Individual Differences in Dual Task Performance

Marcy Lansman and Carol Hunt
University of Washington

Final Report
June 10, 1981

This research was sponsored by:
Personnel and Training Research Programs
Psychological Sciences Divisions
Office of Naval Research
Under Contract No. N00014-77-C-0225
Contract Authority Identification Number, NR 154-398

Approved for public release; distribution unlimited.
Reproduction in whole or in part is permitted for any purpose of the U.S. Government.
REPORT DOCUMENTATION PAGE

<table>
<thead>
<tr>
<th>1 REPORT NUMBER</th>
<th>2 GOVT ACCESSION NO.</th>
<th>3 RECIPIENT'S CATALOG NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>FINAL REPORT</td>
<td>A110768</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4 TITLE (and Subtitle)</th>
<th>5 TYPE OF REPORT & PERIOD COVERED</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>7 AUTHOR(S)</th>
<th>8 CONTRACT OR GRANT NUMBER(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marcy Lansman</td>
<td>N00014-77-C-0225</td>
</tr>
<tr>
<td>Earl Hunt</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9 PERFORMING ORGANIZATION NAME AND ADDRESS</th>
<th>10 PROGRAM ELEMENT PROJECT, TASK AREA & WORK UNIT NUMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department of Psychology</td>
<td>G1153N</td>
</tr>
<tr>
<td>University of Washington</td>
<td>RR 042-06; RR 042-06-01;</td>
</tr>
<tr>
<td>Seattle, Washington 98195</td>
<td>NR 154-398;</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11 CONTROLLING OFFICE NAME AND ADDRESS</th>
<th>12 REPORT DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personnel and Training Research Programs</td>
<td>June 10, 1981</td>
</tr>
<tr>
<td>Office of Naval Research (Code 458)</td>
<td></td>
</tr>
<tr>
<td>Arlington, Virginia 22217</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13 MONITORING AGENCY NAME & ADDRESS IF DIFFERENT FROM CONTROLLING OFFICE</th>
<th>14 NUMBER OF PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15 SECURITY CLASS. (OF THIS REPORT)</th>
<th>16 DISTRIBUTION STATEMENT (OF THIS REPORT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
<td>Approved for public release; distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17 DISTRIBUTION STATEMENT (OF THE ABSTRACT ENTERED IN BLOCK 20, IF DIFFERENT FROM REPORT)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>18 BIBLIOGRAPHIC NOTES</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>19 KEY WORDS (CONTINUE ON REVERSE SIDE IF NECESSARY AND IDENTIFY BY BLOCK NUMBER)</th>
</tr>
</thead>
<tbody>
<tr>
<td>attention, individual differences, dual tasks, secondary tasks, reaction time.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>20 ABSTRACT (CONTINUE ON REVERSE SIDE IF NECESSARY AND IDENTIFY BY BLOCK NUMBER)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The topic of the research was individual differences in dual task performance. It addressed the basic question: Is performance on multi-component tasks predicted by performance on the individual components performed separately? In the first series of experiments, we used a dual task involving memory and verbal processing components to predict a psychometric measure of verbal ability. Single and dual task performance were found to be highly correlated. The two types of measures predicted performance on the criterion verbal ability measure equally well. In a</td>
</tr>
</tbody>
</table>
second experimental series, we compared ability to detect visual and auditory targets in single-channel, focused attention, and divided attention conditions. Performance in the single channel conditions predicted performance in focused and divided attention conditions almost perfectly. In neither of these two types of experiments did we find evidence for a time-sharing ability. Finally, we used performance on a simple secondary task executed during an easy primary task to predict performance on a more difficult version of the same primary task. In this case, dual task performance provided information not available from the single task counterpart. The "easy-to-hard" prediction technique was found to be a successful method of predicting performance on difficult tasks.

The theoretical basis of this research was provided by a "general resource" theory of attention, in which all mental processes are seen as drawing on the same pool of attentional capacity. During the contract period, a more explicit model of inter-task interference was developed. This model, which we have called the Production Activation Model, will provide the basis for research under the new contract #N-00014-80-C-0631.
This report summarizes the research carried out under contract #N-00014-77-C-0225. All of the studies reported here have been described in previous technical reports or publications. The purpose of this document is to summarize the results and to provide a reference for specific sources.

BACKGROUND

During the 1970’s, a number of psychologists began to relate the ability concepts derived from psychometric testing to the process concepts developed by cognitive psychologists. In this laboratory, we adapted a number of experimental tasks to yield individual measures of the speed and accuracy of various cognitive processes (Hunt, 1978a; Hunt, Frost, & Lunneborg, 1973; Hunt, Lunneborg, & Lewis, 1975). These measures were correlated with standardized measures of academic ability. Modest correlations were found between a number of process and ability measures. Most notably, a relationship was found between verbal ability and speed of access to information in long-term memory. This finding has been replicated by a number of other investigators (Goldberg, Schwartz, & Stewart, 1977; Jackson & McClelland, 1979; Jackson, 1980; Keating & Bobbitt, 1978). Our work on the relationship between cognitive processes and verbal ability is summarized in Technical report #1 (Hunt, 1978b).

