TRANSVERSE BEAM DYNAMICS IN THE MODIFIED BETATRON (U)

MAR 82 D P CHERNIN, P SPRANGLE

UNCLASSIFIED

NRL-MR-4687

END

DATE

3-82

010
Title: Transverse Beam Dynamics in the Modified Betatron

Authors: D. P. Chernin and P. Sprangle

Performing Organization: Naval Research Laboratory, Washington, D.C. 20375

Report Date: March 1, 1982

Abstract:

The linearized equations governing the motion of the center of a beam about its equilibrium position in a modified betatron, as well as equations governing the motion of an individual particle about the beam center, are presented and solved. Self field effects, including toroidal hoop stresses and wall image forces, are included in the analysis. All fields, both self and applied, are assumed to be azimuthally symmetric but are allowed to have arbitrary time dependences. The solutions to the equations of motion are analyzed for stability and conditions for stability are obtained. Further study of the solutions illustrates two phenomena of experimental interest: (1) the unavoidable...
traversal of a finite "instability gap" in parameter space during acceleration and (2) the adiabatic increase in the amplitude of the betatron oscillations during removal of the toroidal magnetic field, prior to beam ejection. By careful design, the effects of these phenomena can be reduced to insignificant levels in an actual accelerator.
CONTENTS

I. INTRODUCTION .. 1

II. EQUILIBRIUM RADIAL FORCE BALANCE ... 3

III. FIRST ORDER EQUATIONS OF MOTION ... 4

IV. MOTION OF BEAM IN SLOWLY VARYING FIELDS ... 8
 A. Stability Considerations .. 8
 B. Adiabatic Behavior ... 13

V. CONCLUSIONS ... 14

ACKNOWLEDGMENTS .. 15

REFERENCES ... 15

APPENDIX A — Fields in the Modified Betatron ... 16

APPENDIX B — Linearized Equations of Motion for a
 Particle in the Modified Betatron .. 23

APPENDIX C — WKB Solution of Equations of Motion .. 26
TRANSVERSE BEAM DYNAMICS IN THE MODIFIED BETATRON

I. INTRODUCTION

It has been suggested\(^1,2\) that the current carrying capacity of a conventional betatron accelerator might be improved dramatically by the addition of a strong toroidal magnetic field. Such a field acts to confine the beam during injection and early stages of acceleration when \(\gamma\), the usual relativistic factor, is small and space charge effects which tend to expand the beam are large. After acceleration is complete, \(\gamma\) is large, space charge effects are small, and the usual weak focusing betatron fields are sufficient to confine the beam; the toroidal field may then be removed to facilitate beam ejection. In general both vertical and toroidal magnetic fields may be changing simultaneously during beam injection and ejection. It is the purpose of this paper to examine the behavior of the beam in such time-varying fields.

We shall derive and solve equations governing the motion of the center of an electron beam confined in a modified betatron as well as equations governing the motion of an individual particle within the beam. Whole beam and single particle stability criteria will be presented; the stabilizing effect of the toroidal field for both beam and single particle motions, noted earlier\(^1,2\), will be apparent.

When the fields are allowed to vary in time two interesting phenomena occur. The first phenomenon, which occurs during acceleration, has no analogue in a conventional betatron: As the beam accelerates (\(\gamma\) increases) the betatron makes a transition from a region in parameter space in which the toroidal field is essential to stability (modified betatron regime) to a region in which the toroidal field is superfluous to stability (conventional betatron regime). It turns out that, except under extraordinary circumstances, the system must pass through an "instability gap"—a region of parameter space, separating the modified and conventional betatron regimes, in which single particle motion is

\(^1\text{Manuscript submitted December 17, 1981.}\)
unstable, though beam center motion may not be, irrespective of the magnitude of the toroidal magnetic field. However, though the size of the instability gap is independent of the toroidal field, the instability growth rate within the gap is inversely proportional to this field. We find below that by judicious magnet design and sufficiently rapid acceleration, this gap may be successfully traversed with minimal beam disturbance.

The second phenomenon occurring in time varying fields does have an analogue in a conventional betatron; this is the adiabatic change in the amplitude of the betatron oscillations. Since the frequency of these oscillations depends now on both the vertical and toroidal fields a slow change in either is expected to alter the amplitude of the betatron oscillations. During acceleration we find, as in a conventional accelerator, that the oscillation amplitude decreases as the vertical field increases. If one now considers removal of the toroidal field prior to beam ejection, we find that, as long as the toroidal magnetic field is much larger than the vertical field, the beam motion will describe orbits of increasing amplitude as the toroidal field is decreased. Once the toroidal field becomes comparable to the vertical field, however, the motion becomes more complicated and the betatron oscillations no longer continue to increase in amplitude. We find that, by careful choice of field strengths, the ratio of the betatron oscillation amplitude before acceleration to the amplitude of oscillation following complete removal of the toroidal field can be adjusted to be near one.

In the following analysis we assume "perfect," i.e. azimuthally symmetric fields. By neglecting the possibility of azimuthal variation in the self fields (due to beam bunching or kinking) we omit here consideration of a variety of beam instabilities that may occur; by neglecting similar azimuthal variation in the applied fields ("field errors") we neglect the effects of orbital resonances. These will be addressed in a separate report.
II. EQUILIBRIUM RADIAL FORCE BALANCE

The geometry of the modified betatron is shown in Fig. 1. The field configuration is that of an ordinary betatron with the addition of a toroidal magnetic field, B_0, here taken to be positive and constant across the minor cross section of the torus. We consider an electron beam of circular cross section, as shown in Fig. 2, with center located at $(r, z) = (r_0 + \Delta r, \Delta z)$ where r_0 is the equilibrium radius for the center of the beam at which the electric, magnetic, and centrifugal forces on a particle at the center of the beam are in balance. We shall take r_0 to be the major radius of the accelerator chamber. In the absence of self field effects radial force balance requires the electron circulation frequency at $r = r_0, z = 0$ to be given by

$$\dot{\theta}_0 = \Omega_{\gamma_0} \equiv eB_0/\gamma_0 m c$$

(no self field effects) (1)

where B_0 is the value of the applied vertical betatron field at the location of the orbit, γ_0 is the usual relativistic factor, $e (> 0)$ is the magnitude of the electron charge, m is the electron rest mass, and c is the speed of light.

Self field effects will modify Eq. (1) however. A nonneutral current ring produces both a zero order vertical magnetic field and a radial electric field. In general, for a reference particle at $r = r_0, z = 0$, radial force balance requires

$$-\gamma_0 \dot{\theta}_0^2 = \left[E_r^{(0)} + \frac{1}{c} r_0 \dot{\theta}_0 B_z^{(0)} \right]$$

(2)

where $E_r^{(0)}$ and $B_z^{(0)}$ are the zero order fields at $r = r_0, z = 0$. From Appendix A, Eqs. (A-25c, 26c, 26d)

$$B_z^{(0)} = B_0 - \pi n_0 e \beta_0 \frac{r_0^2}{r^2} l_B$$

(3)

$$E_r^{(0)} = -\pi n_0 e \frac{r_0^2}{r^2} l_E$$

(4)

where the notation is defined in Appendix A.

The terms proportional to l_B in Eq. (3) and l_E in Eq. (4) are toroidal corrections to the self fields of a cylindrical beam. They represent "hoop stresses"—self forces on a nonneutral ring of current.
which act to expand the ring. Since we do not attempt here to construct a consistent equilibrium for
the beam we leave I_B and I_E arbitrary in the analysis below since their precise values depend upon the
particular distributions of charge and current in the beam. Still, one expects the leading order loga-
rithms in the expressions for I_B and I_E, Eqs. (A-27,28), to be correct.

Using now the zero order fields, Eqs. (3,4), in Eq. (2) we may write the condition for radial force
balance as

$$\left[1 + \frac{\nu}{\gamma_0} I_B \right] \dot{\theta} - \Omega_\theta \dot{\theta}_0 + \frac{\nu}{\gamma_0} \frac{c^2}{r_\theta^2} I_E = 0$$

(5)

where

$$\frac{\nu}{\gamma_0} = \frac{1}{\gamma_0} \left[\pi r_\theta^2 n_0 \frac{e^2}{mc^2} \right] = \frac{1}{4} \frac{\omega_p^2 r_\theta^2}{c^2}$$

(6)

and where ω_p is the beam plasma frequency, $(4\pi n_0 e^2/m\gamma_0)^{1/2}$. Here and below Ω_θ retains the
definition assigned to it in Eq. (1).

Equation (5) is a quadratic equation for the circulation frequency, $\dot{\theta}_0$. The solution which
approaches Ω_θ as $\nu/\gamma_0 \to 0$ is, to first order in ν/γ_0:

$$\dot{\theta}_0 \approx \Omega_\theta \left[\frac{1}{\gamma_0} - \frac{1}{\gamma_0} \left(\frac{\nu}{\alpha^2} I_E + I_B \right) \right]$$

(7)

where $\alpha = \Omega_\theta \sqrt{e}/c$. Self field effects, represented by the ν/γ_0 term, are seen to reduce the single parti-
cle circulation frequency below that expected for a zero density; the correction term can be significant
(20-30%) in presently contemplated devices. The general result, Eq. (7), will be needed below in the
derivation of the first order equations of motion.

