PANEL OPTIMIZATION WITH INTEGRATED SOFTWARE (POIS)
PANDA--INTERACTIVE PROGRAM FOR PRELIMINARY MINIMUM WEIGHT DESIGN

DAVID BUSHNELL
LOCKHEED MISSILES AND SPACE COMPANY, INC.
3251 HANOVER STREET
PALO ALTO, CALIFORNIA 94304
JULY 1981

TECHNICAL REPORT AFWAL-81-3073, VOLUME I

Approved for public release; distribution unlimited.
NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

NARENDRA S. KHOT
Project Engineer

FREDERICK A. PICCHIONI, Lt Col, USAF
Chief, Analysis & Optimization Branch

FOR THE COMMANDER

RALPH KUSTER, JR., Col, USAF
Chief, Structures & Dynamics Div.

"If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify AFWAL/FIBR, W-PAFB, OH 45433 to help us maintain a current mailing list."

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

AIR FORCE/56780/3 February 1982 — 260
REPORT DOCUMENTATION PAGE

<table>
<thead>
<tr>
<th>1. REPORT NUMBER</th>
<th>2. GOVT ACCESSION NO.</th>
<th>3. PCI NUMBER'S CATALOG NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFWAL-TR-81-3073, Vol. I</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE (and Subtitle)</th>
<th>5. TYPE OF REPORT & PERIOD COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>PANEL OPTIMIZATION WITH INTEGRATED SOFTWARE (POIS) Volume I - PANDA--INTERACTIVE PROGRAM FOR PRELIMINARY MINIMUM WEIGHT DESIGN</td>
<td>Final Report</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. AUTHOR(S)</th>
<th>8. CONTRACT OR GRANT NUMBER(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAVID BUSHNELL</td>
<td>F33615-76-C-3105</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. PERFORMING ORGANIZATION NAME AND ADDRESS</th>
<th>10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lockheed Palo Alto Research Laboratories</td>
<td>61132F 2307 N1 02</td>
</tr>
<tr>
<td>3251 Hanover Street</td>
<td></td>
</tr>
<tr>
<td>Palo Alto, California 94304</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. CONTROLLING OFFICE NAME AND ADDRESS</th>
<th>12. REPORT DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flight Dynamics Laboratory (AFWAL/FIBRA)</td>
<td>July 1981</td>
</tr>
<tr>
<td>Air Force Wright Aeronautical Laboratories</td>
<td></td>
</tr>
<tr>
<td>Wright-Patterson AFB, OH 4543</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. NUMBER OF PAGES</th>
<th>14. MONITORING AGENCY NAME & ADDRESS (IF DIFFERENT FROM CONTROLLING OFFICE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>253</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. SECURITY CLASS. (OF THIS REPORT)</th>
<th>16. DISTRIBUTION STATEMENT (OF THIS REPORT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNCLASSIFIED</td>
<td>APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. DISTRIBUTION STATEMENT (OF ABSTRACT ENTERED IN BLOCK 20, IF DIFFERENT FROM REPORT)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19. KEY WORDS (CONTINUE ON REVERSE SIDE IF NECESSARY AND IDENTIFY BY BLOCK NUMBER)</th>
</tr>
</thead>
<tbody>
<tr>
<td>panel, optimization, weight, stiffened, composite, interactive, elastic-plastic</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>20. ABSTRACT (CONTINUE ON REVERSE SIDE IF NECESSARY AND IDENTIFY BY BLOCK NUMBER)</th>
</tr>
</thead>
<tbody>
<tr>
<td>An analysis and an interactive computer program are described through which min-</td>
</tr>
<tr>
<td>nimum weight designs of composite, stiffened, cylindrical panels can be obtained</td>
</tr>
<tr>
<td>subject to general and local buckling constraints and stress and strain constraints.</td>
</tr>
<tr>
<td>The panels are subjected to arbitrary combinations of in-plane axial, circumferen-</td>
</tr>
<tr>
<td>tial, and shear resultants. Nonlinear material effects are included if the</td>
</tr>
<tr>
<td>material is isotropic or has stiffness in only one direction (as does a discrete</td>
</tr>
<tr>
<td>or a smeared stiffener). Several types of general and local buckling modes are</td>
</tr>
<tr>
<td>included as constraints in the optimization process, including general instability.</td>
</tr>
</tbody>
</table>
panel instability with either stringers or rings smeared out, local skin buckling, local crippling of stiffener segments, and general, panel, and local skin buckling including the effects of stiffener rolling. Certain stiffener rolling modes in which the panel skin does not deform but the cross section of the stiffener does deform are also accounted for. The interactive PANDA system consists of three independently executed modules that share the same data base. In the first module an initial design concept with rough (not necessarily feasible or accurate) dimensions are provided by the user in a conversational mode. In the second module the user decides which of the design parameters of the concept are to be treated by PANDA as decision variables in the optimization phase. In the third module the optimization calculations are carried out. Many examples are provided in which optimum designs obtained by PANDA are compared to those in the literature.
FOREWORD

This report was prepared by Lockheed Missiles and Space Company, Inc., Palo Alto Research Laboratories, 3251 Hanover Street, Palo Alto, California, in partial fulfillment of the requirements under Contract F33615-76-C-3105. The effort was initiated under Project 2307, "Research in Flight Vehicle Structures," Task 2307N102, "Research in the Behavior of Metallic and Composite Components of Air Frame Structures." The project monitor for the contract was Dr. Narendra S. Khot of the Structures and Dynamics Division (AFWAL/FIBRA).

The technical work under the contract was performed during the period June 1976 through October 1980. Review report was submitted in October 1980 and the final report in March 1981.

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>II BRIEF REVIEW OF PREVIOUS WORK ON OPTIMIZATION OF STIFFENED SHELLS AND PANELS UNDER DESTABILIZING LOADS</td>
<td>9</td>
</tr>
<tr>
<td>III FLOW OF CALCULATIONS IN PANDA</td>
<td>14</td>
</tr>
<tr>
<td>IV PREBUCKLING AND BUCKLING ANALYSIS ON WHICH PANDA IS BASED</td>
<td>22</td>
</tr>
<tr>
<td>Prebuckling Analysis</td>
<td>22</td>
</tr>
<tr>
<td>Calculation of Midbay Circumferential Strain</td>
<td>22</td>
</tr>
<tr>
<td>Loads in the Skin and in the Stiffeners</td>
<td>26</td>
</tr>
<tr>
<td>Inclusion of Plasticity</td>
<td>27</td>
</tr>
<tr>
<td>Integrated Constitutive Law</td>
<td>31</td>
</tr>
<tr>
<td>"Smeared" Stiffeners</td>
<td>32</td>
</tr>
<tr>
<td>Instantaneous Moduli for Stability Analysis</td>
<td>34</td>
</tr>
<tr>
<td>General, "Semi-General", and Local Instability of Panel</td>
<td>35</td>
</tr>
<tr>
<td>Governing Equations</td>
<td>35</td>
</tr>
<tr>
<td>Strategy for finding the minimum buckling load with respect to (m, \bar{n}, c,) or (d)</td>
<td>42</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (cont.)

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Buckling (Crippling) of Stiffener Segments</td>
<td>45</td>
</tr>
<tr>
<td>Effective Stiffener Segment Material Properties</td>
<td>45</td>
</tr>
<tr>
<td>Local Buckling of "Internal" Segments</td>
<td>46</td>
</tr>
<tr>
<td>Local Buckling of "End" Segments</td>
<td>48</td>
</tr>
<tr>
<td>Rolling Modes</td>
<td>50</td>
</tr>
<tr>
<td>Rolling with Participation of the Panel Skin</td>
<td>50</td>
</tr>
<tr>
<td>Membrane Energy</td>
<td>51</td>
</tr>
<tr>
<td>Bending and Twisting Energy</td>
<td>53</td>
</tr>
<tr>
<td>Introduction of Displacement Functions</td>
<td>55</td>
</tr>
<tr>
<td>Relation to Panel Skin Deformation</td>
<td>57</td>
</tr>
<tr>
<td>Rolling of Stiffeners without Participation of Panel Skin</td>
<td>59</td>
</tr>
<tr>
<td>Assumptions</td>
<td>60</td>
</tr>
<tr>
<td>Strain Energy</td>
<td>61</td>
</tr>
<tr>
<td>Strain-Displacement Relations for Buckling Analysis</td>
<td>62</td>
</tr>
<tr>
<td>Analysis of the Web</td>
<td>63</td>
</tr>
<tr>
<td>Analysis of the Flange</td>
<td>65</td>
</tr>
<tr>
<td>Lowest Eigenvalue</td>
<td>67</td>
</tr>
<tr>
<td>Axisymmetric Rolling Instability</td>
<td>67</td>
</tr>
<tr>
<td>V Examples of Buckling Predictions from PANDA</td>
<td></td>
</tr>
<tr>
<td>Purpose of this Section</td>
<td>68</td>
</tr>
<tr>
<td>Buckling Loads of Unstiffened Panels</td>
<td>69</td>
</tr>
<tr>
<td>Buckling Loads of Stiffened Shells and Panels</td>
<td>71</td>
</tr>
<tr>
<td>Pure Shear</td>
<td>71</td>
</tr>
<tr>
<td>Axial Compression</td>
<td>72</td>
</tr>
<tr>
<td>Plastic Buckling</td>
<td>73</td>
</tr>
<tr>
<td>Examples of Buckling Including Stiffener Crippling and Rolling</td>
<td>74</td>
</tr>
<tr>
<td>Axially Compressed, Blade Stiffened, Composite Plate</td>
<td>75</td>
</tr>
<tr>
<td>Externally Pressurized Ring-Stiffened Cylindrical Shell</td>
<td>78</td>
</tr>
<tr>
<td>Hydrostatically Compressed Ring-Stiffened Cylindrical Shell with Slender Webs</td>
<td>80</td>
</tr>
<tr>
<td>Another Ring-Stiffened Cylinder under External Pressure</td>
<td>80</td>
</tr>
<tr>
<td>Elastic Buckling of a Ring and Stringer-Stiffened Cylinder</td>
<td>81</td>
</tr>
<tr>
<td>SECTION</td>
<td>PAGE</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>Plastic Buckling for the Same Example</td>
<td>82</td>
</tr>
<tr>
<td>VI EXAMPLES OF OPTIMIZATION ANALYSIS WITH PANDA</td>
<td>86</td>
</tr>
<tr>
<td>Elastic Material</td>
<td>86</td>
</tr>
<tr>
<td>Elastic-Plastic Material</td>
<td>91</td>
</tr>
<tr>
<td>Imperfection Sensitivity</td>
<td>92</td>
</tr>
<tr>
<td>Parameter Study: Optimum Design of Elastic-Plastic, Ring-Stiffened Cylinders under Hydrostatic Compression</td>
<td>93</td>
</tr>
<tr>
<td>PANDA Results</td>
<td>93</td>
</tr>
<tr>
<td>BOSOR5 Models</td>
<td>94</td>
</tr>
<tr>
<td>Comparison of PANDA and BOSOR5 Buckling Pressures</td>
<td>95</td>
</tr>
<tr>
<td>VII CONCLUSIONS</td>
<td>99</td>
</tr>
<tr>
<td>Accuracy with which Buckling Loads are Computed by PANDA</td>
<td>99</td>
</tr>
<tr>
<td>How PANDA Performs on the VAX Computer</td>
<td>101</td>
</tr>
<tr>
<td>Possible Future Enhancements of the Capability of PANDA</td>
<td>101</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>117</td>
</tr>
<tr>
<td>TABLES</td>
<td>153</td>
</tr>
<tr>
<td>FIGURES</td>
<td>196</td>
</tr>
<tr>
<td>APPENDIX A</td>
<td>196</td>
</tr>
</tbody>
</table>
ABSTRACT

An analysis and an interactive computer program are described through which minimum weight designs of composite, stiffened, cylindrical panels can be obtained subject to general and local buckling constraints and stress and strain constraints. The panels are subjected to arbitrary combinations of in-plane axial, circumferential, and shear resultants. Nonlinear material effects are included if the material is isotropic or has stiffness in only one direction (as does a discrete or a smeared stiffener). Several types of general and local buckling modes are included as constraints in the optimization process, including general instability, panel instability with either stringers or rings smeared out, local skin buckling, local crippling of stiffener segments, and general, panel, and local skin buckling including the effects of stiffener rolling. Certain stiffener rolling modes in which the panel skin does not deform but the cross section of the stiffener does deform are also accounted for. The interactive PANDA system consists of three independently executed modules that share the same data base. In the first module an initial design concept with rough (not necessarily feasible or accurate) dimensions are provided by the user in a conversational mode. In the second module the user decides which of the design parameters of the concept are to be treated by PANDA as decision variables in the optimization phase. In the third module the optimization calculations are carried out. Many examples are provided in which optimum designs obtained by PANDA are compared to those in the literature.
NOMENCLATURE

A = stiffener cross section area

Ã = 3 x 3 integrated constitutive matrix governing extensional (membrane) behavior, Eq. (4)

a₀, b₀ = distances between rings, stringers (Fig. 1)

a, b = axial, circumferential, dimensions of panel

bᵢ = width of ith segment of any stiffener (Fig. 4)

Cᵢⱼ; i=1,6; j=1,6 = 6 x 6 integrated constitutive matrix governing extensional and bending behavior, Eqs. (37) and (40)

c = slope of buckling nodal lines for panel that is long in the x-direction [Eqs.(51), Fig. 14a]

d = slope of buckling nodal lines for panel that is long in the y-direction [Eqs.(51), Fig. 14b]

e = strain or eccentricity, depending on context

̅e = effective strain

E, E₀ = Young's modulus

G, G₀ = shear modulus

̅G = reduced shear modulus, Eq. (41)

g = plasticity factor, Eq. (30)

I = stiffener bending moment of inertia

J = stiffener torsional constant (e.g. \(\sum_{i=1}^{N} b_i t_i^3 / 3 \))

̅n, ̅m = halfwaves in axial, circumferential directions

n, m = circumferential, axial wave indices, Eq. (52)

n₁, m₁, n₂, m₂ = wave indices, Eq. (51)

N, M = stress, moment resultants

p = pressure
R = radius of cylindrical panel
s = local coordinate shown in Fig. 18
t = thickness
u^*, v^*, w^* = displacement components referred to stiffener coordinates, Figs. 16, 17
u, v, w = displacement components of panel skin in x, y, z directions, respectively (Fig. 3)
x, y, z = shell surface coordinates, Fig. 2; or coordinates shown in Fig. 18, depending on context
x_i, y_i = coordinates in the plane of the ith stiffener segment (Fig. 4)
x, y, z = coordinates shown in Fig. 16 and Fig. 17
$x_{\text{max}}, y_{\text{max}}$ = defined just after Eq. (49)
α = rotation of flange, Fig. 18
γ = stiffener rolling angle, Fig. 17
λ = eigenvalue or load factor
κ = change in curvature or twist
ν = Poisson's ratio
ρ = density
σ = stress
$\bar{\sigma}$ = effective stress
ω = stiffener rotation components, Figs. 16, 17
ϕ = ratio (local buckling load factor)/(general buckling load factor), or angle from material coordinates of a lamina to the axial coordinate (Fig. 2), depending on context.
Subscripts

eff = "effective"

1,2,11,12,22 = pertain to strain components and moduli with respect to the material coordinate directions, 1 and 2, shown in Fig. 2

b = pertaining to buckling analysis

b = bending energy [Eqs. (85, 88, 92, 94)]

e = eigenvalue parameter

f = flange

i = stiffener segment number

m = membrane energy [Eqs. (81-83, 90, 91, 93)]

pl = material proportional limit

PRE, fixed = prestress not multiplied by eigenvalue

s = secant modulus

skin = pertaining to part of the panel between stiffeners

T = tangent modulus

w = web

\(\bar{x} \) = \(\bar{x} \) - direction (Figs. 16, 17)

x = x - direction (Fig. 2); or along stiffener axis

y = y - direction (Fig. 2)

xy = in-plane shear (Fig. 2), or twist

() , x = differentiation with respect to x; Eq. (5)
Superscripts

eff = "effective"
b = pertaining to buckling analysis
f = flange
. = stiffener segment number
j = stiffener segment number
k = layer index
o = prebuckling condition at design load
r = ring
s = stringer
w = web
LIST OF TABLES

1. Buckling Modes Included in the PANDA Analysis

2. a. Sample PANDA Run Stream: Hydrostatically Compressed, Panelized,
 Two-Layered Cylindrical Shell... Buckling and Optimization

 b. List of User-Provided Responses to Questions Asked in "HELP"
 c. List of User-Provided Responses to Questions Asked in "HELPII"
 Corresponding to a Case in Which a Simple Buckling Analysis Is Desired.
 d. List of User-Provided Responses to Questions Asked in "HELPIII"

3. Buckling of Monocore Cylindrical Panels Under Pure Shear

4. Buckling Predictions with PANDA and STAGSC-1 for Complete Cylindrical
 Shells and Cylindrical Panels Under Pure Shear

5. Comparison of PANDA Buckling Load Predictions with Those of Other Analyses
 for an Axially-Compressed Cylinder with Smeared Rings and Stringers

6. Buckling Load Factors for Axially-Compressed, Blade-Stiffened Composite
 Plate with Length a = 76 cm and N_y^0 = 1570 N/m (Geometry and Material
 Properties Shown in Fig. 23)

7. Buckling Load Factors for Externally-Pressurized, Ring-Stiffened Cylinder
 with Length 100 in., N_x^0 = 0, N_y^0 = 5.218 lb/in. (Geometry Shown in Fig. 26)

8. Buckling Load Factors for Hydrostatically-Compressed, Ring-Stiffened
 Cylinder with Length = 23.2 in., N_x^0 = 10.21, N_y^0 = 20.42 lb/in. (Geometry
 Shown in Fig. 27)

9. Buckling Load Factors for Externally-Pressurized, Ring-Stiffened Cylinder
 with Radius = 100 in., Thickness = 1.0 in., Length = 200 in., N_x^0 = 0,
 N_y^0 = 100 lb/in. (Geometry Shown in Fig. 28)

10. Buckling Load Factors for Axially-Compressed Ring and Stringer-Stiffened
 Cylindrical Shell with N_x^0 = 1.0 lb/in., N_y^0 = 0 (Geometry Shown in Fig. 29)

11. PANDA Predictions of Plastic Buckling of an Axially Compressed Ring and
 Stringer Stiffened Cylindrical Shell (Figs. 9, 30)

12. Comparison of Optimum Designs Obtained from PANDA and from the Analysis
 of Ref. [14] for a Hydrostatically Compressed Ring and Stringer Stiffened
 Cylindrical Shell

13. Comparison of Optimum Designs Obtained from PANDA and from the Analysis
 of Ref. [33] for an Axially Compressed Ring and Stringer Stiffened
 Cylindrical Shell

14. Comparison of Optimum Designs Obtained from PANDA and from the Analysis
 of Ref. [63] for a Ring and Stringer Stiffened Cylindrical Shell Under
 Pure Torsion
15. Comparison of Optimum Designs Obtained from PANDA and from the Analysis of Ref. [61] for a Ring and Stringer-Stiffened Cylindrical Shell Under Combined Axial Compression and Torsion

16. Comparison of Optimum Designs Obtained from PANDA and from the Analysis of Ref. [61] for the Same Case as Described in Table 15, except that Internal Pressure of 14.7 psi is Present.

20. Optimum Designs of Hydrostatically-Compressed, Ring-Stiffened Cylinders Derived by PANDA. Radius to Shell Middle Surface = 44.625 in.; Length = 172 in.; Material Properties are Given in Table 19; T-Shaped Internal Rings

21. Buckling Pressure Factors and Modes for Various Types of Instability Predicted by PANDA

22. Effect on Local Shell Instability of Treatment in PANDA of Shell as if it had Five Layers
LIST OF FIGURES

1. Stiffened cylindrical panel with overall dimensions \((a, b)\), ring spacing \(a_o\), and stringer spacing \(b_o\)

2. Coordinates, loading and wall construction

3. Cylindrical panel between stiffeners: displacement components \(u, v, w\) and coordinates for local skin buckling

4. Stiffener nomenclature and local coordinates \(x, y\)

5. Local buckling of stiffener segments

6. Three types of "rolling" of a stiffener

7. Flow of calculations in PANDA for an optimization analysis

8. The structural analysis module of PANDA. This module is embedded in the executable processor PANCON.

9. Ring and stringer stiffened cylindrical shell with dimensions typical of a large containment vessel for a nuclear reactor. Buckling load factors from PANDA are listed in Tables 10 and 11.

10. Composite cylindrical shell (180 deg.) with dimensions and loading typical of the fuselage of an air transport. Results from PANDA for this case are listed in the appendix.

11. Wall construction and material properties for the stiffened cylindrical shell shown in Fig. 10

12. Flow of calculations for elastic-plastic prebuckling analysis in PANDA

13. Typical convergence of the prebuckling strain in the plastic region. This case corresponds to a hydrostatically compressed, ring stiffened cylindrical shell.

14. Assumed buckling modal patterns with shear and/or unbalanced laminates present [See Eqs. (50, 51)]

15. Buckling loads for axially compressed composite cylindrical shell with an unbalanced laminate \((\theta, 0, -\theta)\): Four regions \(1, 2, 3, 4\) are shown in which minimum critical load multipliers \(\lambda_{cr} (m_{cr}, n_{cr})\) are sought. The numbers in the dashed boxes are buckling loads in thousands of pounds for each \((m, n)\) combination investigated by PANDA.

16. Rolling of stiffener as in Figure 6a
17. In-plane bending of a flange induced by rolling of the stiffener in the mode shown in Figure 6a.

18. Stiffener coordinates and displacement components for rolling analysis of the types shown in Figs 6b and 6c (no participation of the panel skin).

19. Buckling loads of a composite, axially compressed cylindrical shell with an unbalanced laminate (0, 0, -θ). Comparison of results from PANDA, STAGSC-1 [62], and Botton and Tennyson [57].

20. Ring and stringer stiffened cylindrical shell under pure torsion. The dimensions correspond to an optimum design obtained by Simitses and Giri [63] (See Table 4, Case 2).

21. Shallow curved panel under pure in-plane shear. Bottom portion shows bifurcation buckling pattern predicted by STAGSC-1 [62]. (See Table 4, Case 3).

22. Buckling modes predicted by BOSOR4 for axially compressed panels of lengths (a) 40 in., (b) 20 in., (c,d) 10 in. Dimensions of the cross sections were obtained by optimization analyses with PANDA.

23. Axially compressed ring and stringer stiffened cylindrical shell analysed by Block, Card, and Mikulas [65] and by Kicher and Wu [66]. (See Table 5).

24. Axially compressed, elastic-plastic, ring stiffened cylindrical shell. Comparison of critical loads from PANDA and from BOSORS [59].

25. Buckling of axially compressed composite panel with composite stringers. Comparison of results from PANDA and the analyses of Williams and Stein [24]. (See Table 6).

26. General (ring) instability of long, ring stiffened cylindrical shell under uniform external lateral pressure, and local instability (nonsymmetric sidesway or "tripping") of ring. Comparison of results from PANDA and results from BOSOR4 [58]. (See Table 7).

27. Externally pressurized ring stiffened cylindrical shell that fails by axisymmetric sidesway of the deep rings, (a) geometry, (b) results of linear bifurcation analyses with BOSOR4 (solid line) and PANDA (x's). (See Table 8).

28. Local and general buckling of ring stiffened cylinder under uniform lateral external pressure. Solid line is from BOSOR4 predictions; x's are from PANDA. (See Table 9).

29. Finite element model for local buckling under axial compression of a portion of the ring and stringer stiffened cylindrical shell shown in Fig. 9. Linear bifurcation buckling
load factors and an elastic-plastic collapse load were obtained through use of the STAGSC-I program (62). (See Table 10)

30. Elastic-plastic collapse of the axially compressed cylindrical shell shown in Figure 9, as predicted by BOSORS [59] and STAGSC-I [62] (See Table 11)

31. Buckling modes obtained with BOSOR4 corresponding to optimum designs of hydrostatically compressed, ring stiffened cylindrical shells. The configuration (a) was obtained by Pappas and Allentuch [47]. The configuration (d) was obtained by PANDA. Design pressure $p_0 = 898$ psi. (See Table 18)

32. Effective strains midway between adjacent rings at the buckling pressure for a hydrostatically compressed cylindrical shell with internal rectangular stiffeners. Configuration is shown in Fig. 34. Design pressure $p_0 = 4066$ psi. (See Table 19)

33. Hydrostatically compressed, internally ring stiffened cylindrical shell: BOSORS model and predicted buckling modes and pressures corresponding to the analysis of Renzi [44]. (See Table 19)

34. Hydrostatically compressed, internally ring stiffened cylindrical shell: BOSORS model and predicted buckling modes and pressures corresponding to the optimum design determined by PANDA. (See Table 19)

35. Hydrostatically compressed, internally ring stiffened cylindrical shells: Modeling strategy for BOSORS analyses of the minimum weight designs obtained by PANDA for design pressures p_0 ranging from $p_0 = 677$ psi to $p_0 = 4743$ psi. (See Table 20 for dimensions.)

36. Hydrostatically compressed, internally ring stiffened cylindrical shells: BOSORS discretized models corresponding to minimum weight designs obtained by PANDA for design pressures ranging from 677 psi to 4743 psi. (See Table 20)

37. Hydrostatically compressed, internally ring stiffened cylindrical shells: Midbay effective membrane strains at the design pressures for the optimized configurations shown in Figure 36.

38. Hydrostatically compressed, internally ring stiffened cylindrical shells: Comparison of buckling loads obtained from PANDA and from BOSORS. This is a comparison because the critical loads from PANDA are all very near unity, as seen from Table 21.

39. Buckling modes predicted by BOSORS for the optimum design corresponding to $p_0 = 4743$ psi.

40. Hydrostatically compressed, internally ring-stiffened
cylindrical shells optimized by PANDA for a design pressure of 2710 psi. Comparisons of buckling predictions from BOSORS and PANDA: (a) minimum weight design corresponding to a one-layered model in PANDA; (b) minimum weight design corresponding to a 5-layered model in PANDA.

41. Hydrostatically compressed, internally ring-stiffened cylindrical shell optimized by PANDA (5-layered model) for a design pressure of 2710 psi: Comparisons between BOSORS and PANDA of the prebuckling state (a) in the ring; (b) in the skin midway between rings.
SECTION I
INTRODUCTION

Objective

The objective of the development of PANDA has been to create an interactive computer program for engineers which derives minimum weight designs of stiffened cylindrical panels under combined in-plane loads, N_x, N_y, and N_{xy}. The loading of the stiffened panel is assumed in most cases to result in uniform membrane strain components e_x and e_y in both skin and stiffeners and uniform shear strain e_{xy} in the skin. Meridional bending between rings in the prebuckling phase is included for shells without axial stiffeners. Nonlinear material behavior is included in the prebuckling analysis if the material is isotropic or has strength only in one direction (smeared or discrete stiffeners).

Buckling loads are calculated by use of simple assumed displacement functions. For example, general instability of panels with balanced laminates and no shear loading is assumed to occur in the familiar $w(x,y) = C \sin(ny) \sin(mx)$ mode. In the presence of in-plane shear and/or unbalanced laminates, both local and general buckling patterns are assumed to have the form
\[w(x,y) = C \left(\cos[(n+mc)y -(m+nd)x] - \cos[(n-mc)y +(m-nd)x] \right) \]

in which either \(c \) or \(d \) are zero, depending on the geometry and the stiffness of the entire panel or whatever portion of the panel is under consideration.

The skin is cylindrical with radius \(R \) and the stiffeners are composed of assemblages of flat plate segments the lengths of which are large compared to the widths and the widths of which are large compared to the thicknesses. These flat plate segments are oriented either normal or parallel to the plane of the panel skin.

Figure 1 shows an example of the panel geometry. The overall dimensions of the panel are \((a,b)\) and the spacings of the stiffeners are \((a_0, b_0)\).

Material Properties

If the material is orthotropic or anisotropic, buckling is assumed to occur at stress levels for which this material remains elastic. Feasible designs are constrained by maximum stress or strain criteria. Plasticity with arbitrary strain hardening is permitted if the material is isotropic or if it has stiffness in one coordinate direction only, as does the continuum representation of each segment of a smeared stiffener. The cylindrical skin and stiffener segments can be composed of multiple la-
yers or isotropic or orthotropic material, as depicted in Fig. 2. Each layer has a unique angle of orthotropy relative in the case or the panel skin to the direction of the generator (x-direction) and in the case of a stiffener segment to the stiffener axis. In the buckling analysis the segments of the stiffeners are assumed to be monocoque and isotropic or orthotropic, not layered anisotropic. Therefore, equivalent orthotropic properties for stiffener segments are calculated from input data for the stiffener segment laminates provided by the program user.

Types of Buckling

Optimum designs with respect to weight are obtained in the presence of constraints due to local and general buckling, maximum tensile and compressive stress or strain, maximum shear strain, and lower and upper bounds on skin layer thicknesses, stiffener cross section dimensions, and stiffener spacings. Design parameters allowed to vary during the optimization phase include panel skin laminae thickness and winding angles, spacings of stiffeners, and thicknesses and widths of the segments of ring and stringer cross sections.

The buckling formulas are derived from Donnell's equations (Reference [1]) with a posteriori application of a reduction factor \((n_c^2 - 1)/n_c^2\) for panels in which the axial half wavelength of the buckling pattern is longer than the panel radius of curvature, \(R\). The circumferential wave index, \(n_c\), equals \(n = R/b\)
or \(n \pi R/b_o \), with \(n \) being the number of half waves in the circumferential direction over the span \(b \) or \(b_o \), respectively.

The many types of buckling included in the PANDA analysis are summarized in Table 1 and are briefly described next.

Skin Buckling

For the case of balanced laminates and no in-plane shear, local buckling of the skin is assumed to have the form

\[
\omega_{\text{skin}} = C_{\text{skin}} \sin \left(\frac{n_{\text{skin}} \pi y}{b_o} \right) \sin \left(\frac{m_{\text{skin}} \pi x}{a_o} \right)
\]

(1)

in which \(n_{\text{skin}} \) and \(m_{\text{skin}} \) are the numbers of half-waves between stringers with spacing \(b_o \) and rings with spacing \(a_o \), respectively. The coordinates and shell wall displacement components are shown in Fig. 3. Equation (1) implies simple support boundary conditions at stiffener lines of attachment. With shear present and/or unbalanced laminates the skin buckling pattern has the form given in the second paragraph under **Objective**.

General Instability

General instability buckling modes of panels with balanced laminates and no shear also have the form given in Eq. (1) with \(a_o, b_o, n_{\text{skin}}, \) and \(m_{\text{skin}} \) replaced by quantities appropriate to the overall dimensions \((a,b)\) of the panel. PANDA also calcu-
lates values for "semi-general" instability, that is buckling between rings with smeared stringers and buckling between stringers with smeared rings.

Buckling of Stiffeners

Local buckling of the ith stiffener segment implies

\[w_{stiff}^i = C_{stiff}^i \sin \left(\frac{\pi y_i}{b_i} \right) \sin \left(\frac{\pi x_i}{\xi} \right) \]

for each stiffener segment with both long edges supported (called "internal" segments in Fig. 4). As shown in Fig. 4 the quantity \(\bar{x} \) is the coordinate along the stiffener axis, \(\bar{y}_i \) is the coordinate perpendicular to \(\bar{x} \) in the plane of the ith stiffener segment, \(b_i \) is the width of the stiffener segment, and \(\xi \) is the length of the stiffener segment. (\(\xi = a_0 \) for stringers and \(\xi = b_0 \) for rings). For stiffener segments with only one long edge supported, (called "end" segments), the local buckling modal displacement is assumed to be in the form

\[w_{stiff}^i = C_{stiff}^i \bar{y}_i \sin \left(\frac{-\bar{m}_{stiff} \pi x}{\xi} \right) \]

The stiffener segment buckling analysis is carried out with the assumption that each "internal" segment buckles with its own \(\bar{m}_i \). This assumption implies that rotational incompatibility exists at junctions between segments with differing critical values of \(\bar{m}_i \). "End" segments are assumed to buckle at the criti-
Rolling Modes

Additional types of panel and stiffener buckling are considered here. These are called "rolling" modes. The first kind of rolling mode involves both skin and stiffeners and is local or "semi-general", the characteristic half-wave-length being integer fractions of the lengths \((a_0, b_0)\), or \((a, b_0)\) or \((a_0, b)\). In these rolling modes the stiffener cross sections rotate about their lines of attachment to the panel skin as shown in Fig. 6a. The cross sections do not deform in the plane of the paper. They do warp, however. The other types of rolling instability do not involve the skin at all. Only the stiffener web deforms, the rest or the stiffener cross section displacing and rotating as a rigid body, as displayed in Fig. 6b. One of these rolling modes (Fig. 6b) occurs in both rings and stringers and in both curved and flat panels. In this mode the buckling deformations are nonuniform (sinusoidal) along the axis of the stiffener. The other rolling mode (Fig. 6c) occurs only in the cases of internal rings on cylindrical panels under external pressure and external rings on cylindrical panels under internal pressure. In this mode buckling deformations are uniform along the axis of the ring. Stiffener rolling in the more general mode (Fig. 6b) is due to compression along the stiffener and is only weakly dependent on the curvature of this axis. On the other hand, the
local ring buckling depicted in Fig. 6c is axisymmetric and arises because of the circumferential curvature of the stiffener axis and prestress in the stiffener segments. It is interesting to note that axisymmetric rolling can occur even if there are no compressive stresses anywhere in the structure, as is the case for internally pressurized cylindrical shells with external rings.

Optimization

The subroutine CONMIN [2,3] is used in PANDA for finding minimum weight designs. This subroutine, written by Vanderplaats in the early 1970's, is based on a nonlinear constrained search algorithm due to Zoutendijk [4]. Briefly, the analytic technique used in CONMIN is to minimize an objective function (panel weight, for example) until one or more constraints, in this case buckling loads, maximum stress or strain, and upper and lower bounds on decision variables, become active. The minimization process then continues by following the constraint boundaries in decision variable space in a direction such that the value of the objective function continues to decrease. When a point is reached where no further decrease in the objective function is obtained, the process is terminated.

Imperfection Sensitivity

It should be emphasized that PANDA does not account expli-
citly for initial structural imperfections. As the code is now written, the user should design a panel to higher loads than those actually to be seen in service; the deleterious effects of initial imperfections can be accounted for in this way.
This review is concerned with optimization of stiffened shells and panels under destabilizing loads. Optimization techniques per se are not discussed or referenced here. Venkayya [5] has written an excellent survey with an extensive bibliography on this subject.

Most of the work on optimization of stiffened shells and panels under compressive loads has been motivated by the wish to find minimum weight designs of aerospace vehicles. Minimum weight design of ship decks and submarine pressure hulls has also been studied. In recent years computer programs for optimizing aerospace structures have been written for application to laminated wall construction. Design variables include laminae thicknesses and winding angles. Computer programs for optimizing ship structures, especially submarine pressure hulls, have been written to include nonlinear material behavior.

Optimization algorithms have tended to follow either of two strategies: 1. calculation of optimum designs from linear or nonlinear programming techniques created to find minima of an objective function in design space, and 2. calculation of opti-
mum designs from formulas derived from the condition that different types of failures should occur at a given load. (See Venkayya [5] for further details.)

One of the earliest papers on optimum design of stiffened panels is by Catchpole[5a]. Schmit and his colleagues have written several papers on optimization of stiffened plates and cylindrical shells subject to combined in-plane loading [6-10]. Optimization is by various nonlinear programming methods. In an early work, Schmit, Richer, and Morrow [6] found minimum weight designs of rectangular, simply supported waffle plates. Buckling constraint conditions include general instability, local instability between stiffeners, and stiffener instability. Bronowicki, et al [10] optimized a cylindrical shell with internal T-shaped rings subject to uniform external hydrostatic pressure. They found minimum weight designs with maximum separation of the lowest two frequencies and with maximum separation of the lowest two frequencies with primarily axial content. Gross buckling is prevented by specification of a minimum natural frequency. Additional constraints preclude yielding, buckling of panels between rings, and buckling of stiffeners or stiffener segments. Optimization is by use of a sequential unconstrained minimization technique.

Several papers were written by Burns and his colleagues [11-15]. The primary motivation was to produce minimum weight designs of rocket boosters. The structures were optimized
through application of formulas which dictate that local and general instability occur at the same load.

Many articles and computer programs have been written under the sponsorship of NASA or used by NASA personnel [16-26]. The motivation has been to design minimum weight structures and to provide computer programs for such designs for rocket boosters and airplane fuselages and wings.

The latest in the series of NASA programs for optimization of aerospace structures is the PASCO program [26, 27] written by Anderson, Stroud, and others at NASA. This program calculates minimum weight designs of composite stiffened panels. A panel is considered to be built up of an assemblage of flat plate segments, each of which may have laminated wall construction. The buckling analysis is exact within the limitations of Kirchoff-Love theory. Thus, complex buckling modes are included in the optimization process, modes for example in which general and local waviness are combined. The panels must be simply supported at the top and bottom and be stiffened only in the axial direction. The effect of bow-type imperfections are included, both in the stress and local buckling analyses. PASCO is a combination of a structural program VIPASA written by Wittrick and Williams [23] for the local and general buckling of stiffened flat panels and the previously mentioned optimization routine CONMIN written by Vanderplaats [2].
Recent advances in the application of laminated composite materials to aerospace structures has led to many papers on the optimization of stiffened composite panels and wings, among them [28-31].

Several papers on optimization of stiffened cylinders have been written recently by Simitses and his colleagues [32-36]. Their primary motivation has been to produce a computerized capability to design minimum weight fuselages for large aircraft. These structures are subjected to combined axial compression, shear, and internal pressure. In the papers by Simitses, et al, the buckling equations are based on Donnell's shell theory [1]. The Galerkin procedure is used to obtain buckling loads. The series expansion for the buckling modal displacement is valid for simply supported panels. Local buckling of stiffener segments is included, and both rings and stringers may be present. The von Mises yield criterion is used for the maximum stress constraint. Optimization is by a variation of the Simplex method.

Papers have been written on the optimization of structures used in ships [39-47]. While recent developments in capabilities to create minimum weight designs of aerospace structures have emphasized laminated composites, recent developments of capabilities to create minimum weight designs of ships have included nonlinear material behavior [44]. Optimization programs for the minimum weight design of submarine pressure hulls (ring
Stiffened cylinders have been written by Pappas and his co-workers [45-47] and by Renzi [44]. Renzi's program, called DAPS3, essentially incorporates the structural analyses and concepts described in [40-43]. Pappas [47] includes in his optimization program general instability, buckling between rings, and crippling of the rings, which have T-shaped cross sections. The design is constrained by a maximum stress criterion and the material must remain elastic. Pappas performs an elaborate search in buckling modal wavelength space (m,n)-space in order to obtain reliably the minimum buckling load corresponding to general instability.

Under the sponsorship of the Air Force Flight Dynamics Laboratory, Almroth, et al [48] have created a system of computer programs that work together to create optimum designs of stiffened cylindrical panels. The PANDA code, based on simple buckling formulas and restricted to simply supported uniform panels, can be used to obtain an initial design. The parameters of this design are stored on a file which can be read by other programs requiring more computer time than PANDA but not restricted as to boundary conditions and uniformity of thickness, stiffener spacing, loading, and buckling mode shapes.

Other papers on optimization subject to constraints other than buckling and stress include Refs. [49] and [50].
Figures 7 and 8 show the flow of calculations in PANDA. Each of the top two boxes in Figure 7 represents a separate interactive computer program. In the first program (called BEGIN) the user, with a specific concept in mind (e.g. knowing in advance that he wants to find the minimum weight design of a composite cylindrical shell of 7 layers stiffened by T-shaped composite internal rings and I-shaped aluminum external stringers) provides the material properties, loads, and starting design in a "conversational" mode.

In the second program (called DECIDE) the user decides whether he wants to do simply a buckling analysis of the starting design or whether he wants to do an optimization analysis. If he wants to do an optimization analysis, the user is then asked, also in this second program, to identify which of the design parameters are to be allowed to vary during the optimization process, that is which of the design parameters are to be "decision variables" and what are the lower and upper bounds of these decision variables. The user can also specify at this time that certain of the design parameters be "linked" to (to vary in proportion with) certain of the decision variables. For example, in laminated composite wall construction the
thicknesses of layers with plus winding angles are usually taken to be equal to those with minus the same winding angles; the width of Segment 3 of a T-shaped stiffener is equal to that of Segment 2 (Fig. 4a).

When the first two programs have been executed (through commands "RUN BEGIN" and "RUN DECIDE", respectively), the user next executes the main analysis module through the command "RUN PANCON", which performs, with some on-line interaction with the user, the rest of the calculations indicated in Figures 7 and 8.

It is easy to see from Fig. 7 that if there are a large number, NDV, of decision variables (NDV > 6, say) many, many buckling load factors must be computed, especially if the case is complicated so that many different kinds of buckling modes must be considered. For example, in the case displayed in Fig. 9, for which 11 different types of buckling are investigated, as listed in Table 1, there might be as many as 7 decision variables: \(t, a_o, b_o, t^s, b^s, t^r, \) and \(b^r \) (identified in Figure 9). Thus, each execution of the loop, \((I = 1, NDV) \), in Figure 7 requires calculation of \(NDV \times 11 = 77 \) critical buckling load factors. Each of the 77 critical buckling load factors represents the results of minimization of the potential energy with respect to the wave indices \(\bar{m} \) and \(\bar{n} \) and the buckling nodal line slopes \(c \) or \(d \). In order to save computer time in PANDA the buckling modal parameters, \(\bar{m}(i), \bar{n}(i), c(i), \) and \(d(i), i = 1, 2 \ldots 11 \) corresponding to the 11 critical modes for the current
"baseline" design \((X(J), J = 1, NDV)\) are held constant for the slightly perturbed designs \(Y\) investigated in the loop over \(NDV\). These perturbed designs must be evaluated with regard to stress and buckling in order to generate gradients of weight and constraint conditions needed by the optimizer CONMIN [2,3].

Simple Example

The PANDA program is completely interactive, with the user's instructions embedded in the three modules, BEGIN, DECIDE, and PANCON. The user has two choices in the preprocessor BEGIN:

1. The user can choose the long form of the description of the input data, which provides details needed by those who have never before used PANDA or by those who would like to have their memories refreshed; or

2. The user can choose the short form of the description of the input data, which simply calls for the input data by name, without giving additional description as to what the data are.

Table 2a is a list of a runstream generated with use of the short form for a very simple case with an intuitively obvious answer. The table first illustrates how the three modules of PANDA are exercised simply to calculate a buckling load for a
given design (pages 1-6 of Table 2a). This calculation is followed by an optimization analysis (pages 7-12 of Table 2a). The geometry is for an unstiffened cylinder of radius \(R = 100 \) in. and length \(L = 200 \) in., with a wall consisting of two layers, each of a different elastic material, loaded in hydrostatic compression with a design pressure of \(p_0 = 20 \) psi. In the starting design the two layers are of equal thickness and the shell is unnecessarily heavy, that is, the buckling load factor corresponding to the starting design is 3.238 (p. 6 of Table 2a) whereas a load factor of 1.0 would still yield a feasible design.

The material of layer no. 2 (the outer layer) has been deliberately chosen, for the purpose of demonstration, so that its \(E/\rho \) is considerably lower than that of the material of layer no. 1. If the decision variables are the thicknesses of the two layers, if these thicknesses are essentially unbounded, and if the effective stress at buckling is less than the maximum specified for either material, then it is known for this simple problem that the optimum design must correspond to the cylinder being made entirely of the material of layer no. 1, with its thickness derived so that the buckling load multiplier (eigenvalue) is equal to unity.

