97,
98, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 119,
121, 136, 137, 140, 141, 151, 154, 155, 156, 160, 161, 162, 164, 172,
174, 176, 177, 178, 181, 182, 184, 186, 187, 188, 189, 195, 197, 198,
204, 205, 210, 211, 216, 217, 219, 220, 221, 222, 224, 225, 226, 227,
228, 230, 231, 232, 234, 235, 236, 237, 238, 241, 242, 244, 245, 247,
248, 249, 250, 252, 253, 254, 255, 256, 257, 264, 265, 273, 274, 278,
285, 289, 290, 293, 294, 296, 297, 298, 300, 303, 306, 307, 308, 309,
312, 316, 317, 322, 323, 325, 328, 329, 330, 331, 334, 335, 336, 340,
342, 344, 346, 350, 352, 353, 360, 361, 362, 369, 375, 380, 386, 392,
393, 394, 401, 402, 407, 410, 412, 415, 417, 427, 440, 445, 453, 454,
465, 466, 472, 476, 477, 481, 487, 488, 497, 518, 521, 522, 526, 534,
539, 541, 564, 570, 577, 580, 582, 583, 584, 586, 592, 612, 613, 626,
646, 647, 648, 650, 656, 657, 661, 664, 665, 666, 667, 668, 669, 670,
671, 672, 673, 674, 678, 679, 681, 683, 684, 685, 686, 687, 688, 689,
690, 692, 694, 695, 696, 697, 700, 703, 705, 711, 715, 716, 739, 752,
755, 757, 766, 771, 774, 778, 786, 799, 801, 805, 806, 828, 827, 840,
852, 857, 881, 882, 888, 892, 901, 902, 911, 922, 923, 939, 977, 981,
1027, 1031, 1037, 1038, 1039, 1047, 1049, 1077, 1096, 1100, 1103, 1105,
1110, 1111, 1119, 1122, 1138, 1139, 1148, 1154, 1165, 1666, 1167, 1173,
1174, 1187, 1188, 1191, 1192, 1193, 1194, 1195, 1199, 1214, 1243, 1251,
1252, 1255.
B. Design Considerations (cont)

3. Technologies (cont):

d) Propulsion:

1, 9, 30, 55, 71, 114, 125, 145, 148, 149, 183, 192, 194, 196, 203,
208, 209, 229, 233, 243, 260, 268, 288, 320, 368, 378, 384, 388, 418,
419, 424, 464, 474, 479, 486, 578, 613, 621, 623, 625, 626, 631, 675,
679, 711, 714, 763, 803, 846, 859, 879, 887, 888, 892, 910, 920, 931,
933, 945, 957, 966, 985, 1040, 1041, 1070, 1156, 1184, 1209.
B. Design Considerations (cont):

3. Technologies (cont):

e) General:

18, 22, 26, 27, 30, 47, 48, 49, 74, 101, 117, 171, 175, 180, 185, 191,
240, 277, 281, 286, 313, 326, 339, 357, 367, 389, 429, 430, 448, 457,
491, 493, 494, 496, 509, 510, 511, 529, 530, 539, 541, 568, 569, 572,
576, 604, 606, 608, 609, 614, 630, 633, 811, 824, 825, 859, 882, 892,
901, 927, 938, 943, 1020, 1039, 1061, 1074, 1092, 1097, 1101,
1109, 1117, 1124, 1126, 1148, 1149, 1202, 1203, 1221, 1224, 1225,
1226, 1235, 1242.
B. Design Considerations (cont):

3. Technologies (cont):

f) Stability and Control:

2, 14, 30, 54, 56, 57, 60, 116, 118, 123, 138, 153, 169, 179, 186, 213,
215, 216, 223, 243, 246, 271, 275, 279, 283, 285, 292, 293, 337, 343,
345, 349, 382, 383, 389, 403, 404, 423, 443, 456, 467, 473, 475, 482,
490, 492, 500, 502, 519, 520, 538, 543, 544, 545, 546, 549, 558, 559,
560, 561, 582, 591, 596, 597, 614, 622, 624, 627, 646, 691, 699, 699,
704, 720, 726, 729, 731, 733, 735, 736, 737, 739, 740, 741, 742, 743,
744, 745, 746, 747, 749, 750, 751, 752, 753, 755, 757, 758, 760, 761,
768, 770, 773, 775, 777, 778, 780, 781, 785, 786, 788, 791, 792, 793,
795, 801, 815, 839, 852, 868, 903, 925, 929, 930, 940, 953, 975, 976,
978, 983, 988, 989, 999, 1000, 1022, 1028, 1040, 1041, 1051, 1055,
1056, 1062, 1063, 1065, 1075, 1094, 1095, 1133, 1155, 1157, 1159,
1164, 1183, 1231, 1233, 1247.
B. Design Considerations (cont):

3. Technologies (cont):

 g) Human Factors:

 517, 943, 980, 1017, 1069.
B. Design Considerations (cont):