III. FIRST ORDER EQUATIONS OF MOTION

In this section the equations governing the motion of a beam and motion of an electron within
the beam are obtained and discussed. We shall consider in detail only motion transverse to the toroidal
magnetic field, assuming that all fields, both self and applied, are independent of θ.
The equations of motion for a particle in the fields of \((A-25, 26)\) to first order in the displacements from the reference orbit \((r_0, 0)\), are derived in Appendix B. They are

\[
\begin{align*}
\dot{r}_1 + \frac{\dot{r}_0}{\gamma_0} r_1 + \Omega_\phi z_0 \left[1 - n^* - \frac{\nu}{\gamma_0} \left(\frac{3}{\alpha^2} \Omega_\phi + 2 \ell_\phi \right) \right] r_1 - n_1 \Omega_x \left[\delta r + \frac{r_0^2}{\alpha^2} \Delta r \right] &= \frac{e\tilde{B}_w}{2m\gamma_0c} z_1 + \Omega_\gamma z_1 + \frac{P_\rho_1}{\gamma_0 m_0} \left[1 - \frac{\nu}{\gamma_0} \left(\frac{1 + \gamma_0^2}{\alpha^2} \ell_\phi + \ell_\theta \right) \right] \\
\dot{z}_1 + \frac{\dot{z}_0}{\gamma_0} z_1 + \Omega_\phi n^* z_1 - n_1 \Omega_x \left[\delta z + \frac{r_0^2}{\alpha^2} \Delta z \right] &= - \frac{e\tilde{B}_w}{2m\gamma_0c} r_1 - \Omega_\gamma \dot{r}_1
\end{align*}
\]

(8a) and (8b)

where

\[
\begin{align*}
r_1 &= r - r_0 = \Delta r + \delta r \\
z_1 &= z = \Delta z + \delta z \\
n^* &= n \left[1 - \frac{\nu}{\gamma_0} \left(\frac{1}{\alpha^2} \ell_\phi + \ell_\theta \right) \right] \\
n_1 &= \omega_\phi \left[2\gamma_0^2 \Omega_\phi \right] \\
\Omega_\gamma &= \frac{e\tilde{B}_w}{m\gamma_0c}
\end{align*}
\]

and where \(P_\rho_1\) is equal to the canonical angular momentum of the particle at \((r, z)\) minus the canonical angular momentum of the reference particle at \((r_0, 0)\), to first order in small quantities. It may be shown, using the definition of \(P_\rho, P_\rho_0 \equiv \left[m y V_x - \frac{c}{c} A_\rho \right] \), that

\[
P_\rho_1 = m\gamma_0 r_0 \left[V_1 \gamma_0^2 \frac{1}{\gamma_0} \Omega_\gamma \ell_\phi \right]
\]

(9)

where \(V_1 = V_\rho - V_\rho_0\).

As they stand Eqs. (8a) and (8b) are not easily solved since, before they can be solved for the coordinates of a particle \((r_1, z_1)\) the beam position \((\Delta r, \Delta z)\) must somehow be known as a function of time. However, a set of consistent equations for beam and particle motion may be obtained by performing an ensemble average of Eqs. (8a, b) over initial particle coordinates and velocities. Denoting
such an average by brackets it may be shown that, as long as the beam is assumed not to kink (Δr, Δz independent of θ), we will have

$$<r_1> = \Delta r, \quad <\delta r> = <\delta \dot{r}> = 0$$

$$<z_1> = \Delta z, \quad <\delta z> = <\delta \dot{z}> = 0.$$ \hfill (10a, 10b)

Upon performing this averaging procedure on Eqs. (8a,b) we will obtain equations governing the motion of the center of the beam. These may subsequently be subtracted from the original, unaveraged Eqs. (8a,b) to obtain equations governing the motion of a single particle within the beam. Both resulting sets of equations may be summarized by the following single set:

$$\dot{x} + \omega^2 x = \Omega_{\leq 0} \dot{y} + \frac{1}{2} \dot{\Omega}_{\leq 0} y + F$$

$$\dot{y} + \omega^2 y = -\Omega_{\leq 0} \dot{x} - \frac{1}{2} \dot{\Omega}_{\leq 0} x$$ \hfill (11a, 11b)

where the various quantities appearing in Eqs. (11a,b) are defined in Table 1.

<table>
<thead>
<tr>
<th></th>
<th>Beam Equations</th>
<th>Particle Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x,y)</td>
<td>$\gamma_0^{1/2}(\Delta r, \Delta z)$</td>
<td>$\gamma_0^{1/2}(\delta r, \delta z)$</td>
</tr>
<tr>
<td>ω^2</td>
<td>$\Omega_{\leq 0} \left[1 - n^* - \frac{r^2}{\alpha^2} n_t \right]$</td>
<td>$\Omega_{\leq 0} \left[1 - n^* - n_t \right]$</td>
</tr>
<tr>
<td></td>
<td>$-\frac{\nu}{\gamma_0} \left(\frac{3}{\alpha^2} l_E + 2 l_b \right) - \frac{1}{2} \frac{\ddot{\gamma}_0}{\gamma_0} + \frac{1}{4} \left(\frac{\gamma_0}{\gamma_0} \right)^2$</td>
<td>$-\frac{\nu}{\gamma_0} \left(\frac{3}{\alpha^2} l_E + 2 l_b \right) - \frac{1}{2} \frac{\ddot{\gamma}_0}{\gamma_0} + \frac{1}{4} \left(\frac{\gamma_0}{\gamma_0} \right)^2$</td>
</tr>
<tr>
<td>α_y^2</td>
<td>$\Omega_{\leq 0} \left[n^* - \frac{r^2}{\alpha^2} n_t \right]$</td>
<td>$\Omega_{\leq 0} \left[n^* - n_t \right]$</td>
</tr>
<tr>
<td></td>
<td>$-\frac{1}{2} \frac{\ddot{\gamma}_0}{\gamma_0} + \frac{1}{4} \left(\frac{\gamma_0}{\gamma_0} \right)^2$</td>
<td>$-\frac{1}{2} \frac{\ddot{\gamma}_0}{\gamma_0} + \frac{1}{4} \left(\frac{\gamma_0}{\gamma_0} \right)^2$</td>
</tr>
<tr>
<td>F</td>
<td>$\Omega_{\leq 0} \frac{<P_{\leq 1}>}{m \gamma_0^2} \times$</td>
<td>$\Omega_{\leq 0} \frac{<P_{\leq 1}>}{m \gamma_0^2} \times$</td>
</tr>
<tr>
<td></td>
<td>$\left[1 - \frac{\nu}{\gamma_0} \left(\frac{1 + \gamma_0^2}{\alpha^2} l_E + l_b \right) \right]$</td>
<td>$\left[1 - \frac{\nu}{\gamma_0} \left(\frac{1 + \gamma_0^2}{\alpha^2} l_E + l_b \right) \right]$</td>
</tr>
</tbody>
</table>
Equations (11a,b) are our basic starting points for the analysis to be presented below. In the following sections we will derive and study the WKB solutions to Eqs. (11a,b). First we make a few remarks on the equations themselves.

The term proportional to x on the left hand side of Eq. (11a) and the term proportional to y on the left hand side of Eq. (11b) represent radial and vertical focusing forces respectively. In general the coefficients of x and y in these terms are not equal which suggests that an initially circular beam may not remain circular. The value of n which makes these terms equal (the value required to maintain a circular beam cross section) is

$$n_{\text{crit}} = \frac{1}{2} \left[1 - \frac{\nu}{\gamma_0} \left\{ \frac{2}{\alpha^2} l_e + l_B \right\} \right]$$

which depends on γ_0 and therefore on time. In what follows we will leave n arbitrary, though we shall assume implicitly that its value is close to n_{crit}. This is necessary for self consistency since we obtained the beam self fields Eqs. (A-26) assuming a circular beam cross section.

In the case of constant fields Eqs. (11a,b) are elementary. For this case we have

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} F/\omega_z^2 \\ 0 \end{pmatrix} + \sum_{j=1}^{4} C_j \left\{ \frac{\omega_x^2 - \omega_y^2}{\omega_y^2 - \omega_x^2} \right\} e^{i\omega_j t}$$

where the eigenfrequencies (frequencies of betatron oscillations) are given by

$$\omega_j = \pm \left[\omega_x^2 + \omega_y^2 + \Omega_0^2 \pm \frac{\left(\omega_x^2 + \omega_y^2 + \Omega_0^2 \right)^2 - 4\omega_x^2 \omega_y^2}{2} \right]^{1/2}$$

and where the $C_j, j = 1, 2, 3, 4$ are constants.

Stability conditions result in the usual way by requiring $\omega^2 > 0$. We postpone examination of these conditions, however, until the following section. We note here only that for values of γ above a value dependent on geometry (r_b, a, r_0, n) but not on beam density, the self field contributions to ω_x^2 and ω_y^2 fall off as γ_0^{-1}, rather than γ_0^{-3}. For whole beam motion the value of γ at which the ν/γ_0 terms become comparable to the $r_b^2 n/\omega_0^2$ term can be modest ($\gamma \approx 10$) for typical laboratory parameters ($r_b = 1$ cm, $a = 10$ cm, $r_0 = 100$ cm, $n = 0.5$).
The particular solution in Eq. (13) represents physically for a particle motion a first order radial shift of a particle which, while located initially at the reference orbit \((r_0, 0)\) does not have the correct energy to be maintained there by the local vertical magnetic field. It therefore moves in or out slightly depending on the sign of the energy mismatch. If, however, the radial focussing forces, represented by \(\omega_r^2\), happen to vanish the behavior becomes secular (no equilibrium radius exists).