The major thrust of the effort to relate cognitive and psychometric measures has been to analyze complex psychometric abilities in terms of simpler and better understood cognitive
processes. For example, the typical psychometric measures of "verbal ability" combines scores on vocabulary, reading comprehension, and several other subtests. We wanted to discover the extent to which speed and accuracy of various simple mechanistic cognitive processes was related to performance on ability measures. Such an approach complements attempts to analyze complex task performance by breaking the tasks themselves into discrete stages (Sternberg, 1980).

ONR Contract ON-00014-77-C-0225 extended the idea that individual variation in complex cognitive processes could be explained in terms of variability in simple components of those processes. Previously we had asked whether the speed and accuracy of simple processes would predict ability scores. In this research, we asked whether the effort required by the simple tasks would predict performance on the more complex tasks. In many cases, complex intellectual tasks require that a person do two or more things at once. For example, mental arithmetic requires a person to hold partial results in memory while computing later results. If the person's total mental capacity is required to hold partial results in memory, then little capacity will be available to make further calculations. In this case, neither speed nor accuracy of the separate memory and computations processes would be sufficient to predict performance on the complex mental computation task. Some measure of the effort required by the component tasks would also be required.

The idea of 'mental effort' is closely related to the notion
that it is difficult to attend to several things at once. A conceptually simple model of attention as the expenditure of mental capacity was put forward by Moray (1967), and later by Kahneman (1973), and extended by others (Navon & Gopher, 1979; Norman & Bobrow, 1975). According to Kahneman, all mental processes draw from a single pool of mental resources, called 'attentional capacity.' Two simultaneously performed mental tasks interfere with one another if their combined attentional demands exceed the person's total attentional capacity. We will refer to this as the 'general resource model' of attention. In our research, we have applied the general resource model to the field of individual differences. Suppose that people vary in their characteristic level of attentional capacity or in the efficiency with which they perform specific tasks. To what extent will this determine their relative performance on various cognitive tasks?

The idea that attentional factors might be a source of individual differences led us to propose two lines of research. In the first, we asked whether performance on the two component tasks performed separately would predict performance on the same two tasks performed simultaneously, and further, whether performance in the dual-task situation would be more highly related to complex cognitive ability measures than performance on the components. In the second line of research, we tested what we have called the 'easy-to-hard prediction' hypothesis. According to this hypothesis, performance on a secondary task executed during the easy version of a complex primary tasks should predict
performance on a harder version of the same primary task.

SINGLE AND DUAL TASK MEASURES AS PREDICTORS OF VERBAL ABILITY

Two of our first studies of individual differences in attentional factors developed from an earlier interest in predicting verbal ability. We reasoned that many complex verbal tasks require that people hold verbal information in memory while encoding and manipulating new information. For example, the noun phrase of a sentence must be held in memory while the verb is encoded and processed. Each paragraph of an essay must be interpreted in light of the information retained from earlier paragraphs. Thus it seemed that a) both linguistic processing the verbal short-term memory should be important in predicting verbal ability; and b) the ability to carry out both functions simultaneously might be more important than the ability to carry them out in isolation.

We tested these hypotheses in two experiments. They are described in Technical Report #2 (Lansman, 1978). In these experiments, subjects were asked to perform two tasks: a rote recall task and a sentence verification task. In the dual task conditions, a list of items was presented, and while these items were being retained in memory, the subject was asked to respond 'true' or 'false' to a series of sentence verification items (e.g., "Plus is above star. * "). Finally, the memory items were recalled. In the single task conditions, the recall and sentence
verification tasks were performed separately. We reasoned that if subjects differed either in their total attentional capacity or in the efficiency with which they performed either recall or sentence verification tasks, then these differences would be reflected in dual but not single task performance. In that case, dual and single task measures would be imperfectly correlated, and dual task measures might be more strongly related to complex measures of verbal ability.

In fact, single and dual task measures were quite highly correlated, and the patterns of correlations between the two types of tasks and the criterion ability measures were almost identical. The experiments provided no evidence for an attention-related 'time-sharing' factor. Single and dual task measures were equally accurate in predicting verbal ability.