Starting on page 7 of Table 2a are listed the results of a second execution of DECIDE, this for the purpose of choosing decision variables and upper and lower bounds for the optimization.
phase of the example. The program module PANCON is subsequently executed again. Results from this second execution of PANCON, this time executed in the optimization mode, begin on page 9 of Table 2a. Design iterations are represented on pages 9 and 10 of Table 2a. Each line "PANEL WEIGHT =" corresponds to a trip around the outer loop in Fig. 7. After three sets of five iterations each it appears to the user from successive evaluations of the weight that convergence has been achieved for all practical purposes. The print-out of a summary of design information on page 10 of Table 2a reveals that indeed the outer layer has essentially disappeared and the buckling load factor is very close to unity. Further details of the optimized design can then, at the option of the user, be printed as appears on page 11 of Table 2a.

User's Input Responses Saved on Permanent Files

During executions of BEGIN and DECIDE the user must respond, especially in complex cases, to many requests for input data. It is possible that after he has already spent a considerable amount of time at the terminal he may hit the wrong key, change his mind about some previous input, or be called away from the terminal, or his link with the computer may for some reason be inadvertently destroyed. In order to eliminate the burden of the user's having to repeat the entire interactive sequence, his responses to requests for input are instantaneously saved on permanent files, one file for BEGIN data and another
Examples of these files corresponding to the case in Table 2a are given in Tables 2b-2d. Note that the user can easily investigate cases that represent modifications of his original case by editing these files rather than having to go through the entire interactive sequence repeatedly. Editing the files is easy because each input datum is identified by a short phrase.

It should be emphasized here that during exploration of a given design concept (e.g. cylinder of given materials with two layers and internal T-shaped rings) it is not necessary for the user to execute BEGIN more than once. The user is given the opportunity to modify the design and the loading, as well as to change his mind concerning the choice of decision variables and upper and lower bounds in the program module DECIDE. Note, however, that the user must return to BEGIN if he wishes to change the material properties, the number of layers in the panel skin, or the number or orientation of the segments in either stringers or rings.

Complex Example

The appendix contains output from PANDA corresponding to use of the long form of the description of the input data. This case represents optimization of a composite panel stiffened by both stringers and rings. The stringers are composite. There are two load sets: 1. a combined axial compression and
in-plane shear which are eigenvalue parameters, and 2. an internal pressure \(N_y = 2N_x \) which represents a fixed load (not an eigenvalue parameter). Figures 10 and 11 show the geometry, stacking sequence, and loading on the panel. There are 11 decision variables, including

1. thickness \(t_1 \) of panel skin layer no. 1 (the other layers are linked to layer no. 1);

2. stringer spacing \(b_o \);

3. thickness \(t_{s1} \) of stringer segment no. 1;

4. thickness \(t_{s2} \) of stringer segment no. 2;

5. width (height) \(b_{s1} \) of stringer segment no. 1;

6. width (height) \(b_{s2} \) of stringer segment no. 2;

7. ring spacing \(a_o \);

8. thickness \(t_{r1} \) of ring segment no. 1;

9. thickness \(t_{r2} \) of ring segment no. 2;

10. width (height) \(b_{r1} \) of ring segment no. 1;
11. width (height) b_{r_2} of ring segment no. 2.

One can see from the buckling load factors corresponding to the final design (see p. of the appendix) that three buckling modes are critical: general instability, local skin buckling, and buckling between stringers with smeared rings (a semi-general instability mode). In addition, the mode corresponding to buckling between rings with smeared stringers is close to being critical, exhibiting a margin of only 13 per cent.
Prebuckling Analysis

The prebuckling analysis is based on the assumption that the panel with smeared stiffeners is in a membrane state of strain ε^m. The membrane strain components can be determined from:

$$
\begin{bmatrix}
\varepsilon_x^m \\
\varepsilon_y^m \\
\varepsilon_{xy}^m
\end{bmatrix} =
\begin{bmatrix}
3 \\
A
\end{bmatrix}^{-1}
\begin{bmatrix}
N_x^m \\
N_y^m \\
N_{xy}^m
\end{bmatrix}
$$

(4)

in which N_x^m, N_y^m, N_{xy}^m represent the load combination for which the panel is being designed and A is the 3×3 integrated constitutive matrix for extensional deformation of the panel with smeared stiffeners. If the materials of the skin and stiffeners remain elastic at the load level specified by the designer, then the entire prebuckling analysis consists of:

1. an approximate determination of the circumferential strain midway between rings and circumferential strain at ring centroids for panels stiffened by rings only, and

2. a computation from the known strain field and known material properties of how much of the total load N_0^s, N_0^r is carried by the skin and how much is carried by the stiffeners. (The in-plane shear load N_0^{xy} is carried only by the skin.)

Calculation of Midbay Circumferential Strain: In the case of panels or complete cylindrical shells stiffened by rings and subjected to uniform lateral pressure, the stress in the skin midway between rings can be rather sensitive to the ring cross section area and spacing for
configurations with rather closely spaced rings. Such configurations represent optimum designs of submarine pressure hulls, for example. The buckling pressure corresponding to local instability depends directly on the midbay circumferential stress. When the material behavior is nonlinear, the buckling pressure corresponding to general instability also depends on the state of strain at midbay because the reduced moduli of the skin there naturally act to decrease the coefficients C_{ij} of the integrated constitutive law which appear in the buckling equations.

The differential equation governing the axisymmetric prebuckling behavior of a composite cylindrical shell supported in any way at its ends is derived by Jones and Hennemann [51]:

$$Aw_{xx}^{0} + Bw_{xx}^{0} + Dw^{0} + E = 0$$ \hspace{1cm} (5)

with the coefficients A, B, D, and E given by:

$$A = C_{44} - C_{14}^{2} / C_{11}$$

$$B = -N_{x}^{0} + 2(C_{12}C_{14} - C_{11}C_{15}) / (C_{11}R)$$

$$D = (C_{22} - C_{12}^{2} / C_{11}) / R^{2}$$

$$E = C_{12}N_{x}^{0} / (C_{11}R) - N_{y}^{0} / R$$ \hspace{1cm} (6)

in which the C_{ij} are coefficients of the integrated constitutive law relating reference surface strains and changes in curvature of the panel skin to stress and moment resultants in the panel skin (no smeared stiffeners). The homogeneous form of Eq. (5) can be written as:

$$w_{xxxx}^{0} + 4w_{xx}^{0} + 4T^{2}w^{0} = 0$$ \hspace{1cm} (7)
where:

\[S = \frac{B}{(4A)} \quad T = \frac{(D/A)^{\frac{1}{2}}}{2} \quad (8) \]

In Eqs. (5) and (7), the axial coordinate \(x \) is zero at the mid-length of the cylinder (midbay). The particular solution of Eq. (5) is:

\[w_\alpha^p = \frac{-(C_{12}N^0_x - C_{11}N^0_y)R}{(C_{11}C_{22} - C_{12}^2)} \quad (9) \]

Almroth [52] gives the following expression for the axisymmetric normal displacement of a clamped or a simply-supported uniformly loaded cylindrical shell:

\[w^0 = w_\alpha^p \left[1 + F_1 \sin(a_1 x) \sinh(a_2 x) + F_2 \cos(a_1 x) \cosh(a_2 x) \right] \quad (10) \]

in which:

\[a_1 = (T + S)^{\frac{1}{2}} \quad a_2 = (T - S)^{\frac{1}{2}}. \quad (11) \]

Equation (10) can be applied to the case of a ring stiffened panel. For this configuration Eq. (10) applies to the portion of the panel between adjacent rings. The axial coordinate \(x \) is zero midway between rings and equal to \(\pm \alpha_0 / 2 \) at the rings. Expression (10) satisfies the symmetry condition at \(x = 0 \). The unknown coefficients \(F_1 \) and \(F_2 \) can be obtained from the two conditions:
\[
\frac{d\omega^0}{dx} = 0 \quad \text{at} \quad x = a_o/2 \quad (12)
\]

\[
\frac{2}{a_o} \int_{0}^{(a_o/2)} w^0 \, dx = e^0_R \quad (13)
\]

where \(e^0_y\) is the average circumferential strain [Eq. (4)] calculated from the model in which the stiffeners have been smeared out. The first condition is a symmetry condition and the second condition states that the average radial displacement is equal to that calculated from the smeared ring model [Eq. (4)]. Conditions (12) and (13) lead to:

\[
F_1 = -B_{22}(a_1^2 + a_2^2)L/\Delta
\]

\[
F_2 = B_{21}(a_1^2 + a_2^2)L/\Delta
\]

with:

\[L \equiv a_o/2\]

\[\Delta \equiv B_{11}B_{22} - B_{12}B_{21}\]

\[B_{11} = a_2 \sin(a_1L) \cosh(a_2L) - a_1 \cos(a_1L) \sinh(a_2L)\]

\[B_{12} = a_2 \cos(a_1L) \sinh(a_2L) + a_1 \sin(a_1L) \cosh(a_2L)\]

\[B_{21} = a_2 \sin(a_1L) \cosh(a_2L) + a_1 \cos(a_1L) \sinh(a_2L)\]

\[B_{22} = a_2 \cos(a_1L) \sinh(a_2L) - a_1 \sin(a_1L) \cosh(a_2L)\]

(15)

the prebuckling radial displacements at \(x = 0\) (midway between rings) and at the ring attachment stations are:
\[w^o(x = 0) = \frac{w^o}{p} + F_2(w^o - e^o_R) \]

\[w^o(x = L = a_o/2) = \frac{w^o}{p} + (w^o - e^o_R) \begin{vmatrix} F_1 \sin(a_1 L) \sinh(a_2 L) + F_2 \cos(a_1 L) \cosh(a_2 L) \end{vmatrix} \]

In certain cases it is important to include the effect of prebuckling axial bending midway between rings. This bending contributes to further plastic straining at the outer fiber of a ring-stiffened, externally pressurized cylindrical shell, leading to a reduction in the instantaneous stiffness coefficients governing stability.

The change in axial curvature \(w^o_{xx} \) at \(x = 0 \) is given by:

\[w^o_{xx}(x = 0) = \left(\frac{w^o}{p} - e^o_R \right) \begin{vmatrix} F_1 a_1 a_2 + F_2 (a_2^2 - a_1^2) \end{vmatrix} \]

The circumferential strains midway between rings and at ring attachment stations are:

\[e^o_{yskin}(x = 0) = \frac{w^o(x = 0)}{R} \]

\[e^o_{yskin}(x = a_o/2) = \frac{w^o(x = a_o/2)}{R} \]

Loads in the Skin and in the Stiffeners: The stress resultants along the axis \(x \) of each stiffener segment are calculated from the axial strains in these segments, which are available from Eqs. (4) and (19b). Knowing the strains along the axis of each set of stiffeners and the stress-strain curves of the materials from which these segments are fabricated, one can calculate the stress resultants \(\mathbf{N}^{oi} \) from:
\[N_{oi}^o = \frac{N_{oi}^t}{X} = \frac{E_s^i e_{oi}^i}{X} \] \hspace{1cm} (20)

in which \(E_s^i \) is the secant modulus, \(e_{oi}^i \) is the strain of the stiffener axis, and \(t_{oi}^i \) is the thickness of the \(i \)th stiffener segment.

If local bending of the skin between rings is ignored, the resultants \((N_{xskin}^o, N_{yskin}^o)\) of the skin are given by:

\[N_{xskin}^o = N_x^o - \sum_{i=1}^{N^i} \frac{N_{oi}^i \text{ (stringer)}}{b_o} \] \hspace{1cm} (21)

\[N_{yskin}^o = N_y^o - \sum_{i=1}^{N^i} \frac{N_{oi}^i \text{ (ring)}}{a_o} \] \hspace{1cm} (22)

where \(N^S \) and \(N^R \) are the numbers of stringer segments and ring segments, respectively. If local bending of the skin between rings is accounted for, the circumferential resultant carried by the skin midway between rings is given by:

\[N_{yskin}^o = C_{12} N_{xskin}^o / C_{11} + e_{yskin}^o (x = 0) \left[C_{22} - C_{12}^2 / C_{11} \right] \] \hspace{1cm} (23)

with \(e_{yskin}^o \) being computed from Eq. (19a).

Inclusion of Plasticity: The flow of calculations in the prebuckling phase is displayed in Fig. 12. As can be seen from this flow, the process is iterative. The objectives of the prebuckling computations are:

1. to compute instantaneous values for the moduli \(E_{11}^k, E_{12}^k, E_{22}^k, \) and \(G^k, \ k = 1, 2, \ldots N^L, \) where \(N^L \)

 is the number of layers in the panel skin (these
moduli are used in the calculation of the integrated constitutive law governing stability);

2. to compute instantaneous values for the corresponding moduli of the segments of the rings and stringers;

3. to compute how much load is carried by the skin and how much is carried by the stiffeners.

These goals are summarized in the two boxes in the lower left-hand corner of Fig. 12.

The contents of the boxes on the right-hand-side of Fig. 12 will next be described.

The strain components in the kth lamina in material coordinates are calculated from:

\[
\begin{bmatrix}
{e_1^k} \\
{e_2^k} \\
{e_{12}^k}
\end{bmatrix} = \begin{bmatrix}
c^2 & s^2 & sc \\
sc & c^2 & -sc \\
-2sc & 2sc & (c^2 - s^2)
\end{bmatrix} \begin{bmatrix}
e_x^o - w_{xx}^o \\
e_y^o \\
e_{xy}^o
\end{bmatrix}
\]

(24)

in which:

\[c \equiv \cos \phi \quad s \equiv \sin \phi, \quad (\phi \text{ is shown in Fig. 2}),\]

(25)

z is the positive outward coordinate normal to the shell reference surface, \(w_{xx}^o\) is given by Eq. (18), and \(e_{y Skin}^o\) is given by Eq. (19a). The corresponding stress components are:

\[
\begin{align*}
\sigma_1^k &= E_{11}^k e_1^k + E_{12}^k e_2^k \\
\sigma_2^k &= E_{22}^k e_2^k + E_{21}^k e_1^k \\
\sigma_{12}^k &= G e_{12}^k
\end{align*}
\]

(26)
The moduli E_{11}^k, E_{12}^k, E_{22}^k, and G^k may be reduced from the elastic values because of plastic flow. J_2-deformation theory [53] is used as described next. Hutchinson [53] gives further details.

The effective stress can be calculated from the stress components σ_{11}^k, σ_{22}^k, σ_{12}^k:

$$\sigma^k = \sqrt{\left(\sigma_{11}^k\right)^2 + \left(\sigma_{22}^k\right)^2 - 2\sigma_{12}^k\sigma_{12}^k + 3\left(\sigma_{12}^k\right)^2}$$

(27)

If σ^k is less than the proportional limit stress, σ_{p1}^k, no more calculations are performed for the kth layer in this iteration. If $\sigma^k > \sigma_{p1}^k$, the effective strain e^k is computed from:

$$e^k = 0.4714 \sqrt{\left(e_{11}^k - e_{22}^k\right)^2 + \left(e_{12}^k - e_{33}^k\right)^2 + \left(e_{22}^k - e_{33}^k\right)^2 + 3\left(e_{12}^k\right)^2}$$

(28)

The strain e_3^k normal to the reference surface is calculated from:

$$e_3^k = -(e_{11}^k + e_{22}^k)(\nu + g/3)(1 - \nu + g/3)$$

(29)

in which:

$$g = 1.5(E^k/E_s^k - 1)$$

(30)

where E_s^k is the secant modulus obtained from the previous iteration.

The effective strain e^k is compared with e_I^k, where:

$$e_I^k = e_{11}^k - (1-2\nu)e_{11}^k/(3E^k).$$

(31)
In Eq. (31) \(e_I \) and \(\sigma_I \) are coordinates of the stress-strain curve for the material of the kth layer. These are provided by the user of PANDA. The values of \(e^k_I \) and \(\sigma^k_I \) that lie on the stress-strain curve and produce \(e^k_I \) equal to \(e^k \) from Eq. (28) are used to determine new estimates of the tangent and secant moduli \(E^k_T \) and \(E^k_S \), respectively:

\[
E^k_T = \frac{d\sigma^k_I}{de^k_I}; \quad E^k_S = \frac{\sigma^k_I}{e^k_I}
\]

The new estimate of the effective stress is, of course, \(\sigma^k_I \). In PANDA the stress-strain curve is represented in a piecewise linear fashion, the linear segments connecting coordinates \((e_j, \sigma_j), j = 1, 2, \ldots \) that are supplied by the program user. A smoothing technique is used in the determination of \(\sigma^k_I \) in order to prevent oscillatory behavior in the optimization phase associated with corners between line segments of the stress-strain curve.

New values of the moduli \(E^k_{11}, E^k_{12}, E^k_{22}, \) and \(G^k \) are computed from J_2-deformation theory [53]:

\[
E^k_{11} = \frac{a}{\Delta} \quad E^k_{12} = \frac{b}{\Delta}
\]

\[
E^k_{22} = E^k_{11} \quad G^k = G^k_e \frac{(1 + \nu)}{(1 + \nu + g)}
\]

in which \(G^k_e \) is the elastic shear modulus of the kth layer and

\[
a = \frac{(1 + 2g/3)}{E^k} - \frac{E^k}{E^k}
\]

\[
b = (\nu + g/3)E^k
\]

\[
g = 1.5(E^k/E^k_S - 1)
\]

\[
\Delta = a^2 - b^2
\]
The above calculations are repeated for every layer in the laminate.

The reduced moduli of the stiffener segments are determined in a completely analogous fashion, except that the effective strain [Eq. (28)] is replaced by:

$$\bar{e} = e^0_x$$

(35)

for all stringer segments and:

$$\bar{e} = (R/R_{c.g.})e^0_{yskin}(x = a_o/2)$$

(36)

for all ring segments. The quantity $R_{c.g.}$ is the radius to the ring centroid and $e^0_{yskin}(x = a_o/2)$ is the strain in the skin at the ring attachment point [Eq.(19b)].

Integrated Constitutive Law: The integrated constitutive law for the laminated panel skin, for both the prebuckling analysis and the stability analysis, has the form:

$$
\begin{bmatrix}
N_x \\
N_y \\
N_{xy} \\
M_x \\
M_y \\
M_{xy}
\end{bmatrix} =
\begin{bmatrix}
A_{11} & A_{12} & A_{16} & B_{11} & B_{12} & B_{16} \\
A_{12} & A_{22} & A_{26} & B_{12} & B_{22} & B_{26} \\
A_{16} & A_{26} & A_{66} & B_{16} & B_{26} & B_{66} \\
B_{11} & B_{12} & B_{16} & D_{11} & D_{12} & D_{16} \\
B_{12} & B_{22} & B_{26} & D_{12} & D_{22} & D_{26} \\
B_{16} & B_{26} & B_{66} & D_{16} & D_{26} & D_{66}
\end{bmatrix}
\begin{bmatrix}
e_x \\
e_y \\
e_{xy} \\
x \\
y \\
2\gamma_{xy}
\end{bmatrix} = Ce$$

(37)

in which $N_x, N_y, \ldots M_{xy}$ are the stress and moment resultants and $e_x, e_y, \ldots e_{xy}$ are the reference surface strains, changes in curvature, and twist. The $A_{ij}, B_{ij},$ and D_{ij} are given by Jones [54]:

31
\[A_{ij} = \sum_{k=1}^{N} (Q_{ij})_{k} (z_{k} - z_{k-1}) \]
\[B_{ij} = \frac{1}{2} \sum_{k=1}^{N} (Q_{ij})_{k} (z_{k}^{2} - z_{k-1}^{2}) \]
\[D_{ij} = \frac{1}{2} \sum_{k=1}^{N} (Q_{ij})_{k} (z_{k}^{3} - z_{k-1}^{3}) \]

(38)

In which the \(z_{k} \) are measured from the reference surface. The \(Q_{ij} \) for each lamina are given by Jones as:

\[Q_{11} = E_{11} s^{4} + 2(E_{12} + 2G)s^{2}c^{2} + E_{22}c^{4} \]
\[Q_{12} = (E_{11} + E_{22} + 4G)s^{2}c^{2} + G(s^{4} + c^{4}) \]
\[Q_{22} = E_{11}s^{4} + 2(E_{12} + 2G)s^{2}c^{2} + E_{22}c^{4} \]
\[Q_{16} = (E_{11} - E_{12} - 2G)s^{3}c + (E_{12} - E_{22} + 2G)s^{3}c \]
\[Q_{26} = (E_{11} - E_{12} - 2G)s^{3}c + (E_{12} - E_{22} + 2G)s^{3}c \]
\[Q_{66} = (E_{11} + E_{22} - 2E_{12} - 2G)s^{2}c^{2} + G(s^{4} + c^{4}) \]

(39)

For the prebuckling phase, \(E_{11}, E_{12}, E_{22}, \) and \(G \) are the reduced moduli defined in Eqs. (33), \(c \) and \(s \) are defined in Eq. (25), and \(\phi \) is the angle from the axial direction to the fiber axis of the lamina (direction in which the modulus \(E_{1} \) is measured: Fig. 2).

"Smeared" Stiffeners: For the calculation of the average prebuckling strain components from Eq. (4), the stiffeners must be treated as part of the skin, that is, "smeared out" over the panel surface. This
"smearing" is accomplished via a theory used by Baruch and Singer [55] as described in the text by Brush and Almroth [56]. To certain of the constitutive coefficients A_{ij}, B_{ij}, and D_{ij} in Eq. (37) are added terms that reflect the extensional, bending, and torsional rigidities of the rings and stringers. For example, with external rings and external stringers (positive eccentricities), all of the segments which are of the same material, new constitutive coefficients C_{ij} are obtained as follows:

\[
\begin{align*}
C_{11} &= A_{11} + \frac{E_{s} A_{s}}{b} \\
C_{22} &= A_{22} + \frac{E_{r} r_{r}}{a} \\
C_{14} &= B_{11} + \frac{E_{s} A_{s}}{b} \\
C_{25} &= B_{22} + \frac{E_{r} r_{r}}{a} \\
C_{44} &= D_{11} + \frac{E_{s} r_{s}}{b} \\
C_{55} &= D_{22} + \frac{E_{r} r_{r}}{a} \\
C_{66} &= D_{66} + \frac{(G_{s} j_{s} + \sigma_{r} r_{r})}{4}
\end{align*}
\]

in which superscripts s and r denote "stringer" and "ring", respectively; subscript s denotes "secant modulus"; \bar{G} is the effective elastic-plastic shear modulus:

\[
\bar{G} = G_{e} \frac{(1 + \nu)}{(1 + \nu + g)}
\]
with \(g \) given by Eq. (34c), and \(J \) is the torsion constant for the stiffener cross section. The quantities \(e^s \) and \(e^r \) are the distances from the skin reference surface to the centroidal axes of the stringers and rings, respectively, positive when these axes lie on the outside of the shell.

The new prebuckling \(C_{ij} \) in Eq. (40) are used to calculate new average strain components from Eq. (4), as indicated in Fig. 12. Eqs. (5-41) are solved again. Iterations continue until the prebuckling strain components \(e^x, e^y, e^z \) change no more than 0.01% from their values as of the previous iteration. Figure 13 shows the results of several prebuckling iterations applied to a ring-stiffened submarine hull subject to uniform external hydrostatic compression. Quadratic extrapolation of the strain components is used every four iterations.

Instantaneous Moduli for Stability Analysis: Once convergence of the prebuckling strain components has been achieved, the instantaneous moduli (tangent moduli) governing stability are calculated. The instantaneous moduli for the \(k \)th layer of the panel skin can be calculated with use of \(J \)-deformation theory [53]:

\[
\begin{align*}
E_{11b}^k &= a/\Delta \\
E_{12b}^k &= b/\Delta \\
E_{22b}^k &= c/\Delta \\
G_b^k &= E_e^k (1+\nu)/\left|1 + \nu + g + 2g'(s_k)^2\right| \\
\end{align*}
\]

in which:

\[
\begin{align*}
a &= (1 + 2g/3 + g's_2^2)/E_k \\
b &= (\nu + g/3 - g's_1s_2)/E_k \\
c &= (1 + 2g/3 + g's_1^2)/E_k \\
\Delta &= ac - b^2 \\
\end{align*}
\]
with \(g \) given by Eq. (34c),
\[
g' = 2.25E_k^k(1/E_T^k - 1/E_S^k)^2
\]
and the stress deviators \(s_1 \) and \(s_2 \) given by:
\[
s_1 = \frac{2c_k^k - c_2^k}{3} \quad \quad s_2 = \frac{2c_2^k - c_1^k}{3}.
\]
Analogous formulas are used for the instantaneous moduli of the stiffener segments. The instantaneous moduli given in Eq. (42) are used in Eqs. (39), which through Eqs. (38), yield new coefficients \(A_{ij}^b, B_{ij}^b, \) and \(D_{ij}^b \) in Eq. (37), that apply during the buckling phase of the analysis. Superscript \(b \) denotes "value during buckling modal deformation".

For the calculation of general instability and "semi-general" instability, at least one set of stiffeners must be smeared out over whatever domain within the panel \([(a,b), (a_0,b), (a,b)]\) is being considered during the current buckling analysis. Formulas for the instantaneous stiffness coefficients \(C_{ij}^b \) are similar to those given for \(C_{ij} \) in Eq. (40), with the secant moduli \(E_s, E_r \) for the stringers and rings being replaced by the tangent moduli \(E_s^T, E_r^T \); and the \(A_{ij}, B_{ij}, D_{ij} \) being replaced by \(A_{ij}^b, B_{ij}^b, D_{ij}^b \).

General, "Semi-General," and Local Instability of Panel

Governing Equations: For layered and stiffened shells with membrane-bending coupling, Eqs. (37), as modified in accordance with Eqs. (40,42), may be written in the form:
\[
\begin{pmatrix}
N^b \\
M^b
\end{pmatrix} =
\begin{bmatrix}
A & B \\
B & D
\end{bmatrix}
\begin{pmatrix}
e^b \\
k^b
\end{pmatrix} =
C
\begin{pmatrix}
e^b \\
k^b
\end{pmatrix}
\]
where superscript \(b \) denotes "value due to buckling modal deformation".

35
A, B, and D are 3 x 3 symmetric full matrices containing the instantaneous stiffness coefficients just derived (superscript b dropped for convenience):

\[
\begin{bmatrix}
N^b; M^b \\
e^b; v^b
\end{bmatrix} =
\begin{bmatrix}
N_x^b, N_y^b, N_{xy}^b; N_x^b, N_y^b, N_{xy}^b \\
e_x^b, e_y^b, e_{xy}^b; e_x^b, e_y^b, e_{xy}^b
\end{bmatrix}
\]

(47)

The strain energy \(U \) and work \(W \) done by the prebuckling in-plane loads \(N_x^C, N_y^C, N_{xy}^C \) during the buckling process are given by:

\[
U = \frac{1}{2} \int_0^{X_{max}} \int_0^{Y_{max}} e^b \mathbf{C} e^b \, dx \, dy
\]

(48)

\[
W = \frac{1}{2} \int_0^{X_{max}} \int_0^{Y_{max}} \left(N_x^C w_x^b + N_y^C w_y^b + 2N_{xy}^C w_x^b w_y^b \right) \, dx \, dy
\]

(49)

in which the upper limits of integration \(X_{max} \) and \(Y_{max} \) depend on what kind of instability is being investigated, general, "semi-general," or local, as follows:

<table>
<thead>
<tr>
<th>Type of Instability</th>
<th>(X_{max})</th>
<th>(Y_{max})</th>
</tr>
</thead>
<tbody>
<tr>
<td>general</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>between rings, smeared stringers</td>
<td>(a_0)</td>
<td>b</td>
</tr>
<tr>
<td>between stringers, smeared rings</td>
<td>a</td>
<td>(b_0)</td>
</tr>
<tr>
<td>local</td>
<td>(a_0)</td>
<td>(b_0)</td>
</tr>
</tbody>
</table>
In the domains \((x, y)\) bounded by \((a, b)\) or \((a, b)\) or \((a, b)\) or \((a, b)\),
the buckling modal displacement components \(u^b\), \(v^b\), \(w^b\) are assumed to have
the general form:

\[
\begin{align*}
 u^b &= A(n_2^2m_1\sin(n_1 y-m_1x) + n_1^2m_2\sin(n_2 y+m_2x)) \\
 v^b &= B(n_2\sin(n_1 y-m_1x) - n_1\sin(n_2 y+m_2x)) \\
 w^b &= C(\cos(n_1 y-m_1x) - \cos(n_2 y+m_2x))
\end{align*}
\]

in which:

\[
 \begin{align*}
 n_1 &= n + mc \\
 m_1 &= m + nd \\
 n_2 &= n - mc \\
 m_2 &= m - nd
 \end{align*}
\]

The displacement functions (50) were chosen to permit nearly
inextensional reference surface buckling strain components, \(e_x^b\), \(e_y^b\), and
\(e_{xy}^b\), and to allow reasonably accurate determination of buckling loads in
the presence of shear and unbalanced laminates without the need for series
expansions. The wave indices \(n\) and \(m\) are:

\[
 n \equiv \frac{n}{x_{\text{max}}} \\
 m \equiv \frac{m}{x_{\text{max}}}
\]

in which the quantities \(\bar{m}\) and \(\bar{n}\) are the numbers of half-waves over the
arc lengths \(x_{\text{max}}\) and \(y_{\text{max}}\) respectively. The reference surface buckling
strains and changes in curvature from Donnell's theory \([1]\) are given by:

\[
 \begin{align*}
 e_x^b &= u_x^b \\
 e_y^b &= v_y^b + w^bR \\
 e_{xy}^b &= u_y^b + v_x^b \\
 \xi_x^b &= -w_{xx}^b \\
 \xi_y^b &= -w_{yy}^b \\
 \xi_{xy}^b &= -w_{xy}^b
 \end{align*}
\]

where \((\)_x\) and \((\)_y\) indicate differentiation.
Insertion of Eqs. (50) into Eqs. (53) and Eqs. (48, 49) leads to an expression for the total potential energy, $U-W$, of the form:

$$U - W = \begin{bmatrix} A, B, C \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{bmatrix} \begin{bmatrix} A \\ B \\ C \end{bmatrix}$$

(54)

in which:

$$a_{11} = C_{11}(n_2^4 m_1^4 + n_1^4 m_2^4) + C_{33}(n_2^4 n_1^2 m_1^2 + n_1^4 n_2^2 m_2^2)$$

$$+ 2C_{13}(-n_2^4 m_1^3 n_1^1 + n_1^4 m_2^3 n_2^1)$$

$$a_{12} = -(C_{12} + C_{33})(n_2^3 n_1^2 m_1^2 + n_1^3 n_2^2 m_2^2) + C_{13}(n_2^3 n_1^1 m_1^1 - n_1^3 n_2^1 m_2^1)$$

$$+ C_{23}(n_2^3 n_1^1 m_1^1 - n_1^3 n_2^2 m_2^2)$$

$$a_{22} = 2C_{22} n_1^2 n_2^2 + C_{33}(n_2^2 m_1^2 + n_1^2 m_2^2) + 2C_{23}(-n_1^2 n_2^2 m_1^1 + n_1^2 n_2^2 m_2^1)$$

$$a_{13} = -C_{12}(n_2^2 m_1^2 + n_1^2 m_2^2) / R - C_{14}(n_2^2 m_1^4 + n_1^2 m_2^4)$$

$$- (C_{15} + 2C_{36})n_1^2 n_2^2 (m_1^1 + m_2^2) + (2C_{16} + C_{34})(n_2^2 n_1^4 - n_1^2 n_2^4)$$

$$+ C_{23}(n_1^2 n_2^2 m_1^1 - n_1^2 n_2^2 m_2^1) / R + C_{35}(n_2^2 n_1^4 - n_1^2 n_2^4)$$
\[a_{23} = n_1 p_2 \left[2C_{22}/R + (C_{24} + 2C_{36}) (m_1^2 + m_2^2) + C_{25}(n_1^2 + n_2^2) \right] \\
+ \frac{(2C_{26} + C_{35}) (-n_1^2 n_2 m_1 + n_2^2 n_1 m_2) + C_{23}(-n_2 m_1 + n_1 m_2)/R}{C_{34}(-n_2 m_1^3 + n_1 m_2^3)} \]

\[a_{33} = 2C_{22}/R^2 + 2C_{24}(m_1^2 + m_2^2)/R + 2C_{25}(n_1^2 + n_2^2)/R \]

\[+ C_{44}(m_1^4 + m_2^4) + C_{55}(n_1^4 + n_2^4) + (2C_{45} + 4C_{66})(n_1^2 m_1^2 + m_2^2 n_2^2) \]

\[+ N_{\text{XPRE}}(m_1^2 + m_2^2) + N_{\text{YPRE}}(n_1^2 + n_2^2) + 2N_{\text{XYPRE}}(n_2 m_2 = n_1 m_1) \]

\[+ 4C_{26}(-n_1 m_1 + n_2 m_2)/R + 4C_{46}(-n_1 m_1^3 + n_2 m_2^3) + 4C_{56}(-n_1^3 m_1 + n_2^3 m_2) \]

In Eqs. (55), the \(C_{ij} \) are coefficients of the integrated constitutive law \(C \) relating buckling modal stress and moment resultants to buckling modal reference surface strains and changes in curvature [Eqs. (37,40,46)]. \(N_{\text{XPRE}}, N_{\text{YPRE}}, \) and \(N_{\text{XYPRE}} \) are in-plane loads that are not multiplied by the load factor (eigenvalue) \(\lambda \), but represent a fixed prestressed state.

The total prebuckling in-plane load components, \(N_x^0, N_y^0, N_{xy}^0 \), which appear in Eq. (49) are given by:

\[N_x^0 = N_{\text{XPRE}} + \lambda N_{xe} \]
\[N_y^0 = N_{\text{YPRE}} + \lambda N_{ye} \]
\[N_{xy}^0 = N_{\text{XYPRE}} + \lambda N_{xye} \]
in which \(\lambda \) is a load factor to be calculated in the buckling analysis and subscript "e" denotes "eigenvalue parameter". One finds the eigenvalue \(\lambda \) by setting the determinant of the \(a \)-matrix on the right-hand-side of Eq. (54) equal to zero. The resulting expression for \(\lambda \) is:

\[
\lambda = a_{33} + \frac{\left[a_{23}(a_{12}^2a_{13} - a_{11}a_{23}) + a_{13}(a_{12}a_{23} - a_{13}a_{22}) \right]}{a_{11}a_{22} - a_{12}^2} \left(a_{11}a_{22} - a_{12}^2 \right)
\]

\[-N_{xe}(m_1^2 + m_2^2) - N_{ye}(n_1^2 + n_2^2) - 2N_{xve}(m_2n_1 - m_1n_2) \] (57)

The constraint imposed on the design during the optimization process is that \(\lambda \) should be greater than unity. Equations (46-57) apply to any kind of shell buckling: general, "semi-general", or local. The load factors \(\lambda \) corresponding to the various types of instability are calculated with use of appropriate \(C_{ij} \), \(x_{\text{max}} \), and \(y_{\text{max}} \) pertaining to whatever portion of the structure is being investigated. For general instability both rings and stringers are smeared out; for "semi-general" buckling, either rings or stringers are smeared out; and, for local skin buckling, neither set of stiffeners is smeared out. All buckling load multipliers \(\lambda \) are calculated with the assumption that the boundaries of the portion of the structure under investigation are simply supported. Note that the simple-support condition is violated if either \(c \) or \(d \) in Eqs. (51) are not equal to zero.

The expression for \(\lambda \) contains unknown quantities \(m, n, c, \) and \(d \). When in-plane shear \(N_{xy}^0 \) is present or when any of the terms \(A_{16}, B_{16}, D_{16}, \)
i ≠ 6 [see Eq. (37)] is non-zero, the minimum value of λ for fixed \(m \) and \(n \) with respect to the slope, \(c \) or \(d \), of the buckling nodal lines is found. In the calculation of this minimum it is always assumed that either \(c \) or \(d \) is zero. Figure 14 shows the model. For each kind of buckling: general, semi-general, or local, a test is made to see in which coordinate direction the panel is "long". The test is based on the quantity:

\[
L = \left(\frac{x_{\text{max}}}{y_{\text{max}}} \right)^{C_{55}/C_{44}} \left(\frac{x_{\text{max}}}{y_{\text{max}}} \right)^{1/2} \tag{58}
\]

If the panel is shallow \((R/Y_{\text{max}} > 1.0)\) and if \(L \geq 1.0 \), the panel is effectively "long" in the \(x \)-direction and the model shown in Fig.1' (a) is used. If the panel is not shallow \((R/Y_{\text{max}} < 1.0)\) or if \(L < 1 \), the opposite is true and the model shown in Fig.1' (b) is used. In this way, the boundary conditions are satisfied along the edges that span the least number of buckling modal half-waves while the correct solution is obtained for buckling of a long cylinder under pure torsion. The boundaries along which the simple support conditions are violated span the largest number of half-waves and hence the conditions there least affect the critical load. The utility of the approximate expressions (50) is thereby maximized. Such a strategy is advantageous because the buckling loads must be calculated very often in the optimization analysis. Since the optimum design is being obtained interactively, it is necessary to avoid discouraging or boring the program user by making him wait a long time at the terminal while elaborate buckling calculations proceed for each new trial design.
To increase the efficiency of the subroutine that calculates buckling loads, the terms in Eqs. (55) are arranged so that those which are often zero (e.g., the terms underlined in Eqs. (55)) are not calculated if it is known in advance that they are zero.

The eigenvalue is modified by a factor "DONNEL" = \(\frac{n_c^2 - 1}{n_c^2} \) under certain conditions for which the Donnell theory [Eqs. (49, 53)] yields inaccurate results, such as buckling of a complete cylindrical shell under uniform external pressure for which \(n_{cr} \) is less than 4 or 5 half-waves over 180° of the circumference. The factor "DONNEL" is not applied if \(n_c = 1 \) or if the axial half-wavelength of the buckling pattern is less than the radius \(R \) of the cylinder.

Strategy for finding the minimum buckling load with respect to \(\bar{m}, \bar{n}, c, \) or \(d \): For each wave index combination, \(\bar{m} \) and \(\bar{n} \), the minimum \(\lambda \) with change in the buckling nodal line slope \(c \) or \(d \) is found (only in cases for which shear loading is present or any \(A_{16}, B_{16}, \) or \(D_{16} \neq 0; \ i \neq 6 \)) by variation of \(c \) or \(d \) in equal increments or decrements of 0.01 if its absolute value is less than 0.1 and by a factor of 1.2 if its absolute value is greater than 0.1. The buckling nodal line slopes are shown in Fig. 14.

The minimum \(\lambda \) with respect to the wave indices \(\bar{m} \) and \(\bar{n} \) is found with due attention to the fact that for a given geometry and loading this minimum may be non-unique, as pointed out by Burns [14] and by Pappas and Allentuch [47]. Four regions in \((\bar{m}, \bar{n}) \) space are searched for minima in the function \(\lambda(\bar{m}, \bar{n}) \): low \(\bar{m} \), low \(\bar{n} \); low \(\bar{m} \), high \(\bar{n} \); high \(\bar{m} \), low \(\bar{n} \); and high \(\bar{m} \), high \(\bar{n} \). Figure 15 shows the results of such a search for an axially compressed composite unstiffened cylindrical shell, the dimensions and properties of which are fromBooton and Tennyson's
For low $\overline{m} (m = 1)$, the search begins at:

$$\overline{n}_{\text{start}_1} = (y_{\text{max}}/x_{\text{max}}) (C_{44}/C_{55})^{1/2} \quad \text{or} \quad \overline{n}_{\text{start}_1} = 1 \quad (59)$$

whichever is larger. With $\overline{m} = 1$, a minimum $\lambda(1, \overline{n})$ is sought. The region in $(\overline{n}, \overline{m})$ space surrounding this minimum is then explored by variation of both \overline{m} and \overline{n}. When a local minimum $\lambda(\overline{m}_{L1}, \overline{n}_{L1})$ has been found, \overline{m} is reset to unity and a new minimum $\lambda(1, \overline{n})$ is sought in whichever region was not covered by the initial search that began at $\overline{n}_{\text{start}}$ given by Eq. (59). If the minimum \overline{n} covered in the search for $\lambda(\overline{m}_{L1}, \overline{n}_{L1})$ is greater than or equal to 3, the low-\overline{n} range is next covered, starting at $\overline{n} = 1$. If the low-\overline{n} range was covered in the search for $\lambda(\overline{m}_{L1}, \overline{n}_{L1})$, the high-$\overline{n}$ range is next covered, starting at:

$$\overline{n}_{\text{start}_2} = y_{\text{max}}/(0.2R) \quad (60)$$

As before, a minimum $\lambda_2(1, \overline{n})$ is sought, after which the region in $(\overline{m}, \overline{n})$ space about this minimum is explored as before in order to find $\lambda_2(\overline{m}_{L2}, \overline{n}_{L2})$, in which subscript L again denotes "local minimum".

For high \overline{m}, low \overline{n}, the search for $\lambda_3(\overline{m}_{L3}, \overline{n}_{L3})$ begins at $\overline{n} = 1$ and \overline{m} equal to the larger of the following:

$$\overline{m}_{\text{start}} = x_{\text{max}}/ \left[n (R^2 C_{44}/C_{22})^{1/2} \right] \quad (61)$$

or:

$$\overline{m} = (x_{\text{max}}/y_{\text{max}}) (C_{55}/C_{44})^{1/2} \quad (62)$$
Equation (61) yields approximately the number of axial waves in a cylinder of length \(x_{\text{max}}\) which buckles axisymmetrically and Eq. (62) yields approximately the number of axial waves in an axially compressed flat plate of aspect ratio \(x_{\text{max}}/y_{\text{max}}\). During the search process \(n\) is increased monotonically. For each \(n\) a minimum \(\lambda_3(m, n)\) is found, eventually leading to \(\lambda_3(m_{L3}, n_{L3})\). The final region, high \(m\), high \(n\), is searched for a local minimum \(\lambda_4(m_{L4}, n_{L4})\) starting with:

\[
\begin{align*}
\bar{m}_{\text{start}2} &= m_{L3} \\
\bar{n}_{\text{start}3} &= y_{\text{max}}/(0.4R)
\end{align*}
\] (63)

In Figure 15, the four regions searched are outlined in dashed boxes. It turns out that in this case each of the four regions contains a local minimum load multiplier \(\lambda\). PANDA selects the lowest of these minima, as the critical load multiplier. In this case, \(\lambda_{\text{cr}} = \lambda_2(m_{L2}, n_{L2}) = \lambda_2(1, 9) = 7.33\). The dotted curve in Fig. 15 represents constant values of the quantity:

\[
\left| \frac{(m_{L}/x_{\text{max}})^2 + n^2}{(m_{L}/x_{\text{max}})^2} \right| 2 / (m_{L}/x_{\text{max}})^2
\] (64)

which appears in Eqs. (5.50) and (5.51) of Brush and Almroth \[56\]. In the context of Donnell's theory, minimization of the axial buckling load of an isotropic monocoque cylindrical shell with respect to this quantity yields the formula:

\[
\frac{P_{\text{cr}}}{2\pi R} = \frac{Et^2/R}{3(1 - \nu^2)^{1/2}}
\] (65)
in which \(P_{cr} \) is the total critical axial load on the cylinder.

If the quantity (64) is set equal to its value corresponding to the minimum \(\lambda(\bar{m}, \bar{n}) \) along the \(\bar{m} \)-axis in Fig. 15 (\(\bar{m} = 9, \bar{n} = 0 \), value of Quantity (64) = 400) then the dashed curve in Fig. 15 is obtained for the various \((\bar{m}, \bar{n}) \) combinations that yield this same value, 400. It is seen that the dashed curve passes close to all of the minima found by PANDA in \((n, m) \) space.

In the optimization analysis it is necessary not only to find the various buckling loads (local, semi-general, general) at a given design point, but to determine how these loads vary with a small change in each decision variable from this design point. In PANDA the small change is equal to 5.0 percent of the current value of the decision variable. Much computer time is saved by use of whatever values of \(m, n, c, \) and \(d \) exist at the design point for calculation of the eigenvalue \(\lambda \) at these neighboring points also. This strategy is indicated in Fig. 7.