The solution to the homogeneous part of Eqs. (11a,b) also becomes secular when \(\omega_r^2 = 0\). In fact, when \(\omega_r^2 = 0\) and \(\omega_r^2 \neq \omega_v^2\) \((n \neq n^*)\), the point \(\omega_r^2 = 0\) corresponds to a turning point (transition from stable to unstable behavior) in the WKB solution presented in the next section. Since \(\omega_r^2\) for particle motion will pass through zero during acceleration, it becomes important to examine the behavior of the solutions to Eqs. (11a,b) for time dependent fields. In general, for slowly time varying fields, a numerical solution to Eqs. (11a,b) over the entire acceleration cycle is prohibitive since the numerical integration time step must be small compared to \(\Omega_{\text{rad}}^{-1}\) which in turn is extremely small compared to typical acceleration times. An explicit solution for this case is therefore essential.

IV. MOTION OF BEAM IN SLOWLY VARYING EXTERNAL FIELDS

A. Stability Considerations

If the coefficients of the derivatives of \(x\) and \(y\) in Eqs. (11a,b) are slowly varying during a period of a betatron oscillation, the equations may be solved by the WKB method. (See Appendix C.) To leading order the solution is

\[
\begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{\omega_\Delta} \sum_{j=1}^{4} \frac{A_j}{\omega_j^{1/2}} \left(\frac{(\omega_j^2 - \omega_v^2)^{1/2}}{(\omega_j^2 - \omega_r^2)^{1/2}} \right) e^{\int \omega_j \, dt} + \int' \left[K_x(t,t') F(t') \right] K_y(t,t') F(t')
\]

where the eigenfrequencies are those given in (14) in which now all quantities may depend on time,

\[
\omega_\Delta \equiv \left\{ (\omega_r^2 + \omega_v^2 + \Omega_{\text{rad}}^2)^2 - 4\omega_r^2 \omega_v^2 \right\}^{1/4},
\]

and where the kernels \(K_x(t,t')\) and \(K_y(t,t')\) are given in Appendix C. The \(A_j, j = 1, 2, 3, 4\) are constants in this approximation.
This solution, Eq. (16), is valid far from any turning point, i.e. where any ω_j vanishes. Turning points will occur if $\omega_2^2 - \omega_0^2 = 0$ and if $\omega_2 \neq \omega_0^2$. (See below.) Initially we shall confine attention to a cold beam (no longitudinal momentum spread) for which the particular solution in (15) vanishes identically. Later we shall comment on the effect of temperature.

The solution is unstable (exponentially growing) in time for such times that $\text{Im}(\omega_j) < 0$ for any j. Unstable behavior will occur therefore whenever either of the following conditions is violated:

\begin{align}
\omega_2^2 \omega_0^2 &> 0 \\
\omega_2^2 + \omega_0^2 + \Omega_{\beta_0}^2 &> 2(\omega_2^2 \omega_0^2)^{1/2}
\end{align}

For $n = n_{\text{cir}}$ ($\omega_2^2 = \omega_0^2$) inequality (17a) is trivial and (17b) gives the simplified stability condition:

$$\Omega_{\beta_0}^2 > \text{max}(0, -4\omega_0^2)$$

If $n \neq n_{\text{cir}}$ then both conditions (17a,b) must be simultaneously satisfied for stability. Condition (17a) in particular cannot always be satisfied. At injection n_0 is typically quite large and both ω_2^2 and ω_0^2 for particle motion (and perhaps for beam motion) are negative. During acceleration, as γ_0 increases n_0 decreases ($n_0 \sim \gamma_0^{-3}$) and ω_2^2 and ω_0^2 change sign (for different values of γ_0, if $n \neq n_{\text{cir}}$); an instability "gap" therefore exists while ω_2^2 and ω_0^2 have opposite signs.

It is important to point out that ω_2^2 and ω_0^2 for beam center motion (Re: Table I) may start out and remain positive throughout the injection-acceleration cycle while ω_2^2 and ω_0^2 for particle motion change sign. We recall from Table I that the small quantity $(r_p/a)^2$ multiplies n_0 in the expressions for ω_2^2 and ω_0^2 for beam center motion but not for single particle motion. Therefore unless n_0 is extremely large initially, beam center motion will remain stable.

The inequalities Eq. (17a-b) are illustrated graphically in Fig. 3. The stable regions of the $\left(\frac{\omega_y}{\Omega_{\beta_0}}\right)^2 \cdot \left(\frac{\omega_x}{\Omega_{\beta_0}}\right)^2$ plane are those shaded regions I and II in the figure. After injection but before acceleration both $\left(\frac{\omega_y}{\Omega_{\beta_0}}\right)^2$ and $\left(\frac{\omega_x}{\Omega_{\beta_0}}\right)^2$ for particle motion are negative and in region I. In this region the toroidal magnetic field is essential for stability (modified betatron regime). Following acceleration
both \(\left(\frac{\omega_p}{\Omega_{\delta_0}} \right)^2 \) and \(\left(\frac{\omega_p}{\Omega_{\delta_0}} \right)^2 \) are positive, i.e., in region II in which the toroidal field is no longer required for stability (conventional betatron regime). Only by passing precisely through the origin (e.g., trajectory b in Fig. 3) can instability be avoided altogether. While the size of the instability gap does not depend on the magnitude of \(B_{\delta_0} \), the value of \(\text{Im}(\omega_j) \) in the gap does and is inversely proportional to \(B_{\delta_0} \). Therefore by choosing a sufficiently large toroidal field it should be possible to pass through the instability gap safely (within a few growth times, or less).

We may be quantitative for a case in which toroidal effects may be neglected: When Eq. (17a) is violated and if \(\Omega_{\delta_0}^2 >> |\omega_1|, |\omega_2| \) then for the unstable mode, from Eq. (14),

\[
\text{Im}(\omega_j) = \frac{\sqrt{-\omega_1^2 \omega_2^2}}{\Omega_{\delta_0}}
\]

which has a peak value, assuming only \(\gamma_0 \) and not \(B_{\delta_0} \) is changing in time, of

\[
\Omega: \left(\frac{B_{\delta_0}}{B_{\delta_0}} \right)_{\gamma - 1/2} = \tau_{1/2}^{-1}.
\]

If

\[
\int_{t_1}^{t_2} dt \text{Im}(\omega_j) = \int_{t_1}^{t_2} \text{Im}(\omega_j) \frac{d\gamma_0}{\gamma_0} << 1
\]

where \(t_1 \) and \(t_2 \) are the times at which the instability gap is entered and exited, respectively, then one expects that the transit through the gap will not significantly disrupt the beam; Eq. (21) translates into a constraint on \(\gamma_0 \):

\[
\frac{\dot{\gamma}_0}{\gamma_0} >> \frac{\pi}{3} \Omega_{\delta_0} \frac{B_{\delta_0}}{B_{\delta_0}} (n - 1/2)^2.
\]

If the acceleration is fast enough to satisfy Eq. (22) particle motion will be essentially unaffected by passage through the gap. It should be possible to choose a machine design (i.e., a sufficiently large toroidal field and a field index close to 1/2) so that Eq. (22) is well satisfied.

The instability which occurs while \(\omega_1^2 \omega_2^2 < 0 \) has an interesting dynamical origin. Let us consider the equations of motion, Eqs. (11a,b), taking \(F = 0 \), and taking the external fields to be constant in
These equations are just those governing the motion of a particle in an effective electric field

\[E_{x}^{\text{eff}} = \frac{m}{e} \omega_{x}^{2} x \]

\[E_{y}^{\text{eff}} = \frac{m}{e} \omega_{y}^{2} y \]

and a magnetic field \(B_{\omega} / \gamma_0 \). Converting to polar coordinates \(\rho, \phi \) we have

\[E_{\rho}^{\text{eff}} = \frac{m}{e} \rho \left[\omega_{x}^{2} \cos^{2} \phi + \omega_{y}^{2} \sin^{2} \phi \right] \]

\[E_{\phi}^{\text{eff}} = \frac{m}{e} \rho \left[\omega_{x}^{2} - \omega_{y}^{2} \right] \sin \phi \cos \phi \]

The particle behavior may be understood as follows. Let us assume that \(n > 1/2 \), from which it follows that \(\omega_{x}^{2} > \omega_{y}^{2} \) always, and let us consider first the modified betatron regime \((\omega_{x}^{2} < 0, \omega_{y}^{2} < 0) \). \(E_{\rho}^{\text{eff}} \) in this regime is everywhere negative thereby giving rise to a clockwise \(E \times B \) drift, assuming \(B_{\omega} \) is positive. \(E_{\phi}^{\text{eff}} \), which is much smaller in magnitude than \(E_{\rho}^{\text{eff}} \), gives a radial drift of alternating sign as the particle moves from quadrant to quadrant, thereby producing an elliptical orbit. Stable motion is established by balancing the outward radial electrostatic + outward centrifugal forces against the \(E \times B \) confining force.

In the conventional betatron regime \(\omega_{x}^{2} > 0, \omega_{y}^{2} > 0 \) and the sign of \(E_{\rho}^{\text{eff}} \) is reversed. Azimuthal particle drift is now counter-clockwise and the major axis of the elliptical orbit is rotated by 90°. Stable motion is achieved by balancing the inward radial electrostatic force against the centrifugal force; the toroidal field is no longer needed.