These studies indicated that a dual task combining rote memory and linguistic processing does not improve prediction of verbal ability over that provided by single task measures. There are several studies in the literature in which subjects were asked to perform a number of tasks both separately and in combination (e.g., Jennings & Chiles, 1977; Sverko, 1977). These studies were motivated by the hypothesis that there is a general ability to do two things at once and that this ability should manifest itself in dual task performance. In fact, no general time-sharing factor emerged in the analysis of the correlations among dual and single task measures. Thus, our results were consistent with a number of other studies in suggesting that there is no general time-sharing
factor, and that in many cases dual-task performance is quite well predicted by performance of component tasks.

A recent study by Daneman and Carpenter (1980) calls this conclusion into question. In their study, memory and verbal processing tasks were combined in a slightly different way: Subjects were asked to remember the final word in each of a series of sentences that they were reading for comprehension. Thus, in their dual task, memory and verbal processing tasks were integrated. Daneman and Carpenter found a very high correlation between accuracy of recall and reading ability. In contrast, we and others (Lansman, 1978; Palmer, MacLeod, Hunt, & Davidson, Note 1; Perfetti & Lesgold, 1977) have found virtually no relationship between rote memory and verbal ability in the college population. If the Daneman and Carpenter finding proves replicable, it suggests that verbal ability, or at least reading ability, is related to the ability to combine memory and verbal processing, but that the relationship is only evident when the memory and processing components are closely integrated. As the Daneman and Carpenter study used a very small sample of highly selected people, replication of their results is clearly in order.

FOCUSED AND DIVIDED ATTENTION

In the research discussed so far, 'time-sharing' has been used to refer to a subject's ability to divide attention between two competing tasks. Time-sharing ability may also refer to the
ability to divide attention between two competing channels of information. We investigated this ability using dichotic listening and visual search tasks. If there is an ability to divide attention between two sources of information, then we would expect performance in a single channel condition to be an imperfect predictor of performance in a divided attention conditions. We might also expect the ability to divide attention between the two ears to be related to the ability to divide attention between two visual locations. Our research on the ability to divide attention between two channels of information described in Technical Report #9 (Poltrick, Lansman, & Hunt, 1980).

In a large study of individual differences in the ability to divide and focus attention, we asked subjects to perform both dichotic listening and visual search tasks. In both cases, they were asked to press a key when they heard or saw one of a set of target letters. For each modality, there were three conditions: single channel (letters were presented to a single ear or at a single location), focused attention (letters were presented at two locations, but all targets occurred in a single location), and divided attention (targets could occur at either of two locations). The dependent measures were reaction time and accuracy in detecting target letters. Although reaction times were considerably slower and responses less accurate in focused and divided than in the single channel condition, performance in the three conditions was very highly correlated within modality.
In other words, performance in the single channel condition predicted performance in the other two conditions almost perfectly. The LISREL program for analysis of covariance structures was used to fit several models to the data. A model containing one factor for reaction times to auditory stimuli and a second factor for reaction times to visual stimuli provided a very good fit. The visual and auditory factors were correlated with each other \((r = .61)\). No separate factors corresponding to the ability to divide or focus attention were required to explain the data.

In summary, the conclusions drawn from the study of divided and focused attention were similar to the conclusions drawn from the study of time-sharing between competing tasks: There was no evidence that the ability to divide attention between two tasks was an important source of individual differences in performance. In both cases, performance in the single channel or single task condition predicted performance in the divided attention or dual task situation almost perfectly.

In developing the dichotic listening task, it was possible to study an issue which, though not directly concerned with individual differences, has some interesting implications for attentional theory. Previous studies comparing single channel and divided attention conditions in the auditory modality had commonly used what Schneider and Shiffrin (1977) have called ‘consistent mapping conditions,’ which minimize demands on attentional capacity. Throughout these experiments, one set of stimuli were
designated as targets and another set as distractors. It had been found that accuracy is about equal in single-channel and divided attention conditions as long as two stimuli do not occur simultaneously on the two channels. (See, for example, Ostry, Moray, & Marks, 1976.) We wondered whether this finding was related to the reduced attentional demands of the consistent mapping condition. Accordingly, we had subjects perform the dichotic listening task under both consistent and varied mapping conditions. The consistent-varied distinction proved to be as important in auditory target detection as Schneider and Shiffrin had shown it to be in visual search. Reaction time was much faster and accuracy higher under consistent mapping conditions. Furthermore, there was a much smaller memory set size effect under consistent mapping conditions, and this effect decreased over practice. These results are reported in more detail in Technical Report #9 (Poltrack, Lansman, & Hunt, 1980), and also in a report that is in publication (Poltrack, Lansman, & Hunt, in press).