Local Buckling (Crippling) of Stiffener Segments

There are two types of stiffeners, those along cylinder generators called stringers and those along circumferences called rings (Fig. 1). Each type of stiffener is assumed to consist of an assemblage of rectangular pieces of width \(b \) and thickness \(t \). The rectangular pieces of each stiffener type are divided into two classes: those that are "internal" or "interior" and those that are "ends". Figure 4 shows examples. "Internal" stiffener segments are those which have both edges connected to other stiffener segments or the panel skin. "Ends" are stiffener segments only one edge of which is connected to another structural part. All stiffener segments are assumed to be flat and long compared to their widths. Thus, for stringers \(a \rightarrow b^{s} \) and for ring segments \(b \rightarrow b^{r} \). The curvatures of the ring segments are neglected.

\textbf{Effective stiffener segment material properties:} The theory for crippling of stiffener segments is based on the assumption that these segments are monocoque.
and orthotropic, not layered anisotropic. Thus, the terms in Eq. (37), A_{16} and B_{16}; $i \neq 6$, are assumed to be zero and all of the B_{ij} are assumed to be zero when applied to the crippling or rolling analyses of stiffener segments. The PANDA program allows the user to provide input as if the stiffener segments were layered anisotropic. From initial values of A_{11}^{1}, A_{12}^{1}, A_{22}^{1}, and A_{66}^{1} computed from the anisotropic theory for the ith stiffener segment laminate corresponding to the user's starting design, effective moduli and Poisson's ratio are derived from:

$$E_{11}^{\text{eff}} = \frac{A_{11}^{1}}{t^{1}}, \quad E_{22}^{\text{eff}} = \frac{A_{22}^{1}}{t^{1}} \quad (66)$$

$$\mu_{12}^{\text{eff}} = \frac{A_{12}^{1}}{A_{22}^{1}}, \quad G_{12}^{\text{eff}} = \frac{A_{66}^{1}}{t^{1}}$$

in which:

$$t^{1} = \sum_{k=1}^{N} t_{k}^{1} \quad (67)$$

During the optimization phase the total thickness t^{1} of the ith stiffener segment laminate may be a decision variable; the thicknesses of each lamina are not decision variables. If the stiffener material is isotropic and if $t^{1} = t_{k}^{1}$ ($N = 1$ layer), the effect of nonlinear material behavior is included in the analysis. The A_{jk}^{1} in Eq. (66) are the instantaneous coefficients referred to in the discussion associated with Eqs. (42-45).

Local Buckling of "Internal" Segments: For "internal" segments the critical load factors λ_{i} can be calculated from Eqs. (55)-(57) with $c = d = N_{xy}^{o} = N_{y}^{o} = 0$, R_{∞}, and the "anisotropic" $C_{ij}^{1} = 0$. The axial prebuckling
resultant in Eq. (56a) $|N_{\alpha i}^i|$ is interpreted to mean the prebuckling stress
duontial am the axis of the stiffener and the wave index m_i is given
by $m_i = \bar{m}_i \pi / \alpha$ in which \bar{m}_i is the number of half-waves along i, where i
is a_c for a stringer segment and b_c for a ring segment. With these
simplifications and definitions the terms a_{13} and a_{23} in Eqs. (55) vanish
and Eq. (57) becomes:

$$\lambda_i = \frac{\left[C_{i44}^{i} m_i^2 + C_{i55}^{i} (n_i^4 / m_i^2) + (2C_{i45}^i + 4C_{i66}^i) n_i^2 + N_{\text{XPRE}}^i \right]}{-N_{\text{xe}}^i} \tag{68}$$

If it is assumed that the internal stiffener segment buckles with one-half
wave ($n^i_i = 1$) across its width b_i, as shown in Fig. 5, then it can be
shown that:

$$m_i = n_i (C_{i44}^i / C_{i55}^i) = (\pi / b_i) (C_{i55}^i / C_{i44}^i)^{1/2} \tag{69}$$

The quantities C_{i44}^i, C_{i55}^i, C_{i45}^i and C_{i66}^i in Eqs. (68, 69) are given by:

$$C_{i44}^i = E_{44}^i t_i^3 / 12 ; \quad C_{i55}^i = E_{55}^i t_i^3 / 12 ;$$
$$C_{i45}^i = -E_{45}^i t_i^3 / 12 ; \quad C_{i66}^i = E_{66}^i t_i^3 / 12 \tag{70}$$

Use of Eq. (69) with $n_i = \pi / b_i$ in Eq. (68) yields:

$$\lambda_i = \frac{\left[2(\pi / b_i)^2 \left(C_{i44}^i C_{i55}^i \right)^{1/2} + C_{i45}^i + 2C_{i66}^i + N_{\text{XPRE}}^i \right]}{-N_{\text{xe}}^i} \tag{71}$$
in which:

\[N^i_{XPRE} = \bar{N}^i_{XPRE} \quad (72) \]

\[\bar{N}_x^i = \bar{N}_{x0}^i - \bar{N}_{x\text{pre}}^i \quad (73) \]

where \(\bar{N}_{x0}^i \), given by Eq. (20), is the total prebuckling axial resultant (lb/in) carried by the ith stiffener segment and \(\bar{N}_{x\text{pre}}^i \) is that portion of the prebuckling axial resultant carried by the ith stiffener segment that is not to be multiplied by the load factor \(\lambda_i \).

Local Buckling of "end" segments: It is assumed here that the stiffener "end" segment cross-section does not deform in the buckling mode (Fig. 5, Segment 3). The assumed displacement function is:

\[w^i = C\bar{y}_i \sin \left[\frac{\pi}{2} \frac{x}{b} \right] = C\bar{y}_i \sin \left[\frac{\pi}{2} \frac{x}{b} \right] \]

\[u^i = 0 \quad (74) \]

\[v^i = 0 \]

Use of Eqs. (74) in Eqs. (48, 49, 53) leads to the following expressions for strain energy of and work done on the ith segment:

\[U^i = C^2 \int \left[\frac{C_{44}^i (m^i)}{b} \right] b_1^3/3 + 4C_{66}^i (m^i) b_1 \right] \]

\[W^i = C^2 \int \left[\frac{N_{x0}^i (m^i)}{b} \right] b_1^3/3 \]

(76)
In Eq. (74), \tilde{y}_i is the distance along the width of the "end", as shown in Fig. 4, and m^i_1 is the number of half-waves in the local critical buckling pattern of the structural segment to which the end segment is attached (Segment j). For example, with reference to Fig. 5, for stiffener Segment 3 ($i = 3, j = 2$), m^i_1 is given by:

$$m^i_1 = \frac{\tilde{y}_i}{b_i} = \left(\frac{m^i_1}{b_i}\right) \left[\frac{C_{55}}{C_{44}}\right]_L$$

(77)

For blade stiffeners, such as shown in Fig. (4c):

$$m^i_1 = \frac{m_{\text{skin}}}{b_i}$$

(78)

With the total pre-stress resultant N^i_{bi} in the end segment defined by Eq. (73), minimization of the total potential energy, $U^i - W_i$, with respect to the undetermined coefficient C in Eqs. (75,76) yields the following equation for the buckling load factor λ_i:

$$\lambda_i = \frac{C_{44}^i (m^i_1)^2 b_i^3 + 12 C_{66}^i b_i + N^i_{\text{pre}} b_i^3}{-N^i_{\text{pre}} b_i^3}$$

(79)

If more than one "end" segment is attached to the same "internal" segment or to the skin, the buckling criterion is:

$$\sum_{k=1}^{K_e} (N^k_{\text{pre}} + N^k_{\text{bi}}) b_k^3 = \sum_{k=1}^{K_e} \left[(m^k_1)^2 C_{44}^k b_k^3 + N^k_{\text{pre}} b_k^3 \right]$$

(80)

in which K_e is the number of "end" segments attached to the jth "internal"
segment or to the panel skin.

Rolling Modes

Three types of rolling modes of instability have been described in the summary and are illustrated in Fig. 6. PANDA accounts for these three types of rolling, one (Fig. 6a) in which the panel skin participates and two (Fig. 6b, c) in which it does not.

Rolling with Participation of the Panel Skin

For panels stiffened by both rings and stringers, there are three eigenvalues (buckling load factors) corresponding to the type of rolling in which the panel skin participates. These modes are characterized by (1) local rolling between rings and stringers, with both sets of stiffeners twisting about nodal lines of the buckling pattern; (2) rolling in which the stringers are smeared out and the rings twist about nodal lines of the buckling pattern; and (3) rolling in which the rings are smeared out and the stringers twist about nodal lines in the buckling pattern.

Figures 16 and 17 show in more detail the geometry of the type of rolling deformation depicted in Figure 6a. This deformation is assumed to be either local, that is, the distances \(x_{\text{max}} \) and \(y_{\text{max}} \) considered in the rolling instability mode are the spacings \(a_0 \) and \(b_0 \) between the rings and stringers, respectively, or "semi-general," that is, the distances \(x_{\text{max}} \) and \(y_{\text{max}} \) apply to subdomains of the structure with either rings or stringers smeared and the opposite set of stiffeners twisting along simply-supported boundaries. The widths of the stiffener
segments are assumed to be small compared to the half-wavelength, \(\lambda/m \), of the rolling buckling modes. For local rolling the quantity \(\lambda \) is the distance \(a_o \) between rings in the rolling analysis of stringers and \(\lambda \) is the distance \(b_o \) between stringers in the rolling analysis of rings. All stiffener segments are assumed to be perpendicular or parallel to the plane of the skin. The effect of curvature of the ring segments on cylindrical panels is neglected.

The assumed deflection field given in Fig. 17 leads to zero in-plane shear of each stiffener segment. Although Fig. 15 may seem to imply that the following analysis applies only to stringers, this is not so. It is emphasized that the analysis of this section applies to rings as well. Figure 17 shows the \(\bar{x}, \bar{y}, \bar{z} \) coordinate system and associated displacement components, \(\bar{u}, \bar{v}, \bar{w} \), and rotation components, \(\bar{\omega}_{\bar{y}} \) and \(\bar{\omega}_{\bar{z}} \).

The rolling deformations depicted in Figs. 16 and 17 cause inextensional bending and twisting of the stiffener web and extensional deformation of the flange. The strain energy of the extensional (membrane) deformation of the flange is large compared to its inextensional (bending and twisting) strain energy. Therefore, in the discussion that follows, the inextensional strain energy of the flange is neglected.

Membrane Energy: That portion of the strain energy of the stiffener associated with membrane-type deformations of the \(i \)th stiffener segment deforming in the rolling mode is:

\[
U_{im}^i = \frac{1}{2} \int_{\bar{y}_1=0}^{b_i} \int_{\bar{x}=0}^{c_{1i}} \bar{u}_1^2 \bar{C}_{1i} dx dy \tag{81}
\]
in which \(y_i \) is the local coordinate shown in Fig. 4, \(u_{ix} \) is the axial strain in this segment, \(C_{11}^i \) is the instantaneous stiffness coefficient (same as \(A_{11}^i \) in Eq. (66)), \(b_i \) is the width of the segment and \(l_i \) is the length of whatever portion of the panel is being investigated, as follows:

<table>
<thead>
<tr>
<th>Type of Rolling Instability</th>
<th>(l_i)</th>
<th>Eq. (81) applies to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>local stringer</td>
<td>(a_x)</td>
<td>stringer energy</td>
</tr>
<tr>
<td>local ring</td>
<td>(b_x)</td>
<td>ring energy</td>
</tr>
<tr>
<td>smeared stringers</td>
<td>(b)</td>
<td>ring energy</td>
</tr>
<tr>
<td>smeared rings</td>
<td>(a)</td>
<td>stringer energy</td>
</tr>
</tbody>
</table>

The total membrane energy of the stiffener is:

\[
U_m = \sum_{i=1}^{N} U_m^i \\
\text{i \# web or other segments attached} \\
\text{along the line } y = z = 0. \quad (\text{Fig. 17})
\]

\[
(82)
\]

in which \(N \) is the number of segments in the stiffener cross-section.

The corresponding "membrane" work done by the prebuckling stress resultant \(N_{oi}^i \) in the \(i \)th segment during rolling deformations is:

\[
W_m^i = \frac{1}{2} \int_{y_i=0}^{b_i} \int_{x=0}^{l_i} N_{oi}^i (\omega_z^2 + \omega_y^2) dxdy_i \\
(i \# \text{web or other segments} \\
\text{attached along } y = z = 0)
\]

\[
(83)
\]

The quantities \(\omega_z \) and \(\omega_y \) are the rotations about the \(z \) axis and \(y \) axis,
respectively, and are given by:

\[
\frac{\omega}{z} = \frac{1}{2} \left(\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 v}{\partial y^2} \right) ; \quad \frac{\omega}{\nu} = \frac{1}{2} \left(\frac{\partial^2 u}{\partial z^2} - \frac{\partial^2 w}{\partial x^2} \right) \quad (84)
\]

Bending and Twisting Energy: In addition to the membrane-energy-related modes just described, the stiffener rolling deformations involve bending and twisting energy, that is, strain energy related to strains which vary through the thickness of each segment, and work done by the prebuckling stress resultant related to out-of-plane rotations of each stiffener segment. Only the bending and twisting energy of the stiffener web and other segments attached along the line \(\bar{y} = \bar{z} = 0 \) are included, since these components of energy are negligible compared to \(U_{in}^i \) [Eq. (81)] for the remainder of the stiffener cross section. The bending and twisting strain energy of the web shown in Figs. 16 and 17 is given by:

\[
U_{b}^i = \frac{1}{2} \int_{\bar{y}_1=0}^{b_i} \int_{\bar{x}=0}^{\ell} \begin{bmatrix} \kappa_x, \kappa_z, 2\kappa_{xz} \end{bmatrix} \begin{bmatrix} D^i \end{bmatrix} \begin{bmatrix} \kappa_x \\ \kappa_z \\ 2\kappa_{xz} \end{bmatrix} \, d\bar{x} \, d\bar{y}_1 \quad (85)
\]

\((i = \text{web or other segment attached along the line } \bar{y} = \bar{z} = 0.\)

The coefficients of the 3 x 3 flexural rigidity matrix \(D^i \) are called \(C_{44}^i, C_{45}^i, C_{55}^i, C_{66}^i \) in Eq. (68); they are given by Eqs. (70). Thus:
These are the instantaneous flexural and twist rigidities of the ith stiffener segment, analogous to those for the panel skin referred to in the discussion associated with Eqs. (42-46). The expressions for changes in curvature and twist of the web are analogous to those for the panel skin:

$$
\frac{\kappa}{x} = -v^*_{,xx} \quad ; \quad \frac{\kappa}{z} = -v^*_{,zz} \quad ; \quad \frac{\kappa}{xz} = -v^*_{,xz}
$$

(87)

where v^* is the displacement in the \bar{y} direction, indicated in Figs. 16 and 17.

The work done by the prebuckling stress resultant during buckling of the web is:

$$
W^i_d = \frac{1}{2} \int_{y=0}^{b_i} \int_{x=0}^{l} N_{oi} \frac{v^*_{,x} v^*_{,2}}{x} \, dx \, dy
$$

(88)

(i = web or other segments attached along the line $y = z = 0$)

In PANDA rolling modes are assumed to occur only if the stiffener has a web which is perpendicular to the panel skin. The expressions (81) and (83) apply only to the portion of the stiffener attached to the end of this web. The cross-sections of these flange segments remain undeformed.
and initially plane sections of them remain plane during buckling deformations. However, note from Figs. 16 and 17 that this plane rotates about the normal to the shell wall at the web attachment line. Therefore the entire cross-section of the stiffener (web and flange taken together) clearly warps. The expressions (85) and (88) apply only to the web. The bending and twisting energy of the rest of the stiffener cross-section is neglected compared to the membrane energy of the flange represented by Eq. (81). This approximation seems valid as long as the segments are slender (width \(\gg\) thickness).

Introduction of Displacement Functions: The various components of energy associated with the rolling mode shown in Figs. 6, 16 and 17 are derived from Eqs. (81) to (88) with the assumed displacement field given in Fig. 17 and repeated here:

\[
\begin{align*}
 u^* &= -m \gamma \bar{y} \bar{z} \cos m \bar{x} \\
 v^* &= +\gamma \bar{z} \sin m \bar{x} \\
 w^* &= -\gamma \bar{y} \sin m \bar{x}
\end{align*}
\]

(89)

If the height (width) of the web is called \(b_w\) and one inserts the right-hand side of Eq. (89a) with (with \(\bar{z} = b_w\)) into Eq. (81), one obtains for the membrane-type energy of each segment of the stiffener attached to the end of the web:
\[u_m^i = \frac{1}{4} (yb_w)^2 m_i^4 \int_{\bar{y}_1}^{b_i} c_{11}^{i} \gamma^2 \, dy_i \quad (i \neq \text{web}) \quad (90) \]

\[u_m^i = \frac{1}{4} (yb_w)^2 m_i^4 c_{11}^{i} b_i \gamma^2 /3 \quad (i = 2, 3) \quad (91) \]

If \(c_{11}^{(2)} = c_{11}^{(3)} \), the total membrane energy \(U_m = 2U_m^{(2)} \). This energy is simply the "EI" bending energy of a beam of depth equal to the width of the flange \((b_2 + b_3\) in Fig. 4a) deforming in its plane in a mode \((yb_w)\) sin \(\bar{y}_i\).

The bending and twisting energy of the web can be found, with use of Eqs. (85) and (87), to be:

\[\frac{1}{4} \int_{\bar{y}_1}^{b_i} c_{14}^{j} m_i^4 \gamma^2 \, b_w^3 /3 + 4c_{66}^{i} m_i^2 \gamma^2 \, b_w \]

\[(\omega = \text{"web"}) \]

\[(i = \text{"web"}) \quad (92) \]

The corresponding "work done" terms, \(w_m^i \) and \(w_b^i \), are obtained from Eqs. (83), (84), and (88):

\[w_m^i = \frac{m_i^2}{4} (yb_w)^2 \int_{y=0}^{b_i} N_{ix}^i dy_i \quad (i \neq \text{web}) \quad (93) \]

\[w_b^i = \frac{m_i^2}{4} (yb_w)^2 N_{ix}^i b_w /3 \quad (i = \text{web}) \quad (94) \]
Relation to Panel Skin Deformation: With no shear loading and the
$A_{16}', B_{16}', D_{16} = 0$ for $i \neq 6$ in Eq. (37), the rotation γ, shown in
Fig. 16, is related to the amplitude C of the sinusoidal deformation of
the panel skin, $w_{\text{skin}} = 2C \sin ny \sin mx$, [Eq. (50c) and Eq. (51) with
$c = d = 0$] as follows:

For stringers: $\gamma = -2Cn$
For rings: $\gamma = +2Cm$

in which n and m are given by Eqs. (52). Through Eqs. (95), the components
of rolling mode energy and work done by the prebuckling compression
during buckling can be expressed in terms of the undetermined skin
buckling amplitude C. The total potential energy $U - W$ has the same
form as that given in Eq. (54). The only difference is that the array
element a_{33}, given for the panel skin in Eq. (55f), has additional terms
associated with stiffener deformations:
\[a_{33} = \left[a_{33} \right]_{\text{skin}} + \frac{2m^2n^2}{Y_{\text{max}}} \left[\frac{2}{m b_w^2} \sum_{i=1}^{N^w} \left(\int_{y=0}^{y_i} c_{i11} \left[\bar{y}(y_i) \right]^2 d\bar{y}_i \right) \right. \\
+ \left. \left(\int_{y=0}^{y_i} b_i \sum_{i=1}^{N^w} d\bar{y}_i \right) \right]_{\text{stringer}} \\
+ \frac{2m^2n^2}{x_{\text{max}}} \left[n b_w^2 \sum_{i=1}^{N^r} \left(\int_{y=0}^{y_i} c_{i11} \left[\bar{y}(y_i) \right]^2 d\bar{y}_i \right) \right. \\
+ \left. \left(\int_{y=0}^{y_i} b_i \sum_{i=1}^{N^w} d\bar{y}_i \right) \right]_{\text{ring}} \] (96)

in which \(\bar{y}(y_i) \) indicates that \(\bar{y} \) is a function of \(y_i \). In Eq. (96), \(x_{\text{max}} \)
and \(Y_{\text{max}} \) have the meanings analogous to those in the discussion following Eq. (49):

58
The result in Eq. (96) is obtained after division of both skin and stringer terms, derived from energy expressions, by the quantity $x_{max}y_{max}/4$.

The denominator on the right-hand-side of Eq. (57) must also be modified by addition of the terms:

$$-\frac{2m^2n^2}{y_{max}} \left[b_w \sum_{i=1}^{N_s} \left(\int_{y=0}^{y_{max}} \frac{N_{i,x}^w dy_i}{x_e} \right) + \frac{N_{i,x}^w b_w^3}{x_e} \right]_{\text{stringer}}$$

$$-\frac{2m^2n^2}{y_{max}} \left[b_w \sum_{i=1}^{N_r} \left(\int_{y=0}^{y_{max}} \frac{N_{i,x}^r dy_i}{x_e} \right) + \frac{N_{i,x}^r b_w^3}{x_e} \right]_{\text{ring}}$$

in which $N_{i,x}^w$ and $N_{i,x}^r$ are given by Eq. (73). Expressions (95-97) apply only if $c = d = 0$. However, the eigenvalues including stiffener rolling are expected to be reasonable accurate for most practical cases involving combined in-plane load. They include shear.

Rolling of Stiffeners without Participation of Panel Skin

Figure 18 shows the coordinate system and positive displacement components v, u^w, w^w, u^f, w^f in the web and flange. The following
analysis is limited to stiffeners with T-shaped or L-shaped cross-sections. A special case of such a stiffener is a blade, which is a T or L-shaped cross-section with a vanishingly small flange. The analysis is based on treatment of the web as a flexible annulus (a type of shell) and the flange as a very short cylindrical shell. Although Fig. 18 depicts the geometry for a ring, the analysis applies to stringers as well. In that case the radius of the short cylindrical shell that represents the flange is set equal to a very large number in PANDA.

Assumptions: The following assumptions are made with regard to the prebuckling and buckling modal strains and displacements:

1) The prebuckling strains are assumed to be uniform over the web and uniform over the flange (although different prebuckling strain states exist in the web and flange).

2) The buckling modal state is characterized by,

For the web:

\[w^w_b(x, y) = \left[Cx^2 + Dx^2(1 - x/b_w) \right] \sin(n \pi y/\beta) \]
\[e^b_x = 0 \]
\[e^b_{xy} = 0 \]

For the Flange:

\[w^f(s, y) = w^w_b(x = b_w, y) + s : \sin(n \pi y/\beta) \]
\[u^f(s, y) = \Phi_w^w_b(x = b_w, y) = u^f_b(y) \]
in which C and D are coefficients to be determined by minimization of the total energy in the rolling stiffener. Quantities such as x, y, s and ξ and the various web and flange displacement components are indicated in Fig. 18 for both external and internal stiffeners. In terms proceeded with $+$ or $-$, the top sign corresponds to external stiffening and the bottom to internal stiffening. The quantity $u^w_0(x = b_w,y)$ signifies the value of u^w evaluated at $x = b_w$ (see Fig. 18b, for example).

Strain energy: The total strain energy of the stiffener is:

$$U = \frac{1}{2} \int \left(\sum_{i=1}^{N} \int_{y_i=0}^{b_i} \begin{pmatrix} (e^b_{\text{pre}} + e^b) \end{pmatrix}^T \begin{pmatrix} C \end{pmatrix} \begin{pmatrix} e^b_{\text{pre}} + e^b \end{pmatrix} \, d\bar{y}_i \right) \, dy$$ (104)

in which N is the number of stiffener segments, \bar{y}_i is the local stiffener segment coordinate shown in Fig. 4 ($\bar{y}_i = x$ in the web, $\bar{y}_i = s$ in the flange), and:

$$\begin{align*}
(e^b_{\text{pre}})^T &= \begin{bmatrix} 0, e^b_y, 0, 0, 0, 0 \end{bmatrix} \\
(e^b)^T &= \begin{bmatrix} 0, e^b_y, 0, \kappa^b_y, \kappa^b_y, 2\kappa^b_{yy} \end{bmatrix}
\end{align*}$$ (105, 106)

Using Eqs. (104-106), one can write the strain energy of the ith segment of the stiffener in the simpler form:
\begin{equation}
\phi_i = \frac{1}{r} \int_{y=0}^{b_i} \int_{y_1=0}^{y_i} \left[C_{22}^{i} \left(\epsilon_{y_1}^i + \epsilon_{y}^i \right)^2 + C_{44}^{i} \left(\frac{\delta_{y_1}^i}{\epsilon} \right)^2 + 2 C_{66}^{i} \epsilon_{y_1}^i \right] dv dy
\end{equation}

Note that because the web and flange are here being treated as shell components, C_{22}^{i} and C_{44}^{i} are identified with the long dimension, x, of the stiffener while C_{44}^{j} is identified with the width, b_i. This is the opposite nomenclature from that used in the previous section.

Strain-Displacement Relations for Buckling Analysis: The strain displacement relations to be used here are of the Novoshilov-Sanders type. They are the same as those used in BOSOR4 [58] and BOSOR5 [59].

For the web:

\begin{align}
\epsilon_x &= u' + \left(\gamma^2 + \gamma^2 \right)/2 = 0 \\
\epsilon_y &= v' + \gamma/(\gamma^2 + \gamma^2)/2 \\
\epsilon_{xy} &= u + r(v/r)' + w'w = 0 \\
\gamma_x &= w'' \\
\gamma_y &= w'w/r \\
2\gamma_{xy} &= 2(-w'' \pm w/r)
\end{align}
\[\gamma = \dot{w} \]

\[\gamma = (\ddot{u} - v' \frac{v}{r}) \]

in which \((\)' \equiv \frac{d(\)}{dx}\) and \((\) \equiv \frac{d(\)}{dy}\).

For the flange:

\[e_s = 0 \]

\[e_y = \dot{u} + w/R_f + \left(\gamma^2 + \dot{r}^2\right)/2 \]

\[e_{sy} = \dot{u} + r(v/r)' + w'(\dot{w} - v/R_f) = 0 \]

\[\gamma_s = w' \]

\[\gamma_y = \ddot{w} - \dot{v}/R_f \]

\[2\gamma_{sy} = 2(-w'' + v'/R_f) \]

\[\gamma = \dot{w} \]

\[\gamma = (\ddot{u} - v')/2 \]

in which \((\)' \equiv \frac{d(\)}{ds}\) and \((\) \equiv \frac{d(\)}{dy}\) and in which superscript \(b\) has been dropped for convenience.

Analysis of the Web: The assumptions that \(e_x = e_{xy} = 0\) [Eqs. (99, 100)] along with Eqs. (108a) and (108c) can be used to determine \(u^w\) and \(v^w\), given \(w^w\) [Eq. (98)]. After some algebraic manipulations one obtains:
\[u^N = \left[-2(C + D)^2 x^3/3 + 3(C + D)Dx^4/(2h_w) \right. \]
\[\quad - 9(D/h_w)^{11} x^{5/10} \left] \sin^2(\tilde{n} \cdot y.) \right. \]
\[\left. - 9(D/h_w)^{11} x^{5/10} \right] \sin^2(\tilde{n} \cdot y.) \]

\[v^N = -(\tilde{n} \cdot y.) \left[(C + D)^2 x^4/6 - 2(C + D)Dx^5/(5h_w) \right. \]
\[\quad \left. + (D/b_w)^2 x^6/5 \right] \sin(\tilde{n} \cdot y.) \cos(\tilde{n} \cdot y.) \]

With use of Eqs. (107), (108), (110) and (111), one obtains for the strain energy of the web (including the effect of the prebuckling stress resultant in the \(y \)-direction, \(N^{\alpha y} \)):

\[u^{\text{web}} = \frac{1}{4} \left\{ c^2 \left[p_1 + p_2 + 4c_{4w}^W b_w + q_1 + q_2 + 4q_3 - s_1 + s_2 \right] \right. \]
\[\quad + CD \left[p_1/5 + p_2/3 - 4c_{4w}^W b_w + q_1/3 - q_3 + s_1 - s_2 \right] \]
\[\quad + D^2 \left[p_1/10 + p_2/21 + 4c_{4w}^W b_w + q_1/21 + 2q_3/5 + s_1/5 + s_2/4 \right] \}

in which:

\[p_1 = T N^{\alpha y} b_w^4/(3 r_{\text{ave}}) \quad ; \quad p_2 = n N^{\alpha y} b_w^5/5 \]
\[q_1 = b_w^5 (c_{55}^W n^4 + 4c_{66}^W n^2 / r_{\text{ave}}^2) / 5 \quad ; \quad s_1 = 4c_{45} b_w^2 3/3 \]
\[q_2 = T b_w^4 n^2 (c_{55}^W + 4c_{66}^W) / r_{\text{ave}} \quad ; \quad s_2 = 4c_{45} b_w^2 / r_{\text{ave}} \]
\[q_3 = b_w^3 (c_{55}^W / r_{\text{ave}}^2 + 4c_{66}^W n^2) / 3 \]
where \(r_{ave} \) is the average radius of the web,

\[
 r_{ave} = \frac{(R + R_f)}{2} \tag{114}
\]

and \(n \) is given by:

\[
 n = \frac{\pi}{\alpha} \tag{115}
\]

In Eq. (113 a, b) the stress resultant in the web \(N^W \) is comprised of two parts, a fixed part and a part to be multiplied by the eigenvalue,

\[
 N^W = N_{PRI}^W + \lambda N_e^W \tag{116}
\]

Analysis of the Flange: From the assumption that \(e_{sy} = 0 \) [Eq. (103)] along with Eq. (109c) and Eq. (102), an expression for \(v \) can be derived. From Eq. (102), it is known that:

\[
 u^F = \Phi C_b \frac{w}{2} \sin(\pi y/\alpha) \tag{117}
\]

Integration of Eq. (109c) yields:

\[
 v^F = \frac{1}{2} (\pi y/\alpha) C_b w^2 \cos(\pi y/\alpha) + v^w(x = b_w) \tag{118}
\]

in which \(v^w(x = b_w) \) signifies the value of \(v^w \) evaluated at \(x = b_w \) (see Fig. 18). The last term on the right-hand-side of Eq. (118) drops out when integration over \(y \) is performed.

With use of Eqs. (107), (109), (117), and (118), one obtains for the strain energy of the flange (including the effect of the prebuckling stress
resultant in the y-direction N^{of}:

$$u^f = \frac{1}{4} \left\{ c^2 \left[f_1 c_2 + f_2 c_3 + f_3 c_4^2 + c_5 (2 + e)^2 \right] + \epsilon \left[-f_1 c_6 - f_3 (2e) c_4 - 2(2 + e) c_5 + c_7 \right] + \psi^2 \left[f_1 c_1 + f_3 e^2 + c_5 - 4c_7 \right] \right\}$$

(119)

in which:

$$f_1 = \sum_{i=1}^{N} n_{i}^{of} b_i^3 / 3 \quad f_2 = \sum_{i=1}^{N} n_{i}^{of} b_i^1$$

$$f_3 = \sum_{i=1}^{N} c_{22}^{i} b_i^3 / 3 \quad f_4 = \sum_{i=1}^{N} c_{55}^{i} b_i^1$$

$$f_5 = \sum_{i=1}^{N} c_{66}^{i} b_i^1$$

(120)

and:

$$c_1 = n^2_b \frac{w^2}{2} \quad c_2 = c_1 (2 + e)^2$$

$$c_3 = c_1 b_w^2 \frac{A_b}{4b_w^3 / (3R_f)} \quad c_4 = c_1 + 2e$$

$$c_5 = c_1 (n^2 f_4 + 4f_5) \quad c_6 = c_1 2(2 + e)$$

$$c_7 = \frac{f_2 b_w^3}{3R_f}$$

(121)
with:
\[e = \frac{F_{w}}{R_{f}} \]
(122)

where \(R_{f} \) is the radius of the very short cylindrical shell that represents the flange.

As in the case of the web, the prebuckling stress resultant in the flange is comprised of two parts, a fixed part and a part to be multiplied by the eigenvalue:

\[N_{i}^{of} = N_{i}^{of} + \lambda N_{i}^{of} \]
(123)

Lowest Eigenvalue: The lowest eigenvalue \(\lambda \) for stiffener rolling instability without participation of the skin can be obtained by insertion of the right-hand-side of Eq. (116) into Eq. (112), insertion of the right-hand-side of Eq. (123) into Eq. (119), minimization of the sum of \(U_{web} \) and \(U_{f} \) with respect to the coefficients \(C \) and \(D \), and determination of the lowest root of the quadratic equation in \(\lambda \) that represents the vanishing of the determinant of the coefficient matrix of the two simultaneous homogeneous equations in \(C \) and \(D \).

Axisymmetric Rolling Instability: Axisymmetric rolling instability of rings can be calculated by the setting of \(n \) in Eqs. (113) and (121) equal to zero. It is interesting to note that rolling instability is possible in the case of internally pressurized cylindrical shells with external rings even though the stresses everywhere in the shell, web, and flange are tensile.
SECTION V
EXAMPLES OF BUCKLING PREDICTIONS FROM PANDA

Purpose of this Section

The purpose of this section is to provide the user of PANDA with an appreciation of the quality of the estimates of buckling loads for the many kinds of instability summarized in Table 1 and in the Introduction. Results obtained by PANDA are compared to results in the literature and to results from other computer programs.

The strengths as well as the weaknesses of PANDA are revealed. It is emphasized that the accuracy of PANDA buckling predictions is case dependent; expressions such as (50) cannot lead to predictions with uniform accuracy for differing configurations. The emphasis during the development of PANDA was on the creation of an interactive preliminary design tool that includes many kinds of buckling yet responds rapidly on a minicomputer such as the VAX. PANDA can be used very effectively to reduce greatly the vast expanse of feasible design space to a manageable region. This region can subsequently be explored further with the use of more elaborate design programs that require more computer time, such as that described in Reference [48].
Buckling Loads of Unstiffened Panels

Table 3 lists results for buckling modes under pure shear and combined shear and axial tension or compression of curved isotropic panels long in the circumferential direction (Cases 1-4), panels long in the axial direction (Cases 6-8), and squarish panels (Cases 5, 9, 10). For panels long in the circumferential direction PANDA predictions, which are based on the assumed displacement functions (50), agree very well with the predictions of Simitses, Giri, and Sheinman [61], which are based on multi-term, two-dimensional trigonometric expansions. PANDA overestimates the shear buckling loads for curved panels that are thin and long in the axial direction (Cases 6, 7, 8). (The result of Simitses, et al [61] for Case 8 is confirmed by a linear bifurcation analysis performed with use of STAGSC-1 [62]. PANDA underestimates shear buckling loads for curved panels that are squarish and that buckling in less than three half waves in the "long" direction. (Cases 5, 9, 10). This underestimation is due to violation of the simply supported boundary conditions along the two short edges.

Figure 19 shows buckling loads of an axially compressed, three-layered composite cylinder, the dimensions and material properties of which are given in Fig. 15. The C_{ij} matrix [Eq. (46)] for this unbalanced laminate is full. Results from PANDA, STAGSC-1 [62], and the analysis of Booton and Tennyson [57] are superposed. The STAGSC-1 results correspond to a linear bifur-
cation model with the assumption of a uniform membrane prebuckling state.

It is seen that application of the aforementioned "Donnell factor", \((n_c^2 - 1)/n_c^2\), to compensate for the unconservativeness of Donnell's shallow shell theory leads to a rather conservative estimate of the buckling load over a wide range of winding angle \(\phi\) in this case. This is because the factor \((n_c^2 - 1)/n_c^2\) is applied to every \(\lambda(\bar{n}, \bar{m})\) calculated during the search over \(\bar{m}\) and \(\bar{n}\) for \(\lambda_{cr}(\bar{m}_{cr}, \bar{n}_{cr})\), not just to the minimum \(\lambda_{cr}(\bar{m}_{cr}, \bar{n}_{cr})\) determined from Donnell's theory. Since \(\lambda(m,n)\) for axially compressed shells is weakly dependent on \(m\) and \(n\), application of the factor \((n_c^2 - 1)/n_c^2\) to every \((m,n)\) leads to predictions that buckling will occur with \(n = 2\) over a wide range of winding angles \(\phi\) (10 deg. < \(\phi\) < 75 deg.). Were the minimum \(\lambda_{cr}(\bar{m}_{cr}, \bar{n}_{cr})\) to be calculated from Donnell's theory first and the "Donnell factor" applied only to the final minimum value of \(\lambda\) determined after the search over \(\bar{m}\) and \(\bar{n}\), the results would agree fairly closely with those labelled "Donnell theory" over the entire range of winding angle \(\phi\). However, in order to obtain reasonably conservative estimates of buckling load factors for perfect shells in other situations, especially in the case of ring-stiffened cylinders under uniform external pressure, it is felt that the "Donnell factor" should be applied to every \(\lambda(m,n)\) during the search for \(\lambda_{cr}(\bar{m}_{cr}, \bar{n}_{cr})\) rather than only to the final \(\lambda_{cr}(\bar{m}_{cr}, \bar{n}_{cr})\) calculated from Donnell's theory.

70
Case No. 1 in Table 4 lists buckling load predictions from PANDA and STAGS-C1 [62] for positive and negative pure torsion on the unbalanced composite cylindrical shell sketched in Fig. 15. Agreement between the two programs is very good.

Buckling Loads of Stiffened Shells and Panels

Pure Shear: Case 2 in Table 4 pertains to a complete cylindrical shell stiffened by both stringers and rings (Fig. 20) and Case 3 pertains to a shallow cylindrical panel stiffened by stringers only (Fig. 21). Both structures are subjected to pure in-plane shear loading, N_{xy}. Case 2 represents an optimum design obtained by Simitses and Giri [63]. Results from PANDA and STAGS-C1 are in reasonably good agreement. (The stiffeners are smeared out in both models in this case.) The PANDA results are compared to the results of Reference [63] in the section on optimization examples.

Case 3 in Table 4 represents a near-optimum design obtained by PANDA. The general instability buckling load factor calculated by STAGS-C1 with use of a model in which the stringers are treated as discrete is much lower than that obtained with a model in which the stringers are smeared, for which PANDA and STAGS-C1 exhibit reasonably good agreement. Figure 21 shows the bifurcation buckling mode shape from the STAGS-C1 model with discrete stringers. Note that the nodal lines (dash-dot) are curved, a situation that cannot be duplicated with use of the
simple assumed modal displacement pattern [Eq. (50)] on which the PANDA analysis is based.

Axial Compression: Figure 22 shows an analogous phenomenon for axially compressed, 60-in.-wide, flat panels of three lengths stiffened by stringers of rectangular cross section. The results displayed in Fig. 22 were obtained from BOSOR4 [58]. The panels, discretized models of the cross sections of which are plotted in Fig. 22, are subjected to uniform compression normal to the plane of the paper. The geometries shown in Fig. 22 represent designs that have been optimized by PANDA such that the load factor λ is 1.0 for both general and local instability. Figure 22 shows load factors λ and bifurcation buckling modes obtained from the BOSOR4 computer program [58] for PANDA-optimized panels of three lengths normal to the plane of the paper: 40 in., 20 in., and 10 in. Note that as the panel becomes shorter, the general instability mode shape as predicted by BOSOR4 consists of an increasingly obvious superposition of a local and global pattern that is not well represented by the displacement field [Eq. (50)] used in the PANDA analysis. Therefore, PANDA overestimates the critical axial load in such cases. For the 10-inch-long panel, for example, PANDA overestimates the critical general instability load by about 30 per cent (Fig. 22c). The mode shape corresponding to local instability, shown only in Fig. 22d, is accurately represented in the PANDA analysis for all three panels, however. Therefore the load factor $\lambda = 1.0$ obtained from PANDA agrees well in all
three cases with those obtained from BOSOR4 corresponding to local buckling of the skin.

The deleterious effect on of the combined local-general mode is most pronounced in cases for which the axial wavelengths of the two modes approach each other. This phenomenon has been previously noted [64]. It is being emphasized here in order to warn the user of PANDA to check optimum designs obtained therefrom with more elaborate analyses and to urge the user to design to higher loads than those the structure will actually see in service in order to compensate for the approximations inherent in the simplified PANDA model as well as for initial imperfections.

Table 5 lists bifurcation buckling load factors for an axially compressed ring and stringer stiffened complete elastic cylindrical shell with various combinations of external and internal stiffening. The geometry and material properties are given in Fig. 23. Excellent agreement is obtained with the analyses of Block, Card, and Mikulas [65] and Kicher and Wu [66].

Plastic Buckling: Figure 24(a) shows a ring stiffened cylindrical shell subjected to uniform axial compression. The stress-strain curve is plotted in Fig. 24(b). Axisymmetric collapse is predicted by BOSOR5 [59] to occur at \(N = 570 \text{ lb/in} \) and local bifurcation buckling between rings with \(n \) equal one
circumferential wave is predicted by PANDA to occur at $N_N = 550$ lb/in. In the PANDA model the rings are assumed to be equally spaced on 2.5-in. centers. The prediction with PANDA of non-symmetric local (between rings) bifurcation buckling with only one circumferential wave is tantamount to a prediction of axisymmetric collapse, since the buckling load is essentially independent of the number of circumferential waves for local shell buckling modes with waves that are very long in the circumferential direction compared to the ring spacing. Figure 24(b) demonstrates that at $N_N = 550$ lb/in the shell material is stressed well beyond its proportional limit.

Examples of Buckling Including Stiffener Crippling and Rolling

Tables 6-11 and Figures 25-30 pertain to examples which involve all of the types of instability covered by the PANDA computer program. The buckling loads predicted by PANDA are compared to results from other computer programs. None of these examples corresponds to an optimum design. That will be covered in another section. The purposes of these examples are:

(1) to verify the PANDA buckling analysis,

(2) to provide the PANDA user with a physical "feel" for various types of buckling that might occur in these structures, and
(3) to provide the user with an evaluation of the quality of buckling predictions obtained with PANDA.

Axially Compressed, Blade Stiffened, Composite Plate: The configuration of a single module of the plate (stringer plus a portion of the plate equal to the spacing between stringers) is shown in Figure 25. The plate is loaded by uniform axial shortening (normal to the plane of the paper). In the PANDA model the length \(L = a \) of the panel in the axial direction is 76 cm and the span \(b \) is 1144 cm, that is, the panel is taken to be so wide that the general instability load with simply-supported longitudinal edges closely approaches the wide column buckling load. The axial stress resultant \(N = N_x \) is 15730 N/m. The buckling load multipliers (eigenvalues) associated with the various modes of buckling included in the PANDA analysis for this particular configuration are listed in Table 6. Certain of the buckling strains are plotted in Figure 25 for comparison with the results of Williams and Stein [24].

In addition to the buckling load factors and critical wave numbers, which are provided as output from PANDA, the equation numbers on which the calculations are based are listed in Table 6. The general instability eigenvalue 1.33 corresponds in this case to the column buckling mode indicated in Figure 25. The local skin buckling eigenvalue 1.135 corresponds to buckling of an axially compressed, unstiffened flat plate of width 11.44 cm simply supported on all four edges and loaded by \(N_{x,\text{skin}} = 6114 \)
N/m, which is the share of the total axial resultant $N'' = 15730 \, N/m$ that is carried by the skin. The factor 1.207 corresponding to buckling of stringer segment no. 1 is calculated from the assumptions that:

(1) the stringer cross section does not deform, as shown for the "end" segment, Seg. 3 in Fig. 5, and

(2) the stringer buckles with the same number of axial half-waves, $m = 7$, that governs local skin buckling.

The factor 1.029 in Table 6, corresponding to local rolling with skin buckling between stiffeners (Fig. 16) is actually the best estimate of local buckling in this simple elastic case. The local skin buckling load factor, 1.135, is calculated neglecting two counteracting effects,

(1) the resistance of the stringer to twisting about its attachment line to the skin, which of course would tend to increase this load factor, and

(2) the work done by the axial compression in the stringer as it deforms in the buckling mode, which would tend to decrease this load factor.