In the instability gap \(E_{\rho}^{\text{eff}} \) has zeroes at polar angles given by

\[\cos^{2} \phi_0 = \left(1 - \frac{\omega_{y}^{2}}{\omega_{x}^{2}} \right)^{-1} \]

at which points the azimuthal drift velocity vanishes. The radial drift velocity, \(cE_{\phi}^{\text{eff}} / B_{\omega} \), cannot also vanish at the same point. Consequently the particle drifts radially, with increasing velocity, since
$E_{B}^{\text{eff}} \sim \rho$, at the angle ϕ_0, as long as $\omega_s^2 \omega_r^2 < 0$. Increasing the toroidal B field, thereby reducing the radial drift velocity, reduces the growth rate of this instability, a fact reflected in Eq. (19).

Typical orbits during transit of the instability gap are illustrated for a simple case in Figs. 4 and 5 in which results of a numerical integration of Eqs. (11a,b) are plotted. In Fig. 4 condition (21) is not well satisfied. The dramatic drift direction reversal and instability are evident. In Fig. 5 condition (21) is well satisfied (n is near 1/2); particle motion is virtually unaffected, except for the reversal of drift direction, by passage through the gap. The two graphs, in Figs. 4 and 5 differ only by the value of n used; all other external parameters and total integration time are identical.

So far no mention has been made of the effect of temperature, the inhomogeneous term in Eqs. (11a,b), on particle orbit behavior in or near the instability gap. Particles having an energy mismatch—either too little or too much energy to be maintained at the reference orbit by the local vertical field—will seek out their new equilibrium orbits about which they will execute betatron oscillations. Secular behavior is expected, as discussed earlier, when ω_s^2 vanishes.

The effect of energy mismatch on a particle orbit is illustrated in Fig. 6 where the particle of Fig. 5 has been given an energy mismatch of

\[\frac{P_{s1} - \langle P_{s1} \rangle}{m_r q_c} \approx \gamma_1 - \langle \gamma_1 \rangle = 0.10. \]

The effect is twofold. The orbit center shifts slightly outward and the amplitude of betatron oscillations following passage through the instability gap has increased by a factor of -35 over the zero mismatch case. Such a large expansion of the particle orbits cannot, in fact, be reliably computed using the linearized Eqs. (11a,b) used here. One non-linear effect in particular, namely the reduction of beam density during the orbit expansion, will clearly speed the passage of a particle through the instability gap. (Recall that n_s is proportional to density.) Due to this density reduction the actual degree of orbit expansion to be anticipated in a real device is likely to be significantly less than that seen in Fig. 6. Still, these calculations suggest that a fairly cold beam will be required for successful acceleration through the instability gap. Poorly "matched" particles are likely to be lost as ω_s^2 goes through zero. It should be pointed out as well that a strong toroidal field greatly reduces the effects of energy mismatch.
The computer runs necessarily employ a very modest toroidal field (600 gauss in the case of Figs. 4-6) due to time step considerations. A stronger field, by further restricting radial motion, is expected to improve the confinement properties of a warm beam.

B. Adiabatic Behavior

Let us next briefly consider, using the solutions to the equations of motion, Eq. (15), the effects on the particle orbits of the removal of the toroidal magnetic field. The toroidal field may need to be removed in order to facilitate beam extraction though this may not be essential. Let us assume that Eq. (15) is valid throughout the acceleration cycle, i.e. that ω_2^2 and ω_1^2 pass through zero simultaneously and that the solution to the homogeneous equation (the sum in Eq. (15)) dominates the solution. This is certainly true for matched particles ($P_1 = <P_1> = 0$) when $n = 1/2$ and when toroidal effects may be neglected ($\nu/\gamma << 1$). One may show, using Eq. (15) for such a case, that for beam center motion in either the fast or slow oscillation mode

$$\frac{[(\Delta r)^2 + (\Delta z)^2]}{[(\Delta r)^2 + (\Delta z)^2]} = \left| \frac{\left[\frac{1}{2} - \frac{r_0^2}{a^2} n_i \right] B_{z0}^2 + \frac{1}{4} B_{ao}^2}{\left[\frac{1}{2} - \frac{r_0^2}{a^2} n_f \right] B_{z0}^2 + \frac{1}{4} B_{ao}^2} \right|^{1/2}$$

while for particle motion about the beam center

$$\frac{[(\delta r)^2 + (\delta z)^2]}{[(\delta r)^2 + (\delta z)^2]} = \left| \frac{\left[\frac{1}{2} - n_i \right] B_{z0}^3 + \frac{1}{4} B_{ao}^3}{\left[\frac{1}{2} - n_f \right] B_{z0}^3 + \frac{1}{4} B_{ao}^3} \right|^{1/2}$$

where the subscripts i and f correspond to any initial and final states. The latter expression, Eq. (28), may be interpreted as the fractional change in beam cross sectional area. Note that for large B_a the area of the orbits $-B_a^{-1}$, as expected.

Expressions for these ratios in the case that toroidal effects are not negligible and $n \neq 1/2$ may be obtained from Eq. (15). The expressions are complicated, however, and will not be cited here.
As a numerical example we consider a 1 kA beam of 1 cm initial radius in an initial state corresponding to $\gamma_i = 7$, $B_{z0,i} = 120$ g, $B_{z0,i} = 1.5$ kg and a final state with $\gamma_f = 100$, $B_{z0,f} = 1.7$ kg, and $B_{z0,f} = 0$. In such a case Eq. (27) gives for the orbital area ratio a value of 0.63 while Eq. (28) gives for the ratio of beam cross sectional areas a value of 0.60.

We conclude that it should be possible both to accelerate the beam and to remove the toroidal field to facilitate beam ejection without causing either the beam orbit or individual particle orbits to expand without limit.

V. CONCLUSIONS

The beam in a modified betatron can be stably confined both during the acceleration phase and during the subsequent gradual removal of the toroidal magnetic field prior to beam ejection. As the beam is accelerated, however, unless very special conditions are satisfied, a region of instability will be passed through; however if the time of transit through this instability gap is small compared to the time specified in Eq. (20) the net effect should be small.

As the toroidal field is removed to facilitate beam extraction following acceleration no further instability gaps occur but the magnitude of the beam betatron oscillations will change adiabatically. By arranging that the ratios, Eqs. (28,29), be near one, one expects the beam to be well behaved during the removal of the toroidal field.

It should be remarked however that changing the toroidal field changes the "tune" of the betatron which, in general, will necessitate the passage through orbital resonances as the toroidal field is removed. These resonances, due to the periodic encounter by a particle of a field error or "bump" are currently under investigation. It is anticipated that a condition governing the minimum speed with which B_n must be removed, expressed as a function of the magnitude of the field error, will be obtained.
ACKNOWLEDGMENTS

We have benefitted from discussions with J. L. Vomvoridis, C. A. Kapetanakos, and N. Rostoker.

This work was supported by the Office of Naval Research.

REFERENCES

5. D. Chernin and P. Sprangle, NRL Memorandum Report 4691 (to be published).

Appendix A

FIELDS IN THE MODIFIED BETATRON

In this appendix we calculate the fields seen by a particle in a modified betatron. The particle is assumed to be close to the axis of the torus, that is, the coordinates of the particle are taken to be (refer to Figs. 1 and 2 in the text)

\[(r,z) = (r_0 + \Delta r, \Delta z + \delta z)\]

and all fields will be calculated to first order in \(\Delta r, \delta r, \Delta z, \text{ and } \delta z\). Fields will be given in the \((r, \theta, z)\) coordinate system of Fig. 1 and all will be assumed to be independent of \(\theta\). Superscripts \(a\) and \(s\) will be used below to denote applied and self fields, respectively.

Part I (Applied Fields)

Magnetic Field

The usual weak focusing betatron field has \(r\) and \(z\) components. The \(z\) component is taken to behave near \(r_0\) as

\[B^z = B_{00}(r_0/r)^n = B_{00}\left(1 - n\frac{\Delta r + \delta r}{r_0}\right)\]
(A-1)

where \(B_{00}\) depends only on time and \(n\), taken as a constant to this order, is the so-called vacuum field index. The radial field is obtained by requiring \((\nabla \times \vec{B})_n = 0\) and \(B_r(z = 0) = 0\) (making the \(z = 0\) plane a plane of symmetry). The result is:

\[B^r = -nB_{00}\left(\frac{\Delta z + \delta z}{r_0}\right)\]
(A-2)

The applied toroidal field generally falls off as \(r^{-1}\) across the minor cross section of the torus:

\[B^\theta = B_{00}\left(1 - \frac{\Delta r + \delta r}{r_0}\right)\]
where \(B_{00} \) depends only on time. However, in the equations of motion \(B_0 \) multiplies only \(t \) and \(z \) terms which are already first order. Therefore the gradient of \(B_0 \) does not enter the linearized equations of motion and we take only the zero order value,

\[
B_0^0 = B_{00}
\]

(A-3)

Electric Field

All applied electric fields are inductive. The \(\phi \)-directed electric field is governed by the changing central flux and is taken to be a specified function of time:

\[
E_\phi^0 = E_{\phi0}(t)
\]

(A-4)

\(E_\phi \) is negative for electron acceleration with \(B_{00} \) positive.