3. Technologies (cont):

 h) Support Equipment:

 1, 28, 44, 46, 53, 58, 115, 152, 167, 168, 169, 189, 190, 197, 258, 282,
 382, 428, 458, 459, 475, 516, 654, 655, 680, 717, 723, 804, 828, 862,
 985, 993, 994, 999, 1010, 1049, 1096, 1098, 1106, 1107, 1108, 1153,
 1223.
B. Design Considerations (cont):

3. Technologies (cont):

 1) Manufacturing:

 891, 892, 936, 1080.
B. Design Considerations (cont):

4. Performance Estimates:

C. Fabrication:

1. Past:

51, 286, 526, 641, 642, 1080, 1214.
C. Fabrication (cont):

2. Present/Future:

 51, 1080.
D. Test and Evaluation:

1. Ground:

3, 8, 9, 10, 484, 581, 662, 675, 676, 677, 678, 680, 684, 707, 814, 1010, 1253, 1254.
D. Test and Evaluation (cont):

2. Flight:

3, 8, 9, 10, 487, 506, 514, 556, 557, 581, 582, 662, 676, 677, 678, 680, 701, 814, 1002, 1003, 1005.
E. Acceptance Tests:

581, 662, 675, 676, 677, 678, 679, 707, 712, 814.
F. Operation:

1. Flight Handbooks/Procedures:

78, 85, 86, 122, 878, 884, 984, 985, 990, 1006, 1042.
2. Evaluations:
 a) Vehicle:
F. Operation (cont):

2. Evaluation (cont):

b) Sensor:

29, 61, 547, 566, 585, 589, 656, 658, 687, 698, 699, 702, 707, 709,
718, 780, 823, 845, 942, 949, 979, 987, 995, 997, 1007, 1008, 1009,
1011, 1012, 1013, 1113, 1114.
F. Operation (cont):

2. Evaluation (cont):

c) Weapons:

61, 79, 639, 676, 681, 996.
F. Operation (cont):

2. Evaluation (cont):

d) Fleet Exercises:

851, 991, 992, 1004, 1007, 1086, 1132.
F. Operation (cont):

2. Evaluation (cont):

e) Support Equipment:

593, 985, 994, 1010, 1153.
F. Operation (cont):

3. Mission Performance:
 a) ASW:
 547, 595, 615, 710, 713, 808, 809, 810, 823, 851, 921, 942, 1007,
 1012, 1013, 1014.
F. Operation (cont):

b) AEW:

 644, 649, 653, 693, 713, 851, 949.
F. Operation (cont):

c) Other:

332, 333, 832.
F. Operation (cont):

4. Ground Handling:

F. Operation (cont):

5. Vulnerability:

a) Weather:

 756, 759, 764, 834.
F. Operation (cont):

5. Vulnerability (cont):

b) Hostile Action:

426, 469, 639.
F. Operation (cont):

6. History:

11, 39, 42, 50, 51, 59, 62, 68, 70, 87, 88, 287, 369, 429, 489, 493, 501,
509, 527, 553, 554, 555, 563, 565, 571, 573, 588, 607, 618, 641, 812, 817,
824, 825, 830, 837, 838, 846, 847, 848, 849, 950, 851, 853, 855, 856, 858,
904, 905, 906, 909, 919, 928, 958, 959, 960, 961, 963, 985, 991, 992, 1001,
1004, 1018, 1020, 1025, 1050, 1074, 1079, 1082, 1085, 1088, 1089,
1090, 1091, 1121, 1132, 1134, 1135, 1142, 1144, 1145, 1146, 1147, 1156,
1158, 1163, 1170, 1189, 1198, 1201, 1208, 1215, 1222, 1246.
F. Operation (cont):

7. Environmental Data/Considerations:

45, 207, 311, 387, 654, 725, 756, 759, 762, 764, 776, 789, 807, 841, 901, 924, 1060, 1066, 1067, 1072, 1122, 1169, 1236.
G. **Costing:**

15, 32, 462, 505, 603, 638, 640, 716, 831, 853, 1086, 1128, 1131.
APPENDIX A: ADDITIONAL (NEW) DOCUMENTS

1. **ARDEMA, M. D.**
 FLAIG, K.
 "Parametric Study of Modern Airship Productivity,"

2. **BAILEY, D. B.**
 WILLIAMS, K. E.
 NIVERT, L. J.
 "Studies of Modern Technology Airships for Maritime Patrol Applications,"
 U.S. Naval Air Development Center and U.S. Coast Guard Headquarters,

3. **BAILEY, D. B.**
 BOGLE, C. T.
 "Airship Towed Array System (ATAS),"
 Naval Air Development Center, AIAA Technical Paper No. 81-1308-CP, 8 JUL 1981.