The buckling load factor, 1.207, associated with the stringer buckling by itself is calculated with the constraint
that the number of axial half waves, \(m = 7 \), is the same as that for local buckling of the skin, whereas in fact the stringer, were it hinged along its line of attachment to the skin, would "want" to buckle in fewer axial waves (1 half wave, to be exact). The skin "wants" to buckle in 7 half waves. The two parts of the structure, skin and stringer, reach a compromise at 5 half waves and a load factor of 1.029. Thus, the approximate local buckling load factor of 1.135, based on the assumption of simple support along stringer lines of attachment, is slightly unconservative due to the important contribution of the "work done" terms in Eq. (97). The significant effect of these terms has been discussed previously. (See Reference 64, in particular Figs 4 and 7 and the associated discussion in that reference.)

The load factor 1.834 in Table 6 corresponds to buckling deformations of the type shown in Fig. 18, in which the cross section of the web deforms but the skin does not participate. This mode is not critical in this case because the blade-shaped (rectangular) stringer is rather thick.

Were the blade stiffened panel to be optimized, all of the buckling load factors appearing in Table 6 might constrain the design at various iterations during the optimization process. The question arises, why include the local skin buckling (1.135) and buckling of stringer segment no. 1 (1.207) as potential constraints when the local-rolling-with-skin-buckling load factor (1.029) represents a better estimate of the actual phenomenon?
non in this case than either of the former two estimates? The answer is that the accuracy with which the various loads are determined is case-dependent. All the formulas are approximate, and for more complex stiffener cross sections or cases involving nonlinear material behavior, the local-rolling-with-skin-buckling phenomenon may not be as accurately represented as the local skin buckling phenomenon, for example.

This statement holds especially for cases in which there is more than one half wave between stiffeners in the critical buckling modes or in which plastic flow occurs before buckling. If there is more than one half wave between stiffeners in any of the buckling modes, the stiffener-rolling-with-skin-buckling model will overestimate the influence of the stiffener terms (Eqs. (96,97)). In cases involving prebuckling plastic flow plastic hinges may form at stiffener lines of attachment, perhaps rendering the local-skin-buckling model with simple supports at stiffener lines of attachment a better representation of the actual local buckling phenomenon than the more complex local-rolling-with-skin-buckling model, even for modes with only one half wave between stiffeners in either or both of the coordinate directions. Since computer time is not important in applications of PANDA, it is safest to include all of the possible buckling modes as constraints.

Externally Pressurized Ring-Stiffened Cylindrical Shell:
The configuration of a single module of the ring-stiffened cyl-
inder (ring plus a portion of the cylinder equal to the spacing between rings) is shown in Figure 26. The cylinder is loaded by a unit uniform external pressure which gives rise to a circumferential compression \(N_y^0 \) of 5.218 lb/in. (No axial compression, \(N_x^0 = 0 \).) In the PANDA model the length "a" of the "panel" in the axial direction is 100 inches, that is, the cylinder is taken to be long enough such that the general instability pressure with the assumption of simply supported ends closely approaches the ring buckling load, \(EI(n^2 - 1)/R_c \), in which \(I \) is the area moment of the entire cross section \(AA \) shown at the top of Figure 26 and \(R_c \) is the radius to the centroid of this cross section. The length \(b \) in the circumferential direction is taken to be \(n \times R \), which permits simulation of the behavior of a complete (360 deg.) cylindrical shell, with the number of circumferential half waves in the PANDA model being equal to the number of circumferential full waves in the complete cylinder.

The buckling load multipliers (eigenvalues) associated with various modes of buckling included in the PANDA analysis for this particular case are listed in Table 7. Buckling pressures corresponding to two of these factors are plotted in Figure 26 for comparison with results calculated with the BOSOR4 computer program [58]. The main purpose of this case is to verify the analysis of ring rolling without participation of the shell. The analysis is contained in Eqs. (98-123). The PANDA estimate for this buckling mode is about 12 per cent higher than that from BOSOR4.
Hydrostatically Compressed Ring Stiffened Cylindrical Shell with Slender Webs: The configuration analyzed by use of BOSOR4 [58] is shown in Figure 27(a). In the PANDA model the cylinder is taken to be 23.2 in. long with rings on 4.64-in centers. The axial and circumferential stress resultants corresponding to a unit external pressure are $N_x = 10.21$ lb/in. and $N_y = 20.42$ lb/in., respectively. Table 8 lists the buckling load multipliers from PANDA, and Fig. 27(b) shows a comparison of the three lowest buckling loads with predictions from BOSOR4. The ring sidesway modes of failure ($n = 0$ and $n = 1$ circumferential waves) are very accurately predicted by PANDA and the local web crippling load is about 10% too high. The modes involving skin buckling are much higher in this case. The purpose of the case is to check the low - \bar{n} ring sidesway phenomenon in which the shell skin does not participate.

Another Ring-Stiffened Cylinder under External Pressure: This case is similar to that shown in Figure 26, except that in it the types of local and rolling buckling displayed in Figure 25 are also of interest. The configuration is shown in Figure 28 and the buckling load factors predicted with PANDA are listed in Table 9. The length of the cylindrical shell is 200 inches, the radius R is 100 inches, and the thickness is 1.0 in. The internal rings are spaced 25 in. apart. Comparisons between BOSOR4 and PANDA are plotted in Figure 28, which is taken from Reference [64]. The various curves labelled (1) - (6) in Figure 28 are discussed in [64]. Notice that the relationship of the
local skin buckling mode ($\bar{n} = 16$) to the local rolling-with-skin-buckling mode is similar here to that shown in Figure 25. The agreement with the 3-branch shell model of BOSOR4 is very good in all modes except for the non-symmetric ring sidesway mode ($\bar{n} = 6$), for which PANDA predicts a critical load about 14% higher than that predicted by BOSOR4.

Elastic Buckling of a Ring and Stringer-Stiffened Cylinder: Figure 9 displays the geometry and Table 10 lists the various buckling load factors and critical wave numbers (\tilde{m}, \tilde{n}). The loading is uniform axial compression, $N_x^0 = 1.0$ lb/in. This example is chosen because buckling can occur in any or all of the types of modes that are included as constraints in the PANDA optimization analysis.

Results from STAGSC-1 linear bifurcation computer runs on models with smeared and discrete stiffeners are also listed in Table 10. The STAGSC-1 model with discrete stiffeners is displayed in Figure 29(a) and (b). The lowest two eigenvalues from this model, which contains appropriate symmetry and antisymmetry boundary conditions for prebuckling and buckling phases, correspond to buckling (rolling) with smeared stringers [Fig. 29(c)] and local rolling with skin buckling between stiffeners [Fig. 29(d)].

Notice that the local skin buckling load factor, 58149 in Table 10, is about 20% less than the local rolling load factor,
70919, which corresponds to the same mode, \((\bar{m}, \bar{n}) = (21, 59)\). The stringers, being rather thick for their height (1 in. x 6 in.), stabilize the shell in the local mode because the strain energy terms [Eq. (96)] outweigh the "work done" terms [Eq. (97)] in their contributions to the array element \(a_{33}\) of the stability matrix [Eq. (54)].

The local buckling mode \((\bar{m}, \bar{n}) = (21, 59)\) half waves over the (axial, circumferential) dimensions of the entire (180 deg.) panel corresponds to \((\bar{m}, \bar{n}) = (3, 1)\) over the 120-in long, 37.7-in wide portion of the shell between adjacent stiffeners. (See Fig. 9.) The buckling modes predicted by STAGSC-I agree with those predicted by PANDA in all of the modes investigated for this example.

Plastic Buckling for the Same Example: The example shown in Fig. 9 represents a typical design for a section of a steel containment vessel for a nuclear reactor. Large shells such as these are fabricated of a low carbon steel which has a low strain at yield and little post-yield strain hardening. Thus "thin" stiffened shells with large \(R/t_{\text{skin}}\), as is the case for the design displayed in Fig. 9, buckle at stresses beyond the material proportional limit. In this case the material is taken to be elastic-perfectly-plastic with a yield stress of 38000 psi.

It is clear that for any case involving nonlinear material properties, actual buckling loads cannot be calculated simply by
multiplication of the load factors by the applied load. Plastic buckling loads of a structure with a given design must be found by variation of the applied load, \(N_x^0 \) for example, until two successively increasing values of \(N_x^0 \) yield load factors greater than unity and less than unity, respectively. In optimization problems, for which the load is fixed and the design is changing, the actual value of the load multiplier is not important, only whether it is greater than or less than unity.

Table 11 and Figure 30 pertain to plastic buckling of the stiffened shell shown in Figure 9 as predicted by PANDA, BOSOR5 [59], and STAGSC-1 [62]. Table 11 is divided into four sections (a-d), each section containing load multipliers corresponding to the applied axial load \(N_x^0 \) appearing near the right-hand margin. PANDA predicts plastic buckling between \(N_x^0 = -40185 \) lb/in. and \(N_x^0 = -40200 \) lb/in. in the three modes indicated by boxes in Sections (a) and (b). The very large change in load multipliers and of the critical number of axial half waves in the general instability mode associated with the very small change in applied load is due, of course, to the abrupt yielding of shell and stiffener material with a drop in tangent modulus from \(E \) to \(E/100 \). Plastic local skin buckling occurs very near \(N_x^0 = -40600 \) lb/in., followed by local rolling with skin buckling at \(N_x^0 = -41200 \) lb/in.

Figure 30 shows results from analyses with BOSOR5 and STAGSC-1. In the BOSOR5 model the stringers are smeared out,
that is treated as an elastic-plastic shell wall layer of thickness equal to the stringer height b^s with a stress-strain curve with the stress coordinates multiplied by the ratio (t^s / b_o) of stringer thickness to stringer spacing, an axial modulus $E_1 = E^s (t^s / b_o)$, hoop modulus $E_2 = 0$, shear modulus $G = 0$, and density $\rho = \rho^s (t^s / b_o)$. The rings are treated as flexible shell branches. The STAGSC-1 model corresponding to the load-deflection curve in Figure 30(c) is given in Figs. 29(a) and (b). BOSOR5 and STAGSC-1 both predict instability at about $N^c_0 = -38000$ lb/in. corresponding to axisymmetric collapse between rings.

The PANDA model predicts bifurcation buckling in this inter-ring-smeared-stringer mode at about $N^c_x = -40200$ lb/in. with 24 circumferential waves. However, note that the axial general instability mode, which occurs at the same load and has essentially an indeterminate number of axial waves, corresponds to $\bar{n} = 1$ circumferential wave. (\bar{n} cannot be zero in PANDA in this mode because of the assumption of simply supported boundaries on all four edges of the panel). Also, note that at a slightly higher axial load, $N^c_x = -40600$ lb/in., the rolling mode with smeared stringers has $\bar{n} = 1$. As mentioned previously $\bar{n} = 1$ essentially signifies axisymmetric collapse in this case because the inter-ring buckling wave is long in the circumferential direction compared to its length in the axial direction and the bifurcation load is only very weakly dependent on \bar{n} for buckles of this shape. Thus, the critical load and mode pred-
icted by PANDA agree well with those predicted by BOSOR5 and STAGSC-1, even though axisymmetric collapse is not explicitly included as one of the PANDA buckling modes. Any optimization analysis which includes the modes listed in Table 11 as constraint conditions will lead to a design that will be safe regarding nonlinear axisymmetric collapse as well. This statement is confirmed by the results of a parameter study given later.
Elastic Material

Tables 12-18 and Fig. 31 give results of the application of PANDA to problems that have previously been solved by others [6, 14, 33, 35, 47, 61, 63]. All of the examples except one involve stiffened complete (360 deg.) cylindrical shells. These are modelled in applications of PANDA as deep cylindrical "panels" that span 180 deg. Such a model, given the simple support condition along generators, is equivalent to treatment of the full 360 deg. cylindrical shell: the number of half waves along the circumferential coordinate of the 180-deg. "panel" is equivalent to the number of full waves around the circumference of the complete cylinder.

Each of Tables 12-18 is horizontally divided into three sections: dimensions, design load combination, and material properties are given in the top section; decision variables for optimization are listed in the middle section; and buckling load factors and wave numbers are listed in the bottom section. Optimum designs from PANDA are listed on the left and those from the referenced analysis are listed on the right. Buckling load factors and modes for both left and right sides were calculated.
The data in each of Tables 12-18 were generated in the following way: Simple buckling analyses were first performed with PANDA, corresponding to the dimensions found by the referenced investigation to be an optimum design. The buckling runs are analogous to that listed on the first six pages of Table 2a. The dimensions found to be optimum by the referenced investigation and the buckling load factors and modes computed by PANDA are listed in the right-hand columns of Tables 12-18. These "optimum" designs were then used as starting designs in the optimization process with PANDA, a process that is analogous to that listed on pages 7-10 of Table 2a. Through execution of the program module "DECIDE", the design variables listed in Tables 12-18 were chosen as decision variables for the optimization analysis with PANDA. Following execution of "DECIDE", the program module "PANCON" was run again, this time in the optimization mode. The results listed in the left-hand columns represent the converged optimum designs. They are generally obtained after two or three sets of five iterations each, much as is shown on pages 9 and 10 of Table 2a.

As seen from Tables 12-18 the minimum weight obtained by PANDA, consistent with the many buckling, stress, and strain constraints listed in the tables, is often less than the minimum weight determined by previous investigators. In cases for which the designs obtained by PANDA differ greatly from those obtained
by the referenced investigations, the results of both were checked with use of BOSOR4 [58] or STAGSC-1 [62]. Some specific remarks concerning these test cases follow:

Table 12: Local buckling is not critical in this example because the skin thickness is fixed at .05 in. and a limit is imposed on the stiffener height.

Table 13: The minimum weight and buckling loads from PANDA agree rather well with those from the analysis of Ref. 33] for this case. In the PANDA design the stringer is quite a bit thinner than is the case in the Ref. [33] optimum. This difference arises from the way that local stringer (or ring) buckling is handled (see the fifth load factor from the top, 1.6029 for the Ref. [33] dimensions): In both codes the stiffeners are assumed to be simply supported along their lines of attachment to the shell. However, in PANDA, for stiffeners of rectangular cross section, the number of waves along the stiffener axis must be equal to that governing local buckling of the skin. Inclusion in PANDA of the modes with the word "rolling" in them compensates for any unconservativeness that may be present because of this approach. In many other codes, including that on which the results of Ref. [33] are based, the minimum buckling load with respect to the number of waves along the stiffener axis is found without regard to the compatibility of stiffener and shell rotations. This minimum usually occurs at a lower wave number than that corresponding to local skin buck-
ling, and at a lower stress, leading to the appearance of a need for stockier stiffeners.

Table 14: There is a striking discrepancy between the results of Ref. [63] and those of PANDA for this case of buckling under pure in-plane shear. In particular, the general instability load factor predicted by PANDA is 4.74, whereas the analysis of Ref. [63] yields a load factor of 1.0 for the same dimensions. Both analyses are based on models with smeared stiffeners. As shown in Table 4, Case 2, the buckling load factors from PANDA agree reasonably well with those from a finite element program, STAGSC-1 [62]. The optimum design from PANDA is considerably lighter than that from Ref. [63], doubtless because of the discrepancy in the general instability load. Note that the height of the stringer web is more than an order of magnitude less in the PANDA design than it is in the design of Ref. [63], and that the stringer flange essentially disappears at the PANDA optimum. [Stringer Segment 2 represents half of the flange, as shown in Fig. 4(a).]

Table 15: The same basic geometry as for Table 14 is investigated here also. This case involves combined axial compression and torsion, and it is primarily the axial compression load component that "designs" the structure. Unlike the results of Table 14, the results from PANDA and Ref. [61] show reasonably good agreement. Note that certain stress and strain constraints are printed out at the bottom of the table. These are
Table 16: The basic geometry is the same here as for the previous two tables. This case involves the same combined loads as those represented in Table 15, except that a constant internal pressure (not an eigenparameter) is also present, such as would be the case in a pressurized aircraft fuselage flying at high altitude. In comparing Table 16 with Table 15, note that two counteracting effects exist: The design is somewhat lighter because the internal pressure represents a stabilizing influence, but it is not a great deal lighter because the stress constraint for stress in the skin has become active.

Table 17: This is the only test case for a flat panel. According to PANDA the optimum design obtained by the analysis of Ref. [6] is not feasible (local skin buckling load factor is less than unity). However, the formulas used in PANDA for buckling of a flat plate in shear tend to be most conservative when there is only one half wave in each coordinate direction between stiffeners, which is the case in this example. (See also Table 3, Case 9 for a similar situation.)

Table 18: PANDA finds the design of Ref. [47] to be unfeasible, both with regard to general instability and local instability. The results from application of the BOSOR4 computer program [58] to the two designs in Table 18 confirm the PANDA analysis. The BOSOR4 predictions are shown in Fig. 31.
Because of the large number of rings in the optimum design of Ref. [47], most of them were treated as discrete beam-type structures rather than as branched shells. The positions of the ring centroids and ring attachment points are indicated in Fig. 31(b). Note that, corresponding to general instability, the critical pressure for the optimum design determined in Ref. [47], as calculated by BOSOR4, is 484 psi, which is 0.539 times the design pressure, $p_0 = 898$ psi. This is in excellent agreement with the load factor 0.538 determined by PANDA. (See right-hand column in Table 18.) The results from BOSOR4 applied to the new optimum design determined by PANDA (left portion of Table 18, right portion of Fig. 31) indicate the presence of two general instability modes and a local instability mode within a few per cent of the load factors near unity predicted by PANDA for this optimum. In the case of hydrostatically compressed ring stiffened cylindrical shells it usually happens that in the neighborhood of the minimum weight design there are two general instability modes at about the same pressure, one of the type shown in Fig. 31(f) and the other of the more commonly recognized type shown in Fig. 31(g).

Elastic-Plastic Material

Table 19 and Figures 32-34 pertain to a hydrostatically compressed cylinder with internal rings of rectangular cross section. The PANDA optimum design has fewer, deeper rings than does the optimum predicted by the analysis of Ref. [44], but
the minimum weight is essentially the same. Figure 32 demonstrates that at the design pressure $p_o = 4066$ psi the material of the cylindrical shell is stressed well beyond its proportional limit.

Although PANDA indicates that the Ref. [44] design is unsafe with regard to general instability (load multiplier less than unity), an analysis of this configuration with use of the BOSOR5 computer program [59], results of which are shown in Figs. 32 and 33, show that the hull would survive the design pressure if it had no imperfections. BOSOR5 predicts axisymmetric collapse of the Ref. [44] design at a lower pressure than that corresponding to local nonsymmetric buckling. (The local nonsymmetric buckling mode is not shown in Fig. 33.)

Figure 34 shows the results of application of BOSOR5 to the optimum design derived by PANDA, dimensions of which are listed in the left-hand column of Table 19. For this design, local nonsymmetric buckling occurs at the lowest pressure, and slight margins exist in the general and local instability pressures of the perfect structure.

Imperfection Sensitivity

It should be emphasized that PANDA does not account for imperfection sensitivity. As the code is now written, it is up to the user to design a panel to higher loads than those actually
to be seen in service, such that the deleterious effects of ini-
tial imperfections will be allowed for. For discussions of im-
perfection sensitivity the reader is referred to [15, 53, 56,
67] and the references therein.

Parameter Study: Optimum Design of Elastic-Plastic
Ring-Stiffened Cylinders under Hydrostatic Compression

Tables 20-22 and Figures 35-41 pertain to this investiga-
tion. The main purpose of the study is to compare PANDA buck-
ling predictions for optimum designs and BOSOR5 predictions for
t..e same designs for a range of loading over which the amount of
prebuckling plastic flow varies. BOSOR5 is an appropriate stan-
dard of comparison for ring stiffened cylindrical shells
stressed under hydrostatic compression beyond the material pro-
portional limit; there exist numerous comparisons with test re-
sults [68].

PANDA Results: The optimum designs and buckling pressure
factors and modes from PANDA are listed in Tables 20 and 21.
The configurations are similar to those shown in Figs. 33 and
34, except that the internal rings have flanges, as shown in
Fig. 35(a). The results for each design pressure in Table 20
were obtained by first optimizing such that the ring spacing was
cluded as a decision variable. The ring spacing was then set
to a new value as near the optimum value as possible consistent
with the condition that there be an integral number of rings
within the cylinder length of 172 inches. A new optimum was calculated corresponding to this new value of ring spacing, which was not allowed to vary during this second optimization process. It is seen from Table 21 that for a wide range of design pressures the optimum design is characterized by many nearly simultaneous buckling modes.

BOSOR5 Models: Figures 35 and 36 show the BOSOR5 models, which are similar to that depicted in Figs. 31(d) and 31(e) except for the different dimensions and the inclusion of elastic-plastic effects. Half the length of the shell is modeled, with symmetry conditions imposed at the mid length. The reference surface of the cylindrical shell is taken to be the inner surface. The web of each ring, treated as a flexible shell branch, is assumed to penetrate the flange to the middle surface of the flange. The material of the ring at the structural plane of symmetry at the bottom in Fig. 35 has half the stiffness of the other rings. All flanges except the two nearest the midlength of the shell (plane of symmetry at the top in Fig. 35) are modeled as discrete rings; the top two flanges are modeled as flexible shell branches. The stress-strain curve for the material is given in Table 19. Figure 36 shows the nodal points in the discretized BOSOR5 models of the optimum designs corresponding to each of the design pressures p_o listed in Tables 20-22. Nodal points are concentrated in the portion of the structure nearest the plane of symmetry in order to obtain converged buckling pressures for local shell, web, and flange.
buckling modes.

Figure 37 demonstrates that all of the optimum designs are stressed beyond the material proportional limit at design pressures p_0 from 677 to 4743 psi. It is interesting that for optimum designs with p_0 from 2710 to 4743 psi the effective plastic strains at the midsurface halfway between rings are close to the 0.2 per cent yield strain, a result obtained from a rather rigorous analysis that confirms the appropriateness of earlier engineering design practice.

Comparison of PANDA and BOSOR5 Buckling Pressures: Figure 38 represents (indirectly) a comparison between PANDA and BOSOR5 buckling predictions because the lowest buckling load factor for each optimum design predicted by PANDA is very close to unity ($p_{cr} = \text{design pressure, } p_0$). Typical buckling modes from BOSOR5 are plotted in Fig. 39.

Figure 38 indicates that PANDA yields slightly unconservative local skin buckling loads and web buckling loads for optimum designs for pressures p_0 in the range from 677 to 3388 psi. This slight unconservativeness is an effect of nonlinear material behavior. It is caused in large part by the neglect in the one-layer PANDA models of the variation of axial strain through the shell wall thickness halfway between rings. One can see from the pre-bifurcation deflected shape shown in Fig. 39(a), for example, that there is more axial compression and hence gre-
ater effective strain at the outer fiber of the shell wall than
at the middle fiber, to which the solid points on the
stress-strain curve in Fig. 37 correspond. This bending effect
is not included in the results shown in Fig. 38 because the
shell wall in the PANDA models from which Fig. 38 was generated
was assumed to consist of only one layer. The instantaneous
(tangent) stiffness coefficients C_{ij} for the stability analysis
are calculated only at the middle surface of each layer, so that
in the case of a one-layered model axial bending is not account-
ed for.

Table 22 and Figure 40 demonstrate the effect of modeling
the shell wall in the PANDA analysis as if it consisted of 5 la-
yers of equal thickness. The data listed in the fourth column
of Table 22 (5-layer models) are generated by performing simple
buckling analyses (no optimization) with PANDA of the optimum
designs to which Fig. 38 corresponds, except now the shell is
modeled as if it had five layers each of thickness 0.1607 in.
rather than one layer of thickness 0.807 in.

The buckling load factor decreases because of the term
$(-zw, \varphi_{xx}^0)$ in the expression for e_k^1 in Eq. (24): In the
one-layer model z is zero at the layer middle surface, so there
is no contribution to e_1 due to axial bending. In the
five-layer model, however, the two layers, 4 and 5, lying out-
side the shell middle surface have positive z, so that $e_1(4)$ and
$e_1(5)$ are larger (in absolute value) than $e_1(1)$, $e_1(2)$, or
e_1^{(3)} \). For shells that are stressed only a small amount beyond the material proportional limit, particularly if an elastic-plastic interface exists within the shell wall thickness that is oriented parallel to the middle surface, the absolute increases in e_1^{(4)} and e_1^{(5)} above the absolute value of middle surface strain e_1^{(3)}, cause a greater decrease in the instantaneous integrated stiffness coefficients C_{ij} [Eq. (37)] governing stability than the increase of C_{ij} caused by the decrease in e_1^{(1)}, and e_1^{(2)} below the absolute value of e_1^{(3)}.

Figure 40 gives comparisons for the case p_0 = 2710 psi between BOSOR5 and PANDA buckling pressures as functions of the number of circumferential waves \(\bar{n} \). Figure 40(a) displays this comparison for the optimum design corresponding to use of a one-layer PANDA model (Table 20, fourth row), and Fig. 40(b) gives comparisons for the slightly different optimum design (Table 20, fifth row) obtained by PANDA with use of a five-layer model. In the five-layer model the degree of unconservativeness of the PANDA predictions corresponding to local skin buckling has been reduced by about half and the PANDA prediction of the pressure at which local web buckling occurs is no longer greater than the BOSOR5 prediction for this mode.

Figure 41(a) shows a comparison between PANDA and BOSOR5 predictions of prebuckling circumferential strain and circumferential resultant in a typical web and flange for the 5-layer model at the design pressure of 2710 psi. The pronounced varia-
tion along the flange predicted by BOSOR5 is caused by local axisymmetric bending of the flange, as shown in Fig. 39(a): the flange acts as a very short cylindrical shell "pinched" at its midlength by an axisymmetric radial line load produced by the inward movement of the web as the external pressure is increased.

Figure 41(b) shows the midbay axial strain distributions as predicted by BOSOR5 and PANDA. The predicted circumferential strain is constant through the thickness and equal to \(-0.646\) per cent in both the PANDA and BOSOR5 analyses.
SECTION VII
CONCLUSIONS

Accuracy with which Buckling Loads are Computed by PANDA

The PANDA system was developed on a minicomputer. In order to obtain interactively optimum designs of stiffened panels in the presence of many decision variables and many buckling constraints, buckling loads and mode shapes have to be calculated extremely rapidly. Therefore, buckling formulas are derived from simple assumed displacement fields, such as those for the shell in Eqs. (50) and for the stiffeners in Eqs. (89) and (98).

Cases in which the assumed displacement patterns lead to rather poor estimates of the buckling loads have been described. They include buckling of certain unstiffened curved panels under pure in-plane shear (Table 3, Cases 8-10); buckling under pure axial compression of a wide, short stiffened panel (Fig. 22c); and rolling instability of the internal rings of a hydrostatically compressed cylindrical shell (Fig. 26). It is felt, however, that so many buckling constraints are included in the optimization analysis that at or near the optimum design the degree of unconservatism inherent in the one-term Ritz-type analysis on which PANDA is based has less impact than might appear to be the case from a simple buckling analysis of a
non-optimized design.

In order to compensate for possible unconservativeness in the PANDA analysis, the user should:

1. increase the in-plane loads to which the panel is being designed and,

2. check the load-carrying capability of the optimum design obtained with PANDA with use of a more rigorous buckling analysis, such as provided by a finite element program (References [48, 58, 59, 62]).

Even if the approximate nature of the buckling analysis in PANDA is disregarded, the loads applied in the design analysis must be greater than the operating loads in order to compensate for initial imperfections, which are not otherwise accounted for. The failure of PANDA to predict accurate buckling loads in all situations is less significant when viewed from this perspective. It should also be emphasized that PANDA is intended to be used for preliminary design.

In a few instances discrepancies between the buckling predictions of PANDA and those from the literature were investigated further with the use of BOSOR4, BOSOR5, or STAGSC-1. The predictions from these more rigorous computer codes often tend to confirm the PANDA results. Particularly good agreement is exhi-
bited between PANDA and BOSOR5 for elastic-plastic buckling of optimized, hydrostatically compressed, ring-stiffened cylindrical shells optimized for external pressures from about 700 to about 4700 psi.

How PANDA Performs on the VAX Computer

PANDA operates at a reasonable speed for interactive computing on a minicomputer such as the VAX. For example, the optimum design of the ring and stringer-stiffened cylindrical shell shown in Fig. 20, to which the results in Table 14 correspond, is obtained in four sets of five iterations each, the first set requiring 22 seconds at the terminal, the second 18 seconds, the third 15 seconds, and the fourth 12 seconds. (Three such sets of iterations are listed for example on pages 9 and 10 of Table 2a.) This means that every two to four seconds a new design is generated as iterations progress toward the optimum, a reasonable speed at which to obtain optimum designs in a conversationally interactive mode. Approximately the same amount of time at the terminal is required for determination of the optimum design of the ring-stiffened cylindrical shell depicted in Fig. 35a. This shell is subjected to an external hydrostatic pressure of 4066 psi and buckles in the plastic range, as shown in Fig. 37.

Possible Future Enhancements of the Capability of PANDA

101
There are many ways in which PANDA could be improved with retention of its computationally interactive nature:

1. The effect of imperfections could be incorporated explicitly in PANDA through the use of semiempirical formulas of the type derived by Miller and Tsai for the ASME code [69], for example.

2. New buckling modal displacement functions could be introduced such that other than simple support boundary conditions could be imposed. This would be especially important for the case of axially stiffened panels clamped at the edges and buckling in the general instability mode. In order to obtain reasonably optimum designs for a test environment, in which the loaded edges are usually clamped rather than simply supported, one would have to be able to apply clamping for the general instability mode and simple support for the local modes.

3. Optimization could be performed for ranges of in-plane load components, rather than just for a single in-plane load combination. This might be done by first computing the buckling load interaction surfaces

\[f(N_x^O, N_y^O, N_{xy}^O) = 0 \]
for each design iteration and for each type of buckling mode that span the range of load components provided by the program user and then introducing only that load combination for each buckling mode which is most critical relative to the corresponding load interaction surface.

4. PANDA could be expanded to handle other than cylindrical geometry. Here the difficult task would be to choose appropriate displacement functions for the approximate buckling analysis.

5. The general instability analysis could be improved in the case of stiffened panels by use of a more elaborate assumed displacement field, one that reflects the local-general nature of general instability buckling modes such as that shown in Fig. 22c. Such an improvement would require of PANDA the capability to handle the stiffeners as discrete in calculations of general or semi-general instability load factors and mode shapes.

6. Panels for aircraft fuselages and ship decking are often designed so that local buckling of the skin between adjacent stiffeners is permitted. PANDA could be improved by use of effective stiffness of the skin in its post-buckled state. A difficult task here would be to calculate maximum strains in the loaded, post-buckled skin.
7. Composite materials exhibit a great variety of failure modes and some nonlinear material behavior. Some of this new knowledge should be incorporated into PANDA, which, in the case of anisotropic laminates, now simply checks for maximum stress or strain of each layer and is restricted to linear material behavior if the material is orthotropic.

8. Sanders' equations could be used rather than Donnell's.

9. The scope of PANDA could be broadened to include optimization with respect to individual lamina properties of laminated stiffeners.

10. PANDA is now limited to the analysis of panels with open-section stiffeners. The capability could be expanded to permit optimization of corrugated panels or panels with hat stiffeners.
REFERENCES

[30] N. S. Khot, "Computer Program (OPTCOMP) for optimization of composite structures for minimum weight design."

109

[48] B. O. Almroth, P. Stern, and D. Bushnell, "Imper-
fection sensitivity of optimized structural panels,
AFWAL-TR-80-3182, March 1981

[61] G. J. Simitses, J. Giri and I. Sheinman, "Minimum weight design of stiffened cylinders and cylindrical panels

114
under combined loads," **AFOSR TR-76-0930**, Georgia Institute of Technology, Atlanta, GA (1976)

<table>
<thead>
<tr>
<th>TYPE OF BUCKLING</th>
<th>MODEL USED FOR ESTIMATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. General instability</td>
<td>Buckling of skin and stiffeners together with smeared rings and stringers. Panel is simply supported along the edges (x = y = 0, x = a,) and (y = b.)</td>
</tr>
<tr>
<td>2. Local instability</td>
<td>Buckling of skin between adjacent rings and adjacent stringers. Portion of panel bounded by adjacent stiffeners is simply supported. Stiffeners take their share of the load in the prebuckling analysis, but are disregarded in the stability analysis.</td>
</tr>
<tr>
<td>3. Panel instability</td>
<td></td>
</tr>
<tr>
<td>(a) between rings with smeared stringers</td>
<td>Buckling of skin and stringers between adjacent rings. Portion of panel bounded by adjacent rings is simply supported. Stringers are smeared. Simple support conditions imposed at (y = 0) and at (y = L.) Rings take their share of the load in the prebuckling analysis, but are disregarded in the stability analysis.</td>
</tr>
<tr>
<td>(b) between stringers with smeared rings</td>
<td>Buckling of skin and rings between adjacent stringers. Portion of panel between adjacent stringers is simply supported. Rings are smeared. Simple support conditions imposed at (x = 0) and at (x = a.) Stringers take their share of the load in the prebuckling analysis, but are disregarded in the stability analysis.</td>
</tr>
<tr>
<td>4. Local crippling of stiffener segments</td>
<td></td>
</tr>
<tr>
<td>(a) "internal" segments</td>
<td>Individual stiffener segment buckles as if it were a long flat strip simply supported along its two long edges. Loading is compression along the stiffener axis. Curvature of ring segments ignored.</td>
</tr>
<tr>
<td>(b) "end" segments</td>
<td>Individual stiffener segment buckles as if it were a long flat strip simply supported along the long edge at which it is attached to its neighboring segment or to the panel skin and free along the opposite edge. Loading is compression along the stiffener axis. Number of half waves along the stiffener axis is the same as that of the part of the structure to which the "end" is attached. Curvature of ring segments ignored.</td>
</tr>
</tbody>
</table>
Table 1 (continued)

<table>
<thead>
<tr>
<th>TYPE OF BUCKLING</th>
<th>MODEL USED FOR ESTIMATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Local rolling with skin buckling between stiffeners</td>
<td>Same as "Local instability" except that strain energy in stiffeners and work done by prebuckling compression in stiffeners are included in the buckling formula. Stiffener cross sections do not deform as stiffeners twist about their lines of attachment to the panel skin. Fig. 6a; Eqs. (57,96,97)</td>
</tr>
<tr>
<td>6. Rolling instability</td>
<td>Same as "Panel instability", Type (a), except that strain energy of rings and work done by prebuckling compression along the ring centroidal axis are included in the buckling formula. Ring cross section does not deform as it twists about its line of attachment to the panel skin. (a) with smeared stringers Fig. 6a; Eqs. (57,96,97) (b) with smeared rings Fig. 6a; Eqs. (57,96,97)</td>
</tr>
<tr>
<td>7. Rolling of stringers, no buckling of skin</td>
<td>Stringer web cross section deforms but the flange cross section does not. Buckling mode has waves along stiffener axis. Fig. 6b; Eqs. (112,119)</td>
</tr>
<tr>
<td>8. Rolling of rings, no buckling of skin</td>
<td>Ring web cross section deforms but the flange cross section does not. Buckling mode has waves along the ring axis. This mode is sometimes called "frame tripping" by those interested in submarine structures. Fig. 6b; Eqs. (112,119)</td>
</tr>
<tr>
<td>9. Axisymmetric rolling of rings, no skin buckling</td>
<td>Same as "Rolling of rings", except that the buckling mode has zero waves around the circumference of the panel. Fig. 6c; Eqs. (112,119)</td>
</tr>
</tbody>
</table>
SAMPLE PANDA RUN STREAM: HYDROSTATICALLY COMPRESSED, UNSTIFFENED, TWO-LAYERED CYLINDRICAL SHELL...buckling and optimization

$ RUN BEGIN

(Provide initial design)

THE INPUT DATA PROVIDED BY YOU DURING EXECUTION
OF THIS PROGRAM ARE SAVED ON A PERMANENT FILE. PLEASE
PROVIDE THE NAME (9 CHARACTERS OR LESS AND ONE WORD) FOR THIS
FILE.

PERMANENT FILE NAME = SAMPLECYL.DAT

IS PART OR ALL OF THE INPUT FOR THIS CASE STORED ON
THIS FILE YET?
Y

PLEASE TYPE A SHORT TITLE ON THE NEXT LINE..
BUCKLING OF UNSTIFFENED CYLINDER WITH TWO LAYERS

DO YOU WANT MORE INFORMATION ABOUT PANDA (Y or N)
N
DO YOU WANT LONG PROMPTS?
N

IS THE PANEL FLAT (YES OR NO)...
N
AXIAL RESULTANT, NX =
IS THE AXIAL LOAD COMpressive...(Y or N)
Y
NX = -0.100E+04
IS NX OKAY...(Y or N)
Y
CIRCUMFERENTIAL RESULTANT, NY =
IS THE CIRCUMFERENTIAL LOAD COMpressive...(Y or N)
Y
NY = -0.200E+04
IS NY OKAY...(Y or N)
Y
IN-PLANE SHEAR RESULTANT, NXY =
NXY = 0.008E+00
IS NXY OKAY...(Y or N)
Y

DO YOU WANT TO READ VALUES FOR AXIAL RESULTANT AND
HOOP RESULTANT (NXFIXED, NYFIXED) WHICH ARE NOT BUCKLING
PARAMETERS BUT REPRESENT A FIXED PRESTRESSED STATE...
(THE USUAL ANSWER IS NO)
N

CYLINDRICAL PANEL RADIUS OF CURVATURE =
CYLINDRICAL PANEL RADIUS, R = 100.
Table 2a (continued)

IS THE PANEL RADIUS R OKAY...(Y or N)
Y
AXIAL LENGTH OF PANEL =
AXIAL LENGTH OF PANEL = 200.
IS THE AXIAL LENGTH OKAY...(Y or N)
Y
CIRCUMFERENTIAL LENGTH OF PANEL =
CIRCUMFERENTIAL LENGTH OF PANEL = 314.
IS THE CIRCUMFERENTIAL LENGTH OKAY...(Y or N)
Y
NUMBER OF LAYERS IN PANEL SKIN:
NUMBER OF LAYERS IN PANEL SKIN = 2
IS THE NUMBER OF LAYERS OKAY...(Y or N)
Y
PANEL SKIN LAYER THICKNESSES (INNER LAYER IS FIRST)

TLAYER(1) = ...
TLAYER(1) = 0.500
IS TLAYER(1) OKAY...(Y or N)
Y

TLAYER(2) = ...
TLAYER(2) = 0.500
IS TLAYER(2) OKAY...(Y or N)
Y

PANEL SKIN LAYER WINDING ANGLES (DEGREES)

ALPHA(1) = ...
ALPHA(1) = 0.000E+00
IS ALPHA(1) OKAY...(Y or N)
Y

ALPHA(2) = ...
ALPHA(2) = 0.800E+00
IS ALPHA(2) OKAY...(Y or N)
Y

PANEL SKIN LAYER MATERIAL TYPES (1, 2, 3, ...)

MATL(1) = ...
MATL(1) = 1
IS MATL(1) OKAY...(Y or N)
Y

MATL(2) = ...
MATL(2) = 2
IS MATL(2) OKAY...(Y or N)
Y

IS THE PANEL STIFFENED... (YES OR NO)
N
NEXT PROVIDE MATERIAL PROPERTIES...

NUMBER OF DIFFERENT MATERIALS SPECIFIED = 2

MATERIAL PROPERTIES FOR MATERIAL TYPE 1
MODULI E1, E2, AND G; POISSONS RATIO NU; AND DENSITY RHO ARE TO BE PROVIDED NOW FOR MATERIAL TYPE NO. 1

 MODULUS E1 IN MATL FIBER DIRECTION OR STIFFENER AXIS:
 MATERIAL TYPE 1 AND E1(1) = 0.100E+08
 IS THE MODULUS E1 OKAY...(Y or N)
 Y
 IS THIS MATERIAL ISOTROPIC?
 Y
 POISSONS RATIO NU:
 MATERIAL TYPE 1 AND NU(1) = 0.300
 IS POISSONS RATIO NU OKAY...
 Y
 WEIGHT DENSITY (e.g. LB/CUBIC INCH), RHO:
 MATERIAL TYPE 1 AND RHO(1) = 0.100
 IS THE DENSITY RHO OKAY...
 Y
 DO YOU WANT TO PROVIDE A STRESS-STRAIN CURVE FOR THIS MATERIAL...
 N
 FOR THIS MATERIAL YOU MAY SPECIFY EITHER A SINGLE MAXIMUM ALLOWABLE EFFECTIVE STRESS OR FIVE ULTIMATE STRAIN COMPONENTS.

 DO YOU WANT TO SPECIFY A SINGLE MAXIMUM ALLOWABLE EFFECTIVE STRESS...(Y or N)
 Y
 MAXIMUM ALLOWABLE EFFECTIVE STRESS:
 MATL TYPE 1. MAX EFFECTIVE STRESS = 0.500E+05
 IS THE MAXIMUM VALUE OF EFFECTIVE STRESS OKAY...
 Y

 DO YOU WANT ANOTHER CHANCE TO PROVIDE MATERIAL PROPERTIES FOR THIS MATERIAL TYPE...
 N

MATERIAL PROPERTIES FOR MATERIAL TYPE 2
MODULI E1, E2, AND G; POISSONS RATIO NU; AND DENSITY RHO ARE TO BE PROVIDED NOW FOR MATERIAL TYPE NO. 2

 MODULUS E1 IN MATL FIBER DIRECTION OR STIFFENER AXIS:
 MATERIAL TYPE 2 AND E1(2) = 0.200E+08
 IS THE MODULUS E1 OKAY...(Y or N)
 Y
 IS THIS MATERIAL ISOTROPIC?
 Y
 POISSONS RATIO NU:
 MATERIAL TYPE 2 AND NU(2) = 0.300
 IS POISSONS RATIO NU OKAY...
 Y
Table 2a (continued)

WEIGHT DENSITY (e.g. LB/CUBIC INCH), RHO =
MATERIAL TYPE 2 AND RHO(2) = 0.300
IS THE DENSITY RHO OKAY...
Y
DO YOU WANT TO PROVIDE A STRESS-STRAIN CURVE FOR THIS MATERIAL...

N
FOR THIS MATERIAL YOU MAY SPECIFY EITHER A SINGLE
MAXIMUM ALLOWABLE EFFECTIVE STRESS OR FIVE ULTIMATE
STRAIN COMPONENTS.

DO YOU WANT TO SPECIFY A SINGLE MAXIMUM ALLOWABLE
EFFECTIVE STRESS...(Y or N)
Y
MAXIMUM ALLOWABLE EFFECTIVE STRESS =
MATL TYPE 2. MAX EFFECTIVE STRESS = 8.100E+06
IS THE MAXIMUM VALUE OF EFFECTIVE STRESS OKAY...
Y
DO YOU WANT ANOTHER CHANCE TO PROVIDE MATERIAL
PROPERTIES FOR THIS MATERIAL TYPE..
N

IS THE RATIO PHI=(LOCAL/GENERAL) BUCKLING LOAD
DIFFERENT FROM UNITY...
N

WHEN YOUR TERMINAL SAYS

READY

PLEASE TYPE THE COMMAND

-DECIDE
RUN DECIDE
(tell PANDA to do a simple buckling analysis)

BUCKLING OF UNSTIFFENED CYLINDER WITH TWO LAYERS

INPUT DATA SUPPLIED INTERACTIVELY BY YOU IN THIS RUN
ARE STORED ON A PERMANENT FILE. WHAT IS THE NAME OF THIS FILE?
(9 CHARACTERS OR LESS. PLEASE, AND ONE WORD.)

PERMANENT FILE NAME :
PERMANENT FILE NAME :SAMPLEDEC.DAT

IS PART OR ALL OF THE INPUT FOR THIS CASE STORED ON
THIS FILE YET?