Changing the toroidal magnetic field, \(B_{00} \), will induce a poloidal electric field, the \(r \) and \(z \) components of which are easily found:

\[
E_r^o = -\frac{1}{2c} \dot{B}_{00}(\Delta z + \delta z)
\]

(A-5)

\[
E_z^o = -\frac{1}{2c} \dot{B}_{00}(\Delta r + \delta r)
\]

(A-6)

where a dot indicates a time derivative.

Part II (Self Fields)

Since we neglect beam diamagnetism and the possibility of a change in self flux due to time varying beam current we take \(B_z^0 = E_z^0 = 0 \). It remains to calculate the \(r \) and \(z \) components of the beam self electric and magnetic fields.

Consider a beam circulating inside a perfectly conducting toroidal chamber of circular cross section as shown in Fig. A-1. (The beam displacement is exaggerated for clarity; we will assume \(\Delta \ll r_b \).) The chamber major and minor radii are \(r_0 \) and \(a \) respectively. The beam major and minor radii are \(R_b \) and \(r_b \) respectively. We must calculate the fields inside the beam (\(\rho < r_b \)), assuming the chamber is a perfect conductor. To proceed we define a scalar potential \(\Phi(\rho, \phi) \) and a magnetic flux or stream function \(\Psi(\rho, \phi) \equiv rA_\rho \) where \(A_\rho \) is the usual vector potential. The equations for \(\Phi \) and \(\Psi \) are
\[
\frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial \Phi}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 \Phi}{\partial \phi^2} = 4\pi e n_0(\rho, \phi) - \frac{\cos \phi \frac{\partial \Phi}{\partial \rho} - \frac{1}{\rho} \sin \phi \frac{\partial \Phi}{\partial \phi}}{R_b + \rho \cos \phi} \tag{A-7}
\]

\[
\frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial \Psi}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 \Psi}{\partial \phi^2} = -\frac{4\pi}{c} \left(R_b + \rho \cos \phi \right) J_b(\rho, \phi) + \frac{\cos \phi \frac{\partial \Psi}{\partial \rho} - \frac{1}{\rho} \sin \phi \frac{\partial \Psi}{\partial \phi}}{R_b + \rho \cos \phi} \tag{A-8}
\]

where \(n_0 \), the beam number density and \(J_b \), the beam current density, are assumed to have been specified. Here we shall take both \(n_0 \) and \(J_b \) constant, independent of \(\rho \) and \(\phi \).

The boundary conditions on \(\Phi \) and \(\Psi \) are the same; they both must vanish at the surface of the chamber, specified by

\[
\rho = a - \Delta \cos (\psi - \phi), \tag{A-9}
\]
correct to first order in \(\Delta/a \).

Scalar Potential and Electric Field

The general solution for \(\Phi \), including the first toroidal correction, is

\[
\Phi = \begin{cases}
\Phi_0 + q \left(1 - \rho^2/r_b^2 \right) + \frac{q \rho^3}{4R_b r_b^2} \cos \phi + A \frac{\rho}{r_b} \sin \phi + B \frac{\rho}{r_b} \cos \phi & \rho < r_b \\
\Phi_0 - 2q \ln \rho/r_b + \frac{q \rho}{R_b} \ln \rho/r_b \cos \phi + \left(A' \frac{\rho}{r_b} + C' \frac{r_b}{\rho} \right) \sin \phi & \rho > r_b
\end{cases} \tag{A-10}
\]

where \(q \equiv -e n_0 \pi r_b^2 \) and \(\Phi_0, A, B, A', B', C', \) and \(D' \) are constants.

Applying now the correct boundary conditions both at the beam surface and the wall determines all of the constants:

\[
\Phi_0 = 2q \frac{\ln a}{r_b} \tag{A-11a}
\]

\[
A = A' = -2q \frac{\Delta r_b}{a} \sin \psi \tag{A-11b}
\]

\[
B = B' = -q \frac{r_b}{R_b} \ln a/r_b - \frac{q \rho^3}{4R_b a^2} - 2q \frac{\Delta r_b}{a} \cos \psi \tag{A-11c}
\]
Using this result in Eq. (A-10) we may calculate the \(r \) and \(z \) components of \(\vec{E} \) inside the beam, to first order:

\[
E_r = -\frac{\partial \Phi}{\partial \rho} \cos \phi + \frac{1}{\rho} \frac{\partial \Phi}{\partial \phi} \sin \phi
\]

\[
= \frac{2q}{r^3} \left[\delta_r + \frac{r^2}{a^2} \Delta r \right] + \frac{q}{R_b} \ln \frac{a}{r_b} \tag{A-12}
\]

\[
E_z = -\frac{\partial \Phi}{\partial \rho} \sin \phi - \frac{1}{\rho} \frac{\partial \Phi}{\partial \phi} \cos \phi
\]

\[
= \frac{2q}{r^3} \left[\delta_z + \frac{r^2}{a^2} \Delta z \right] \tag{A-13}
\]

where \((\delta_r, \delta_z) \equiv \rho (\cos \phi, \sin \phi)\) and \((\Delta r, \Delta z) \equiv \Delta (\cos \psi, \sin \psi)\).

Magnetic Flux (or Stream) Function and Magnetic Field

The general solution for \(\Psi \), including the first toroidal correction, is

\[
\Psi = \begin{cases}
\psi_0 + Q \left(1 - \rho^2/r_b^2 \right) - \frac{3}{4} \frac{Q}{R_b} \frac{\rho^3}{r_b^3} \cos \phi + \bar{A} \frac{\rho}{r_b} \sin \phi + \bar{B} \frac{\rho}{r_b} \cos \phi & \rho < r_b \\
\psi_0 - 2Q \ln \rho/r_b - \frac{Q \rho}{R_b} \ln \rho/r_b \cos \phi + \left[\bar{A} \frac{\rho}{r_b} + \bar{C} \frac{r_b}{\rho} \right] \sin \phi & \rho > r_b
\end{cases} \tag{A-14}
\]

where \(Q = \pi r_b^2 J_b R_b/c = -\pi r_b^2 \eta_0 \beta_0 R_b \), \(\beta_0 = V_{ao}/c \), and \(\psi_0, \bar{A}, \bar{B}, \bar{A}', \bar{B}', \bar{C}', \) and \(\bar{D}' \) are constants.

Applying the boundary conditions gives

\[
\psi_0 = 2Q \ln \frac{a}{r_b} \tag{A-15a}
\]

\[
\bar{A} = \bar{A}' = -2Q \frac{\Delta}{a} \frac{r_b}{a} \sin \psi \tag{A-15b}
\]
The resulting magnetic field, to first order, is

\[
\bar{B} = \bar{B}' + Q \frac{r_b}{R_b}
\]

\[
= -2Q \frac{a}{a} \cos \phi + Q \frac{r_b}{R_b} \ln \frac{a}{r_b} + \frac{r_b}{4R_b} \frac{r_b^3}{a^2}
\]

(A-15c)

\[
\bar{C}' = 0
\]

(A-15d)

\[
\bar{D}' = \frac{1}{4} Q \frac{r_b}{R_b}
\]

(A-15e)

If the circulation frequency, \(\dot{\theta}_b \), rather than the current itself, is taken to be constant across the beam (current \(\sim r \)) then it is straightforward to show that \(\ln \frac{a}{r_b} + 1 \) in Eq. (A-17) is replaced by \(\ln \frac{a}{r_b} + 2 \).

If the magnetic field of the beam has diffused completely through the wall then the field surrounding the beam is most directly calculated using the free space Green's function:

\[
\bar{X}(\bar{r}) = \frac{1}{c} \int d\bar{r}' \frac{\bar{J}(\bar{r}')}{|\bar{r} - \bar{r}'|}. \tag{A-18}
\]

If \(\bar{J} = J_0 \hat{\theta} \) is constant across the beam and \(J_0 \) is independent of \(\theta \) then \(\bar{X} = A_\theta \hat{\theta} \) where

\[
A_\theta(r, z) = \frac{J_0}{c} \int_{R_b - r_b}^{R_b + r_b} r'dr' \int_0^{2\pi} d\theta' \int_{z_b(r')}^{z_b(r)} dz' \frac{\cos \theta'}{\sqrt{r'^2 + r_0^2 - 2rr' \cos \theta' + (z - z')^2}}
\]

\[
z_b(r') = \left[r_0^2 - (r' - R_b)^2\right]^{1/2}.
\]
The integral over θ' may be expressed in terms of the complete elliptic integrals
\[A_\theta = \frac{4J_0}{c} \int_{R_b - r_0}^{R_b + r_0} r' dr' \int_{-\theta_0(r')}^{\theta_0(r')} \frac{1}{(r - r')^2 + (z - z')^2} \left[(1 + \frac{2}{m} K(-m) - \frac{2}{m} E(-m) \right] \]
(A-20)
where
\[m = \frac{4r'}{(r - r')^2 + (z - z')^2}. \]

In the beam interior m is large. Using the asymptotic expansions for K and E one may show that
\[(1 + \frac{2}{m} K(-m) - \frac{2}{m} E(-m) - \frac{1}{2} m^{-1/2}(\ln m + 4\ln 2 - 4). \]
(A-21)