4. **BAILEY, D. B.**
 RAPPORPORT, H. K.
 "Maritime Patrol Airship Study (MPAS),"
 Naval Air Development Center and Summit Research Corporation,

5. **BELL, J. C.**
 MARKETOS, J. D.
 TOPPING, A. D.
 "Parametric Design Definition Study of the Unballasted Heavy-Lift Airship,"

6. **BOCK, J. K.**
 "Interests in LTA in The Federal Republic of Germany,"

7. **BROWNING, R. G. E.**
 "A preliminary Study of Ground Handling Characteristics of Buoyant Quad Rotor Vehicles,"
 Goodyear Aerospace Corp, AIAA Technical Paper No. 81-1336-CP, 10 JUL 1981.

8. **BUCKLEY, F. D.**
 "Study of Ground Handling Characteristics of a Maritime Patrol Airship,"

9. **BUCKLEY, F. D.**
 "MATTSS/LAMPS MK III,"

10. **CAHN-HIDALGO, G. R. A.**
 "Developments of LTA Flights in Latin America,"

11. **CAVALCANTI, S. G.**
 "Predictive Steering Control of Dirigibles Using the Switching Curve Approach,"
<table>
<thead>
<tr>
<th></th>
<th>Reference</th>
</tr>
</thead>
</table>
25. LALLY, V.
The Radiation-Controlled Balloon (RACOON), National Center for Atmospheric Research, AIAA Technical Paper No. 81-1317-CP, 8 JUL 1981.

26. LANCASTER, J. W.

27. LANCASTER, J. W.
BAILEY, D. B.

28. LAYTON, D. M.

29. MAYER, N. J.

30. MONK, P. W. C.

31. MOWFORTH, H.

32. MUNK, R.

33. MULLER, C.

34. NAGABHUSHAN, B. L.
TOMLINSON, N. P.
Dynamics and Control of a Heavy Lift Airship in Crosswind Hover, Goodyear Aerospace Corp, AIAA Technical Paper No. 81-1334-CP, 10 JUL 1981.

35. NAVY, CNO (OP-96)

42. NIVERT, L. J. WILLIAMS, K. E. Coast Guard Airship Development, U.S. Coast Guard Headquarters, AIAA Technical Paper No. 81-1311-CP, 8 JUL 1981.

<table>
<thead>
<tr>
<th>No.</th>
<th>Author(s)</th>
<th>Title and Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>52.</td>
<td>UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION (UNIDO)</td>
<td>Expert Group Meeting on the Implications of Technological Advances in Lighter-Than-Air Systems Technology for Developing Countries — Executive Summary (Draft), Vienna, Austria, October 22, 1981.</td>
</tr>
</tbody>
</table>
DISTRIBUTION LIST

REPORT NO. NADC-80216-60

AIRTASK NO. A03P-03PA-001B/F41-411

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Recipient</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>DTIC</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>COMNAVAIRSYSCOM</td>
<td>(1 for AIR-03E)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1 for AIR-03P1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5 for AIR-320F)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1 for AIR-0003, W. Armstrong)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1 for AIR-0004, P. Stone)</td>
</tr>
<tr>
<td>2</td>
<td>U.S. Coast Guard</td>
<td>(2 for G-DMT-3/54)</td>
</tr>
<tr>
<td>6</td>
<td>NASA Headquarters</td>
<td>(6 for RJL-2, N. Mayer)</td>
</tr>
<tr>
<td>16</td>
<td>NASA - Ames Research Center</td>
<td>(15 for M.S. 237-11, P. Talbot)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1 for M.S. 237-11, H. Muira)</td>
</tr>
<tr>
<td>1</td>
<td>Naval Post Graduate School</td>
<td>(1 for Code 67-Ln, D. Layton)</td>
</tr>
<tr>
<td>1</td>
<td>Naval Coastal Systems Center</td>
<td>(1 for Code 771, C. Wicke)</td>
</tr>
<tr>
<td>1</td>
<td>U.S. Customs Service</td>
<td>(1 for J. Schoolmeester)</td>
</tr>
<tr>
<td>1</td>
<td>Lancaster Analytics</td>
<td>(1 for J. Lancaster)</td>
</tr>
<tr>
<td>1</td>
<td>University of Texas at Dallas</td>
<td>(1 for E. Rice, History of Aviation Collection)</td>
</tr>
<tr>
<td>1</td>
<td>Hawaii House of Representatives</td>
<td>(1 for Hon. G. DeHeer - 13th District)</td>
</tr>
<tr>
<td>1</td>
<td>University of Toronto</td>
<td>(1 for Dr. J. DeLaurier - IAS)</td>
</tr>
<tr>
<td>1</td>
<td>Princeton University</td>
<td>(1 for Prof. H. C. Curtiss, Dept. Mech & Aero Engr)</td>
</tr>
<tr>
<td>1</td>
<td>U.S. Naval Academy</td>
<td>(1 for Prof. B. Carson, Aero Engr Dept)</td>
</tr>
<tr>
<td>1</td>
<td>American Inst. for Aeronautics and Astronautics</td>
<td>(1 for LTA Technical Committee, D. Williams)</td>
</tr>
</tbody>
</table>