DO YOU WISH TO CHANGE THE TITLE OF THIS CASE...
N
DO YOU WANT MORE INFORMATION ON THIS PROGRAM?
N

DO YOU WISH TO CHANGE THE LOADS OR THE FACTOR PHI
N
DO YOU WANT TO MAKE THE PANEL FLAT...
N

YOU CAN DO TWO TYPES OF ANALYSIS WITH PANDA:

1. A BUCKLING ANALYSIS OF A FIXED DESIGN (NO OPTIMIZATION)
2. AN OPTIMIZATION ANALYSIS

DO YOU WANT TO DO A BUCKLING ANALYSIS OF A FIXED DESIGN?
Y

DO YOU WISH TO CHANGE SOME OF THE STRUCTURAL DIMENSIONS
OR WINDING ANGLES..
N

WHEN YOUR TERMINAL SAYS

READY

PLEASE TYPE THE COMMAND

-PANCON
$RUN PANCON

(Do simple buckling analysis)

BUCKLING OF UNSTIFFENED CYLINDER WITH TWO LAYERS

Do you want to see the wall stiffness matrices C(i,j) for the skin alone and for the panel with smeared stiffeners...

PANEL WEIGHT: 1.2560E+04
Do you wish to print out a summary of design information, ...
Y

BUCKLING OF UNSTIFFENED CYLINDER WITH TWO LAYERS

**
PANEL WEIGHT: 1.2560E+04
AXIAL LOAD/(LENGTH OF CIRCUMFERENCE), NX = -1.0000E+03
CIRC. LOAD/(LENGTH OF GENERATOR), NY = -2.0000E+03
IN-PLANE SHEAR STRESS RESULTANT, NXY = 2.2361E-02
FIXED AXIAL STRESS RESULTANT, NXFIXED = 0.0000E+00
FIXED CIRC. STRESS RESULTANT, NYFIXED = 0.0000E+00

DECISION VARIABLES FOLLOW...

(M=AXIAL, N=CIRC.) HALF-WAVES OVER ENTIRE PANEL (AXIAL,CIRC.)
GENERAL INSTABILITY EIGENVALUE(M,N) = 3.2383E+00(1, 6)
**

Do you want to print out more information about the current design...
N

Do you want to store output design information on a permanent file?
N
$ \textit{RUN DECIDE (choose decision variables for optimization analysis)}$

\textbf{BUCKLING OF UNSTIFFENED CYLINDER WITH TWO LAYERS}

\textbf{INPUT DATA SUPPLIED INTERACTIVELY BY YOU IN THIS RUN ARE STORED ON A PERMANENT FILE. WHAT IS THE NAME OF THIS FILE? (9 CHARACTERS OR LESS, PLEASE, AND ONE WORD.)}

\textbf{PERMANENT FILE NAME: \textit{SampleDc2.Dat}}

\textbf{IS PAR1 OR ALL OF THE INPUT FOR THIS CASE STORED ON THIS FILE YET?}
\textbf{Y}

\textbf{DO YOU WISH TO CHANGE THE TITLE OF THIS CASE...}
\textbf{Y}

\textbf{TYPE A NEW TITLE...}
\textbf{OPTIMIZATION OF UNSTIFFENED CYLINDER OF TWO LAYERS}

\textbf{DO YOU WANT MORE INFORMATION ON THIS PROGRAM?}
\textbf{N}

\textbf{DO YOU WISH TO CHANGE THE LOADS OR THE FACTOR PHI}
\textbf{N}

\textbf{DO YOU WANT TO MAKE THE PANEL FLAT...}
\textbf{N}

\textbf{YOU CAN DO TWO TYPES OF ANALYSIS WITH PANDA:}
\begin{itemize}
 \item 1. \textit{A BUCKLING ANALYSIS OF A FIXED DESIGN (NO OPTIMIZATION)}
 \item 2. \textit{AN OPTIMIZATION ANALYSIS}
\end{itemize}

\textbf{DO YOU WANT TO DO A BUCKLING ANALYSIS OF A FIXED DESIGN?}
\textbf{N}

\textbf{DO YOU WISH TO CHANGE SOME OF THE STRUCTURAL DIMENSIONS OR WINDING ANGLES.}
\textbf{N}

\textbf{NOTE... DEFAULT VALUES FOR LOWER AND UPPER BOUNDS OF A DECISION VARIABLE X ARE...}
\begin{align*}
 \text{LOWER BOUND} &= \frac{X}{100} \\
 \text{UPPER BOUND} &= X \times 100
\end{align*}

\textbf{IN WHICH X IS THE CURRENT VALUE OF THE DECISION VARIABLE.}

\textbf{ARE ANY OF THE SHELL WALL LAYER THICKNESSES DECISION VARIABLES...}
\textbf{Y}
DO YOU WANT TO USE DEFAULT VALUES FOR LOWER AND UPPER BOUNDS OF SHELL WALL LAYER THICKNESSES...

Y

IS THE THICKNESS OF LAYER NO. 1 A DECISION VARIABLE.

Y

(LOWER,UPPER) BOUNDS FOR THICKNESS OF LAYER NO. 1 =
(5.000E-03 , 5.000E+01)

IS THE THICKNESS OF LAYER NO. 2 A DECISION VARIABLE.

Y

(LOWER,UPPER) BOUNDS FOR THICKNESS OF LAYER NO. 2 =
(5.000E-03 , 5.000E+01)

ARE ANY OF THE LAYER WINDING ANGLES DECISION VARIABLES

N

WHEN YOUR TERMINAL SAYS

READY

PLEASE TYPE THE COMMAND

-PANCON
RUN PANCON (Perform the optimization analysis)

OPTIMIZATION OF UNSTIFFENED CYLINDER OF TWO LAYERS

PANEL WEIGHT: 1.2560E+04
PANEL WEIGHT: 8.3906E+03
PANEL WEIGHT: 6.5349E+03
PANEL WEIGHT: 5.7286E+03
PANEL WEIGHT: 5.2393E+03
PANEL WEIGHT: 4.9426E+03

DO YOU WISH TO PRINT OUT A SUMMARY OF DESIGN INFORMATION...

N

DO YOU WISH TO DO MORE ITERATIONS WITH THE SAME DECISION VARIABLES...

Y

PANEL WEIGHT: 4.9426E+03
PANEL WEIGHT: 4.7624E+03
PANEL WEIGHT: 4.6767E+03
PANEL WEIGHT: 4.6272E+03
PANEL WEIGHT: 4.5963E+03
PANEL WEIGHT: 4.5734E+03

DO YOU WISH TO PRINT OUT A SUMMARY OF DESIGN INFORMATION...

N

127
DO YOU WISH TO DO MORE ITERATIONS WITH THE SAME DECISION VARIABLES...
Y

PANEL WEIGHT: 4.5734E+03
PANEL WEIGHT: 4.5581E+03
PANEL WEIGHT: 4.5464E+03
PANEL WEIGHT: 4.5492E+03
PANEL WEIGHT: 4.5414E+03
PANEL WEIGHT: 4.5362E+03
DO YOU WISH TO PRINT OUT A SUMMARY OF DESIGN INFORMATION...
Y

OPTIMIZATION OF UNSTIFFENED CYLINDER OF TWO LAYERS

* *

PANEL WEIGHT = 4.5362E+03

AXIAL LOAD/(LENGTH OF CIRCUMFERENCE), NX = -1.0000E+03
CIRC. LOAD/(LENGTH OF GENERATOR), NY = -2.0000E+03
IN-PLANE SHEAR STRESS RESULTANT, NXY = 2.2361E-02

FIXED AXIAL STRESS RESULTANT, NXFIXED = 0.0000E+00
FIXED CIRC. STRESS RESULTANT, NYFIXED = 0.0000E+00

DECISION VARIABLES FOLLOW...
THICKNESS OF PANEL SKIN LAYER NO. 1 = 6.8305E-01
THICKNESS OF PANEL SKIN LAYER NO. 2 = 1.3092E-02

(M=AXIAL, N=CIRC.) HALFWAVES OVER ENTIRE PANEL (AXIAL,CIRC.)
GENERAL INSTABILITY EIGENVALUE(M,N)= 9.9974E-01(1, 7)

* *

DO YOU WISH TO DO MORE ITERATIONS WITH THE SAME DECISION VARIABLES...
N
DO YOU WANT TO PRINT OUT MORE INFORMATION ABOUT THE CURRENT DESIGN...

Y

OPTIMIZATION OF UNSTIFFENED CYLINDER OF TWO LAYERS

CURRENT DESIGN FOLLOWS....

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PANEL RADIUS OF CURVATURE</td>
<td>1.000E+02</td>
</tr>
<tr>
<td>PANEL AXIAL, CIRC. LENGTHS</td>
<td>2.000E+02, 3.10E+02</td>
</tr>
<tr>
<td>PANEL AXIAL PRESTRESS, NXP</td>
<td>0.000E+00 (NOT AN EIGENPARAM)</td>
</tr>
<tr>
<td>PANEL CIRC. PRESTRESS, NYP</td>
<td>0.000E+00 (NOT AN EIGENPARAM)</td>
</tr>
<tr>
<td>PANEL TOTAL THICKNESS</td>
<td>6.961E-01</td>
</tr>
<tr>
<td>PANEL LAYER THICKNESSES</td>
<td>6.031E-01, 1.30E-02</td>
</tr>
<tr>
<td>PANEL LAYER WINDING ANGLES</td>
<td>0.000E+00, 0.000E+00</td>
</tr>
<tr>
<td>PANEL LAYER MATERIAL TYPES</td>
<td>1, 2</td>
</tr>
<tr>
<td>MODULI (E1, E2, G) OF MATL 1</td>
<td>1.000E+07, 1.000E+07, 3.84E+06</td>
</tr>
<tr>
<td>POISSON RAT., DENSITY MATL 1</td>
<td>3.000E-01</td>
</tr>
<tr>
<td>MODULI (E1, E2, G) OF MATL 2</td>
<td>2.000E+07, 2.000E+07, 7.69E+06</td>
</tr>
<tr>
<td>POISSON RAT., DENSITY MATL 2</td>
<td>3.000E-01</td>
</tr>
</tbody>
</table>

THE TOTAL PANEL WEIGHT = 4.536E+03
THE PANEL SKIN WEIGHT = 4.536E+03
THE TOTAL STIFFENER WEIGHT = 0.000E+00

GENERAL INSTABILITY QUANTITIES (STIFFENERS Smeared Out)...

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AXIAL STRESS RESULTANT, NX</td>
<td>-1.000E+03 (AN EIGENPARAMETER)</td>
</tr>
<tr>
<td>CIRC. STRESS RESULTANT, NY</td>
<td>-2.000E+03 (AN EIGENPARAMETER)</td>
</tr>
<tr>
<td>SHEAR STRESS RESULTANT, NXY</td>
<td>2.236E-02 (AN EIGENPARAMETER)</td>
</tr>
<tr>
<td>AXIAL HALF WAVES OVER PANEL</td>
<td>1</td>
</tr>
<tr>
<td>CIRC. HALF WAVES OVER PANEL</td>
<td>7</td>
</tr>
<tr>
<td>SLOPE OF BUCKLING NODAL LINES</td>
<td>0.000E+00</td>
</tr>
<tr>
<td>GENERAL INSTABILITY MULTIPLIER</td>
<td>9.997E-01 (EIGENVALUE)</td>
</tr>
</tbody>
</table>

AVERAGE AXIAL STRAIN = -5.640E-05
AVERAGE MIDBAY HOOP STRAIN = -2.397E-04
AVERAGE SHEAR STRAIN = 8.197E-09
FIBER STRAINS AT EACH LAYER CENTER:
-5.640E-05, -5.640E-05
STRAINS NORMAL TO FIBERS IN LAYERS:
-2.397E-04, -2.397E-04
SHEAR STRAINS IN MATERIAL COORDS :
8.133E-09, 8.133E-09
EFFECTIVE STRAINS AT LAYER CENTERS:
2.117E-04, 2.117E-04

DO YOU WANT TO STORE OUTPUT DESIGN INFORMATION ON A PERMANENT FILE?

Y

NAME OF PERMANENT FILE (9 CHAR. OR LESS):
PERMANENT FILE NAME: OPTIMUMCYL.DAT

DO YOU WANT TO PRINT OUT A SUMMARY OF DESIGN INFORMATION...
DO YOU WANT TO PRINT OUT MORE INFORMATION ABOUT THE CURRENT DESIGN...

Y

(Because the previous two questions were answered "YES" (Y), the file "OPTMUMCYL.DAT" will contain the same information that is printed after the last set of design iterations. In interactive runs this design information is presented on the terminal only. If the user wants to obtain a "hard" copy he must answer "Y" to these last two questions. He can then print out the file "OPTMUMCYL.DAT" on any device he chooses.)
Table 2b

LIST OF USER-PROVIDED RESPONSES TO QUESTIONS ASKED IN "BEGIN"

(The following constitutes the file "SAMPLECYL.DAT" which can be edited if the user wishes to modify the case without having to answer all of the questions in BEGIN again.)

BUCKLING OF UNSTIFFENED CYLINDER WITH TWO LAYERS

N WANT MORE INFORMATION?
N WANT LONG PROMPTS?
N IS PANEL FLAT?
0.100E+04 AXIAL STRESS RESULTANT
Y IS NX COMPRESSION?
Y IS PREVIOUS NUMERICAL ENTRY OK?
0.200E+04 CIRCUMFERENTIAL STRESS RESULTANT
Y IS NY COMPRESSION?
Y IS PREVIOUS NUMERICAL ENTRY OK?
0.000E+00 IN-PLANE SHEAR STRESS RESULTANT
Y IS PREVIOUS NUMERICAL ENTRY OK?
N WANT TO INPUT NXFIXED, NYFIXED?
100. CYLINDER RADIUS
Y IS PREVIOUS NUMERICAL ENTRY OK?
200. AXIAL LENGTH OF PANEL
Y IS PREVIOUS NUMERICAL ENTRY OK?
314. CIRCUMFERENTIAL LENGTH OF PANEL
Y IS PREVIOUS NUMERICAL ENTRY OK?
2 NUMBER OF LAYERS IN PANEL SKIN
Y IS PREVIOUS NUMERICAL ENTRY OK?
0.500 TLAYER
Y IS PREVIOUS NUMERICAL ENTRY OK?
0.500 TLAYER
Y IS PREVIOUS NUMERICAL ENTRY OK?
0.000E+00 ALPHA
Y IS PREVIOUS NUMERICAL ENTRY OK?
0.000E+00 ALPHA
Y IS PREVIOUS NUMERICAL ENTRY OK?
1 Y IS PREVIOUS NUMERICAL ENTRY OK?
MATL
Y IS PREVIOUS NUMERICAL ENTRY OK?
2 Y IS PREVIOUS NUMERICAL ENTRY OK?
MATL
N IS THE PANEL STIFFENED?
0.100E+08 MODULUS IN FIBER DIRECTION
Y IS PREVIOUS NUMERICAL ENTRY OK?
Y IS THIS MATERIAL ISOTROPIC?
0.300 POISSONS RATIO
Y IS PREVIOUS NUMERICAL ENTRY OK?
0.100 WEIGHT DENSITY
Y IS PREVIOUS NUMERICAL ENTRY OK?
N WANT TO INPUT STRESS-STRAIN?
Y WANT TO INPUT EFFECTIVE STRESS?
0.500E+05 MAXIMUM EFFECTIVE STRESS
Table 2b (continued)

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulus in fiber direction</td>
<td>0.200×10^8</td>
<td>Y is previous numerical entry OK?</td>
</tr>
<tr>
<td>Material isotropic</td>
<td>Y</td>
<td>Y is this material isotropic?</td>
</tr>
<tr>
<td>Poisson's ratio</td>
<td>0.300</td>
<td>Y is previous numerical entry OK?</td>
</tr>
<tr>
<td>Weight density</td>
<td>0.300</td>
<td>Y is previous numerical entry OK?</td>
</tr>
<tr>
<td>Maximum effective stress</td>
<td>0.100×10^6</td>
<td>Y is previous numerical entry OK?</td>
</tr>
<tr>
<td>Material properties again</td>
<td>N</td>
<td>N is local/general not unity?</td>
</tr>
<tr>
<td>Stress-strain</td>
<td>N</td>
<td>N want to input stress-strain?</td>
</tr>
<tr>
<td>Effective stress</td>
<td>Y</td>
<td>Y want to input effective stress?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Response</th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>CHANGE TITLE?</td>
</tr>
<tr>
<td>N</td>
<td>WANT MORE INFORMATION?</td>
</tr>
<tr>
<td>N</td>
<td>CHANGE LOADING?</td>
</tr>
<tr>
<td>N</td>
<td>MAKE PANEL FLAT OR CURVED?</td>
</tr>
<tr>
<td>Y</td>
<td>DO BUCKLING ONLY?</td>
</tr>
<tr>
<td>N</td>
<td>CHANGE DIMENSIONS?</td>
</tr>
</tbody>
</table>

(The following constitutes the file "SAMPLEDEC.DAT", which can be edited if the user wishes to modify the case without having to answer all of the questions in DECIDE again.)
Table 2d

LIST OF USER-PROVIDED RESPONSES TO QUESTIONS ASKED IN "DECIDE"

(The following constitutes the file "SAMPLEDC2.DAT", which can be edited if the user wishes to modify the case without having to answer all of the questions in DECIDE again.)

Y CHANGE TITLE?
N WANT MORE INFORMATION?
N CHANGE LOADING?
N MAKE PANEL FLAT OR CURVED?
N DO BUCKLING ONLY?
N CHANGE DIMENSIONS?
Y ANY $t(i)$ DECISION VARIABLES?
Y WANT DEFAULT BOUNDS ON $t(i)$?
Y IS $t(i)$ A DECISION VARIABLE?
Y IS $\phi(i)$ A DECISION VARIABLE?
N ANY $\phi(i)$ DECISION VAR.?
Table 3 Buckling of Monocoque Cylindrical Panels under Pure Shear

<table>
<thead>
<tr>
<th>Case</th>
<th>(z = \frac{a^2(1-\nu^2)^{1/2}}{R t}) (t = 1.0)</th>
<th>R</th>
<th>a/b</th>
<th>([k_x^o]^*)</th>
<th>(k_s = N_{xy}^c \frac{a^212(1-\nu^2)}{\pi^2Et^3})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>----</td>
<td>-----</td>
<td>----------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>100</td>
<td>0.187</td>
<td>0</td>
<td>8.15 (1,7,(d=1.47)) 7.90</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>100</td>
<td>0.187</td>
<td>0</td>
<td>29.41 (1,17,(d=2.11)) 29.01</td>
</tr>
<tr>
<td>3</td>
<td>1000</td>
<td>2000</td>
<td>0.187</td>
<td>0</td>
<td>159.8 (1,36,(d=3.65)) 162.00</td>
</tr>
<tr>
<td>4</td>
<td>2000</td>
<td>2000</td>
<td>0.187</td>
<td>0</td>
<td>268.9 (1,43,(d=4.38)) 266.00</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>100</td>
<td>1.000</td>
<td>0</td>
<td>29.22 (1,3,(d=2.114)) 34.73</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>100</td>
<td>5.000</td>
<td>0</td>
<td>163.93 (4,1,(c=0.681)) 148.30</td>
</tr>
<tr>
<td>7</td>
<td>100</td>
<td>100</td>
<td>10.00</td>
<td>0</td>
<td>577.8 (8,1,(c=0.681)) 564.90</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
<td>2000</td>
<td>10.00</td>
<td>0</td>
<td>950.9 (4,1,(c=0.981)) 700.00</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>100</td>
<td>0.667</td>
<td>-1.8</td>
<td>2.0045 (1,1,(d=2.537)) 2.956</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>100</td>
<td>0.667</td>
<td>+1.8</td>
<td>8.0853 (1,2,(d=1.468)) 9.572</td>
</tr>
</tbody>
</table>

* \(k_x^o = N_{XPREF} \frac{a^2 12 (1-\nu^2)}{\pi^2 ET^3} \)
Table 4 Buckling Predictions with PANDA and STAGSC-1 for Complete Cylindrical Shells and Cylindrical Panels under Pure Shear

<table>
<thead>
<tr>
<th>Case</th>
<th>Case Description</th>
<th>Buckling Load Factors, λ from PANDA</th>
<th>Buckling Load Factors, λ from STAGSC-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Unstiffened, composite cylinder with unbalanced laminate, 3 layers, with (+60°, 0,-60°) windings (see Fig. 15) $N_{xy}^0 = \pm 1.0$</td>
<td>Positive N_{xy}: $156.7(1,8,3.05)^a$</td>
<td>$160.5 (1,8,-)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Negative N_{xy}: $234.2(1,9,-2.11)$</td>
<td>$222.2 (1,8,-)$</td>
</tr>
<tr>
<td>2</td>
<td>Ring and stringer-stiffened cylindrical shell analyzed by Simitses and Giri (Ref. [63], Fig. 20). Design load, $N_{xy}^0 = 418.5$ lb/in.</td>
<td>General instability: $4.74(1,11,7.57)$</td>
<td>$4.61 (-,10,-)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Local skin buckling: $1.41(1,6,1.47)$</td>
<td>Not calculated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Between rings, smeared stringers: $1550.3(1,919,25.0)$</td>
<td>Not calculated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Between stringers, smeared rings: $1.144(24,1,0.394)$</td>
<td>$1.096 (25,2,-)$</td>
</tr>
<tr>
<td>3</td>
<td>Shallow panel with J-stringers; design load, $N_{xy}^0 = 1500$ lb/in. (see Fig. 21)</td>
<td>General instability, smeared stringers: $1.120(1,3,5.26)$</td>
<td>$1.00 (1,3,-)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>General instability, discrete stringers: Not calculated</td>
<td>$0.684 (1,3,-)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Local skin buckling: $1.177(3,1,0.681)$</td>
<td>Not calculated</td>
</tr>
</tbody>
</table>

a Numbers in parentheses are: axial half-waves, circumferential (full waves if complete cyl.), half-waves if panel slope of buckling mode nodal lines.)

136
Table 5 Comparison of PANDA Buckling Load Predictions with Those of Other Analyses for an Axially-Compressed Cylinder with Smeared Rings and Stringers (Fig. 23)

<table>
<thead>
<tr>
<th>Case</th>
<th>Position of Stiffeners</th>
<th>NORMALIZED BUCKLING LOAD, (\frac{N_x}{E\tilde{t}})^a</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PANDA</td>
</tr>
<tr>
<td>1</td>
<td>Rings External Strings External</td>
<td>0.004225(2,8)(^b)</td>
</tr>
<tr>
<td>2</td>
<td>Rings Internal Strings External</td>
<td>0.003544(3,8)</td>
</tr>
<tr>
<td>3</td>
<td>Rings External Strings Internal</td>
<td>0.003025(3,8)</td>
</tr>
<tr>
<td>4</td>
<td>Rings Internal Strings Internal</td>
<td>0.002729(3,8)</td>
</tr>
</tbody>
</table>

^a\(\tilde{t} = \frac{t_{\text{shell}} + (\text{Area}_{\text{stringer}}/\text{stringer})}{0.244}\) in.

^b Numbers in parentheses are (axial half-waves, circumferential full waves) over cylinder.
Table 6 Buckling Load Factors for Axially-Compressed, Blade-Stiffened Composite Plate with Length $a = 76$ cm and $N_x^O = 15730$ N/m (Geometry and Material Properties Shown in Fig. 25)

<table>
<thead>
<tr>
<th>Type of Buckling</th>
<th>Buckling Load Factor</th>
<th>Axial Half-Waves</th>
<th>Governing Equations</th>
<th>Is a Point Plotted in Fig. 25?</th>
</tr>
</thead>
<tbody>
<tr>
<td>General instability</td>
<td>1.332</td>
<td>1</td>
<td>57 (smeared stringer)</td>
<td>Yes</td>
</tr>
<tr>
<td>Local skin buckling</td>
<td>1.135</td>
<td>7</td>
<td>57 (no stiffeners)</td>
<td>Yes</td>
</tr>
<tr>
<td>Buckling of stringer seg. 1</td>
<td>1.207</td>
<td>7</td>
<td>79</td>
<td>No</td>
</tr>
<tr>
<td>Local rolling with skin</td>
<td>1.029</td>
<td>5</td>
<td>57 (with 96 and 97)</td>
<td>Yes</td>
</tr>
<tr>
<td>buckling between stringers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rolling of stringers, no skin buckling</td>
<td>1.834</td>
<td>6</td>
<td>112</td>
<td>No</td>
</tr>
</tbody>
</table>
Table 7 Buckling Load Factors for Externally-Pressurized, Ring-Stiffened Cylinder with Length 100 in., $N_x^0 = 0$, $N_y^0 = 5.218$ lb/in. (Geometry Shown in Fig. 26)

<table>
<thead>
<tr>
<th>Type of Buckling</th>
<th>Buckling Load Factor</th>
<th>Circ. Full Waves</th>
<th>Governing Equations</th>
<th>Is a Point Plotted in Fig. 26?</th>
</tr>
</thead>
<tbody>
<tr>
<td>General instability</td>
<td>438</td>
<td>2</td>
<td>57 (smeared rings)</td>
<td>Yes</td>
</tr>
<tr>
<td>Local skin buckling</td>
<td>246000</td>
<td>36</td>
<td>57 (no rings)</td>
<td>No</td>
</tr>
<tr>
<td>Buckling of ring seg. 1</td>
<td>2920</td>
<td>48</td>
<td>71 (web buckling)</td>
<td>No</td>
</tr>
<tr>
<td>Buckling of ring seg. 2</td>
<td>17605</td>
<td>48</td>
<td>79 (flange buckling)</td>
<td>No</td>
</tr>
<tr>
<td>Buckling of ring seg. 3</td>
<td>17605</td>
<td>48</td>
<td>79 (flange buckling)</td>
<td>No</td>
</tr>
<tr>
<td>Local rolling with skin buckling between rings</td>
<td>159490</td>
<td>36</td>
<td>57 (with 96 and 97)</td>
<td>No</td>
</tr>
<tr>
<td>Rolling of rings, no skin buckling</td>
<td>1826</td>
<td>10</td>
<td>112 (web), 119 (flange)</td>
<td>Yes</td>
</tr>
<tr>
<td>Axisymmetric rolling of rings, no skin buckling</td>
<td>4819</td>
<td>0</td>
<td>112 and 119, $n = 0$</td>
<td>No</td>
</tr>
</tbody>
</table>
Table 8 Buckling Load Factors for Hydrostatically-Compressed, Ring-Stiffened Cylinder with Length = 23.2 in., $N_x^o = 10.21$, $N_y^o = 20.42$ lb/in. (Geometry Shown in Fig. 27)

<table>
<thead>
<tr>
<th>Type of Buckling</th>
<th>Buckling Load Factor</th>
<th>Circ. Full Waves</th>
<th>Governing Equations</th>
<th>Is a Point Plotted in Fig. 27?</th>
</tr>
</thead>
<tbody>
<tr>
<td>General instability</td>
<td>14638</td>
<td>3</td>
<td>57 (smeared rings)</td>
<td>No</td>
</tr>
<tr>
<td>Local skin buckling</td>
<td>12023</td>
<td>9</td>
<td>57 (no rings)</td>
<td>No</td>
</tr>
<tr>
<td>Buckling of ring seg. 1</td>
<td>4747</td>
<td>17</td>
<td>71 (web buckling)</td>
<td>Yes</td>
</tr>
<tr>
<td>Buckling of ring seg. 2</td>
<td>46671</td>
<td>17</td>
<td>79 (flange buckling)</td>
<td>No</td>
</tr>
<tr>
<td>Buckling of ring seg. 3</td>
<td>46671</td>
<td>17</td>
<td>79 (flange buckling)</td>
<td>No</td>
</tr>
<tr>
<td>Local rolling with skin buckling between rings</td>
<td>10852</td>
<td>5</td>
<td>57 (with 96 and 97)</td>
<td>No</td>
</tr>
<tr>
<td>Rolling of rings, no skin buckling</td>
<td>3217</td>
<td>1</td>
<td>112 (web), 119 (flange)</td>
<td>Yes</td>
</tr>
<tr>
<td>Axisymmetric rolling of rings, no skin buckling</td>
<td>3179</td>
<td>0</td>
<td>112 (web), 119 (flange)</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 9 Buckling Load Factors for Externally-Pressurized, Ring-Stiffened Cylinder with
Radius = 100 in., Thickness = 1.0 in., Length = 200 in., \(V_x^0 = 0 \), \(K_y^0 = 160 \)
1b/in. (Geometry Shown in Fig. 28)

<table>
<thead>
<tr>
<th>Type of Buckling</th>
<th>Buckling Load Factor</th>
<th>Circ. Full Waves</th>
<th>Governing Equations</th>
<th>Is a Point Plotted in Fig. 28?</th>
</tr>
</thead>
<tbody>
<tr>
<td>General instability</td>
<td>949</td>
<td>3</td>
<td>57 (smeared rings)</td>
<td>Yes</td>
</tr>
<tr>
<td>Local skin buckling</td>
<td>738</td>
<td>16</td>
<td>57 (no rings)</td>
<td>Yes</td>
</tr>
<tr>
<td>Buckling of ring seg. 1</td>
<td>1113</td>
<td>36</td>
<td>71 (web buckling)</td>
<td>No</td>
</tr>
<tr>
<td>Buckling of ring seg. 2</td>
<td>3645</td>
<td>39</td>
<td>79 (flange buckling)</td>
<td>No</td>
</tr>
<tr>
<td>Buckling of ring seg. 3</td>
<td>3645</td>
<td>39</td>
<td>79 (flange buckling)</td>
<td>No</td>
</tr>
<tr>
<td>Local rolling with skin buckling between rings</td>
<td>767</td>
<td>15</td>
<td>11 (with 96 and 97)</td>
<td>Yes</td>
</tr>
<tr>
<td>Rolling of rings, no skin buckling</td>
<td>811</td>
<td>6</td>
<td>112 (web), 119 (flange)</td>
<td>Yes</td>
</tr>
<tr>
<td>Axisymmetric rolling of rings, no skin buckling</td>
<td>1320</td>
<td>0</td>
<td>112 (web), 119 (flange)</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 10 Buckling Load Factors for Axially-Compressed Ring and Stringer-Stiffened Cylindrical Shell with $N_x = 1.0 \text{ lb/in.}, N_y = 0$ (Geometry Shown in Figure 9)

<table>
<thead>
<tr>
<th>Type of Buckling</th>
<th>Buckling Load Factor</th>
<th>Axial Half-Waves</th>
<th>Circ. Full Waves</th>
<th>STAGSC-1 Buckling Load Predictions (See Fig. 29)</th>
</tr>
</thead>
<tbody>
<tr>
<td>General instability</td>
<td>105600</td>
<td>8</td>
<td>1</td>
<td>106200</td>
</tr>
<tr>
<td>Local skin buckling</td>
<td>58149</td>
<td>21</td>
<td>59</td>
<td>Not calculated</td>
</tr>
<tr>
<td>Buckling between rings with smeared stringers</td>
<td>67083</td>
<td>7</td>
<td>24</td>
<td>Not calculated</td>
</tr>
<tr>
<td>Buckling between stringers with smeared rings</td>
<td>507420</td>
<td>92</td>
<td>59</td>
<td>Not calculated</td>
</tr>
<tr>
<td>Buckling of stringer seg. 1</td>
<td>331940</td>
<td>21</td>
<td></td>
<td>Not calculated</td>
</tr>
<tr>
<td>Local rolling with skin buckling between stiffeners</td>
<td>70919</td>
<td>21</td>
<td>59</td>
<td>70000</td>
</tr>
<tr>
<td>Rolling of stringers, no skin buckling</td>
<td>995440</td>
<td>84</td>
<td></td>
<td>Not calculated</td>
</tr>
<tr>
<td>Axisymmetric rolling of rings, no skin buckling</td>
<td>10899000</td>
<td>0</td>
<td>0</td>
<td>Not calculated</td>
</tr>
<tr>
<td>Rolling mode with smeared stringers</td>
<td>68015</td>
<td>7</td>
<td>24</td>
<td>66000</td>
</tr>
<tr>
<td>Rolling mode with smeared rings</td>
<td>509270</td>
<td>92</td>
<td>59</td>
<td>Not calculated</td>
</tr>
</tbody>
</table>
Table 1: Main Results of Plastic Buckling of an Axially Compressed Ring and Stiffened Cylindrical Shell (84/19) (M=AXIAL, N=CIRC.) HALF-WAVES OVER ENTIRE PANEL (AXIAL,CIRC.)

<table>
<thead>
<tr>
<th>Description</th>
<th>General Instability Eigenvalue (M,N)</th>
<th>Local Skin (Buckling/Phi) (M,N)</th>
<th>Buckling Between Rings with Smeared Strings=</th>
<th>Buckling Between Strings with Smeared Rings=</th>
<th>Buckling/Phi (M) of Stringer Segment No. 1=</th>
<th>Local Rolling with Skin Buckling Between Stif=</th>
<th>Axisymmetric Rolling of Strings (M,0), No Skin Buckling=</th>
<th>Buckling/Rolling Mode with Smeared Strings=</th>
<th>Buckling/Rolling Mode with Smeared Rings=</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Instability Eigenvalue (M,N)</td>
<td>2.4278E+00 (8, 1)</td>
<td>1.7678E+00 (21, 59)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local Skin (Buckling/Phi) (M,N)</td>
<td>1.3280E-01 (16, 1)</td>
<td>7.3740E-01 (35, 59)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buckling Between Strings with Smeared Strings=</td>
<td>6.4200E-01 (15, 1)</td>
<td>1.3217E+00 (28, 59)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buckling Between Rings with Smeared Strings=</td>
<td>5.6807E-01 (8, 1)</td>
<td>1.4470E+00 (21, 59)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Axisymmetric Rolling of Rings, No Skin Buckling=</td>
<td>1.0983E+00 (169, 0)</td>
<td>9.4625E+00 (169, 0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buckling/Rolling Mode with Smeared Strings=</td>
<td>7.9054E+00 (21)</td>
<td>1.2673E+00 (92, 59)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buckling/Rolling Mode with Smeared Strings=</td>
<td>7.9054E+00 (21)</td>
<td>1.2673E+00 (92, 59)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Axisymmetric Rolling of Rings, No Skin Buckling=</td>
<td>6.3205E+00 (147, 59)</td>
<td>6.1224E+00 (147, 59)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Axisymmetric Rolling of Rings, No Skin Buckling=</td>
<td>6.3205E+00 (147, 59)</td>
<td>6.1224E+00 (147, 59)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: (i) | (ii) | (iii) | (iv) | (v)
Table 12 Comparison of Optimum Designs Obtained from PANDA and from the Analysis of Ref. [14]
for a Hydrostatically Compressed Ring and Stringer Stiffened Cylindrical Shell

<table>
<thead>
<tr>
<th></th>
<th>FROM PANDA</th>
<th>FROM REF. [14]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PANEL WEIGHT (180° OF CYLINDER)</td>
<td>2.1738E+02</td>
<td>2.2821E+02</td>
</tr>
<tr>
<td>DESIGN VARIABLES FOR ITERATION NUMBER FOLLOW...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THICKNESS OF PANEL SKIN LAYER NO. 1 =</td>
<td>5.0000E-02</td>
<td>5.0000E-02</td>
</tr>
<tr>
<td>STRINGER SPACING, B =</td>
<td>6.1548E-01</td>
<td>7.4000E-01</td>
</tr>
<tr>
<td>THICKNESS OF STRINGER SEGMENT NO. 1 =</td>
<td>2.1020E-02</td>
<td>4.6000E-02</td>
</tr>
<tr>
<td>WIDTH, BS(1), OF STRINGER SEGMENT 1 =</td>
<td>2.9850E-01</td>
<td>2.4000E-01</td>
</tr>
<tr>
<td>RING SPACING, A =</td>
<td>2.2078E+00</td>
<td>2.5000E+00</td>
</tr>
<tr>
<td>THICKNESS OF RING SEGMENT NO. 1 =</td>
<td>1.0000E-01</td>
<td>1.1600E-01</td>
</tr>
<tr>
<td>WIDTH, BR(1), OF RING SEGMENT 1 =</td>
<td>1.5001E+00</td>
<td>1.5000E+00</td>
</tr>
</tbody>
</table>

(M=AXIAL, N=CIRC.) HALF-WAVES OVER ENTIRE PANEL (AXIAL,CIRC.)

GENERAL INSTABILITY EIGENVALUE(M,N) =	9.9682E-01(1, 5)	9.8094E-01(12, 8)
LOCAL SKIN (BUCKLING/PHI) (M,N) =	2.7118E+00(40, 306)	1.9298E+00(36, 254)
BUCKLING BETWEEN RINGS WITH SMEARED STRINGRS=	2.1990E+00(40, 186)	1.7535E+00(36, 154)
BUCKLING BETWEEN STRINGRS WITH SMEARED RINGS=	3.9201E+02(1209, 306)	2.9303E+02(1012, 254)
BUCKLING/PHI (M) OF STRINGER SEGMENT NO. 1 =	1.4405E+00(40)	1.1292E+01(36)
BUCKLING/PHI (N) OF RING SEGMENT NO. 1 =	1.4422E+01(306)	1.3945E+01(254)
LOCAL ROLLING WITH SKIN BUCKLING BETWN STIF=	9.5930E+00(40, 306)	8.3512E+00(36, 254)
ROLLING OF STRINGERS(M,0), NO SKIN BUCKLING=	4.3647E+00(186, 0)	3.4900E+01(226, 0)
ROLLING OF RINGS (0,N), NO SKIN BUCKLING=	3.0671E+00(0, 76)	4.1577E+00(0, 76)
AXISYMMETRIC ROLLING OF RINGS, NO SKIN BUCK=	7.1292E+01(0, 0)	9.6649E+01(0, 0)
BUCKLING(ROLLING) MODE WITH SMEARED STRINGRS=	2.6909E+00(40, 101)	2.4717E+00(36, 79)
BUCKLING(ROLLING) MODE WITH SMEARED RINGS =	3.6137E+02(1209, 306)	2.8657E+02(911, 254)
Table 13 Comparison of Optimum Designs Obtained from PANDA and from the Analysis of Ref. [33] for an Axially Compressed Ring and Stringer Stiffened Cylindrical Shell

<table>
<thead>
<tr>
<th>CYLINDER RADIUS, R = 95.5 in.; CYLINDER LENGTH, L = 291 in.; AXIAL RESULTANT, N_x = -800 lb/in.; YOUNG'S MODULUS, E = 10.5 x 10^6 psi; POISSON'S RATIO, NU = 0.33; DENSITY = 0.101 lb/in^3; MINIMUM GAUGE OF ANY THICKNESS = 0.02 in. BOTH STRINGERS AND RINGS INTERNAL AND OF RECTANGULAR CROSS SECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPTIMUM DESIGN AND BUCKLING LOAD FACTORS AND MODES:</td>
</tr>
<tr>
<td>PANEL WEIGHT (180° OF CYLINDER) =</td>
</tr>
<tr>
<td>DESIGN VARIABLES FOR ITERATION NUMBER 0 FOLLOW...</td>
</tr>
<tr>
<td>THICKNESS OF PANEL SKIN LAYER NO. 1 =</td>
</tr>
<tr>
<td>STRINGER SPACING, B =</td>
</tr>
<tr>
<td>THICKNESS OF STRINGER SEGMENT NO. 1 =</td>
</tr>
<tr>
<td>WIDTH, BS(I), OF STRINGER SEGMENT 1 =</td>
</tr>
<tr>
<td>RING SPACING, A =</td>
</tr>
<tr>
<td>THICKNESS OF RING SEGMENT NO. 1 =</td>
</tr>
<tr>
<td>WIDTH, BR(I), OF RING SEGMENT 1 =</td>
</tr>
<tr>
<td>(M=AXIAL, N=CIRC.) HALF-WAVES OVER ENTIRE PANEL (AXIAL,CIRC.)</td>
</tr>
<tr>
<td>GENERAL INSTABILITY EIGENVALUE(M,N) =</td>
</tr>
<tr>
<td>LOCAL SKIN (BUCKLING/PHI) (M,N) =</td>
</tr>
<tr>
<td>BUCKLING BETWEEN RINGS WITH SMEARED STRINGERS =</td>
</tr>
<tr>
<td>BUCKLING BETWEEN STRINGERS WITH SMEARED RINGS =</td>
</tr>
<tr>
<td>BUCKLING/PHI (M) OF STRINGER SEGMENT NO. 1 =</td>
</tr>
<tr>
<td>LOCAL ROLLING WITH SKIN BUCKLING BETWEEN STIPS =</td>
</tr>
<tr>
<td>ROLLING OF STRINGERS(M,0), NO SKIN BUCKLING=</td>
</tr>
<tr>
<td>AXISYMMETRIC ROLLING OF RINGS, NO SKIN BUCKLING=</td>
</tr>
<tr>
<td>BUCKLING(ROLLING) MODE WITH SMEARED STRINGERS=</td>
</tr>
<tr>
<td>BUCKLING(ROLLING) MODE WITH SMEARED RINGS =</td>
</tr>
</tbody>
</table>

^1These loads and modes are predicted by PANDA for the optimum design obtained by the computer analysis described in [33]. The load factors and modes predicted by the Ref. [33] are, respectively, 1.000(18,9), 1.048(-,-), and 1.109(30,36).
Table 14 Comparison of Optimum Designs Obtained from PANDA and from the Analysis of Ref. [63] for a Ring and Stringer Stiffened Cylindrical Shell under Pure Torsion

| CYLINDER RADIUS, R = 85.0 in.; CYLINDER LENGTH, L = 100 in.; |
| SHEAR STRESS RESULTANT, N_x^o = 418.5 lb/in.; |
| YOUNG'S MODULUS, E = 10.5 x 10⁶ psi; POISSON'S RATIO, Nu = 0.33; DENSITY = 0.101 lb/in³; |
| MINIMUM GAGE OF ANY THICKNESS = 0.05 in.; |
| INTERNAL STRINGERS WITH T-SHAPED CROSS SECTION; INTERNAL RINGS WITH RECTANGULAR CROSS SECTION |

<table>
<thead>
<tr>
<th>OPTIMUM DESIGN AND BUCKLING LOAD FACTORS AND MODES:</th>
<th>FROM PANDA</th>
<th>FROM REF. [63]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PANEL WEIGHT (180° OF CYLINDER) = 1.5701E+02</td>
<td>2.0362E+02</td>
<td></td>
</tr>
<tr>
<td>DESIGN VARIABLES FOR ITERATION NUMBER 0 FOLLOW...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THICKNESS OF PANEL SKIN LAYER NO. 1 = 5.0000E-02</td>
<td>5.0480E-02</td>
<td></td>
</tr>
<tr>
<td>STRINGER SPACING, B = 2.4993E+01</td>
<td>2.4276E+01</td>
<td></td>
</tr>
<tr>
<td>THICKNESS OF STRINGER SEGMENT NO. 1 = 5.0000E-02</td>
<td>5.0314E-02</td>
<td></td>
</tr>
<tr>
<td>THICKNESS OF STRINGER SEGMENT NO. 2 = 5.0000E-02</td>
<td>5.8110E-02</td>
<td></td>
</tr>
<tr>
<td>WIDTH, BS(I), OF STRINGER SEGMENT 1 = 3.6046E-01</td>
<td>5.2459E+00</td>
<td></td>
</tr>
<tr>
<td>WIDTH, BS(I), OF STRINGER SEGMENT 2 = 4.9186E-02</td>
<td>1.3115E+00</td>
<td></td>
</tr>
<tr>
<td>RING SPACING, A = 4.2999E+00</td>
<td>3.5714E+00</td>
<td></td>
</tr>
<tr>
<td>THICKNESS OF RING SEGMENT NO. 1 = 6.5000E-02</td>
<td>5.5709E-02</td>
<td></td>
</tr>
<tr>
<td>WIDTH, BR(I), OF RING SEGMENT 1 = 6.2807E-01</td>
<td>5.0480E-01</td>
<td></td>
</tr>
</tbody>
</table>

(M=AXIAL, N=CIRC.) HALF-WAVES OVER ENTIRE PANEL (AXIAL, CIRC.)