Using Eq. (A-21) in Eq. (A-20) the resulting integrals are elementary. The result, for the vector potential inside the beam is
\[A_{r0}^\phi = \frac{l}{c} \left[2 \ln \frac{8R_b}{e^2 r_0} + 1 - \rho^2/r_0^2 + \frac{\rho}{R_b} \cos \phi \left[-\ln \frac{8R_b}{r_0} + 3 \right] \right] \]
(A-22)
where \(l = \pi r_b^2 J_0 \), from which it follows that the fields inside the beam, to first order in ρ, are
\[B_{r0} = \frac{2l}{c} \frac{\rho}{r_0^2} \sin \phi \]
(A-23)
\[B_{r0} = \frac{l}{c r_0} \left[\frac{r_0}{R_b} \ln \frac{8R_b}{r_0} - \frac{2 \rho \cos \phi}{r_0} \right] \]
(A-24)

We may summarize all of the foregoing results as follows:

The applied fields are,
\[B_{r0}^\phi = -nB_{z0} \frac{\Delta z + \delta z}{r_0} \]
(A-25a)
\[B_{r0}^\phi = B_{z0} \]
(A-25b)
\[B_{r0}^\phi = B_{z0} \left[1 - n \left(\frac{\Delta r + \delta r}{r_0} \right) \right] \]
(A-25c)
\[E_{r0}^\phi = -\frac{1}{2c} \hat{E}_{z0} (\Delta z + \delta z) \]
(A-25d)
\[E_{r0} = E_{z0} \]
(A-25e)

\[E_z^i = \frac{1}{2c} \frac{d}{dt} B_{z0} (\Delta r + \delta r) \]
\[\text{where } B_{z0}, \text{ } B_{z0}, \text{ and } E_{z0} \text{ are taken to be prescribed functions of time.} \]

The self fields are:

\[B^i_z = -2\pi n_0 e \beta_0 \left(\delta z + \frac{r_0^2}{a^2} \Delta z \right) \]
\[B^i_e = 0 \]
\[B^i_{Er} = 2\pi n_0 e \beta_0 \left(\delta r + \frac{r_0^2}{a^2} \Delta r - \frac{r_0^2}{2a} I_B \right) \]
\[E^i_e = -2\pi n_0 e \left(\delta r + \frac{r_0^2}{a^2} \Delta r + \frac{r_0^2}{2a} I_E \right) \]
\[E^i_{Er} = 0 \]
\[E^i_z = -2\pi n_0 e \left(\delta z + \frac{r_0^2}{a^2} \Delta z \right) \]

where

\[I_B = \begin{cases} \ln \frac{a}{r_e} + 2 & \text{if circulation frequency, } \hat{\omega}, \text{ is constant across the beam} \\ \ln \frac{a}{r_e} + 1 & \text{if current density is constant across the beam} \end{cases} \]
\[I_E = \ln \frac{a}{r_e} \text{ if density is constant across the beam.} \]

For times long compared to the time it takes the magnetic field to diffuse through the chamber wall the result (A-24) shows that one must replace \(a \) in the logarithm in the definition of \(I_B \) by \((8 r_0/e) \approx 2.9 r_0 \). This suggests that fields in an actual device may have to be programmed in time to compensate for this extra change (reduction) in \(B_z \), in order to hold the beam in place.
Appendix B

LINEARIZED EQUATIONS OF MOTION FOR A PARTICLE IN THE MODIFIED BETATRON

In this appendix the equations of motion for a particle in the fields (A-25) and (A-26) are obtained, correct to first order in small quantities.

The complete equations of motion are

\[
\frac{d}{dt}(\gamma \dot{r}) - \gamma r \dot{\theta}^2 = -\frac{e}{m} \left[E_r + \frac{1}{c}(r \dot{r} B_z - \dot{z} B_r) \right]
\]

(B-1)

\[
\frac{1}{r} \frac{d}{dt}(\gamma r^2 \dot{\theta}) = -\frac{e}{m} \left[E_\theta + \frac{1}{c}(\dot{z} B_r - i B_z) \right]
\]

(B-2)

\[
\frac{d}{dt}(\gamma \dot{z}) = -\frac{e}{m} \left[E_z + \frac{1}{c}(i B_r - r \dot{r} B_z) \right].
\]

(B-3)

We consider first the linearization of Eq. (B-2). This equation has an exact first integral, assuming the fields do not depend on \(\theta \); it is the canonical angular momentum

\[
P_\theta \equiv \gamma r \dot{r} \dot{\theta} - \frac{c}{\gamma} A_\theta.
\]

(B-4)

We now write all quantities \(Q \) as \(Q = Q_0 + Q_1 \) where \(Q_1 \ll Q_0 \) and \(Q_0 \) refers to quantities evaluated at the reference orbit \((r, z) = (r_0, 0) \). Defining \(V_\theta = r \dot{\theta} \) it is straightforward to show from Eq. (B-4) that

\[
V_{\theta 1} = \frac{P_{\theta 1}}{m \gamma^2 r_0} - \frac{r_1}{\gamma} \left[\dot{\theta}_0 - \frac{e B_z^{(0)}}{m \gamma \alpha} \right]
\]

(B-5)

where

\[
B_z^{(0)} = B_{z0} - \pi n_0 e \beta_0 \frac{r_0^2}{r_0} l_B
\]

and where we have used \(\gamma_1 = V_0 \gamma_0 V_{\theta 1} / c^2 \). Now, using the expression for \(\dot{\theta}_0 \) in Eq. (7), one obtains
\[V_{\theta_1} = \frac{P_{\theta_1}}{m \gamma_0^2 r_0} + \frac{r_1}{\gamma_0^2 \gamma_0} \frac{\nu}{\alpha^2} \Omega_{\theta_0} l_E \]

where

\[\frac{\nu}{\gamma_0} = \frac{1}{\gamma_0} \left\{ \pi r_0^2 n_0 \frac{e^2}{mc^2} \right\} = \frac{1}{4} \frac{\omega_0^2 r_0^2}{c^2} \]

\[\omega_0^2 = 4\pi n_0 e^2 / m \gamma_0 \]

\[\alpha = \Omega_{\theta_0} r_0 / c. \]

The expression Eq. (B-6) will be needed next in the linearization of the radial equation, (B-1).

Carrying out a straightforward linearization of Eq. (B-1), using the zero order fields from Eqs. (A-25b,c) and Eqs. (A-26c,d) gives

\[\dot{r}_1 = -\frac{e}{m \gamma_0} \left[E_{r_1} + \frac{V_{\theta_0}}{c} B_{r_1} \right] + \Omega_{\theta_0} \dot{z}_1 - \frac{\gamma_0}{\gamma_0} \dot{r}_1 - \delta \dot{r}_1 \\
\quad + V_{\theta_1} \Omega_{\theta_0} \frac{e}{\gamma_0} \left[1 - \frac{\nu}{\gamma_0} \left(\frac{1 + \gamma_0^2}{\alpha^2} l_E + l_B \right) \right] \]

where

\[\Omega_{\theta_0} = eB_{\theta_0} / m \gamma_0 c. \]

Using now Eq. (B-6) and keeping terms only to first order in \(\nu / \gamma_0 \) and using Eqs. (A-25c,d) and Eqs. (A-26c,d) to write

\[\dot{r}_1 = \frac{e}{m \gamma_0} \left[E_{r_1} + \frac{V_{\theta_0}}{c} B_{r_1} \right] = \frac{eB_{\theta_0}}{2m \gamma_0 c} z_1 + \frac{\omega_0^2}{2 \gamma_0^2} \left(\delta r + \frac{r_0^2}{a^2} \Delta r \right) + n_{\theta_0} \Omega_{\theta_0} r_1 \]

we obtain our final result for the radial equation:

\[\dot{r}_1 + \frac{\gamma_0}{\gamma_0} \dot{r}_1 + \Omega_{\theta_0}^2 \left[1 - n - \frac{\nu}{\gamma_0} \left(3 - n \right) \frac{1}{\alpha^2} l_E + (2 - n) l_B \right] \dot{r}_1 \]

\[= \frac{eB_{\theta_0}}{2m \gamma_0 c} z_1 + \Omega_{\theta_0} \dot{z}_1 + n_{\theta_0} \Omega_{\theta_0}^2 \left(\delta r + \frac{r_0^2}{a^2} \Delta r \right) \\
\quad + \Omega_{\theta_0} \frac{P_{\theta_1}}{\gamma_0 m r_0} \left[1 - \frac{\nu}{\gamma_0} \left(\frac{1 + \gamma_0^2}{\alpha^2} l_E + l_B \right) \right] \]

\[\text{(B-9)} \]

where \(n_{\theta_0} \equiv \omega_0^2 / 2 \gamma_0^2 \Omega_{\theta_0}^2 \) is the "self field index."
The analogous linearization of the \(z \) equation (Eq. (B-3)) is completely straightforward, using the fields (A-25a,b,f) and (A-26a,b,f). The result is

\[
\ddot{z}_1 + \frac{\gamma_0}{\gamma_0} \dot{z}_1 + n \Omega_0^2 \left[1 - \frac{\nu}{\gamma_0} \left(\frac{1}{\alpha^2} l_0 + l_g \right) \right] z_1 \\
= -\frac{e \dot{\theta}_0}{2m \gamma_0 c} r_1 - \Omega_0 \dot{r}_1 + n_i \Omega_0^2 \left[\delta r + \frac{r_0^2}{a^2} \Delta r \right].
\]

(B-10)
Appendix C

WKB SOLUTION OF EQUATIONS OF MOTION

The linearized equations of motion are given in the text, Eqs. (11a,b). Below we shall obtain first, an approximate solution to the homogeneous version of Eqs. (11a,b), assuming that all coefficients are slowly varying. We will then give the solution to the full, inhomogeneous equations.

The homogeneous equations are

\[
\begin{align*}
\dot{x} + \omega_1^2 x &= \Omega_{m0} \dot{y} + \frac{1}{2} \dot{\Omega}_{m0} y \\
\dot{y} + \omega_2^2 y &= -\Omega_{m0} \dot{x} - \frac{1}{2} \dot{\Omega}_{m0} x
\end{align*}
\]

(C-1a)
(C-1b)

All coefficients, \(\omega_1^2, \omega_2^2,\) and \(\Omega_{m0}\) will be assumed to vary significantly only over a slow time scale.

To carry out a formal asymptotic expansion then we define

\[\tau = \frac{1}{\lambda}\]

where \(\lambda\) is a large dimensionless parameter. Denoting \(\frac{d}{d\tau}\) by a prime ('), Eqs. (C-1a,b) become

\[
\begin{align*}
x'' + \lambda^2 \omega_1^2 x &= \lambda \Omega_{m0} y' + \frac{\lambda}{2} \dot{\Omega}_{m0} y \\
y'' + \lambda^2 \omega_2^2 y &= -\lambda \Omega_{m0} x' - \frac{\lambda}{2} \dot{\Omega}_{m0} x
\end{align*}
\]

(C-2a)
(C-2b)

Now writing

\[
\begin{align*}
x &= a_1(\tau; \lambda) e^{i \int \omega_1(\tau) d\tau} \\
y &= a_2(\tau; \lambda) e^{i \int \omega_2(\tau) d\tau}
\end{align*}
\]

(C-3a)
(C-3b)

we proceed to express \(a_1\) and \(a_2\) in formal asymptotic series:

\[
\begin{align*}
a_1(\tau; \lambda) &\sim \sum_{n=0}^{\infty} \frac{a_{1n}(\tau)}{\lambda^n} \\
a_2(\tau; \lambda) &\sim \sum_{n=0}^{\infty} \frac{a_{2n}(\tau)}{\lambda^n}
\end{align*}
\]

(C-4a)
(C-4b)
We must now find the a_1, a_2, and ω.

Substituting Eqs. (C-4a,b) in Eqs. (C-2a,b) one finds the leading order (λ^2) result

\begin{align*}
(\omega_1^2 - \omega^2)a_{10} - i\omega\Omega\omega_0 a_{20} &= 0 \\
i\omega\Omega\omega_0 a_{10} + (\omega_2^2 - \omega^2)a_{20} &= 0 \tag{C-5a, b}
\end{align*}

from which it follows that ω must be one of the four quantities:

$$\omega = \pm \left[\frac{\omega_1^2 + \omega_2^2 + \Omega\omega_0 \pm \left(\left[\omega_1^2 + \omega_2^2 + \Omega\omega_0^2\right]^2 - 4\omega_2\omega_0\omega_1\right]^{1/2}}{2} \right]^{1/2}. \tag{C-6}$$

The next order (λ^1) relation may be written, after some manipulation, as

$$\begin{align*}
\left[2\omega - \frac{\omega_1^2 - \omega_2^2}{\omega}\right] a_{10} + \left[\omega' - \frac{1}{2} \frac{\omega_2^2 - \omega_1^2}{\Omega\omega_0}\right] a_{20} \\
\end{align*}

\begin{align*}
= \left[-\omega_1 + \frac{2}{\Omega\omega_0}(\omega_2 - \omega_1)\right] a_{10} + \left[-\frac{1}{2} \omega' + \frac{\omega_2}{\omega} (\omega_2^2 - \omega_1^2)\right] a_{20}. \tag{C-7}
\end{align*}

Using Eq. (C-5a) or Eq. (C-5b) and Eq. (C-7) an equation for just a_{10} (or just a_{20}) may be obtained.

The solutions are

$$\begin{align*}
a_{10} &= A\omega^{-1/2}(\omega_1^2 - \omega^2)^{1/2}(\omega_1^2 + \omega_2^2 + \Omega\omega_0^2 - 2\omega^2)^{-1/2} \tag{C-8a}
\end{align*}

$$\begin{align*}
a_{20} &= A\omega^{-1/2}(\omega_2^2 - \omega_1^2)^{1/2}(\omega_2^2 + \omega_1^2 + \Omega\omega_0^2 - 2\omega^2)^{-1/2} \tag{C-8b}
\end{align*}

where A is an arbitrary complex constant.

Using Eq. (C-8a,b) and the definition of ω we may write the leading order WKB solution to Eqs. (C-1a,b) as

$$\begin{align*}
\begin{bmatrix} x \\ y \end{bmatrix} &\sim \left[\left(\omega_1^2 + \omega_2^2 + \Omega\omega_0\right)^2 - 4\omega_1\omega_2\omega_0\right]^{1/4} \sum_{j=1}^{4} A_j \left(\frac{\omega_1^2 - \omega_j^2}{\omega_j^2 - \omega_1^2}\right)^{1/2} e^{i\int w_{j0}dt} \tag{C-9}
\end{align*}

where the sum extends over the four values of ω in Eq. (C-6) and where the A_j are constants.

This solution is expected to be valid as long as ω_{x}, ω_{y}, and $\Omega\omega_0$ are slowly varying compared to any ω_j, i.e.,

$$\left| \frac{d}{dt} \ln \omega \right| << |\omega_j|, \quad j = 1, 2, 3, 4.$$
where $\tilde{\omega}$ is ω_x, ω_y, or Ω_{00}. The solution is therefore expected to fail when $\omega_j = 0$, that is, near a turning point. From Eq. (C-6) this can happen when

$$\omega_j^2 \omega_j^0 = 0. \quad (C-10)$$

Equation (C-9) is bounded, however, if in addition $\omega_j^2 = \omega_j^0 = 0$. Breakdown of Eq. (C-9) (and a transition to unstable behavior) occurs only if $\omega_j^2 \omega_j^0 = 0$ and $\omega_j^2 = \omega_j^0$.

Once the solution to the homogeneous equations have been found the solution to the inhomogeneous equations follows by the usual variation of parameters or some similar method. Writing four independent solutions to the homogeneous equations as

$$\begin{pmatrix} x^{(j)} \\ y^{(j)} \end{pmatrix} \quad j = 1, 2, 3, 4 \quad (C-11)$$

one finds in a straightforward way that a particular solution to Eqs. (11a,b) in the text is given by

$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \int^t dt' \begin{pmatrix} K_x(t,t') \\ K_y(t,t') \end{pmatrix} F(t') \quad (C-12)$$

where

$$K_x(t,t') = -\frac{1}{W} \varepsilon_{jklm} x^{(j)}(t) x^{(k)}(t') y^{(l)}(t') y^{(m)}(t')$$

$$K_y(t,t') = -\frac{1}{W} \varepsilon_{jklm} y^{(j)}(t) x^{(k)}(t') y^{(l)}(t') y^{(m)}(t')$$

$$W = \varepsilon_{jklm} x^{(j)}(t) x^{(k)}(t') y^{(l)}(t') y^{(m)}(t')$$

and where the summation convention is understood. The Wronskian W is a constant, independent of time; its value is determined once a choice is made for the $x^{(j)}$, $y^{(j)}$.

28
Fig. 1 - Cutaway view of modified betatron geometry
Fig. 2 — Coordinates of beam and particle in modified betatron. Center of beam is at \((r, z) = (r_0 + \Delta r, \Delta z)\). Electron is at \((r, z) = (r_0 + \Delta r + \delta r, \Delta z + \delta z)\).
Fig. 3 - The $\left(\frac{\omega_x}{\Omega_0}\right)^2 - \left(\frac{\omega_y}{\Omega_0}\right)^2$ plane. Shaded regions are stable. Trajectories a and c pass through unstable regions. Only trajectories, such as b, avoid all unstable behavior.
Fig. 4 — Particle trajectory (δz vs. 8r) in the modified betatron during transit of the instability gap. δy varies linearly in time from 7.0 to 16.1 in 2.4 μs. δB = 600 gauss, r0 = 100 cm, δt = 10 cm, r0 = 1 cm. a = 0.33, δx/δy = 8.4 × 10⁻³ at t = 0.
Fig. 5 — Particle trajectory (δz vs. δr) in the modified betatron during transit of the instability gap. All parameters are as in Fig. 4 except $n = 0.51$.
Fig. 6 – Particle trajectory (δz vs. δr) in the modified betatron during transit of the instability gap, including energy mismatch. All parameters are as in Fig. 5 except an energy mismatch of $(P_{e_1} - <P_{e_1}>)/mr_0c = 0.10$ has been introduced.
Fig. A-1 — Geometry for self field calculation
DISTRIBUTION LIST*

Naval Research Laboratory
4555 Overlook Avenue, S.W.
Washington, D.C. 20375

Attn: Code 1000 - CAPT J. A. McMorris
1001 - Dr. A. Berman
4700 - Dr. S. Ossakow (26 copies)
4701 - Dr. L. F. Drummeter
4740 - Dr. V. L. Granatstein (20 copies)
4740 - Dr. K. R. Chu
4704 - Dr. C. W. Roberson
4740 - Dr. M. E. Read
4790 - Dr. F. Sprangle (100 copies)
4790 - Dr. C. M. Tang
4790 - Dr. M. Lampe
4790 - Dr. W. M. Manheimer
66035- Dr. W. W. Zachary
6650 - Dr. L. Cohen
6656 - Dr. N. Seeman
6805 - Dr. S. Y. Ahn
6805 - Dr. A. Ganguly
6805 - Dr. N. R. Vanderplaats
6850 - Dr. L. R. Whicker
6875 - Dr. R. Wagner
2627 - Documents (20 copies)