GENERAL INSTABILITY EIGENVALUE (M,N) = 9.9992E-01 (1, 18)	4.7410E+00 (1, 11)
LOCAL SKIN (BUCKLING PHI) (M,N) = 9.9825E-01 (23, 64)	1.4135E+00 (28, 65)
BUCKLING BETWEEN RINGS WITH SMEARD STRINGRS= 2.9042E+00 (23, 94)	1.5503E+00 (28, 99)
BUCKLING BETWEEN STRINGRS WITH SMEARD RINGS= 1.2772E+00 (24, 10)	1.1439E+00 (24, 10)
BUCKLING/PHI (M) OF STRINGER SEGMENT NO. 1 = 9.2125E+06 (255)	5.8334E+04 (0)
BUCKLING/PHI (M) OF STRINGER SEGMENT NO. 2 = 5.2682E+07 (255)	1.4622E+05 (0)
BUCKLING/PHI (M) OF STRINGER SEGMENT NO. 3 = 5.2682E+07 (255)	1.4622E+05 (0)
ROLLING OF STRINGERS(M,0), NO SKIN BUCKING= 2.7265E+06 (114, 0)	2.7543E+05 (1, 0)
AXISYMMETRIC ROLLING OF RINGS, NO SKIN BUCK= 1.0000E+23 (0, 0)	1.0000E+23 (0, 0)

These loads and modes are predicted by PANDA for the optimum design obtained by the analysis described in [63]. The load factors and modes predicted by the analysis of Ref. [63] are, respectively, 1.0(1,11), 1.267(-,-), and 11.32(28,96). Not included in the analysis of Ref. [63].
Table 15 Comparison of Optimum Designs Obtained from PANDA and from the Analysis of Ref. [61] for a Ring and Stringer-Stiffened Cylindrical Shell under Combined Axial Compression and Torsion

| CYLINDER RADIUS, $R = 65.0$ in.; CYLINDER LENGTH, $L = 100$ in.; |
| AXIAL, SHEAR STRESS RESULTANTS, $N_{x}^{0} = -2700$ lb/in.; $N_{y}^{0} = 418.5$ lb/in.; |
| YOUNG'S MODULUS, $E = 10.5 \times 10^6$ psi; POISSON'S RATIO, $\nu = 0.33$; DENSITY = 0.101 lb/in3; |
| MAXIMUM STRESS = 45 ksi; MINIMUM GAGE OF ANY THICKNESS = 0.05 in.; |
| INTERNAL STRINGERS WITH T-SHAPED CROSS SECTION; INTERNAL RINGS WITH RECTANGULAR CROSS SECTION. |

OPTIMUM DESIGN AND BUCKLING LOAD FACTORS AND MODES:	FROM PANDA	FROM REF. [61]
PANEL WEIGHT (180° OF CYLINDER) $= 2.2961E+02$	2.4301E+02	
DESIGN VARIABLES FOR ITERATION NUMBER 0 FOLLOW...		
THICKNESS OF PANEL SKIN LAYER NO. 1 $= 5.0000E-02$	5.0000E-02	
STRINGER SPACING, $B = 1.6054E+00$	1.6086E+00	
THICKNESS OF STRINGER SEGMENT NO. 1 $= 5.0000E-02$	5.0120E-02	
THICKNESS OF STRINGER SEGMENT NO. 2 $= 7.3997E-02$	5.0120E-02	
WIDTH, BS(1), OF STRINGER SEGMENT 1 $= 7.1470E-01$	6.5738E-01	
WIDTH, BS(1), OF STRINGER SEGMENT 2 $= 1.9535E-02$	9.8605E-02	
RING SPACING, $A = 1.2284E+01$	9.9095E-02	
THICKNESS OF RING SEGMENT NO. 1 $= 5.0000E-02$	5.1630E-02	
WIDTH, BR(1), OF RING SEGMENT 1 $= 2.7232E+00$	2.3750E+00	

(M=AXIAL, N=CIRC.) HALF-WAVES OVER ENTIRE PANEL (AXIAL,CIRC.) (AXIAL,CIRC.)

GENERAL INSTABILITY EIGENVALUE(M,N) $= 9.9263E-01(1, 8)$	1.0121E+00(1, 8)
LOCAL SKIN (BUCKLING/PHI) (M,N) $= 9.9284E-01(65, 166)$	1.0285E+00(65, 165)
BUCKLING BETWEEN RINGS WITH SMEARED STRINGRS $= 2.5461E+01(436, 166)$	2.5254E+01(428, 165)
BUCKLING/PHI (M) OF STRINGER SEGMENT NO. 1 $= 5.3301E+00(138)$	6.5955E+00(142)
BUCKLING/PHI (M) OF STRINGER SEGMENT NO. 2 $= 1.5940E+03(138)$	3.1326E+01(142)
BUCKLING/PHI (M) OF STRINGER SEGMENT NO. 3 $= 1.5940E+03(138)$	3.1326E+01(142)
LOCAL ROLLING WITH SKIN BUCKLING BETWN STIF $= 1.1231E+00(56, 166)$	1.5011E+00(43, 165)
ROLLING OF STRINGERS(M,0), NO SKIN BUCKLING $= 1.5450E+00(84, 0)$	3.0057E+00(45, 0)
AXISYMMETRIC ROLLING OF RINGS, NO SKIN BUCK $= 1.0000E+23(0, 0)$	1.0000E+23(0, 0)
BUCKLING(ROLLING) MODE WITH SMEARED STRINGRS $= 1.3474E+01(393, 166)$	2.5362E+01(278, 165)
MARGIN FOR EFFECTIVE STRESS IN LAYER 1 $= 1.1795E+00$	1.2174E+00
MARGIN FOR COMP. STRAIN IN STRINGER SEG. 1 $= 1.2642E+00$	1.3100E+00
MARGIN FOR COMP. STRAIN IN STRINGER SEG. 2 $= 1.2642E+00$	1.3100E+00
MARGIN FOR COMP. STRAIN IN STRINGER SEG. 3 $= 1.2642E+00$	1.3100E+00

aThe analysis of Ref. [61] yields, respectively, for these modes: 1.0(1,8), 1.048(-,-), & 20.8(10,10)
Table 16 Comparison of Optimum Designs Obtained from PANDA and from the Analysis of Ref. [61] for the Same Case as Described in Table 15, except that Internal Pressure of 14.7 psi is Present. The internal pressure is treated as a constant prestress (not an eigenparameter to which the load factors shown below apply).

<table>
<thead>
<tr>
<th>LOAD FACTORS AND MODES</th>
<th>FROM PANDA</th>
<th>FROM PN. [61]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PANEL WEIGHT (180° OF CYLINDER) =</td>
<td>1.9349E+02</td>
<td>2.1292E+02</td>
</tr>
<tr>
<td>DESIGN VARIABLES FOR ITERATION NUMBER 0 FOLLOW...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THICKNESS OF PANEL SKIN LAYER NO. 1 =</td>
<td>5.5142E-02</td>
<td>5.0000E-02</td>
</tr>
<tr>
<td>STRINGER SPACING, B =</td>
<td>2.7593E+00</td>
<td>1.9281E+00</td>
</tr>
<tr>
<td>THICKNESS OF STRINGER SEGMENT NO. 1 =</td>
<td>5.0000E-02</td>
<td>5.0060E-02</td>
</tr>
<tr>
<td>THICKNESS OF STRINGER SEGMENT NO. 2 =</td>
<td>5.0000E-02</td>
<td>5.0060E-02</td>
</tr>
<tr>
<td>WIDTH, BS(1), OF STRINGER SEGMENT 1 =</td>
<td>6.7642E-01</td>
<td>5.4782E-01</td>
</tr>
<tr>
<td>WIDTH, BS(1), OF STRINGER SEGMENT 2 =</td>
<td>1.1372E-01</td>
<td>8.2175E-02</td>
</tr>
<tr>
<td>RING SPACING, A =</td>
<td>7.6665E+00</td>
<td>6.2500E+00</td>
</tr>
<tr>
<td>THICKNESS OF RING SEGMENT NO. 1 =</td>
<td>5.0000E-02</td>
<td>5.2320E-02</td>
</tr>
<tr>
<td>WIDTH, BR(1), OF RING SEGMENT 1 =</td>
<td>3.5431E-02</td>
<td>1.2500E+00</td>
</tr>
</tbody>
</table>

(M=AXIAL, N=CIRC.) HALF-WAVES OVER ENTIRE PANEL (AXIAL,CIRC.) (AXIAL,CIRC.)

GENERAL INSTABILITY EIGENVALUE(M,N) =

LOCAL SKIN (BUCKLING/PIL) (M,N) =

BUCKLING BETWEEN RINGS WITH SMEAR STRINGRS =

BUCKLING BETWEEN STRINGERS WITH SMEAR STRINGRS =

BUCKLING/PIL (M) OF STRINGER SEGMENT NO. 1 =

BUCKLING/PIL (M) OF STRINGER SEGMENT NO. 2 =

BUCKLING/PIL (M) OF STRINGER SEGMENT NO. 3 =

LOCAL ROLLING WITH SKIN BUCKLING BETWEEN STIF =

ROLLING OF STRINGERS(M,0), NO SKIN BUCKLING =

AXISYMMETRIC ROLLING OF RINGS, NO SKIN BUCK =

BUCKLING(ROLLING) MODE WITH SMEAR STRINGRS =

BUCKLING(ROLLING) MODE WITH SMEARED STRINGRS =

MARGIN FOR EFFECTIVE STRESS IN LAYER 1 =

MARGIN FOR COMP. STRAIN IN STRINGER SEG. 1 =

MARGIN FOR COMP. STRAIN IN STRINGER SEG. 2 =

MARGIN FOR COMP. STRAIN IN STRINGER SEG. 3 =

MARGIN FOR TENSILE STRAIN IN RING SEG. 1 =
Table 17 Comparison of Optimum Designs Obtained from PANDA and from the Analysis of Ref. [6] for a Waffle-Stiffened Plate under Combined Axial Compression, Lateral Compression, and Shear.

| PANEL AXIAL LENGTH, a = 40 in.; PANEL WIDTH, b = 30 in.; |
| STRESS RESULTANTS, $N_x = -300$ lb/in.; $N_y = -400$ lb/in.; $N_{xy} = 200$ lb/in.; |
| YOUNG'S MODULUS, $E = 10.5 \times 10^6$ psi; POISSON'S RATIO, $\nu = 0.32$; DENSITY = 0.101 lb/in3; |
| MAXIMUM HEIGHT OF STIFFENERS = 0.8 in.; MINIMUM spacing of stiffeners = 2.0 in.; |
| HEIGHT OF "STRINGERS" EQUALS HEIGHT OF "RINGS"; "STRINGERS" AND "RINGS" ON THE SAME SIDE OF THE SHEET AND HAVE RECTANGULAR CROSS SECTIONS. |

<table>
<thead>
<tr>
<th>OPTIMUM DESIGN AND BUCKLING LOAD FACTORS AND MODES:</th>
<th>FROM PANDA</th>
<th>FROM REF. [6]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PANEL WEIGHT (180° OF CYLINDER) =</td>
<td>8.9324E+00</td>
<td>9.6049E+00</td>
</tr>
<tr>
<td>DESIGN VARIABLES FOR ITERATION NUMBER 0 FOLLOW...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THICKNESS OF PANEL SKIN LAYER NO. 1 =</td>
<td>3.9257E-02</td>
<td>3.5500E-02</td>
</tr>
<tr>
<td>STRINGER SPACING, A =</td>
<td>2.0000E+00</td>
<td>2.0000E+00</td>
</tr>
<tr>
<td>THICKNESS OF STRINGER SEGMENT NO. 1 =</td>
<td>2.1549E-02</td>
<td>2.6600E-02</td>
</tr>
<tr>
<td>WIDTH, $B(1)$, OF STRINGER SEGMENT 1 =</td>
<td>8.0000E-01</td>
<td>7.4720E-01</td>
</tr>
<tr>
<td>RING SPACING, B =</td>
<td>2.0000E+00</td>
<td>2.0000E+00</td>
</tr>
<tr>
<td>THICKNESS OF RING SEGMENT NO. 1 =</td>
<td>6.3558E-02</td>
<td>9.1000E-02</td>
</tr>
<tr>
<td>WIDTH, $B(1)$, OF RING SEGMENT 1 =</td>
<td>8.0000E-01</td>
<td>7.4720E-01</td>
</tr>
</tbody>
</table>

(M=AXIAL, N=CIRC.) HALF-WAVES OVER ENTIRE PANEL (AXIAL,CIRC.)

GENERAL INSTABILITY EIGENVALUE(M,N) =	1.0011E+00(1, 1)	1.0429E+00(1, 1)a
LOCAL SKIN (BUCKLING/PHI) (M,N) =	1.0018E+00(20, 15)	7.8969E-01(20, 15)a
BUCKLING BETWEEN RINGS WITH SMEARD STRINGRS=	1.9789E+01(20, 65)	1.8459E+01(20, 65)a
BUCKLING BETWEEN STRINGS WITH SMEARD RINGS=	3.5881E+01(103, 15)	3.6672E+01(127, 15)
BUCKLING/PHI (M) OF STRINGER SEGMENT NO. 1=	1.0004E+00(20)	1.3147E+00(20)a
BUCKLING/PHI (N) OF RING SEGMENT NO. 1 =	7.1739E+00(15)	1.7406E+01(15)a
LOCAL ROLLING WITH SKIN BUCKLING BETWN STIF=	1.5265E+00(20, 15)	2.1342E+00(20, 15)
ROLLING OF STRINGERS(M,0), NO SKIN BUCKLING=	2.3102E+00(29, 0)	3.1445E+00(32, 0)
ROLLING OF RINGS (0,N), NO SKIN BUCKLING=	1.6558E+01(0, 23)	4.1722E+01(0, 23)
AXISYMMETRIC ROLLING OF RINGS, NO SKIN BUCK=	1.0000E+23(0, 0)	1.0000E+23(0, 0)
BUCKLING(ROLLING) MODE WITH SMEARD STRINGRS=	2.2416E+01(20, 54)	2.8992E+01(20, 45)
BUCKLING(ROLLING) MODE WITH SMEARED RINGS =	3.3959E+01(103, 15)	3.4848E+01(115, 15)

aThese loads and modes are predicted by PANDA for the optimum design obtained in Ref. [6]. The load factors predicted by the analysis of Ref. [6] are, respectively, 1.0, 1.0, 1.013, and 14.1.
Table 18 Comparison of Optimum Designs Obtained from PANDA and from the Analysis of Ref. [47] for a Hydrostatically-Compressed Ring-Stiffened Cylindrical Shell (T-Shaped Rings).

| CYLINDER RADIUS, R = 198 in.; CYLINDER LENGTH, L = 594 in.; AXIAL, CIRCUMFERENTIAL STRESS RESULTANTS, $N_x^0 = -88900$ lb/in.; $N_y^0 = -177800$ lb/in.; ($p_o = 898$psi) YOUNG'S MODULUS, $E = 30 \times 10^6$ psi; POISSON'S RATIO, $nu = 0.33$; DENSITY = 0.282 lb/in3; MAXIMUM STRESS = 180000 psi. |
|---|---|---|
| OPTIMUM DESIGN AND BUCKLING LOAD FACTORS AND MODES | FROM PANDA | FROM REF. [47] |
| PANEL WEIGHT (180$^\circ$ OF CYLINDER) | 1.3878E+05 | 1.3796E+05 |
| DESIGN VARIABLES FOR ITERATION NUMBER 0 FOLLOW... | | |
| THICKNESS OF PANEL SKIN LAYER NO. 1 = | 1.0032E+00 | 7.0870E-01 |
| RING SPACING, A = | 2.0480E+01 | 1.2638E+01 |
| THICKNESS OF RING SEGMENT NO. 1 = | 3.8197E-01 | 4.9840E-01 |
| THICKNESS OF RING SEGMENT NO. 2 = | 3.1177E-01 | 4.9840E-01 |
| WIDTH, BR(1), OF RING SEGMENT 1 = | 1.2034E+01 | 9.3258E+00 |
| WIDTH, BR(1), OF RING SEGMENT 2 = | 3.4259E+00 | 3.1400E+00 |
| $(M=$AXIAL, $N=$CIRC.) HALF-WAVES OVER ENTIRE PANEL (AXIAL,CIRC.) | | |
| GENERAL INSTABILITY EIGENVALUE $(M,N) =$ | 9.9982E-01 (1, 3) | 5.3866E-01 (28, 5)a |
| LOCAL SKIN (BUCKLING/PHI) $(M,N) =$ | 1.0000E+00 (29, 17) | 7.9293E-01 (47, 1) |
| BUCKLING/PHI (N) OF RING SEGMENT NO. 1 = | 9.9914E-01 (51) | 2.7570E+00 (66) |
| BUCKLING/PHI (N) OF RING SEGMENT NO. 2 = | 1.0027E+00 (51) | 3.1656E+00 (66) |
| BUCKLING/PHI (N) OF RING SEGMENT NO. 3 = | 1.0027E+00 (51) | 3.1656E+00 (66) |
| LOCAL ROLLING WITH SKIN BUCKLING BETWN STIF= | 1.0019E+00 (29, 9) | 7.6497E-01 (47, 6) |
| ROLLING OF RINGS (0,N), NO SKIN BUCKING= | 1.5167E+00 (0, 4) | 2.8512E+00 (9, 7) |
| AXISYMMETRIC ROLLING OF RINGS, NO SKIN BUCK= | 1.7691E+00 (0, 0) | 4.2475E+00 (0, 0) |
| MARGIN FOR EFFECTIVE STRESS IN LAYER 1 = | 1.4338E+00 | 1.2781E+00 |
| MARGIN FOR COMP. STRAIN IN RING SEG. 1= | 1.6789E+00 | 1.6223E+00 |
| MARGIN FOR COMP. STRAIN IN RING SEG. 2= | 1.6789E+00 | 1.6223E+00 |
| MARGIN FOR COMP. STRAIN IN RING SEG. 3= | 1.6789E+00 | 1.6223E+00 |

aThe load factor and mode from the analysis of Ref. [47] are 1.0(27,5).
Table 19 Comparison of Optimum Designs Obtained from PANDA and from the Analysis of Ref. [44] for Elastic-Plastic Hydrostatically-Compressed Cylindrical Shell with Rings of Rectangular Cross Section.

| CYLINDER RADIUS, R = 44.625 in.; CYLINDER LENGTH, L = 172 in; |
| AXIAL, CIRCUMFERENTIAL STRESS RESULTANTS, N_x = -90720 lb/in.; N_y = -181440 lb/in.; (p_o = 4066 psi) |
| YOUNG'S MODULUS, E = 18 x 10^6 psi; POISSON'S RATIO, \nu = 0.3; DENSITY = 0.16 lb/in^3; |
| STRAIN (%): 0., 0.38889, 0.46, 0.54, 0.6, 0.65, 0.7, 0.78, 0.9, 1.2, 1.8, 2.2 |
| RINGS INTERNAL AND OF RECTANGULAR CROSS SECTION. |

<table>
<thead>
<tr>
<th>OPTIMUM DESIGN AND BUCKLING LOAD FACTORS AND MODES:</th>
<th>FROM PANDA</th>
<th>FROM REF. [44]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PANEL WEIGHT (180° OF CYLINDER) = 6.5005E+03</td>
<td>6.5065E+03</td>
<td></td>
</tr>
<tr>
<td>DESIGN VARIABLES FOR ITERATION NUMBER 0 FOLLOW...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THICKNESS OF PANEL SKIN LAYER NO. 1 = 1.2617E+00</td>
<td>1.2880E+00</td>
<td></td>
</tr>
<tr>
<td>RING SPACING, A = 1.7200E+01</td>
<td>1.2290E+01</td>
<td></td>
</tr>
<tr>
<td>THICKNESS OF RING SEGMENT NO. 1 = 9.0375E-01</td>
<td>8.8200E-01</td>
<td></td>
</tr>
<tr>
<td>WIDTH, BR(I), OF RING SEGMENT 1 = 8.0539E+00</td>
<td>5.5520E+00</td>
<td></td>
</tr>
</tbody>
</table>

(M=AXIAL, N=CIRC.) HALF-WAVES OVER ENTIRE PANEL (AXIAL,CIRC.) (AXIAL,CIRC.)
GENERAL INSTABILITY EIGENVALUE(M,N)=	1.0029E+00(1, 2)	7.3273E-01(1, 2)
LOCAL SKIN (BUCKLING/PHI) (M,N)=	1.1802E+00(10, 9)	2.5964E+00(13, 8)
LOCAL ROLLING WITH SKIN BUCKLING BETWN STIF=	1.1841E+00(10, 8)	2.5480E+00(13, 8)
ROLLING OF RINGS (0,N), NO SKIN BUCKLING=	2.5336E+00(0, 10)	4.5300E+00(0, 16)
AXISYMMETRIC ROLLING OF RINGS, NO SKIN BUCK=	7.0305E+00(0, 0)	1.9126E+01(0, 0)

a,b,c,d Because the material is stressed beyond its proportional limit at the applied loads N_x and N_y given above, the load factors times this load do not give the actual buckling load predicted by PANDA. The critical pressures for (a,b,c,d) are, respectively, 4257, 3648, 4862, and 4885 psi. The axial and circumferential resultants corresponding to these pressures yield, respectively, load factors (a,b,c,d) equal to unity.
Table 20 Optimum Designs of Hydrostatically-Compressed, Ring-Stiffened Cylinders Derived by PANDA. Radius to Shell Middle Surface = 44.625 in.; Length = 172 in.; Material Properties are Given in Table 19; T-Shaped Internal Rings.

<table>
<thead>
<tr>
<th>Pressure P_0 (psi)</th>
<th>Weight (lbs)</th>
<th>Thickness of Shell (inches)</th>
<th>Ring Spacing (inches)</th>
<th>W D B Thickness (inches)</th>
<th>W D B Height (inches)</th>
<th>FLANGE Thickness (inches)</th>
<th>FLANGE Height (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>677</td>
<td>2898</td>
<td>0.289</td>
<td>5.93</td>
<td>0.112</td>
<td>3.44</td>
<td>0.077</td>
<td>1.65</td>
</tr>
<tr>
<td>1355</td>
<td>4951</td>
<td>0.493</td>
<td>9.05</td>
<td>0.202</td>
<td>5.03</td>
<td>0.131</td>
<td>2.51</td>
</tr>
<tr>
<td>2032</td>
<td>6835</td>
<td>0.688</td>
<td>11.47</td>
<td>0.276</td>
<td>6.21</td>
<td>0.177</td>
<td>3.17</td>
</tr>
<tr>
<td>2710</td>
<td>8662</td>
<td>0.807</td>
<td>11.47</td>
<td>0.351</td>
<td>6.95</td>
<td>0.262</td>
<td>4.51</td>
</tr>
<tr>
<td>2710*</td>
<td>8724</td>
<td>0.822</td>
<td>11.47</td>
<td>0.346</td>
<td>6.85</td>
<td>0.261</td>
<td>4.46</td>
</tr>
<tr>
<td>3388</td>
<td>10694</td>
<td>0.998</td>
<td>13.23</td>
<td>0.460</td>
<td>7.82</td>
<td>0.310</td>
<td>4.97</td>
</tr>
<tr>
<td>4066</td>
<td>12682</td>
<td>1.244</td>
<td>15.65</td>
<td>0.560</td>
<td>7.96</td>
<td>0.377</td>
<td>4.75</td>
</tr>
<tr>
<td>4743</td>
<td>14667</td>
<td>1.519</td>
<td>19.11</td>
<td>0.651</td>
<td>8.42</td>
<td>0.394</td>
<td>4.60</td>
</tr>
</tbody>
</table>

* Model in which the shell wall is treated as if it consists of five identical layers, in order to account for the variation of midbay prebuckling axial strain through the wall thickness.
Table 21 Buckling Pressure Factors and Modes for Various Types of Instability Predicted by PANDA

<table>
<thead>
<tr>
<th>Design Pressure, P₀ (psi)</th>
<th>General Instability</th>
<th>Local Skin Buckling</th>
<th>Buckling of Web</th>
<th>Buckling of Flange</th>
<th>Rolling with Skin Buckling</th>
<th>Rolling, No Skin Buckling</th>
<th>Axisymmetric Rolling</th>
</tr>
</thead>
<tbody>
<tr>
<td>677</td>
<td>1.0011(1,2)²</td>
<td>1.0003(1,16)</td>
<td>1.0(40)</td>
<td>1.0(40)</td>
<td>1.0(1,10)</td>
<td>1.11(4)</td>
<td>1.21(0)</td>
</tr>
<tr>
<td>1355</td>
<td>1.0(1,2)</td>
<td>1.0(1,13)</td>
<td>1.0(29)</td>
<td>1.0(29)</td>
<td>1.0(1,9)</td>
<td>1.05(3)</td>
<td>1.10(0)</td>
</tr>
<tr>
<td>2032</td>
<td>1.0(1,2)</td>
<td>1.0(1,12)</td>
<td>1.0(24)</td>
<td>1.0(24)</td>
<td>1.0(1,8)</td>
<td>1.01(2)</td>
<td>1.03(0)</td>
</tr>
<tr>
<td>2710</td>
<td>1.0(1,2)</td>
<td>1.0(1,11)</td>
<td>1.0(22)</td>
<td>1.0(22)</td>
<td>1.01(1,6)</td>
<td>1.00(1)</td>
<td>1.00(0)</td>
</tr>
<tr>
<td>2710b</td>
<td>1.0(1,2)</td>
<td>1.0(1,10)</td>
<td>1.0(22)</td>
<td>1.0(22)</td>
<td>0.999(1,5)</td>
<td>1.01(2)</td>
<td>1.02(0)</td>
</tr>
<tr>
<td>3388</td>
<td>1.02(1,2)</td>
<td>1.03(1,10)</td>
<td>1.06(19)</td>
<td>1.04(19)</td>
<td>1.03(1,6)</td>
<td>1.03(2)</td>
<td>1.04(0)</td>
</tr>
<tr>
<td>4066</td>
<td>1.0(1,2)</td>
<td>1.07(1,9)</td>
<td>1.10(19)</td>
<td>1.11(19)</td>
<td>1.06(1,7)</td>
<td>1.07(2)</td>
<td>1.08(0)</td>
</tr>
<tr>
<td>4743</td>
<td>1.0(1,2)</td>
<td>1.07(1,8)</td>
<td></td>
<td></td>
<td>1.06(1,7)</td>
<td>1.07(3)</td>
<td>1.08(0)</td>
</tr>
</tbody>
</table>

²Numbers in parentheses are (axial, circumferential) waves in buckling pattern (axial halfwaves, circ. full waves). For local skin buckling and rolling with skin buckling the axial half-wave-index refers to the number of half-waves between adjacent rings. Where only one number is given, it refers to the number of full circumferential waves.

b5-layered model.
Table 22 Effect on Local Shell Instability of Treatment in PANDA if it Had Five Layers

<table>
<thead>
<tr>
<th>Design Pressure, P_o (psi)</th>
<th>PANDA Results</th>
<th>LOCAL INSTABILITY PRESSURE MULTIPLIER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>One-Layered Shell</td>
<td>Five-Layered Shell</td>
</tr>
<tr>
<td>677</td>
<td>1.0</td>
<td>0.975</td>
</tr>
<tr>
<td>1355</td>
<td>1.0</td>
<td>0.966</td>
</tr>
<tr>
<td>2033</td>
<td>1.0</td>
<td>0.961</td>
</tr>
<tr>
<td>2710</td>
<td>1.0</td>
<td>0.971</td>
</tr>
<tr>
<td>3388</td>
<td>1.02</td>
<td>0.989</td>
</tr>
<tr>
<td>4066</td>
<td>1.06</td>
<td>1.017</td>
</tr>
<tr>
<td>4743</td>
<td>1.06</td>
<td>1.027</td>
</tr>
</tbody>
</table>
Figure 1. Stiffened cylindrical panel with overall dimensions \((a, b)\), ring spacing \((a_0)\), and stringer spacing \((b_0)\).
Figure 2. Coordinates, loading, and wall construction
Figure 3. Cylindrical panel between stiffeners: displacement components u, v, w, and coordinates for local skin buckling
(a) A "T"-shaped stiffener must be treated as if it consists of three segments, one "internal" and two "ends".

(b) Segments 1 and 2 are "internal"; 3 and 4 are "ends".

(c) Segment 1 is an "end".

Figure 4. Stiffener nomenclature and local coordinates \(\bar{x} \) and \(\bar{y} \).
"INTERNAL" SEGMENT 1
LOCAL BUCKLING; \ddot{m}_1
AXIAL HALF WAVES.

"INTERNAL" SEGMENT 2
LOCAL BUCKLING; \ddot{m}_2
AXIAL HALF WAVES.

"END" SEGMENT 3
FREE: $w = C\ddot{y}_3 \sin \frac{\ddot{m}_2 \dddot{x}}{\dddot{f}}$

EACH "INTERNAL" STIFFENER SEGMENT IS ASSUMED TO BE SIMPLY-SUPPORTED AT ITS EDGES. THE "END" SEGMENT REMAINS STRAIGHT IN THE WIDTH COORDINATE AS SEGMENTS 2 AND 3 BUCKLE TOGETHER WITH THE SAME $\ddot{m} = \ddot{m}_2$.

Figure 5. Local buckling of stiffener segments
(a) Rolling with skin participation.

(b) No skin participation, wavy buckles.

(c) No skin participation; axisymmetric sidesway.

Figure 6. Three types of "rolling" of a stiffener.
Establish a starting design. (Execute BEGIN)

Set up a vector of decision variables, \(X(I), I = 1, NDV \) (Execute DECIDE)

Do \(i \) (see next Fig.) for the current design, \(X \).

Loop:

Do 100, \(I = 1, NDV \)

Make a small change in the \(I \)th decision variable: \(Y(I) = X(I) * 1.05 \).

Do \(i \) for the slightly modified design, \(Y \). (Use \(n, m, c, d \), corresponding to \(X \), not \(Y \)).

Calculate gradients in the weight and buckling and stress or strain constraints.

100:

CONTINUE

Determine a new design by the method of feasible directions (CONMIN) using the input design and gradient information just obtained.

Has the design converged?

NO

YES

Print Output

Figure 7. Flow of calculations in PANDA for an optimization analysis.
1. Calculate prebuckling state, Eqs. (4-41),

2. Calculate constitutive coefficients governing stability for all possible modes of buckling, Eqs. (37-45).

3. Calculate buckling load factors for all possible modes of buckling, Eqs. (46-123):

 (1) shell general, semi-general, and local, Eqs. (46-65).

 (2) stiffener segment crippling, Eqs. (66-80).

 (3) rolling with skin participation, Eqs. (81-97).

 (4) stiffener rolling without skin participation, Eqs. (98-123).

4. Set up a vector of constraint conditions which include:

 (1) buckling margins for all possible modes of buckling.

 (2) stress or strain margins in each shell wall layer and in each stiffener segment.

5. Calculate weight.

Figure 8. The structural analysis module of PANDA. This module is embedded in the executable processor PANCON.
Figure 9. Ring and stringer stiffened cylindrical shell with dimensions typical of a large containment vessel for a nuclear reactor. Buckling load factors from PANDA are listed in Tables 10 and 11.
Figure 10. Composite cylindrical shell (180 deg.) with dimensions and loading typical of the fuselage of an air transport. Results from PANDA for this case are listed in the appendix.
Figure 12. Flow of calculations for elastic-plastic prebuckling analysis in PANDA
STRINGER DETAILS

STACKING SEQUENCE OF THE PANEL SKIN (LAMINATE A):

\[\phi = (90, \pm 45, 0, \mp 45, 90) \]

STACKING SEQUENCE OF LAMINATE B OF STRINGER:

\[\phi = (90, 245, 0) \]

STACKING SEQUENCE OF LAMINATE C OF STRINGER:

\[\phi = (0, 20) \]

MATERIAL PROPERTIES OF EACH LAMINA OF THE LAMINATES A, B, AND C:

<table>
<thead>
<tr>
<th>MODULI AND POISSON'S MAXIMUM STRAINS IN RATIO IN (1, 2) DIRECTIONS:</th>
<th>MAXIMUM STRAINS IN (1, 2) DIRECTIONS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_1 = 23 \times 10^6) psi</td>
<td>(e_1) (TENSION) (0.00565)</td>
</tr>
<tr>
<td>(E_2 = 1.7 \times 10^6) psi</td>
<td>(e_1) (COMPRESSION) (0.00452)</td>
</tr>
<tr>
<td>(G = 0.94 \times 10^6) psi</td>
<td>(e_2) (TENSION) (0.0032)</td>
</tr>
<tr>
<td>(\nu = 0.304)</td>
<td>(e_2) (COMPRESSION) (0.0125)</td>
</tr>
<tr>
<td>(\rho = 0.056 \text{ lb/in.}^3)</td>
<td>(e_{12}) (IN PLANE SHEAR) (0.0125)</td>
</tr>
</tbody>
</table>

Figure 11. Wall construction and material properties for the stiffened cylindrical shell shown in Fig. 10
Figure 13. Typical convergence of the prebuckling strain in the plastic region. This case corresponds to a hydrostatically compressed, ring stiffened cylindrical shell.
Boundary condition violated on this boundary

Simple support conditions satisfied on this boundary

Ax_max

Buckling nodal lines

Slope of buckling nodal lines = c = \Delta x/\Delta y and d=0

Boundary condition violated on this boundary

(a) Assumed buckling mode for panel that is "long" in the x-direction:
\[w = C \sin(ny) \sin(m(x-cy)) \]

(b) Assumed buckling mode for panel that is "long" in the y-direction:
\[w = \sin[n(y-dx)] \sin(mx) \]

Figure 14. Assumed buckling modal patterns with shear and/or unbalanced laminates present
Figure 15. Buckling loads for axially compressed composite cylindrical shell with an unbalanced laminate (0, 0, -0): Four regions, 1, 2, 3, 4, are shown in which minimum critical load multipliers λ_{CR} (\tilde{m}_{CR}, \tilde{n}_{CR}) are sought. The numbers in the dashed boxes are buckling loads in thousands of pounds for each (\tilde{m}, \tilde{n}) combination investigated by PANDA.
Figure 16. Rolling of stiffener as in Figure 6a
ASSUMED DISPLACEMENT FIELD DUE TO ROLLING IN THE MODE SHOWN IN FIG. 6(a):

\[u^* = -m \gamma \tilde{y} \tilde{z} \cos m \tilde{x} \]
\[v^* = \gamma \tilde{z} \sin m \tilde{x} \]
\[w^* = -\gamma \tilde{y} \sin m \tilde{x} \]
\[m = \bar{\omega}_{\text{th}}/t \]

Figure 17. In-plane bending of a flange induced by rolling of the stiffener in the mode shown in Figure 6a.
Figure 18. Stiffener coordinates and displacement components for rolling analysis of the types shown in Figs 6b and 6c (no participation of the panel skin)
Figure 19. Buckling loads of a composite, axially compressed cylindrical shell with an unbalanced laminate \((\phi, 0, -\phi)\). Comparison of results from PANDA, STAGSC-1 [62], and Booton and Tennyson [57].

Cylinder geometry and material properties given in Fig. 15. Winding angles of inner, middle, outer layers = \((\phi, 0, -\phi)\).
Figure 20. Ring and stringer stiffened cylindrical shell under pure torsion. The dimensions correspond to an optimum design obtained by Simitses and Giri [63] (See Table 4, Case 2)
Figure 21. Shallow curved panel under pure in-plane shear. Bottom portion shows bifurcation buckling pattern predicted by STAGSC-1 [62]. (See Table 4, Case 3)
Figure 22. Buckling modes predicted by BOSOR4 for axially compressed panels of lengths (a) 40 in., (b) 20 in., (c, d) 10 in. Dimensions of the cross sections were obtained by optimization analyses with PANDA.
Figure 23. Axially compressed ring and stringer stiffened cylindrical shell analysed by Block, Card, and Mikulas [65] and by Kicher and Wu [66]. (See Table 5)
Figure 24. Axially compressed, elastic-plastic, ring stiffened cylindrical shell. Comparison of critical loads from PANDA and from BOSORS [59].
Figure 25. Buckling of axially compressed composite panel with composite stringers. Comparison of results from PANDA and the analyses of Williams and Stein [24]. (See Table 6)
SECTION AA

\[E = 10.8 \times 10^6 \text{ psi} \]
\[\nu = 0.333 \]

Figure 26. General (ring) instability of long, ring stiffened cylindrical shell under uniform external lateral pressure, and local instability (nonsymmetric sidesway or "tripping") of ring. Comparison of results from PANDA and results from BOSOR4 [58]. (See Table 7)
Figure 27. Externally pressurized ring stiffened cylindrical shell that fails by axisymmetric sidesway of the deep rings: (a) geometry, (b) results of linear bifurcation analyses with BOSOR4 (solid line) and PANDA (x's). (See Table 8)
Figure 28. Local and general buckling of ring stiffened cylinder under uniform lateral external pressure. Solid line is from BOSOR4 predictions; x's are from PANDA. (See Table 9)
Figure 29. Finite element model for local buckling under axial compression of a portion of the ring and stringer stiffened cylindrical shell shown in Fig. 9. Linear bifurcation buckling load factors and an elastic-plastic collapse load were obtained through use of the STAGSC-1 program [62]. (See Table 10)
(a) BOSORS discretized branched shell model (stringers are smeared).

(b) Prebuckling deformation (axisymmetric) at collapse load. $N_{cr} = 38,500$ lb/in.

(c) Load-displacement curve for inelastic collapse analysis with STAGSC1 and the portion of the stiffened cylinder shown in Fig. 29 (a).

Figure 30. Elastic-plastic collapse of the axially compressed cylindrical shell shown in Figure 9, as predicted by BOSORS [59] and STAGSC-1 [62]. (See Table 11)
Figure 31. Buckling modes obtained with BOSOR4 corresponding to optimum designs of hydrostatically compressed, ring stiffened cylindrical shells. The configuration (a) was obtained by Pappas and Allentuch [47]. The configuration (d) was obtained by PANDA. Design pressure $p_0 = 898$ psi. (See Table 18)
Figure 32. Effective strains midway between adjacent rings at the buckling pressure for a hydrostatically compressed cylindrical shell with internal rectangular stiffeners. Configuration is shown in Fig. 34. Design pressure $p_o = 4066$ psi. (See Table 19)
Figure 33. Hydrostatically compressed, internally ring stiffened cylindrical shell: BOSORS model and predicted buckling modes and pressures corresponding to the analysis of Renzi [44]. (See Table 19)
Figure 34. Hydrostatically compressed, internally ring stiffened cylindrical shell: BOSOR5 model and predicted buckling modes and pressures corresponding to the optimum design determined by PANDA. (See Table 19)
Figure 35. Hydrostatically compressed, internally ring stiffened cylindrical shells:
Modeling strategy for BOSORS analyses of the minimum weight designs obtained
by PANDA for design pressures p_0 ranging from $p_0 = 677$ psi to $p_0 = 4743$ psi.
(See Table 20 for dimensions)
Figure 36. Hydrostatically compressed, internally ring stiffened cylindrical shells: BOSOR5 discretized models corresponding to minimum weight designs obtained by PANDA for design pressures ranging from 677 psi to 4743 psi. (See Table 20)
Figure 37. Hydrostatically compressed, internally ring stiffened cylindrical shells: Midbay effective membrane strains at the design pressures for the optimized configurations shown in Figure 36.
Figure 36. Hydrostatically compressed, internally ring stiffened cylindrical shells: Comparison of buckling loads obtained from PANDA and from BOSORS. This is a comparison because the critical loads from PANDA are all very near unity, as seen from Table 21.
Figure 39. Buckling modes predicted by BOSOR5 for the optimum design corresponding to $p_0 = 4743$ psi.
Figure 40. Hydrostatically compressed, internally ring-stiffened cylindrical shells optimized by PANDA for a design pressure of 2710 psi. Comparisons of buckling predictions from BOSOR5 and PANDA: (a) minimum weight design corresponding to a one-layered model in PANDA; (b) minimum weight design corresponding to a 5-layered model in PANDA.
Figure 41. Hydrostatically compressed internally ring-stiffened cylindrical shell optimized by PANDA (5-layered model) for a design pressure of 2710 psi: Comparisons between BOSORS and PANDA of the prebuckling state (a) in the ring; (b) in the skin midway between rings.
APPENDIX

PANDA RUNSTREAM FOR COMPLEX CASE ILLUSTRATED IN FIGURES 10 AND 11
$ Run begin

(provide initial design)

The input data provided by you during execution of this program are saved on a permanent file. Please provide the name (9 characters or less and one word) for this file.

permanent file name =
permanent file name = PANDACASE.DAT

Is part or all of the input for this case stored on this file yet?

Y

Please type a short title on the next line.

Composite stiff. cyl., fixed int. press., N = -2700, NXY = 420 lb/in.

Do you want more information about PANDA (Y or N)

Y

Welcome to *** -begin ***.

The objective is to determine certain design variables of a cylindrical or flat panel with stringers and rings. The panel can be loaded by any combination of uniform in-plane axial, circumferential, and shear stress resultants.

Local and general instability and maximum stress or strain criteria act as constraints on the optimum design configuration. Elastic-plastic behavior is included for certain material types.

Want more information?

Y

The overall dimensions of the panel (length, width, and radius of curvature) are fixed. The panel skin consists of layers of orthotropic material, each layer with its own angle of orthotropy (composite layup). Plasticity is included for isotropic or unidirectional materials. Deformation theory is used for this.

Want more information?

Y

All stringers are identical and are equally spaced. Same goes for rings. Stringer cross section and spacing can differ from ring cross section and spacing. The following information applies to both stringers and rings (called stiffeners/).

Want more information?

Y

A-1
EACH STIFFENER CROSS SECTION IS BUILT UP OF A NUMBER OF RECTANGULAR SEGMENTS (UP TO 5 PER CROSS SECTION). EACH RECTANGULAR SEGMENT IS ORIENTED EITHER NORMAL OR PARALLEL TO THE PLANE OF THE PANEL SURFACE AT THE LINE OF ATTACHMENT IN THE PANEL. AS OF NOW, THE ASSEMBLAGES OF RECTANGULAR SEGMENTS FORMING THE CROSS SECTION OF THE STIFFENERS CANNOT ENCLOSE AREAS. IN THE ANALYSIS THE SEGMENT CROSS SECTIONS ARE ASSUMED TO BE SLENDER. THAT IS, THEIR WIDTHS ARE MUCH GREATER THAN THEIR THICKNESSES.

WANT MORE INFORMATION?

LOCAL BUCKLING OF INDIVIDUAL STIFFENER SEGMENTS IS INCLUDED IN THE ANALYSIS, AS WELL AS LOCAL BUCKLING OF THE SKIN BETWEEN STIFFENERS AND GENERAL INSTABILITY. CERTAIN BUCKLING INSTABILITY MODES IDENTIFIED LATER ARE ALSO INCLUDED.

WANT MORE INFORMATION?

LAMINATED STIFFENER SEGMENTS ARE TREATED IN THE FOLLOWING WAY... THE PROGRAM ASKS FOR THE LAYER THICKNESSES, WINDING ANGLES, AND MATERIAL PROPERTY INDICES, JUST AS IT DOES FOR THE PANEL SKIN. HOWEVER, UNLIKE THE ANALYSIS FOR THE SKIN, WHICH IS TREATED MORE RIGOROUSLY, THE PROGRAM CALCULATES FROM THE SUM OF THE LAMINATE PROPERTIES, EFFECTIVE MODULI, POISSON RATIO, AND DENSITY FOR THE ENTIRE STIFFENER SEGMENT LAMINATE. THE STIFFENER SEGMENT LAMINATE IS THEREOFORTH TREATED AS A MONOCOQUE ORTHOTROPIC MATERIAL OF THICKNESS EQUAL TO THE LAMINATE THICKNESS. THIS TOTAL THICKNESS CAN BE A DECISION VARIABLE IN THE OPTIMIZATION PROCESS. INDIVIDUAL LAMINA THICKNESSES AND WINDING ANGLES IN THE STIFFENER SEGMENT ARE NOT DECISION VARIABLES.

STIFFENER SEGMENT PLASTICITY IS INCLUDED IF THE SEGMENT IS MONOCOQUE AND ISOTROPIC.

WANT MORE INFORMATION?

THE PANEL DESIGN ITERATIONS ARE CARRIED OUT WITH THE ASSUMPTIONS THAT THE PREBUCKLING NORMAL STRAINS (AXIAL AND CIRCUMFERENTIAL) ARE UNIFORM THROUGH THE PANEL SKIN THICKNESS AND UNIFORM (ALTHOUGH POSSIBLY DIFFERENT FROM THE SKIN STRAIN) OVER THE STIFFENER CROSS SECTIONS. THE PREBUCKLING IN-PLANE SHEAR RESULTANT IS (APPLIED ONLY AT THE PANEL EDGE).

WANT MORE INFORMATION?

FOR CYLINDRICAL PANELS STIFFENED BY RINGS, THE FACT THAT THE HOOP STRAIN IS GREATER MIDWAY BETWEEN RINGS THAN AT THE RINGS IS ACCOUNTED FOR.

COMPLETE CYLINDRICAL SHELLS MAY BE TREATED AS IF THE PANEL CROSS SECTIONS WERE...

WANT MORE INFORMATION?
This corresponds to half (180 deg.) of the cylinder. However, the number of half-waves around half of the full (360 deg.) circumference is the same as the number of full waves around the full circumference. Remember to multiply the weight obtained by Panda by two if you want the weight of the full cylinder.

Want more information? Y

Optimum designs are derived through execution of three interactive computer programs. The execution mode of each program is entered when the user types the entries as given on the left below...

User types

In order to

Run begin provide initial loads, dimensions, and material properties.

Run decide modify loading and/or dimensions. Decide whether to do...
(1) a simple buckling analysis or
(2) an optimization analysis and if (2) choose which of the design parameters are decision variables in the optimization process.

Run pancon perform the simple buckling analysis or the optimization analysis.

Want more information? Y

The usual sequence of program executions is...
-begin
-decide
-pancon

Followed by additional pairs
-decide
-pancon

As a given design concept is explored. (e.g. cylindrical shell of given material with t-shaped rings of given material)
Do you want long prompts? Y

Is the panel flat (yes or no)...
STRESS RESULTANTS -- AXIAL = NX, CIRCUMFERENTIAL = NY, SHEAR = NXY -- (NOTE THAT POSITIVE NX AND NY CORRESPOND TO TENSION. POSITIVE NXY IS IN THE +Y COORDINATE DIRECTION ON THE EDGE OF THE PANEL THAT CORRESPONDS TO THE MAXIMUM VALUE OF X. --SEE FIG. 2--. THE UNITS OF NX, NY, AND NXY ARE FORCE/LENGTH (e.g. LB/IN).

YOU WILL FIRST BE ASKED TO PROVIDE THREE RESULTANTS, (NX, NY, AND NXY), WHICH ARE CONSIDERED TO BE BUCKLING PARAMETERS. THEN YOU WILL BE ASKED TO PROVIDE TWO RESULTANTS (NXFIXED, NYFIXED), WHICH REPRESENT A FIXED STATE OF PRESTRESS. THE TOTAL IN-PLANE STRESS RESULTANTS AT BUCKLING (FOR A LINEAR MATERIAL OR FOR EIGENVALUES=1) ARE GIVEN BY...

\[\text{NXTOT(CRIT)} = \text{NXFIXED} + \text{EIGENVALUE} \times \text{NX} \]
\[\text{NYTOT(CRIT)} = \text{NYFIXED} + \text{EIGENVALUE} \times \text{NY} \]
\[\text{NXYTOT(CRIT)} = \text{EIGENVALUE} \times \text{NXY} \]

NOTE THAT FOR HYDROSTATIC PRESSURE \(\text{NX} = \text{PRESSURE} \times \text{RADIUS}/2 \) AND \(\text{NY} = \text{PRESSURE} \times \text{RADIUS} \).

AXIAL RESULTANT, \(\text{NX} \):
- IS THE AXIAL LOAD COMPRESSIVE... (Y or N)

 Y
 \(\text{NX} = -0.270E+04 \)
 IS NX OKAY... (Y or N)

 Y
 CIRCUMFERENTIAL RESULTANT, \(\text{NY} \):
- IS THE CIRCUMFERENTIAL LOAD COMPRESSIVE... (Y or N)

 Y
 \(\text{NY} = 8.800E+00 \)
 IS NY OKAY... (Y or N)

 Y
 IN-PLANE SHEAR RESULTANT, \(\text{NXY} \):
- \(\text{NXY} = 420 \).
 IS NXY OKAY... (Y or N)

 Y

DO YOU WANT TO READ VALUES FOR AXIAL RESULTANT AND HOOP RESULTANT (NXFIXED, NYFIXED) WHICH ARE NOT BUCKLING PARAMETERS BUT REPRESENT A FIXED PRESTRESSED STATE... (THE USUAL ANSWER IS NO)

Y
 FIXED AXIAL RESULTANT, \(\text{NXFIXED} = \)
 IS NXFIXED COMPRESSIVE...

 N
 \(\text{NXFIXED} = 625 \).
 IS NXFIXED OKAY... (Y or N)

 Y
 FIXED CIRCUMFERENTIAL RESULTANT, \(\text{NYFIXED} = \)
 IS NYFIXED COMPRESSIVE...
NYFIXED = 0.125E+04
IS NYFIXED OKAY... (Y or N) Y

CYLINDRICAL PANEL RADIUS OF CURVATURE:
CYLINDRICAL PANEL RADIUS, R = 85.0
IS THE PANEL RADIUS R OKAY... (Y or N) Y

AXIAL LENGTH OF PANEL:
AXIAL LENGTH OF PANEL = 100.
IS THE AXIAL LENGTH OKAY... (Y or N) Y

CIRCUMFERENTIAL LENGTH OF PANEL:
CIRCUMFERENTIAL LENGTH OF PANEL = 267.
IS THE CIRCUMFERENTIAL LENGTH OKAY... (Y or N) Y

NUMBER OF LAYERS IN PANEL SKIN:
NUMBER OF LAYERS IN PANEL SKIN = 7
IS THE NUMBER OF LAYERS OKAY... (Y or N) Y

PANEL SKIN LAYER THICKNESSES (INNER LAYER IS FIRST)

TLAYER(1) = ...
TLAYER(1) = 5.000E-03
IS TLAYER(1) OKAY... (Y or N) Y

TLAYER(2) = ...
TLAYER(2) = 5.000E-03
IS TLAYER(2) OKAY... (Y or N) Y

TLAYER(3) = ...
TLAYER(3) = 5.000E-03
IS TLAYER(3) OKAY... (Y or N) Y

TLAYER(4) = ...
TLAYER(4) = 1.000E-02
IS TLAYER(4) OKAY... (Y or N) Y

TLAYER(5) = ...
TLAYER(5) = 5.000E-03
IS TLAYER(5) OKAY... (Y or N) Y

TLAYER(6) = ...
TLAYER(6) = 5.000E-03
IS TLAYER(6) OKAY... (Y or N) Y

A-5
TLAYER(7) = ...
TLAYER(7) = 5.000E-03
IS TLAYER(7) OKAY....(Y or N)
Y

PANEL SKIN LAYER WINDING ANGLES (DEGREES)

ALPHA(1) = ...
ALPHA(1) = 90.0
IS ALPHA(1) OKAY....(Y or N)
Y

ALPHA(2) = ...
ALPHA(2) = 45.0
IS ALPHA(2) OKAY....(Y or N)
Y

ALPHA(3) = ...
ALPHA(3) = -45.0
IS ALPHA(3) OKAY....(Y or N)
Y

ALPHA(4) = ...
ALPHA(4) = 0.000E+00
IS ALPHA(4) OKAY....(Y or N)
Y

ALPHA(5) = ...
ALPHA(5) = -45.0
IS ALPHA(5) OKAY....(Y or N)
Y

ALPHA(6) = ...
ALPHA(6) = 45.0
IS ALPHA(6) OKAY....(Y or N)
Y

ALPHA(7) = ...
ALPHA(7) = 90.0
IS ALPHA(7) OKAY....(Y or N)
Y

PANEL SKIN LAYER MATERIAL TYPES (1, 2, 3, ...)

MATL(1) = ...
MATL(1) = 1
IS MATL(1) OKAY....(Y or N)
Y

MATL(2) = ...
MATL(2) = 1
IS MATL(2) OKAY....(Y or N)
Y

MATL(3) = ...
MATL(3) = 1
IS MATL(3) OKAY....(Y or N)
 Y

MATL(4) = ...
MATL(4) = 1
IS MATL(4) OKAY....(Y or N)
 Y

MATL(5) = ...
MATL(5) = 1
IS MATL(5) OKAY....(Y or N)
 Y

MATL(6) = ...
MATL(6) = 1
IS MATL(6) OKAY....(Y or N)
 Y

MATL(7) = ...
MATL(7) = 1
IS MATL(7) OKAY....(Y or N)
 Y

IS THE PANEL STIFFENED... (YES OR NO)
 Y

STIFFENERS OF ARBITRARY CROSS SECTION GEOMETRY ARE BUILT UP OF AS MANY AS 5 RECTANGULAR SEGMENTS, EACH WITH ITS OWN THICKNESS AND WIDTH. THE THEORY IS VALID IF THE THICKNESS IS LESS THAN ABOUT ONE QUARTER OF THE WIDTH. (WE USE THE TERM --WIDTH-- HERE INSTEAD OF --LENGTH-- IN ORDER TO AVOID CONFUSION WITH THE LENGTH OF THE STIFFENER, WHICH IS, OF COURSE, EQUAL TO ONE OF THE DIMENSIONS OF THE PANEL. WE ARE REFERRING HERE TO THE STIFFENER CROSS SECTION DIMENSIONS.)

YOU WILL BE ASKED TO PROVIDE DATA FOR...

1. THE NUMBER OF SEGMENTS IN THE STIFFENER CROSS SECTION (CALLED --NPARTS-- FOR STRINGERS AND --NPARTR-- FOR RINGS).

2. STIFFENER SEGMENT WIDTHS AND THICKNESSES, (LAMINA THICKNESSES, WINDING ANGLES, AND MATERIAL TYPES IF THE SEGMENT IS OF COMPOSITE MATERIAL)

3. ANGULAR ORIENTATIONS OF THE RECTANGULAR SEGMENTS WITH RESPECT TO THE NORMAL TO THE PANEL AT THE STIFFENER LINE OF ATTACHMENT,

4. HOW THE SEGMENTS ARE CONNECTED TO EACH OTHER AND TO THE PANEL SKIN,

5. WHETHER OR NOT EACH SEGMENT HAS A FREE END.
6. MATERIAL TYPE INDICATORS FOR EACH SEGMENT.

WANT MORE INFORMATION?

NOTE THAT STIFFENER SEGMENTS MUST BE JOINED END TO END. THEREFORE, A T-SHAPED STIFFENER MUST HAVE THREE SEGMENTS, AS SHOWN BELOW. AN I-SHAPED STIFFENER MUST HAVE FIVE SEGMENTS.

STIFFENER SEG. NO. 2...STIF. SEG. 3

--- --- ---

I I

SHELL SKIN...STIF. SEG. NO. 1

--- --- ---

I I I

--- --- --- --- --- ---

DOES THE PANEL HAVE STRINGERS (AXIAL STIFFENERS)?

Y

NEXT PROVIDE INPUT DATA FOR STRINGERS...

ARC LENGTH, B\(0\), BETWEEN ADJACENT STRINGERS =

ARC LENGTH BETWEEN STRINGERS, B\(0\) = 10.0

IS THE STRINGER SPACING, B\(0\), OKAY... (Y or N)

Y

YOU MUST NOW SPECIFY WHETHER THE STRINGERS ARE INTERNAL OR EXTERNAL.

ARE THE STRINGERS INTERNAL?

N

WHAT TYPE OF CROSS SECTION DO THE STRINGERS HAVE?

CHOOSE ONE OF THE FOLLOWING...

RECTANGULAR (please type the letter R)

T-SHAPED (FLANGE AWAY FROM PANEL SKIN) (type the letter T)

INVERTED T (FLANGE NEXT TO PANEL SKIN) (type T2)

Z-SHAPED (type the letter Z)

I-SHAPED (type the letter I)

L-SHAPED (ANGLE) (FLANGE AWAY FROM SKIN) (please type L)

INVERTED L (ANGLE) (FLANGE NEXT TO SKIN) (please type L2)

OTHER (please type the word OTHER)

STRINGERS CROSS SECTION INDICATOR: L

IS THE CROSS SECTION INDICATOR OKAY? (Y or N)
Y

STIFFENER SEG. NO. 2–

SHELL SKIN–

WHILE PROVIDING THE FOLLOWING INPUT DATA, PLEASE REFER TO THE SKETCH ABOVE FOR A DIAGRAM OF THE STRINGER CROSS SECTION AND THE STRINGER SEGMENT NUMBERING SCHEME.

ARE ANY OF THE STRINGER SEGMENTS MADE OF LAYERED OR COMPOSITE MATERIAL...

Y

NUMBER OF LAYERS IN STRINGER SEGMENT 1 = [1]
NUMBER OF LAYERS IN CURRENT STRINGER SEGMENT: 16
IS THE NUMBER OF LAYERS OKAY... (Y or N)

Y

THICKNESSES OF EACH OF THE 16 LAYERS IN STRINGER SEGMENT NO. 1

STRINGER SEGMENT LAYER THICKNESSES

TLAYER(1) = ...
TLAYER(1) = 5.000E-03
IS TLAYER(1) OKAY... (Y or N)

Y

TLAYER(2) = ...
TLAYER(2) = 5.000E-03
IS TLAYER(2) OKAY... (Y or N)

Y

TLAYER(3) = ...
TLAYER(3) = 5.000E-03
IS TLAYER(3) OKAY... (Y or N)

Y

TLAYER(4) = ...
TLAYER(4) = 5.000E-03
IS TLAYER(4) OKAY... (Y or N)

Y

A-9
TLAYER (5) = ...
TLAYER (5) = 5.000E-03
IS TLAYER (5) OKAY....(Y or N)
Y

TLAYER (6) = ...
TLAYER (6) = 5.000E-03
IS TLAYER (6) OKAY....(Y or N)
Y

TLAYER (7) = ...
TLAYER (7) = 5.000E-03
IS TLAYER (7) OKAY....(Y or N)
Y

TLAYER (8) = ...
TLAYER (8) = 5.000E-03
IS TLAYER (8) OKAY....(Y or N)
Y

TLAYER (9) = ...
TLAYER (9) = 5.000E-03
IS TLAYER (9) OKAY....(Y or N)
Y

TLAYER (10) = ...
TLAYER (10) = 5.000E-03
IS TLAYER (10) OKAY....(Y or N)
Y

TLAYER (11) = ...
TLAYER (11) = 5.000E-03
IS TLAYER (11) OKAY....(Y or N)
Y

TLAYER (12) = ...
TLAYER (12) = 5.000E-03
IS TLAYER (12) OKAY....(Y or N)
Y

TLAYER (13) = ...
TLAYER (13) = 5.000E-03
IS TLAYER (13) OKAY....(Y or N)
Y

TLAYER (14) = ...
TLAYER (14) = 5.000E-03
IS TLAYER (14) OKAY....(Y or N)
Y

TLAYER (15) = ...
TLAYER (15) = 5.000E-03
IS TLAYER (15) OKAY....(Y or N)
Y
TLAYER(16) = ...
TLAYER(16) = 5.000E-03
IS TLAYER(16) OKAY.... (Y or N)
Y

WINDING ANGLES OF EACH OF THE 16 LAYERS IN STRINGER SEGMENT NO. 1
NOTE: ZERO WINDING ANGLE MEANS FIBERS RUNNING ALONG THE AXIS OF THE STRINGER.)

STRINGER SEGMENT LAYER WINDING ANGLES (DEGREES)

ALPHA(1) = ...
ALPHA(1) = 90.0
IS ALPHA(1) OKAY.... (Y or N)
Y

ALPHA(2) = ...
ALPHA(2) = 45.0
IS ALPHA(2) OKAY.... (Y or N)
Y

ALPHA(3) = ...
ALPHA(3) = -45.0
IS ALPHA(3) OKAY.... (Y or N)
Y

ALPHA(4) = ...
ALPHA(4) = 0.000E+00
IS ALPHA(4) OKAY.... (Y or N)
Y

ALPHA(5) = ...
ALPHA(5) = 0.000E+00
IS ALPHA(5) OKAY.... (Y or N)
Y

ALPHA(6) = ...
ALPHA(6) = -45.0
IS ALPHA(6) OKAY.... (Y or N)
Y

ALPHA(7) = ...
ALPHA(7) = 45.0
IS ALPHA(7) OKAY.... (Y or N)
Y

ALPHA(8) = ...
ALPHA(8) = 90.0
IS ALPHA(8) OKAY.... (Y or N)
Y

ALPHA(9) = ...
ALPHA(9) = 90.0
IS ALPHA(9) OKAY.... (Y or N)
ALPHA(10) = ...
ALPHA(10) = 45.0
IS ALPHA(10) OKAY....(Y or N)

ALPHA(11) = ...
ALPHA(11) = -45.0
IS ALPHA(11) OKAY....(Y or N)

ALPHA(12) = ...
ALPHA(12) = 0.000E+00
IS ALPHA(12) OKAY....(Y or N)

ALPHA(13) = ...
ALPHA(13) = 0.000E+00
IS ALPHA(13) OKAY....(Y or N)

ALPHA(14) = ...
ALPHA(14) = -45.0
IS ALPHA(14) OKAY....(Y or N)

ALPHA(15) = ...
ALPHA(15) = 45.0
IS ALPHA(15) OKAY....(Y or N)

ALPHA(16) = ...
ALPHA(16) = 90.0
IS ALPHA(16) OKAY....(Y or N)

MATERIAL TYPES OF EACH OF THE 16 LAYERS IN STRINGER SEGMENT NO. 1

STRINGER SEGMENT LAYER MATERIAL TYPES (1, 2, 3,...)

MATL(1) = ...
MATL(1) = 1
IS MATL(1) OKAY....(Y or N)

MATL(2) = ...
MATL(2) = 1
IS MATL(2) OKAY....(Y or N)

MATL(3) = ...
MATL(3) = 1
IS MATL(3) OKAY....(Y or N)
Y

MATL(4) = ...
MATL(4) = 1
IS MATL(4) OKAY....(Y or N)
Y

MATL(5) = ...
MATL(5) = 1
IS MATL(5) OKAY....(Y or N)
Y

MATL(6) = ...
MATL(6) = 1
IS MATL(6) OKAY....(Y or N)
Y

MATL(7) = ...
MATL(7) = 1
IS MATL(7) OKAY....(Y or N)
Y

MATL(8) = ...
MATL(8) = 1
IS MATL(8) OKAY....(Y or N)
Y

MATL(9) = ...
MATL(9) = 1
IS MATL(9) OKAY....(Y or N)
Y

MATL(10) = ...
MATL(10) = 1
IS MATL(10) OKAY....(Y or N)
Y

MATL(11) = ...
MATL(11) = 1
IS MATL(11) OKAY....(Y or N)
Y

MATL(12) = ...
MATL(12) = 1
IS MATL(12) OKAY....(Y or N)
Y

MATL(13) = ...
MATL(13) = 1
IS MATL(13) OKAY....(Y or N)
Y

MATL(14) = ...
MATL(14) = 1
IS MATL(14) OKAY....(Y or N)
MATL(15) = ...
MATL(15) = 1
IS MATL(15) OKAY... (Y or N)
Y

MATL(16) = ...
MATL(16) = 1
IS MATL(16) OKAY... (Y or N)
Y

NUMBER OF LAYERS IN STRINGER SEGMENT 2 =
NUMBER OF LAYERS IN CURRENT STRINGER SEGMENT: 17
IS THE NUMBER OF LAYERS OKAY... (Y or N)
Y

THICKNESSES OF EACH OF THE 17 LAYERS IN STRINGER SEGMENT NO. 2

STRINGER SEGMENT LAYER THICKNESSES

TLAYER(1) = ...
TLAYER(1) = 5.000E-03
IS TLAYER(1) OKAY... (Y or N)
Y

TLAYER(2) = ...
TLAYER(2) = 5.000E-03
IS TLAYER(2) OKAY... (Y or N)
Y

TLAYER(3) = ...
TLAYER(3) = 5.000E-03
IS TLAYER(3) OKAY... (Y or N)
Y

TLAYER(4) = ...
TLAYER(4) = 5.000E-03
IS TLAYER(4) OKAY... (Y or N)
Y

TLAYER(5) = ...
TLAYER(5) = 5.000E-03
IS TLAYER(5) OKAY... (Y or N)
Y

TLAYER(6) = ...
TLAYER(6) = 5.000E-03
IS TLAYER(6) OKAY... (Y or N)
Y

TLAYER(7) = ...
TLAYER(7) = 5.000E-03
IS TLAYER(7) OKAY... (Y or N)
Y

TLAYER(8) = 5.000E-03
IS TLAYER(8) OKAY....(Y or N)
Y

TLAYER(9) = 0.100
IS TLAYER(9) OKAY....(Y or N)
Y

TLAYER(10) = 5.000E-03
IS TLAYER(10) OKAY....(Y or N)
Y

TLAYER(11) = 5.000E-03
IS TLAYER(11) OKAY....(Y or N)
Y

TLAYER(12) = 5.000E-03
IS TLAYER(12) OKAY....(Y or N)
Y

TLAYER(13) = 5.000E-03
IS TLAYER(13) OKAY....(Y or N)
Y

TLAYER(14) = 5.000E-03
IS TLAYER(14) OKAY....(Y or N)
Y

TLAYER(15) = 5.000E-03
IS TLAYER(15) OKAY....(Y or N)
Y

TLAYER(16) = 5.000E-03
IS TLAYER(16) OKAY....(Y or N)
Y

TLAYER(17) = 5.000E-03
IS TLAYER(17) OKAY....(Y or N)
Y

WINDING ANGLES OF EACH OF THE 17 LAYERS IN STRINGER SEGMENT NO. 2
NOTE: ZERO WINDING ANGLE MEANS FIBERS RUNNING ALONG
THE AXIS OF THE STRINGER.)

STRINGER SEGMENT LAYER WINDING ANGLES (DEGREES)

\[\text{ALPHA(1)} = \ldots \]
\[\text{ALPHA(1)} = 90.0 \]
IS \text{ALPHA(1)} OKAY....(Y or N) Y

\[\text{ALPHA(2)} = \ldots \]
\[\text{ALPHA(2)} = 45.0 \]
IS \text{ALPHA(2)} OKAY....(Y or N) Y

\[\text{ALPHA(3)} = \ldots \]
\[\text{ALPHA(3)} = -45.0 \]
IS \text{ALPHA(3)} OKAY....(Y or N) Y

\[\text{ALPHA(4)} = \ldots \]
\[\text{ALPHA(4)} = 0.000E+00 \]
IS \text{ALPHA(4)} OKAY....(Y or N) Y

\[\text{ALPHA(5)} = \ldots \]
\[\text{ALPHA(5)} = 0.000E+00 \]
IS \text{ALPHA(5)} OKAY....(Y or N) Y

\[\text{ALPHA(6)} = \ldots \]
\[\text{ALPHA(6)} = -45.0 \]
IS \text{ALPHA(6)} OKAY....(Y or N) Y

\[\text{ALPHA(7)} = \ldots \]
\[\text{ALPHA(7)} = 45.0 \]
IS \text{ALPHA(7)} OKAY....(Y or N) Y

\[\text{ALPHA(8)} = \ldots \]
\[\text{ALPHA(8)} = 90.0 \]
IS \text{ALPHA(8)} OKAY....(Y or N) Y

\[\text{ALPHA(9)} = \ldots \]
\[\text{ALPHA(9)} = 0.000E+00 \]
IS \text{ALPHA(9)} OKAY....(Y or N) Y

\[\text{ALPHA(10)} = \ldots \]
\[\text{ALPHA(10)} = 90.0 \]
IS \text{ALPHA(10)} OKAY....(Y or N) Y

\[\text{ALPHA(11)} = \ldots \]
\[\text{ALPHA}(11) = 45.0 \]
\[\text{IS } \text{ALPHA}(11) \text{ OKAY....(Y or N)} \]
\[\text{Y} \]

\[\text{ALPHA}(12) = ... \]
\[\text{ALPHA}(12) = -45.0 \]
\[\text{IS } \text{ALPHA}(12) \text{ OKAY....(Y or N)} \]
\[\text{Y} \]

\[\text{ALPHA}(13) = ... \]
\[\text{ALPHA}(13) = 0.000E+00 \]
\[\text{IS } \text{ALPHA}(13) \text{ OKAY....(Y or N)} \]
\[\text{Y} \]

\[\text{ALPHA}(14) = ... \]
\[\text{ALPHA}(14) = 0.000E+00 \]
\[\text{IS } \text{ALPHA}(14) \text{ OKAY....(Y or N)} \]
\[\text{Y} \]

\[\text{ALPHA}(15) = ... \]
\[\text{ALPHA}(15) = -45.0 \]
\[\text{IS } \text{ALPHA}(15) \text{ OKAY....(Y or N)} \]
\[\text{Y} \]

\[\text{ALPHA}(16) = ... \]
\[\text{ALPHA}(16) = 45.0 \]
\[\text{IS } \text{ALPHA}(16) \text{ OKAY....(Y or N)} \]
\[\text{Y} \]

\[\text{ALPHA}(17) = ... \]
\[\text{ALPHA}(17) = 90.0 \]
\[\text{IS } \text{ALPHA}(17) \text{ OKAY....(Y or N)} \]
\[\text{Y} \]

\[\text{MATERIAL TYPES OF EACH OF THE 17 LAYERS IN STRINGER SEGMENT NO. 2} \]

\[\text{STRINGER SEGMENT LAYER MATERIAL TYPES (1, 2, 3,...)} \]

\[\text{MATL(1) = ...} \]
\[\text{MATL(1) = 1} \]
\[\text{IS } \text{MATL(1) \text{ OKAY....(Y or N)} \]
\[\text{Y} \]

\[\text{MATL(2) = ...} \]
\[\text{MATL(2) = 1} \]
\[\text{IS } \text{MATL(2) \text{ OKAY....(Y or N)} \]
\[\text{Y} \]

\[\text{MATL(3) = ...} \]
\[\text{MATL(3) = 1} \]
\[\text{IS } \text{MATL(3) \text{ OKAY....(Y or N)} \]
\[\text{Y} \]

\[\text{MATL(4) = ...} \]
MATL(4) = 1
IS MATL(4) OKAY....(Y or N)
Y

MATL(5) = ...
MATL(5) = 1
IS MATL(5) OKAY....(Y or N)
Y

MATL(6) = ...
MATL(6) = 1
IS MATL(6) OKAY....(Y or N)
Y

MATL(7) = ...
MATL(7) = 1
IS MATL(7) OKAY....(Y or N)
Y

MATL(8) = ...
MATL(8) = 1
IS MATL(8) OKAY....(Y or N)
Y

MATL(9) = ...
MATL(9) = 1
IS MATL(9) OKAY....(Y or N)
Y

MATL(10) = ...
MATL(10) = 1
IS MATL(10) OKAY....(Y or N)
Y

MATL(11) = ...
MATL(11) = 1
IS MATL(11) OKAY....(Y or N)
Y

MATL(12) = ...
MATL(12) = 1
IS MATL(12) OKAY....(Y or N)
Y

MATL(13) = ...
MATL(13) = 1
IS MATL(13) OKAY....(Y or N)
Y

MATL(14) = ...
MATL(14) = 1
IS MATL(14) OKAY....(Y or N)
Y

MATL(15) = ...
MATL(15) = 1
IS MATL(15) OKAY....(Y or N)
Y

MATL(16) = ...
MATL(16) = 1
IS MATL(16) OKAY....(Y or N)
Y

MATL(17) = ...
MATL(17) = 1
IS MATL(17) OKAY....(Y or N)
Y

STRINGER SEGMENT WIDTHS (HEIGHT, NOT THICKNESS)

BS(1) = ...
BS(1) = 1.00
IS BS(1) OKAY....(Y or N)
Y

BS(2) = ...
BS(2) = 0.500
IS BS(2) OKAY....(Y or N)
Y

REVIEW OF STRINGER INPUT DATA FOR 2 STRINGER SEGS.
SEG. BS(I) ANGLES(I) THICKNESS CONNECT. FREE END MATL TYPE
1 1.00E+00 0.00E+00 8.00E-02 0 NO 9999
2 5.00E-01 9.00E+01 1.80E-01 1 YES 9999

DO YOU WANT ANOTHER CHANCE TO PROVIDE STRINGER INPUT DATA(YES OR NO)
N

DOES THE PANEL HAVE RINGS
Y

NEXT PROVIDE NUMERICAL INPUT DATA FOR RINGS...
SPACING, A, BETWEEN ADJACENT RINGS =
SPACING BETWEEN RINGS= 10.0
IS THE RING SPACING, A8, OKAY....(Y or N)
Y
YOU MUST NOW SPECIFY WHETHER THE RINGS ARE INTERNAL OR EXTERNAL.
ARE THE RINGS INTERNAL?
Y
WHAT TYPE OF CROSS SECTION DO THE RINGS HAVE?

CHOOSE ONE OF THE FOLLOWING...
RECTANGULAR (please type the letter R)
T-SHAPED (FLANGE AWAY FROM PANEL SKIN) (type the letter T)
INVERTED T (FLANGE NEXT TO PANEL SKIN) (type T2)
Z-SHAPED (type the letter Z)

A-19
I-SHAPED (type the letter I)
I-SHAPED (CHANNEL) (please type C)
L-SHAPED (ANGLE) (FLANGE AWAY FROM SKIN) (please type L)
INVERTED L (ANGLE) (FLANGE NEXT TO SKIN) (please type L2)
OTHER (please type the word OTHER)

RINGS CROSS SECTION INDICATOR=L
IS THE CROSS SECTION INDICATOR OKAY? (Y or N)
Y

STIFFENER SEG. NO. 2--,

\[\begin{align*}
\text{SWELL SKIN--.} & \quad \text{STIF. SEG. NO. 1} \\
\end{align*} \]

WHILE PROVIDING THE FOLLOWING INPUT DATA, PLEASE REFER TO THE SKETCH ABOVE FOR A DIAGRAM OF THE RING CROSS SECTION AND THE SEGMENT NUMBERING SCHEME.

ARE ANY OF THE RING SEGMENTS MADE OF LAYERED OR COMPOSITE MATERIAL...
N

RING SEGMENT THICKNESSES
\[\begin{align*}
\text{TR(1)} & = \ldots \\
\text{TR(1)} & = 5.000E-02 \\
\text{IS} & \quad \text{TR(1) OKAY... (Y or N)} \\
Y \\
\text{TR(2)} & = \ldots \\
\text{TR(2)} & = 5.000E-02 \\
\text{IS} & \quad \text{TR(2) OKAY... (Y or N)} \\
Y \\
\end{align*} \]

RING SEGMENT WIDTHS (HEIGHT, NOT THICKNESS)
\[\begin{align*}
\text{BR(1)} & = \ldots \\
\text{BR(1)} & = 1.00 \\
\text{IS} & \quad \text{BR(1) OKAY... (Y or N)} \\
Y \\
\text{BR(2)} & = \ldots \\
\text{BR(2)} & = 0.500 \\
\text{IS} & \quad \text{BR(2) OKAY... (Y or N)} \\
\end{align*} \]
RING SEGMENT MATERIAL TYPES (1, 2, 3, ...)

MATL(1) = ...
MATL(1) = 2
IS MATL(1) OKAY... (Y or N)
Y

MATL(2) = ...
MATL(2) = 2
IS MATL(2) OKAY... (Y or N)
Y

REVIEW OF RING INPUT DATA FOR 2 RING SEGMENTS
SEG. BR(I) ANGLES(I) THICKNESS CONNECT. FREE END MATL TYPE
1 1.00E+00 1.00E+02 5.00E-02 0 NO 2
2 5.00E-01 9.00E+01 5.00E-02 1 YES 2

DO YOU WANT ANOTHER CHANCE TO PROVIDE RING INPUT DATA (YES OR NO)
N

YOU WILL NOW BE ASKED TO PROVIDE MATERIAL PROPERTIES CORRESPONDING TO THE MATERIAL TYPES THAT YOU HAVE ALREADY INDICATED. IN THE FOLLOWING E1 DENOTES THE MODULUS ALONG THE FIBER AXIS FOR EACH LAYER OF A COMPOSITE LAMINATE OR IN THE CASE OF NON-LAYERED STIFFENERS E1 IS THE MODULUS ALONG THE STIFFENER AXIS FOR EACH STIFFENER SEGMENT. (FOR EXAMPLE, IN THE CASE OF A RING THE STIFFENER AXIS RUNS IN THE PANEL CIRCUMFERENTIAL DIRECTION.) E2 IS THE MODULUS FOR THE DIRECTION NORMAL TO THE E1-DIRECTION.

NUMBER OF DIFFERENT MATERIALS SPECIFIED = 2

MATERIAL PROPERTIES FOR MATERIAL TYPE 1
MODULI E1, E2, AND G; POISSONS RATIO NU; AND DENSITY RHO ARE TO BE PROVIDED NOW FOR MATERIAL TYPE NO. 1

MODULUS E1 IN MATL FIBER DIRECTION OR STIFFENER AXIS:
MATERIAL TYPE 1 AND E1(1) = 0.230E+08
IS THE MODULUS E1 OKAY... (Y or N)
Y
IS THIS MATERIAL ISOTROPIC?
N
MODULUS E2 IN DIRECTION PERPENDICULAR TO E1:
MATERIAL TYPE 1 AND E2(1) = 0.170E+07
IS THE MODULUS E2 OKAY...
Y

IN-PLANE SHEAR MODULUS G:
MATERIAL TYPE 1 AND G(1) = 0.940E+06
IS THE SHEAR MODULUS G OKAY...
Y

NOTE THAT THE POISSONS RATIO THAT YOU ARE TO PROVIDE IS ASSUMED TO SATISFY THE EQUATION.
\[\nu(\text{INPUT}) = \nu_{12} = \nu_{21} \times \frac{E_2}{E_1} \]

Poissons Ratio \(\nu \):

Material Type 1 and \(\nu(1) = 0.225E^{-01} \)

Is Poissons Ratio \(\nu \) okay... Y

Weight Density (e.g. LB/CUBIC INCH), \(\rho = \)

Material Type 1 and \(\rho(1) = 0.560E^{-01} \)

Is the Density \(\rho \) okay... Y

Do you want to provide a stress-strain curve for this material.. N

For this material you may specify either a single maximum allowable effective stress or five ultimate strain components.

Do you want to specify a single maximum allowable effective stress... (Y or N) N

Now provide 5 ultimate strain components...

\(\varepsilon_{11}^{(\text{TENSION})}, \varepsilon_{11}^{(\text{COMPRESSION})}, \varepsilon_{22}^{(+)}, \varepsilon_{22}^{(-)}, \varepsilon_{12}^{(\text{SHEAR})} = \)

Max. tensile strain in \(E_1\)-direction =

Material Type 1 and Max. \(\varepsilon_{11}^{(\text{TENSION})} = 0.565E^{-02} \)

Is the maximum value of \(\varepsilon_{11}^{(\text{TENSION})} \) okay... Y

Max. compressive strain in \(E_1\)-direction =

Material Type 1 and Max. \(\varepsilon_{11}^{(\text{COMPRESSION})} = 0.452E^{-02} \)

Is the maximum value of \(\varepsilon_{11}^{(\text{COMPRESSION})} \) okay... Y

Max. tensile strain in \(E_2\)-direction =

Material Type 1 and Max. \(\varepsilon_{22}^{(\text{TENSION})} = 0.320E^{-02} \)

Is the maximum value of \(\varepsilon_{22}^{(\text{TENSION})} \) okay... Y

Max. compressive strain in \(E_2\)-direction =

Material Type 1 and Max. \(\varepsilon_{22}^{(\text{COMPRESSION})} = 0.125E^{-01} \)

Is the maximum value of \(\varepsilon_{22}^{(\text{COMPRESSION})} \) okay... Y

Max. in-plane shear strain =

Material Type 1 and Max. \(\varepsilon_{12}^{(\text{SHEAR})} = 0.125E^{-01} \)

Is the maximum value of \(\varepsilon_{12}^{(\text{SHEAR})} \) okay... Y

Do you want another chance to provide material properties for this material type.. N

Material properties for material type 2

Moduli \(E_1, E_2, \) and \(G; \) Poissons ratio \(\nu; \) and density \(\rho \) are to be provided now for material type no. 2

Modulus \(E_1 \) in matl fiber direction or stiffener axis:
MATERIAL TYPE 2 AND $E_1(2) = 0.100E+08$
IS THE MODULUS E_1 OKAY... (Y or N)
Y
IS THIS MATERIAL ISOTROPIC?
Y
POISSONS RATIO N_2
MATERIAL TYPE 2 AND $N_2(2) = 0.300$
IS POISSONS RATIO N_2 OKAY...
Y
WEIGHT DENSITY (e.g. LB/CUBIC INCH), RHO
MATERIAL TYPE 2 AND $RHO(2) = 0.100$
IS THE DENSITY RHO OKAY...
Y
DO YOU WANT TO PROVIDE A STRESS-STRAIN CURVE FOR THIS MATERIAL...
N
FOR THIS MATERIAL YOU MAY SPECIFY EITHER A SINGLE MAXIMUM ALLOWABLE EFFECTIVE STRESS OR FIVE ULTIMATE STRAIN COMPONENTS.

DO YOU WANT TO SPECIFY A SINGLE MAXIMUM ALLOWABLE EFFECTIVE STRESS... (Y or N)
Y
MAXIMUM ALLOWABLE EFFECTIVE STRESS =
MATL TYPE 2. MAX EFFECTIVE STRESS = $0.400E+05$
IS THE MAXIMUM VALUE OF EFFECTIVE STRESS OKAY...
Y
DO YOU WANT ANOTHER CHANCE TO PROVIDE MATERIAL PROPERTIES FOR THIS MATERIAL TYPE...
N
MATERIAL PROPERTIES FOR STRINGER SEGMENT 1
MATERIAL TYPE 3 E_1, E_2, G, N_2, RHO
$9.002E+06$ $9.002E+06$ $3.449E+06$ $3.052E-01$ $5.600E-02$

MAXIMUM ALLOWABLE TENSILE AND COMpressive STRAINS IN STRINGER SEGMENT 1 (MATERIAL TYPE 3)
MAX. TENSILE STRAIN = $3.200E-03$
MAX. COMpressive STRAIN = $-4.520E-03$

MATERIAL PROPERTIES FOR STRINGER SEGMENT 2
MATERIAL TYPE 4 E_1, E_2, G, N_2, RHO
$1.678E+07$ $5.208E+06$ $2.055E+06$ $9.469E-02$ $5.600E-02$

MAXIMUM ALLOWABLE TENSILE AND COMpressive STRAINS IN STRINGER SEGMENT 2 (MATERIAL TYPE 4)
MAX. TENSILE STRAIN = $3.200E-03$
MAX. COMpressive STRAIN = $-4.520E-03$

IT MAY SOMETIMES BE ADVISEDABLE TO DESIGN A PANEL SUCH THAT LOCAL BUCKLING OCCURS AT A DIFFERENT LOAD FROM GENERAL INSTABILITY. IN THIS PROGRAM WE ALLOW FOR A FACTOR, PHI, TO BE PROVIDED BY YOU. SUCH THAT
(LOCAL INSTABILITY LOAD) = PHI*(GENERAL INSTABILITY LOAD)
DO YOU WISH TO PROVIDE A VALUE FOR PHI DIFFERENT FROM UNITY
N
WHEN YOUR TERMINAL SAYS
 READY
PLEASE TYPE THE COMMAND
 -DECIDE
(The following is the input data file PANDACASE.DAT generated by execution of BEGIN. If any errors were made during interactive input, they can be corrected by editing of this file, rather than having to answer all the questions posed by BEGIN again.)

COMPOSITE STIFF. CYL., FIXED INT. PRESS., NX=-2700, NXY=420 LB/IN.

Y WANT MORE INFORMATION?
N IS PANEL FLAT?

0.270E+04 AXIAL STRESS RESULTANT
Y IS NX COMPRESSIVE?
Y IS PREVIOUS NUMERICAL ENTRY OK?

0.000E+00 CIRCUMFERENTIAL STRESS RESULTANT
Y IS NY COMPRESSIVE?
Y IS PREVIOUS NUMERICAL ENTRY OK?

420. IN-PLANE SHEAR STRESS RESULTANT
Y IS PREVIOUS NUMERICAL ENTRY OK?
Y WANT TO INPUT NXFIXED, NYFIXED?

625. FIXED PORTION OF AXIAL RESULTANT
N IS NXFIXED COMPRESSIVE?
Y IS PREVIOUS NUMERICAL ENTRY OK?

0.125E+04 FIXED PART OF CIRCUMF. RESULTANT
N IS NYFIXED COMPRESSIVE?
Y IS PREVIOUS NUMERICAL ENTRY OK?

85.0 CYLINDER RADIUS
Y IS PREVIOUS NUMERICAL ENTRY OK?

100. AXIAL LENGTH OF PANEL
Y IS PREVIOUS NUMERICAL ENTRY OK?

267. CIRCUMFERENTIAL LENGTH OF PANEL
Y IS PREVIOUS NUMERICAL ENTRY OK?

7 NUMBER OF LAYERS IN PANEL SKIN
Y IS PREVIOUS NUMERICAL ENTRY OK?

0.500E-02 T LAYER
Y IS PREVIOUS NUMERICAL ENTRY OK?

0.500E-02 T LAYER
Y IS PREVIOUS NUMERICAL ENTRY OK?

0.500E-02 T LAYER
Y IS PREVIOUS NUMERICAL ENTRY OK?

0.100E-01 T LAYER
Y IS PREVIOUS NUMERICAL ENTRY OK?

0.500E-02 T LAYER
Y IS PREVIOUS NUMERICAL ENTRY OK?