On Site Contractors:

Code 4740 - Dr. J. M. Baird (B-K Dynamics)
4740 - Dr. L. Barnett (B-K Dynamics)
4740 - Dr. D. "ialetis (SAI)
4740 - Dr. Y. Y. Lau (SAI)
4740 - Dr. J. S. Silverstein (HDL)
4790 - Dr. A. T. Drobot (SAI)
4790 - Dr. J. Vomvoridis (JAYCOR) (50 copies)
4790 - Dr. H. Freund (SAI)
4790 - Dr. D. P. Chernin (BRA)

* Every name listed on distribution gets one copy except for those where extra copies are noted.
Dr. William Happer
560 Riverside Drive
New York City, NY 10027

Dr. Robert J. Hermann
Assistant Secretary of the
Air Force (RD&L)
Room 4E856, The Pentagon
Washington, D.C. 20330

Dr. Rod Hiddleston
KMS Fusion
Ann Arbor, MI 48106

Dr. J. L. Hirshfield (2 copies)
Yale University
Mason Laboratory
400 Temple Street
New Haven, CT 06520

Dr. R. Hofland
Aerospace Corp.
P.O. Box 92957
Los Angeles, CA 90009

Dr. Benjamin Huberman
Associate Director, OSTP
Room 476, Old Executive Office Bldg.
Washington, D.C. 20506

Dr. S. F. Jacobs
Optical Sciences Center
University of Arizona
Tucson, AZ 85721

Dr. Howard Jory (3 copies)
Varian Associates, Bldg. 1
611 Hansen Way
Palo Alto, CA 94303

Mr. Eugene Kopf
Principal Deputy Assistant
Secretary of the Air Force (RD&L)
Room 4E964, The Pentagon
Washington, D.C. 20330

Prof. N. M. Kroll
La Jolla Institutes
P.O. Box 1434
La Jolla, CA 92038

Dr. Tom Kuper
Optical Sciences Center
University of Arizona
Tucson, AZ 85721

Dr. Willis Lamb
Optical Sciences Center
University of Arizona
Tucson, AZ 85721

Mr. Mike Levan
BMDATC-0
ATTN: ATC-0
P.O. Box 1500
Huntsville, AL 35807

Dr. John D. Lawson (2 copies)
Rutherford High Energy Lab
Chilton
Didcot, Oxon OX11 00X
ENGLAND

Mr. Ray Leadabrand
SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025

Mr. Barry Leven
NISC/Code 20
4301 Suitland Road
Washington, D.C. 20390

Dr. Donald M. LeVine (3 copies)
SRI International
1611 N. Kent Street
Arlington, VA 22209

Dr. Anthony T. Lin
University of California
Los Angeles, CA 90024

Mr. Eugene Kopf
Principal Deputy Assistant
Secretary of the Air Force (RD&L)
Room 4E964, The Pentagon
Washington, D.C. 20330

Prof. N. M. Kroll
La Jolla Institutes
P.O. Box 1434
La Jolla, CA 92038

Mr. Eugene Kopf
Principal Deputy Assistant
Secretary of the Air Force (RD&L)
Room 4E964, The Pentagon
Washington, D.C. 20330

Prof. N. M. Kroll
La Jolla Institutes
P.O. Box 1434
La Jolla, CA 92038

Dr. Joseph Mangano
DARPA
1400 Wilson Boulevard
Arlington, VA 22209
Dr. S. A. Mani
W. J. Schafer Associates, Inc.
10 Lakeside Office Park
Wakefield, MA 01880

Dr. Mike Mann
Hughes Aircraft Co.
Laser Systems Div.
Culver City, CA 90230

Dr. T. C. Marshall
Applied Physics Department
Columbia University
New York, NY 10027

Mr. John Meson
DARPA
1400 Wilson Boulevard
Arlington, VA 22209

Dr. Pierre Meystre
Projektgruppe fur Laserforschung
Max Planck Gesellschaft
Garching, Munich GERMANY

Dr. Gerald T. Moore
Optical Sciences Center
University of Arizona
Tucson, AZ 85721

Dr. Phillip Morton
Stanford Linear Accelerator Center
P.O. Box 4349
Stanford, CA 94305

Dr. Jesper Munch
TRW
One Space Park
Redondo Beach, CA 90278

Dr. George Neil
TRW
One Space Park
Redondo Beach, CA 90278

Dr. Kelvin Neil
Lawrence Livermore National Laboratory
Code L-321, P.O. Box 808
Livermore, CA 94550

Dr. Milton L. Noble (2 copies)
General Electric Company
G. E. Electronic Park
Syracuse, NY 13201

Prof. E. Ott (2 copies)
University of Maryland
Dept. of Physics
College Park, Md. 20742

Dr. Richard H. Pantell
Stanford University
Stanford, CA 94305

Dr. Richard M. Patrick
AVCO Everett Research Lab., Inc.
2385 Revere Beach Parkway
Everett, MA 02149

The Honorable William Perry
Under Secretary of Defense (R&E)
Office of the Secretary of Defense
Room 3E1006, The Pentagon
Washington, D.C. 20301

Dr. Alan Pike
DARPA/STO
1400 Wilson Boulevard
Arlington, VA 22209

Dr. Hersch Pilloff
Code 421
Office of Naval Research
Arlington, VA 22217

Dr. Charles Planner
Rutherford High Energy Lab
Chilton
Didcot, Oxon, OX11 0OX
ENGLAND

Dr. Michal Poole
Daresbury Nuclear Physics Lab.
Daresbury, Warrington
Cheshire WA4 4AD
ENGLAND

Dr. Don Prosnitz
Lawrence Livermore National Laboratory
Livermore, CA 94550
Dr. D. A. Reilly
AVCO Everett Research Lab., Inc.
Everett, MA 02149

Dr. James P. Reilly
W. J. Schafer Associates, Inc.
10 Lakeside Office Park
Wakesfield, MA 01880

Dr. A. Renieri
C. N. E. N.
Div. Nuove Attivita
Dentro di Frascati
Frascati, Rome
ITALY

Dr. Daniel N. Rogovin
SAI
P.O. Box 2351
La Jolla, CA 92038

Dr. Michael Rosenbluh
MIT - Magnet Lab.
Cambridge, MA 02139

Dr. Marshall N. Rosenbluth
Institute for Advanced Study
Princeton, NJ 08540

Dr. Eugene Ruane (2 copies)
P.O. Box 1925
Washington, D.C. 20013

Dr. Antonio Sanchez
MIT/Lincoln Laboratory
Room B231
P.O. Box 73
Lexington, MA 02173

Prof. S. P. Schlesinger
Columbia University
Dept. of Electrical Engineering
New York, NY 10027

Dr. Howard Schlossberg
AFOSR
Bolling AFB
Washington, D.C. 20332

Dr. Stanley Schneider
Rotodyne Corporation
26628 Fond Du Lac Road
Palos Verdes Peninsula, CA 90274

Dr. Marlan O. Scully
Optical Sciences Center
University of Arizona
Tucson, AZ 85721

Dr. Robert Sepucha
DARPA/STO
1400 Wilson Boulevard
Arlington, VA 22209

Dr. A. M. Sessler
Lawrence Berkeley Laboratory
University of California
1 Cyclotron Road
Berkeley, CA 94720

Dr. Earl D. Shaw
Bell Labs
600 Mountain Avenue
Murray Hill, NJ 07974

Dr. Chan-Ching Shih
R&D Associates
P.O. Box 9695
Marina del Rey, CA 92091

Dr. Kenneth Smith
Physical Dynamics, Inc.
P.O. Box 556
La Jolla, CA 92038

Mr. Todd Smith
Hansen Labs
Stanford University
Stanford, CA 94305

Dr. Joel A. Snow
Senior Technical Advisor
Office of Energy Research
U.S. Department of Energy, M.S. E084
Washington, D.C. 20585

Mrs. Alma Spring
DARPA/Administration
1400 Wilson Boulevard
Arlington, VA 22209
SRI/MP Reports Area G037 (2 Copies)
333 Ravenswood Avenue
Menlo Park, CA 94025

Dr. Abraham Szoke
Lawrence Livermore National Laboratory
MS L-470, P.O. Box 808
Livermore, CA 94550

Dr. Milan Tekula
AVCO Everett Research Lab., Inc.
2385 Revere Beach Parkway
Everett, MA 02149

Dr. R. Temkin (2 copies)
Plasma Fusion Center
Massachusetts Institute of Technology
Cambridge, MA 02139

Dr. John E. Walsh
Department of Physics
Dartmouth College
Hanover, NH 03755

Dr. Wasneski (2 copies)
Naval Air Systems Command
Department of the Navy
Washington, D.C. 20350

Lt. Col. W. Whitaker
Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209

Ms. Bettie Wilcox
Lawrence Livermore National Laboratory
ATTN: Tech. Info. Dept. L-3
P.O. Box 805
Livermore, CA 94550

Dr. A. Yariv
California Institute of Tech.
Pasadena, CA 91125
DAT

FILM