0.500E-02 T LAYER
Y IS PREVIOUS NUMERICAL ENTRY OK?
0.500E-02 TLAYER
Y IS PREVIOUS NUMERICAL ENTRY OK?
90.0 ALPHA
Y IS PREVIOUS NUMERICAL ENTRY OK?
45.0 ALPHA
Y IS PREVIOUS NUMERICAL ENTRY OK?
-45.0 ALPHA
Y IS PREVIOUS NUMERICAL ENTRY OK?
0.000E+00 ALPHA
Y IS PREVIOUS NUMERICAL ENTRY OK?
-45.0 ALPHA
Y IS PREVIOUS NUMERICAL ENTRY OK?
45.0 ALPHA
Y IS PREVIOUS NUMERICAL ENTRY OK?
90.0 ALPHA
Y IS PREVIOUS NUMERICAL ENTRY OK?
1
MATL
Y IS PREVIOUS NUMERICAL ENTRY OK?
Y IS THE PANEL STIFFENED?
Y WANT MORE INFORMATION?
Y ARE THERE STRINGERS?
10.0 STRINGER SPACING
Y IS PREVIOUS NUMERICAL ENTRY OK?
N IS THE STIFFENER INTERNAL?
L CROSS SECTION TYPE FOR THE STRINGERS
Y IS CROSS-SECTION CHOICE OKAY?
Y ANY STR. SEG'S OF COMPOSITE MAT?
16 NO. OF LAYERS IN STRINGER SEG.
Y IS PREVIOUS NUMERICAL ENTRY OK?
0.500E-02 TLAYER
Y IS PREVIOUS NUMERICAL ENTRY OK?
0.500E-02 T LAYER
Y IS PREVIOUS NUMERICAL ENTRY OK?
0.500E-02 T LAYER
Y IS PREVIOUS NUMERICAL ENTRY OK?
0.500E-02 T LAYER
Y IS PREVIOUS NUMERICAL ENTRY OK?
0.500E-02 T LAYER
Y IS PREVIOUS NUMERICAL ENTRY OK?
0.500E-02 T LAYER
Y IS PREVIOUS NUMERICAL ENTRY OK?
0.500E-02 T LAYER
Y IS PREVIOUS NUMERICAL ENTRY OK?
0.500E-02 T LAYER
Y IS PREVIOUS NUMERICAL ENTRY OK?
0.500E-02 T LAYER
Y IS PREVIOUS NUMERICAL ENTRY OK?
0.500E-02 T LAYER
Y IS PREVIOUS NUMERICAL ENTRY OK?
90.0 ALPHA
Y IS PREVIOUS NUMERICAL ENTRY OK?
45.0 ALPHA
Y IS PREVIOUS NUMERICAL ENTRY OK?
-45.0 ALPHA
Y IS PREVIOUS NUMERICAL ENTRY OK?
0.000E+00 ALPHA
Y IS PREVIOUS NUMERICAL ENTRY OK?
0.000E+00 ALPHA
Y IS PREVIOUS NUMERICAL ENTRY OK?
-45.0 ALPHA
Y IS PREVIOUS NUMERICAL ENTRY OK?
45.0 ALPHA
Y IS PREVIOUS NUMERICAL ENTRY OK?
90.0 ALPHA
Y IS PREVIOUS NUMERICAL ENTRY OK?
90.0 ALPHA
Y IS PREVIOUS NUMERICAL ENTRY OK?
45.0 ALPHA
Y IS PREVIOUS NUMERICAL ENTRY OK?
-45.0 ALPHA
Y IS PREVIOUS NUMERICAL ENTRY OK?
0.000E+00 ALPHA
Y IS PREVIOUS NUMERICAL ENTRY OK?
0.000E+00 ALPHA
Y IS PREVIOUS NUMERICAL ENTRY OK?
-45.0 ALPHA
Y IS PREVIOUS NUMERICAL ENTRY OK?
45.0 ALPHA
Y IS PREVIOUS NUMERICAL ENTRY OK?
90.0 ALPHA
Y IS PREVIOUS NUMERICAL ENTRY OK?
1 MATL
Y IS PREVIOUS NUMERICAL ENTRY OK?
1 MATL
Y IS PREVIOUS NUMERICAL ENTRY OK?
Y 1 IS PREVIOUS NUMERICAL ENTRY OK?
M4L Y IS PREVIOUS NUMERICAL ENTRY OK?
Y 1 IS PREVIOUS NUMERICAL ENTRY OK?
MATL Y IS PREVIOUS NUMERICAL ENTRY OK?
Y 1 IS PREVIOUS NUMERICAL ENTRY OK?
MATL Y IS PREVIOUS NUMERICAL ENTRY OK?
Y 1 IS PREVIOUS NUMERICAL ENTRY OK?
MATL Y IS PREVIOUS NUMERICAL ENTRY OK?
Y 1 IS PREVIOUS NUMERICAL ENTRY OK?
MATL Y IS PREVIOUS NUMERICAL ENTRY OK?
Y 1 IS PREVIOUS NUMERICAL ENTRY OK?
MATL Y IS PREVIOUS NUMERICAL ENTRY OK?
Y 1 IS PREVIOUS NUMERICAL ENTRY OK?
MATL Y IS PREVIOUS NUMERICAL ENTRY OK?
Y 1 IS PREVIOUS NUMERICAL ENTRY OK?
MATL Y IS PREVIOUS NUMERICAL ENTRY OK?
Y 1 IS PREVIOUS NUMERICAL ENTRY OK?
MATL Y IS PREVIOUS NUMERICAL ENTRY OK?
Y 1 IS PREVIOUS NUMERICAL ENTRY OK?
MATL Y IS PREVIOUS NUMERICAL ENTRY OK?
Y 1 IS PREVIOUS NUMERICAL ENTRY OK?
MATL Y IS PREVIOUS NUMERICAL ENTRY OK?
Y 1 IS PREVIOUS NUMERICAL ENTRY OK?
MATL Y IS PREVIOUS NUMERICAL ENTRY OK?
Y 1 IS PREVIOUS NUMERICAL ENTRY OK?
MATL Y IS PREVIOUS NUMERICAL ENTRY OK?
Y 1 IS PREVIOUS NUMERICAL ENTRY OK?
MATL Y IS PREVIOUS NUMERICAL ENTRY OK?
Y 1 IS PREVIOUS NUMERICAL ENTRY OK?
MATL Y IS PREVIOUS NUMERICAL ENTRY OK?
Y 1 IS PREVIOUS NUMERICAL ENTRY OK?
MATL Y IS PREVIOUS NUMERICAL ENTRY OK?
Y 1 IS PREVIOUS NUMERICAL ENTRY OK?
MATL Y IS PREVIOUS NUMERICAL ENTRY OK?
Y 1 IS PREVIOUS NUMERICAL ENTRY OK?
MATL Y IS PREVIOUS NUMERICAL ENTRY OK?
Y 1 IS PREVIOUS NUMERICAL ENTRY OK?
MATL Y IS PREVIOUS NUMERICAL ENTRY OK?
Y 1 IS PREVIOUS NUMERICAL ENTRY OK?
MATL Y IS PREVIOUS NUMERICAL ENTRY OK?
Y 1 IS PREVIOUS NUMERICAL ENTRY OK?
MATL Y IS PREVIOUS NUMERICAL ENTRY OK?
Y 1 IS PREVIOUS NUMERICAL ENTRY OK?
MATL Y IS PREVIOUS NUMERICAL ENTRY OK?
Y 1 IS PREVIOUS NUMERICAL ENTRY OK?
MATL Y IS PREVIOUS NUMERICAL ENTRY OK?
Y 1 IS PREVIOUS NUMERICAL ENTRY OK?
MATL Y IS PREVIOUS NUMERICAL ENTRY OK?
Y 1 IS PREVIOUS NUMERICAL ENTRY OK?
MATL Y IS PREVIOUS NUMERICAL ENTRY OK?
Y 1 IS PREVIOUS NUMERICAL ENTRY OK?
MATL Y IS PREVIOUS NUMERICAL ENTRY OK?
Y 1 IS PREVIOUS NUMERICAL ENTRY OK?
MATL Y IS PREVIOUS NUMERICAL ENTRY OK?
Y 1 IS PREVIOUS NUMERICAL ENTRY OK?
MATL Y IS PREVIOUS NUMERICAL ENTRY OK?
Y 1 IS PREVIOUS NUMERICAL ENTRY OK?
MATL Y IS PREVIOUS NUMERICAL ENTRY OK?
Y 1 IS PREVIOUS NUMERICAL ENTRY OK?
MATL Y IS PREVIOUS NUMERICAL ENTRY OK?
Y 1 IS PREVIOUS NUMERICAL ENTRY OK?
MATL Y IS PREVIOUS NUMERICAL ENTRY OK?
Y 1 IS PREVIOUS NUMERICAL ENTRY OK?
MATL Y IS PREVIOUS NUMERICAL ENTRY OK?
Y 1 IS PREVIOUS NUMERICAL ENTRY OK?
MATL Y IS PREVIOUS NUMERICAL ENTRY OK?
Y 1 IS PREVIOUS NUMERICAL ENTRY OK?
MATL Y IS PREVIOUS NUMERICAL ENTRY OK?
Y 1 IS PREVIOUS NUMERICAL ENTRY OK?
MATL Y IS PREVIOUS NUMERICAL ENTRY OK?
Y 1 IS PREVIOUS NUMERICAL ENTRY OK?
MATL Y IS PREVIOUS NUMERICAL ENTRY OK?
Y 1 IS PREVIOUS NUMERICAL ENTRY OK?
MATL Y IS PREVIOUS NUMERICAL ENTRY OK?
Y 1 IS PREVIOUS NUMERICAL ENTRY OK?
MATL Y IS PREVIOUS NUMERICAL ENTRY OK?
Y 1 IS PREVIOUS NUMERICAL ENTRY OK?
MATL Y IS PREVIOUS NUMERICAL ENTRY OK?
Y 1 IS PREVIOUS NUMERICAL ENTRY OK?
MATL Y IS PREVIOUS NUMERICAL ENTRY OK?
Y 1 IS PREVIOUS NUMERICAL ENTRY OK?
MATL Y IS PREVIOUS NUMERICAL ENTRY OK?
0.500E-02 TAYER
Y IS PREVIOUS NUMERICAL ENTRY OK?
90.0 ALPHA
Y IS PREVIOUS NUMERICAL ENTRY OK?
45.0 ALPHA
Y IS PREVIOUS NUMERICAL ENTRY OK?
-45.0 ALPHA
Y IS PREVIOUS NUMERICAL ENTRY OK?
0.000E+00 ALPHA
Y IS PREVIOUS NUMERICAL ENTRY OK?
0.000E+00 ALPHA
Y IS PREVIOUS NUMERICAL ENTRY OK?
-45.0 ALPHA
Y IS PREVIOUS NUMERICAL ENTRY OK?
45.0 ALPHA
Y IS PREVIOUS NUMERICAL ENTRY OK?
90.0 ALPHA
Y IS PREVIOUS NUMERICAL ENTRY OK?
0.000E+00 ALPHA
Y IS PREVIOUS NUMERICAL ENTRY OK?
0.000E+00 ALPHA
Y IS PREVIOUS NUMERICAL ENTRY OK?
-45.0 ALPHA
Y IS PREVIOUS NUMERICAL ENTRY OK?
45.0 ALPHA
Y IS PREVIOUS NUMERICAL ENTRY OK?
90.0 ALPHA
Y IS PREVIOUS NUMERICAL ENTRY OK?
1 MATL
Y IS PREVIOUS NUMERICAL ENTRY OK?
IS PREVIOUS NUMERICAL ENTRY OK?
N WANT TO DO RING STUFF AGAIN?
0.230E+08 MODULUS IN FIBER DIRECTION
Y IS PREVIOUS NUMERICAL ENTRY OK?
N IS THIS MATERIAL ISOTROPIC?
0.170E+07 MODULUS NORMAL TO E1-DIRECTION
Y IS PREVIOUS NUMERICAL ENTRY OK?
0.940E+06 IN-PLANE SHEAR MODULUS
Y IS PREVIOUS NUMERICAL ENTRY OK?
0.225E-01 POISSONS RATIO
Y IS PREVIOUS NUMERICAL ENTRY OK?
0.560E-01 WEIGHT DENSITY
Y IS PREVIOUS NUMERICAL ENTRY OK?
N WANT TO INPUT STRESS-STRAIN?
N WANT TO INPUT EFFECTIVE STRESS?
0.565E-02 MAX TENSILE STRAIN, E1-DIRECTION
Y IS PREVIOUS NUMERICAL ENTRY OK?
0.452E-02 MAX COMP. STRAIN, E1-DIRECTION
Y IS PREVIOUS NUMERICAL ENTRY OK?
0.320E-02 MAX TENSILE STRAIN, E2-DIRECTION
Y IS PREVIOUS NUMERICAL ENTRY OK?
0.125E-01 MAX COMP. STRAIN, E2-DIRECTION
Y IS PREVIOUS NUMERICAL ENTRY OK?
0.125E-01 MAX IN-PLANE SHEAR STRAIN
Y IS PREVIOUS NUMERICAL ENTRY OK?
N DO MATERIAL PROPERTIES AGAIN?
0.100E+08 MODULUS IN FIBER DIRECTION
Y IS PREVIOUS NUMERICAL ENTRY OK?
Y IS THIS MATERIAL ISOTROPIC?
0.300 POISSONS RATIO
Y IS PREVIOUS NUMERICAL ENTRY OK?
0.100 WEIGHT DENSITY
Y IS PREVIOUS NUMERICAL ENTRY OK?
N WANT TO INPUT STRESS-STRAIN?
Y WANT TO INPUT EFFECTIVE STRESS?
0.400E+05 MAXIMUM EFFECTIVE STRESS
Y IS PREVIOUS NUMERICAL ENTRY OK?
N DO MATERIAL PROPERTIES AGAIN?
N IS LOCAL/GENERAL NOT = UNITY?
RUN DECIDE

(choose decision variables for optimization)

COMPOSITE STIFF. CYL., FIXED INT. PRESS., NX = -2700, NXY = 420 LB/IN.

INPUT DATA SUPPLIED INTERACTIVELY BY YOU IN THIS RUN
ARE STORED ON A PERMANENT FILE. WHAT IS THE NAME OF THIS FILE?
(9 CHARACTERS OR LESS, PLEASE, AND ONE WORD.)

PERMANENT FILE NAME =
PERMANENT FILE NAME :PANDADEC1.DAT

IS PART OR ALL OF THE INPUT FOR THIS CASE STORED ON
THIS FILE YET?

Y

DO YOU WISH TO CHANGE THE TITLE OF THIS CASE...

N

DO YOU WANT MORE INFORMATION ON THIS PROGRAM?

Y

THE FOLLOWING TERMS ARE USED IN THIS PROGRAM, AND
IT IS VERY IMPORTANT THAT YOU UNDERSTAND THEIR MEANING...

**
**

(1) DESIGN PARAMETER-- ANY STRUCTURAL DIMENSION OR WINDING
ANGLE.

(2) DECISION VARIABLE-- A DESIGN PARAMETER WHICH HAS BEEN
SELECTED AS A PRIMARY VARIABLE IN THE
OPTIMIZATION PROCESS.

(3) LINKED VARIABLE-- A DESIGN PARAMETER WHICH HAS BEEN
SELECTED AS A SECONDARY VARIABLE IN
THE OPTIMIZATION PROCESS. A LINKED
VARIABLE IS PROPORTIONAL TO ONE OF
THE DECISION VARIABLES, BUT IS NOT A
MEMBER OF THE VECTOR OF DECISION
VARIABLES, (X(I), I=1, NDU).

**
**

DO YOU WANT MORE INFORMATION?

Y

FIRST YOU DECIDE WHICH OF THE DESIGN PARAMETERS
(DIMENSIONS AND WINDING ANGLES) ARE TO BE DECISION VARIABLES
IN THE OPTIMIZATION PROCESS. YOU CAN SELECT AS DECISION
VARIABLES ANY SUBSET OF DESIGN PARAMETERS YOU WISH. OTHER
DESIGN PARAMETERS CAN BE SELECTED AS BEING LINKED TO DECISION
VARIABLES. A LINKED VARIABLE Y WILL VARY IN PROPORTION TO A
USER-SELECTED DECISION VARIABLE X, AS FOLLOWS...
\(Y(\text{A LINKED VARIABLE}) = C \times X(\text{A DECISION VARIABLE}) \)

In which you choose the constant of proportionality \(C \) and which decision variable \(X \) that \(Y \) is linked to. The optimum design is obtained iteratively by the method of feasible directions (Vanderplaats). See the Lockheed report and its references for further details.

Do you wish to change the loads or the factor \(\Phi \)?

Do you want to make the panel flat...

You can do two types of analysis with PANDA:

1. A buckling analysis of a fixed design (no optimization)
2. An optimization analysis

Do you want to do a buckling analysis of a fixed design?

Do you wish to change some of the structural dimensions or winding angles...

Note... default values for lower and upper bounds of a decision variable \(X \) are...

\[
\begin{align*}
\text{Lower Bound} &= \frac{X}{100} \\
\text{Upper Bound} &= X \times 100
\end{align*}
\]

In which \(X \) is the current value of the decision variable.

Are any of the shell wall layer thicknesses decision variables...

Do you want to use default values for lower and upper bounds of shell wall layer thicknesses...

Is the thickness of layer no. 1 a decision variable.

Lower bound for thickness of layer no. 1 =

Upper bound for thickness of layer no. 1 =

(\text{lower, upper}) bounds for thickness of layer no. 1 =

\((5.000E-03, 1.500E-02)\)

Is the thickness of layer no. 2 a decision variable.

A-33
IS THE THICKNESS OF LAYER NO. 2 LINKED TO THE THICKNESS OF A PREVIOUS LAYER IN THE SKIN...
(NOTE THAT THIS PREVIOUS LAYER THICKNESS MUST BE A DECISION VARIABLE)

WHICH PREVIOUS LAYER...
THE THICKNESS OF LAYER NO. 2 IS LINKED TO THAT OF LAYER 1
SUPPOSE THAT THE THICKNESS, T, OF LAYER NO. 2 =

\[T(2) = C \times T(1). \]
WHAT IS C...
THICKNESS, T(2) = 1.00E+00 \times T(1).
T(1) IS A DECISION VARIABLE.

IS THE THICKNESS OF LAYER NO. 3 A DECISION VARIABLE.

IS THE THICKNESS OF LAYER NO. 3 LINKED TO THE THICKNESS OF A PREVIOUS LAYER IN THE SKIN...

WHICH PREVIOUS LAYER...
THE THICKNESS OF LAYER NO. 3 IS LINKED TO THAT OF LAYER 1
SUPPOSE THAT THE THICKNESS, T, OF LAYER NO. 3 =

\[T(3) = C \times T(1). \]
WHAT IS C...
THICKNESS, T(3) = 1.00E+00 \times T(1).
T(1) IS A DECISION VARIABLE.

IS THE THICKNESS OF LAYER NO. 4 A DECISION VARIABLE.

IS THE THICKNESS OF LAYER NO. 4 LINKED TO THE THICKNESS OF A PREVIOUS LAYER IN THE SKIN...

WHICH PREVIOUS LAYER...
THE THICKNESS OF LAYER NO. 4 IS LINKED TO THAT OF LAYER 1
SUPPOSE THAT THE THICKNESS, T, OF LAYER NO. 4 =

\[T(4) = C \times T(1). \]
WHAT IS C...
THICKNESS, T(4) = 2.00E+00 \times T(1).
T(1) IS A DECISION VARIABLE.

IS THE THICKNESS OF LAYER NO. 5 A DECISION VARIABLE.

IS THE THICKNESS OF LAYER NO. 5 LINKED TO THE THICKNESS OF A PREVIOUS LAYER IN THE SKIN...

WHICH PREVIOUS LAYER...
THE THICKNESS OF LAYER NO. 5 IS LINKED TO THAT OF LAYER 1
SUPPOSE THAT THE THICKNESS, \(T \), OF LAYER NO. 5 IS:

\[
T(5) = C \times T(1),
\]
WHAT IS C...
THICKNESS, \(T(5) = 1.00E+00 \times T(1) \).
\(T(1) \) IS A DECISION VARIABLE.

IS THE THICKNESS OF LAYER NO. 6 A DECISION VARIABLE.

N

IS THE THICKNESS OF LAYER NO. 6 LINKED TO THE THICKNESS OF A PREVIOUS LAYER IN THE SKIN...

Y

WHICH PREVIOUS LAYER...

THE THICKNESS OF LAYER NO. 6 IS LINKED TO THAT OF LAYER 1.

SUPPOSE THAT THE THICKNESS, \(T \), OF LAYER NO. 6 IS:

\[
T(6) = C \times T(1),
\]
WHAT IS C...
THICKNESS, \(T(6) = 1.00E+00 \times T(1) \).
\(T(1) \) IS A DECISION VARIABLE.

IS THE THICKNESS OF LAYER NO. 7 A DECISION VARIABLE.

N

IS THE THICKNESS OF LAYER NO. 7 LINKED TO THE THICKNESS OF A PREVIOUS LAYER IN THE SKIN...

Y

WHICH PREVIOUS LAYER...

THE THICKNESS OF LAYER NO. 7 IS LINKED TO THAT OF LAYER 1.

SUPPOSE THAT THE THICKNESS, \(T \), OF LAYER NO. 7 IS:

\[
T(7) = C \times T(1),
\]
WHAT IS C...
THICKNESS, \(T(7) = 1.00E+00 \times T(1) \).
\(T(1) \) IS A DECISION VARIABLE.

ARE ANY OF THE LAYER WINDING ANGLES DECISION VARIABLES.

N

IS THE STRINGER SPACING A DECISION VARIABLE...

Y

DO YOU WANT TO USE DEFAULT VALUES FOR LOWER AND UPPER BOUNDS OF STRINGER SPACING...

N

LOWER BOUND FOR STRINGER SPACING:

UPPER BOUND FOR STRINGER SPACING:

(LOWER,UPPER) BOUNDS FOR STRINGER SPACING:

\(3.000E+00, 3.000E+01 \)

ARE ANY OF THE STRINGER SEGMENT THICKNESSES DECISION VARIABLES...

Y
DO YOU WANT TO USE DEFAULT VALUES FOR LOWER AND UPPER BOUNDS OF STRINGER SEGMENT THICKNESSES...
N
IS THE THICKNESS OF STRINGER SEG. NO. 1 A DECISION VARIABLE...
Y

LOWER BOUND FOR THICKNESS OF STRINGER SEGMENT NO. 1:

UPPER BOUND FOR THICKNESS OF STRINGER SEGMENT NO. 1:
(LOWER,UPPER) BOUNDS FOR THICKNESS OF STRINGER SEGMENT NO. 1:
(8.000E-02 , 3.200E-01)

IS THE THICKNESS OF STRINGER SEG. NO. 2 A DECISION VARIABLE...
Y

LOWER BOUND FOR THICKNESS OF STRINGER SEGMENT NO. 2:

UPPER BOUND FOR THICKNESS OF STRINGER SEGMENT NO. 2:
(LOWER,UPPER) BOUNDS FOR THICKNESS OF STRINGER SEGMENT NO. 2:
(8.000E-02 , 4.200E-01)

ARE ANY OF THE STRINGER SEG. WIDTHS DECISION VARIABLES...
Y

DO YOU WANT TO USE DEFAULT VALUES FOR LOWER AND UPPER BOUNDS OF STRINGER SEGMENT WIDTHS...
Y

IS THE WIDTH BS(I) OF STRINGER SEGMENT NO. 1 A DECISION VARIABLE...
Y

(LOWER,UPPER) BOUNDS FOR WIDTHS OF STRINGER SEG. 1:
(1.000E-02 , 1.000E+02)

IS THE WIDTH BS(I) OF STRINGER SEGMENT NO. 2 A DECISION VARIABLE...
Y

(LOWER,UPPER) BOUNDS FOR WIDTHS OF STRINGER SEG. 2:
(5.000E-03 , 5.000E+01)

IS THE RING SPACING A DECISION VARIABLE...
Y

DO YOU WANT TO USE DEFAULT VALUES FOR LOWER AND UPPER BOUNDS OF RING SPACING...
N

LOWER BOUND FOR RING SPACING:

UPPER BOUND FOR RING SPACING:
(LOWER,UPPER) BOUNDS FOR RING SPACING:
(3.000E+00 , 3.000E+01)

ARE ANY OF THE RING SEGMENT THICKNESSES DECISION VARIABLES...
DO YOU WANT TO USE DEFAULT VALUES FOR LOWER AND UPPER BOUNDS OF RING SEGMENT THICKNESSES...
N
IS THE THICKNESS OF RING SEG. NO. 1 A DECISION VARIABLE...
Y
LOWER BOUND FOR THICKNESS OF RING SEGMENT NO. 1 =
UPPER BOUND FOR THICKNESS OF RING SEGMENT NO. 1 =
(LOWER, UPPER) BOUNDS FOR THICKNESS OF RING SEGMENT NO. 1 =
(5.000E-02 , 3.000E-01)

IS THE THICKNESS OF RING SEG. NO. 2 A DECISION VARIABLE...
Y
LOWER BOUND FOR THICKNESS OF RING SEGMENT NO. 2 =
UPPER BOUND FOR THICKNESS OF RING SEGMENT NO. 2 =
(LOWER, UPPER) BOUNDS FOR THICKNESS OF RING SEGMENT NO. 2 =
(5.000E-02 , 3.000E-01)

ARE ANY OF THE RING SEG. WIDTHS DECISION VARIABLES...
Y
DO YOU WANT TO USE DEFAULT VALUES FOR LOWER AND UPPER BOUNDS OF RING SEGMENT WIDTHS...
Y
IS THE WIDTH BR(I) OF RING SEGMENT NO. 1 A DECISION VARIABLE...
Y
(LOWER, UPPER) BOUNDS FOR WIDTHS OF RING SEG. 1 =
(1.000E-02 , 1.000E+02)

IS THE WIDTH BP(I) OF RING SEGMENT NO. 2 A DECISION VARIABLE...
Y
(LOWER, UPPER) BOUNDS FOR WIDTHS OF RING SEG. 2 =
(5.000E-03 , 5.000E+01)

WHEN YOUR TERMINAL SAYS READY
PLEASE TYPE THE COMMAND
-PANCON
The following is the input data file PANDADECI.DAT generated by execution of DECIDE. If any errors were made during interactive input, they can be corrected by editing of this file, rather than having to answer all the questions posed by DECIDE again. Note that in order to use this file as is for execution by DECIDE, it will be necessary to rerun BEGIN with the file PANDACASE.DAT:

N CHANGE TITLE?
Y WANT MORE INFORMATION?
Y WANT MORE INFORMATION?
N CHANGE LOADING?
N MAKE PANEL FLAT OR CURVED?
N DO BUCKLING ONLY?
N CHANGE DIMENSIONS?
Y ANY t(i) DECISION VARIABLES?
N WANT DEFAULT BOUNDS ON t(i)?
Y IS t(i) A DECISION VARIABLE?
0.500E-02 LOWER Bound FOR Thickness OF Layer NO. 1
0.150E-01 UPPER Bound FOR Thickness OF Layer NO. 1
N IS t(i) A DECISION VARIABLE?
Y IS t(i) LINKED TO PREVIOUS t?
 1 t(2) LINKED TO t(1)
 1.00 LINKING FACTOR OF PROPORTIONALITY
N IS t(i) A DECISION VARIABLE?
Y IS t(i) LINKED TO PREVIOUS t?
 1 t(3) LINKED TO t(1)
 1.00 LINKING FACTOR OF PROPORTIONALITY
N IS t(i) A DECISION VARIABLE?
Y IS t(i) LINKED TO PREVIOUS t?
 1 t(4) LINKED TO t(1)
 2.00 LINKING FACTOR OF PROPORTIONALITY
N IS t(i) A DECISION VARIABLE?
Y IS t(i) LINKED TO PREVIOUS t?
 1 t(5) LINKED TO t(1)
 1.00 LINKING FACTOR OF PROPORTIONALITY
N IS t(i) A DECISION VARIABLE?
Y IS t(i) LINKED TO PREVIOUS t?
 1 t(6) LINKED TO t(1)
 1.00 LINKING FACTOR OF PROPORTIONALITY
N IS t(i) A DECISION VARIABLE?
Y IS t(i) LINKED TO PREVIOUS t?
 1 t(7) LINKED TO t(1)
 1.00 LINKING FACTOR OF PROPORTIONALITY
N ANY a(i) DECISION VARIABLES?
Y IS bo A DECISION VARIABLE?
N WANT DEFAULT BOUNDS ON bo?
3.00 LOWER Bound OF STRINGER SPACING
30.0 UPPER Bound OF STRINGER SPACING
Y ANY ts(i) DECISION VARIABLES?
N WANT DEFAULT BOUNDS ON ts(i)?
Y IS ts(i) A DECISION VARIABLE?
0.800E-01 LOWER Bound OF Thickness, STRINGER SEG. 1
0.328 UPPER BOUND OF THICKNESS, STRINGER SEG. 1
Y IS ts(i) A DECISION VARIABLE?

0.800E-01 LOWER BOUND OF THICKNESS, STRINGER SEG. 2
0.420 UPPER BOUND OF THICKNESS, STRINGER SEG. 2
Y ANY bs(i) DECISION VARIABLES?
Y WANT DEFAULT BOUNDS ON bs(i)?
Y IS bs(i) A DECISION VARIABLE?
Y IS bs(i) A DECISION VARIABLE?
N WANT DEFAULT BOUNDS ON ao?

3.00 LOWER BOUND OF RING SPACING
30.0 UPPER BOUND OF RING SPACING
Y ANY tr(t) DECISION VARIABLES?
N WANT DEFAULT BOUNDS ON tr(t)?
Y IS tr(t) A DECISION VARIABLE?

0.500E-01 LOWER BOUND OF tr OF RING SEGMENT NO. 1
0.300 UPPER BOUND OF tr OF RING SEGMENT NO. 1
Y IS tr(i) A DECISION VARIABLE?

0.500E-01 LOWER BOUND OF tr OF RING SEGMENT NO. 2
0.300 UPPER BOUND OF tr OF RING SEGMENT NO. 2
Y ANY br(i) DECISION VARIABLES?
Y WANT DEFAULT BOUNDS ON br(i)?
Y IS br(i) A DECISION VARIABLE?
Y IS br(i) A DECISION VARIABLE?
RUN PANCON

(perform the optimization analysis)

COMPOSITE STIFF. CYL., FIXED INT. PRESS., NX=-2700, NXY=420 LB/IN.

PANEL WEIGHT = 1.0525E+02
PANEL WEIGHT = 1.1578E+02
PANEL WEIGHT = 1.2735E+02
PANEL WEIGHT = 1.4009E+02
PANEL WEIGHT = 1.5410E+02
PANEL WEIGHT = 1.6951E+02
PANEL WEIGHT = 1.8646E+02
PANEL WEIGHT = 2.0511E+02
PANEL WEIGHT = 2.2631E+02
PANEL WEIGHT = 2.7252E+02
PANEL WEIGHT = 2.9678E+02
PANEL WEIGHT = 2.0718E+02
PANEL WEIGHT = 1.9705E+02

DO YOU WISH TO PRINT OUT A SUMMARY OF DESIGN INFORMATION... NO

DO YOU WISH TO DO MORE ITERATIONS WITH THE SAME DECISION VARIABLES... YES

PANEL WEIGHT = 1.9705E+02
PANEL WEIGHT = 1.8745E+02
PANEL WEIGHT = 1.7955E+02
PANEL WEIGHT = 1.6090E+02
PANEL WEIGHT = 1.4400E+02
PANEL WEIGHT = 1.3715E+02
DO YOU WISH TO PRINT OUT A SUMMARY OF DESIGN INFORMATION... NO

DO YOU WISH TO DO MORE ITERATIONS WITH THE SAME DECISION VARIABLES... YES

PANEL WEIGHT = 1.3715E+02
PANEL WEIGHT = 1.3361E+02
PANEL WEIGHT = 1.3323E+02
PANEL WEIGHT = 1.3315E+02
PANEL WEIGHT = 1.3302E+02
PANEL WEIGHT = 1.3300E+02

DO YOU WISH TO PRINT OUT A SUMMARY OF DESIGN INFORMATION... NO

DO YOU WISH TO DO MORE ITERATIONS WITH THE SAME DECISION VARIABLES... YES

PANEL WEIGHT = 1.3300E+02
PANEL WEIGHT = 1.3299E+02
PANEL WEIGHT = 1.3297E+02
PANEL WEIGHT = 1.3287E+02
PANEL WEIGHT = 1.3281E+02
PANEL WEIGHT = 1.3281E+02
DO YOU WISH TO PRINT OUT A SUMMARY OF DESIGN INFORMATION.

YES

COMPOSITE STIFF. CYL., FIXED INT. PRESS., NX=-2700, NXY=420 LB/IN.

PANEL WEIGHT = 1.3281E+02

DESIGN VARIABLES FOR ITERATION NUMBER 5 FOLLOW...

THICKNESS OF PANEL SKIN LAYER NO. 1 = 8.7963E-03
STRINGER SPACING, B = 3.0000E+00
THICKNESS OF STRINGER SEGMENT NO. 1 = 8.0000E-02
THICKNESS OF STRINGER SEGMENT NO. 2 = 9.7748E-02
WIDTH, BS(1), OF STRINGER SEGMENT 1 = 3.6710E-01
WIDTH, BS(1), OF STRINGER SEGMENT 2 = 2.5251E-01
RING SPACING, A = 1.4072E+01
THICKNESS OF RING SEGMENT NO. 1 = 5.0000E-02
THICKNESS OF RING SEGMENT NO. 2 = 5.0000E-02
WIDTH, BR(1), OF RING SEGMENT 1 = 5.2489E-02
WIDTH, BR(1), OF RING SEGMENT 2 = 1.626E-02

(M=AXIAL, N=CIRC.) HALF-WAVES OVER ENTIRE PANEL (AXIAL,CIRC.)

GENERAL INSTABILITY EIGENVALUE(M,N) = 9.9798E-01(1, 12)
LOCAL SKIN (BUCKLING/PHI) (M,N) = 9.9885E-01(63, 88)
BUCKLING BETWEEN RINGS WITH SMEARD STRINGRS= 1.1330E+00(7, 7)
BUCKLING BETWEEN STRINGRS WITH SMEARD RINGS= 1.0057E+00(61, 88)
BUCKLING/PHI (M) OF STRINGER SEGMENT NO. 1 = 5.5507E+01(270)
BUCKLING/PHI (M) OF STRINGER SEGMENT NO. 2 = 2.4750E+01(270)
LOCAL ROLLING WITH SKIN BUCKLING BETWN STIF= 1.4840E+00(42, 88)
ROLLING OF STRINGERS(M,0), NO SKIN BUCKING= 1.7808E+00(40, 0)
AXISYMMETRIC ROLLING OF RINGS, NO SKIN BUCK= 1.0000E+23(0, 0)
BUCKLING(ROLLING) MODE WITH SMEARD STRINGRS= 1.1330E+00(7, 7)
BUCKLING(ROLLING) MODE WITH SMEARED RINGS = 1.4927E+00(43, 88)

MARGIN FOR STRAIN -EPS1 IN LAYER 4 = 1.5992E+00
MARGIN FOR STRAIN +EPS2 IN LAYER 4 = 1.2104E+00
MARGIN FOR COMP. STRAIN IN STRINGER SEG. 1= 1.5992E+00
MARGIN FOR COMP. STRAIN IN STRINGER SEG. 2= 1.5992E+00
MARGIN FOR TENSILE STRAIN IN RING SEG. 1= 1.5198E+00
MARGIN FOR TENSILE STRAIN IN RING SEG. 2= 1.5198E+00

DO YOU WISH TO DO MORE ITERATIONS WITH THE SAME DECISION VARIABLES...

NO

DO YOU WANT TO PRINT OUT MORE INFORMATION ABOUT THE CURRENT DESIGN... (ABOUT ONE PAGE)

YES

A-42
COMPOSITE STIFF. CYL., FIXED INT. PRESS., NX = -2700, NXY = 420 LB/IN.

COMMENT ABOUT PRESTRESS AND CRITICAL LOAD COMBINATION...
IN THE FOLLOWING TWO INSTANCES...

1. MATERIAL STRESSED IN THE ELASTIC REGIME OR
2. IF, REGARDLESS OF ANY PLASTICITY, THE EIGENVALUE, LAMBDA, EQUALS UNITY

THE CRITICAL IN-PLANE RESULTANTS ARE GIVEN BY...

\[
\begin{align*}
NX(CRIT) &= NXP + \text{LAMBDA}*NX \\
NY(CRIT) &= NYP + \text{LAMBDA}*NY \\
NXY(CRIT) &= 0.0 + \text{LAMBDA}*NXY
\end{align*}
\]

IN WHICH \((NXP, NYP) = 6.250E+02 \text{, } 1.250E+03\) AND \((NX, NY, NXY) = -2.700E+03 \text{, } 0.000E+00 \text{, } 4.200E+02\)

AND LAMBDA REPRESENTS ANY OF THE EIGENVALUES PRINTED IN THE FOLLOWING...

CURRENT DESIGN FOLLOWS....

PANEL RADIUS OF CURVATURE	8.500E+01
PANEL AXIAL, CIRC. LENGTHS	1.000E+02 2.670E+02
PANEL AXIAL PRESTRESS, NXP	6.250E+02 \text{ (NOT AN EIGENPARAM)}
PANEL CIRC. PRESTRESS, NYP	1.250E+03 \text{ (NOT AN EIGENPARAM)}
PANEL TOTAL THICKNESS	7.037E-02
PANEL LAYER THICKNESSES	8.796E-03 8.796E-03 8.796E-03 1.759E-02 8.796E-03 8.796E-03
PANEL LAYER WINDING ANGLES	9.000E+01 4.500E+01 -4.500E+01 0.000E+00 -4.500E+01 4.500E+01 9.000E+01
PANEL LAYER MATERIAL TYPES	1 1 1 1 1 1 1

STRINGER DESIGN DATA FOLLOWS...

STRINGER SPACING, B	3.000E+00
STRINGER SEGMENT THICKNESSES	8.000E-02 9.775E-02
STRINGER SEGMENT WIDTHS	3.671E-01 2.525E-01
STRINGER SEG. MATERIAL ANGLES	0.000E+00 9.000E+01
STRINGER SEG. MATERIAL TYPES	3 4

RING DESIGN DATA FOLLOWS...

RING SPACING, A	1.407E+01
RING SEGMENT THICKNESSES	5.000E-02 5.000E-02
RING SEGMENT WIDTHS	5.249E-02 1.626E-02
RING SEGMENT ANGLES	1.800E+02 9.000E+01
RING SEGMENT MATERIAL TYPES	2 2

A-43
MODULI (E₁, E₂, G) OF MATL 1 = 2.300E+07 1.700E+06 9.400E+05
POISSON RAT., DENSITY MATL 1 = 2.250E-02 5.600E-02
MODULI (E₁, E₂, G) OF MATL 2 = 1.000E+07 1.000E+07 3.846E+06
POISSON RAT., DENSITY MATL 2 = 3.000E-01 1.000E-01
MODULI (E₁, E₂, G) OF MATL 3 = 9.002E+06 9.002E+06 3.846E+06
POISSON RAT., DENSITY MATL 3 = 3.052E-01 5.600E-02
MODULI (E₁, E₂, G) OF MATL 4 = 1.678E+07 5.208E+06 2.055E+06
POISSON RAT., DENSITY MATL 4 = 9.469E-02 5.600E-02

THE TOTAL PANEL WEIGHT = 1.328E+02
THE PANEL SKIN WEIGHT = 1.052E+02
THE TOTAL STIFFENER WEIGHT = 2.759E+01

GENERAL INSTABILITY QUANTITIES (STIFFENERS SMEARED OUT)...
AXIAL STRESS RESULTANT, NX = -2.700E+03 (AN EIGENPARAMETER)
CIRC. STRESS RESULTANT, NY = 0.000E+00 (AN EIGENPARAMETER)
SHEAR STRESS RESULTANT, NYX = 4.200E+02 (AN EIGENPARAMETER)
AXIAL HALF WAVES OVER PANEL = 1
CIRC. HALF WAVES OVER PANEL = 12
SLOPE OF BUCKLING NODAL LINES= 7.081E-01
GENERAL INSTABILITY MULTIPLIER= 9.980E-01 (EIGENVALUE)

LOCAL INSTABILITY QUANTITIES (BUCKLING BETWEEN STIFFENERS)...
AXIAL RESULTANT IN SKIN = -1.997E+03 (AN EIGENPARAMETER)
CIRC. RESULTANT IN SKIN = -8.949E+00 (AN EIGENPARAMETER)
SHEAR RESULTANT IN SKIN = 4.200E+02 (AN EIGENPARAMETER)
AXIAL HALF WAVES BETWEEN RINGS= 9
CIRC. HALF WAVES BET STRINGERS= 1
SLOPE OF BUCKLING NODAL LINES = 1.320E-01
LOCAL INSTABILITY MULTIPLIER = 9.989E-01 (EIGENVALUE)

INSTABILITY WITH SMEARED STRINGERS, BETWEEN RINGS...
AXIAL RESULTANT IN PANEL = -2.700E+03 (AN EIGENPARAMETER)
CIRC. RESULTANT IN SKIN = -8.949E+00 (AN EIGENPARAMETER)
SHEAR RESULTANT IN SKIN = 4.200E+02 (AN EIGENPARAMETER)
AXIAL HALF WAVES BETWEEN RINGS= 1
CIRC. HALF WAVES OVER PANEL = 7
SLOPE OF BUCKLING NODAL LINES = 9.091E+00
SMEARED STRINGER EIGENVALUE = 1.133E+00 (EIGENVALUE)

INSTABILITY WITH SMEARED RINGS, BETWEEN STRINGERS...
AXIAL RESULTANT IN SKIN = -1.997E+03 (AN EIGENPARAMETER)
CIRC. RESULTANT IN PANEL = 0.000E+00 (AN EIGENPARAMETER)
SHEAR RESULTANT IN SKIN = 4.200E+02 (AN EIGENPARAMETER)
AXIAL HALF WAVES OVER PANEL = 61
CIRC. HALF WAVES BET STRINGERS= 1
SLOPE OF BUCKLING NODAL LINES = 1.320E-01
SMEARED RING EIGENVALUE = 1.006E+00 (EIGENVALUE)
AVERAGE AXIAL STRAIN = -2.826E-03
AVERAGE MIDBAY HOOP STRAIN = 2.644E-03
AVERAGE SHEAR STRAIN = 1.731E-03
FIBER STRAINS AT EACH LAYER CENTER
-2.826E-03 7.731E-04 -9.572E-04
-2.826E-03 -9.561E-04 7.750E-04
2.644E-03

STRAINS NORMAL TO FIBERS IN LAYERS
-2.829E-03 -9.576E-04 .735E-04
2.644E-03 7.746E-04 -9.557E-04
-2.824E-03

SHEAR STRAINS IN MATERIAL COORDS
-1.731E-03 5.472E-03 -5.471E-03
1.731E-03 -5.469E-03 5.468E-03
-1.731E-03

AVERAGE STRAIN IN RINGS = 2.633E-03
RADIUS(CYL.)/RADIUS(RING C.G.) = 1.000E+00

THE ABOVE STRAIN COMPONENTS RESULT FROM THE COMBINED IN-PLANE RESULTANTS ..
NXP + NX = -2.075E+03
NYP + NY = 1.250E+03
NXY = 4.200E+02

STRESS RESULTANTS IN THE STIFFENER SEGMENTS CONSIST OF TWO PARTS.. A FIXED PRESTRESS WHICH ARISES FROM NXP AND NYP AND AN ADDITIONAL STRESS (EIGENSTRESS) THAT ARISES FROM NX AND NY. THE CRITICAL RESULTANT IN THE ISEG TH SEGMENT OF EITHER STRINGERS OR RINGS IS GIVEN BY...
NCRIT(ISEG) = PRESTRESS(ISEG) + LAMBDA * EIGENSTRESS(ISEG)

IN WHICH LAMBDA IS ANY OF THE EIGENVALUES PRINTED ABOVE OR IN THE FOLLOWING...

PRESTRESS(LB/IN) IN STRING.SEGS= 2.036E+02 4.637E+02
EIGENSTRESS IN STRINGER SEG.. = -2.239E+03 -5.099E+03
PRESTRESS(LB/IN) IN RING SEG.S= 8.465E+02 8.465E+02
EIGENSTRESS IN RING SEG.S= 4.700E+02 4.700E+02

LOCAL ROLLING MODE EIGENVALUE = 1.484E+00
CORRESPONDING TO 6 AXIAL HALF WAVES BETWEEN RINGS AND CORRESPONDING TO 1 CIRC. HALF WAVES BETWEEN STRINGERS

SMEARED STRINGER ROLLING MODE EIGENVALUE= 1.133E+00
CORRESPONDING TO 1 AXIAL HALF WAVES BETWEEN RINGS AND CORRESPONDING TO 7 CIRC. HALF WAVES OVER PANEL

SMEARED RING ROLLING MODE EIGENVALUE= 1.493E+00
CORRESPONDING TO 43 AXIAL HALF WAVES OVER PANEL AND CORRESPONDING TO 1 CIRC. HALF WAVES BETWEEN STRINGERS

A-45
END

DATE

FILMED

03-82

DTIC