EASY-TO-HARD PREDICTION

A major part of our research on this contract has concerned what we have called 'easy-to-hard prediction.' Like the research described above, this technique involves examination of individual differences in dual-task performance. However, the rationale is somewhat different. When two tasks are performed simultaneously, they compete for attentional capacity. If one of the tasks is designated as 'primary' and the other as 'secondary,' then the
primary task should receive top priority in the allocation of resources, and the secondary task should receive what is left. Secondary task performance should therefore reflect spare capacity available during performance of the primary task. We reasoned that spare capacity available during performance of an easy primary task should be available for performance of a harder version of the same primary task. Thus performance on a secondary task during an easy primary task should predict performance on a harder version of the same primary task -- the 'easy-to-hard prediction.'

The rationale behind the easy-to-hard prediction technique is derived more formally in Technical Report #8 (Hunt & Lansman, 1980). A revised version of this report is also to be published in a book edited by R. Sternberg (Hunt & Lansman, in press). In that paper, we assumed that performance on any task is a function of two individual parameters: a structural parameter specific to that particular task, and a resource parameter reflecting the amount of general attentional resources available to the task. We showed that performance of the secondary task during the easy primary would provide information concerning the resource parameter that was unavailable from single task performance. Since the derivation was done in terms of classic information theory, it made no assumptions concerning the form of the relationship between performance and resources available.

The easy-to-hard prediction technique has been tested in several experiments, which are described in Technical Reports #2
(Lansman, 1978), #4 (Hunt, Lansman, & Wright, 1979), and #7 (Lansman & Hunt, 1980). In several of these experiments, the primary task was a continuous paired associate learning task in which subjects were asked to keep track of two to seven letter-number pairs, while the secondary task required subjects to respond as quickly as possible to a simple probe stimulus. Reaction time to probes that occurred during an easy version of the paired associate primary task predicted performance on a harder version of the paired associate task. In another experiment the primary task was a spatial memory task in which subjects were asked to judge whether a spatial pattern was identical to a standard pattern and the secondary task again involved response to a probe stimulus. In this experiment, reaction time to the secondary probes did not significantly improve prediction of performance on the hard version of the primary task. The differences between the paired associate and the spatial memory tasks seemed to be that resource availability was the limiting factor in performance of the paired associate but not the spatial memory task.

The easy-to-hard technique was also used in an experiment involving a slightly different paradigm, described more fully in Technical Reports #4 (Hunt, Lansman, & Wright, 1979) and #8 (Hunt, 1979). (Report #8 has also been published in the British Journal of Psychology (Hunt, 1981)). In this case, the primary task was the Raven Progressive Matrix Test and the secondary task required subjects to exert a constant pressure on a lever. On the Raven
Test, each item is more difficult than the previous item. Performance on the secondary task during any given Raven item was found to provide information concerning which subjects were about to make a mistake on the succeeding item. Interpreted within the general resource theory, the results showed that those subjects whose total capacity was required by one problem (producing poor performance on the secondary task) were likely to fail to solve the succeeding, more difficult problem.

In earlier sections of this paper, we reported several experiments in which performance in dual-task conditions was very accurately predicted by performance in single task conditions. Here we are arguing that performance of a simple secondary task does indeed provide information unavailable from performance of the single-task counterpart. How can this contradiction be resolved? The issue is discussed in Technical Report #8 (Hunt & Lansman, 1980). Performance on most complex tasks reflects both structural parameters and resource limitations, whether the tasks are performed in single or dual-task conditions. If this is the case, then we would expect single and dual task performance to be highly correlated since they both reflect the same underlying parameters. However, some simple tasks, such as response to a single probe stimulus, are 'data-limited' under single task conditions. That is, performance of these tasks would not be improved if additional resources were allocated to them. However, under dual-task conditions, these same tasks become resource-limited! Performance is inversely related to the amount
of resources drawn off by the primary task. In this case, performance in the single-task conditions reflects only structural parameters specific to the task, while secondary task performance reflects both structural and resource parameters. The result is that single and dual task performance are not highly correlated. Dual task performance provides information concerning resources available during the primary task. This information can be used to predict performance on a harder version of the same primary task.

A THEORY OF ATTENTION

The theoretical basis of the easy-to-hard technique was a simple theory of attention, in which all mental processes were seen as drawing upon a general attentional resource. The strength of such a theory lies in its simplicity and ability to summarize a vast amount of data on dual-task interference. Its weakness is the fact that 'attentional capacity' is a strictly hypothetical construct, and is not tied to any other physiological or even theoretical entity. Implicit in the general resource theory is an analogy between attentional resources and physical energy sources such as electricity or water power. But while energy resources are well-defined within theories of physics, attentional resources are defined only by analogy.

During the contract period, we have developed a more explicit model of attention, called the Production Activation Model. The theory is described in detail in a paper by Hunt (in press). It
is closely related to models of thinking developed in the fields of cognitive science and artificial intelligence. However, the Production Activation Model goes beyond these theories in that it deals with the problem of how the organism handles competing stimuli. Within the model, mental activity consists of the execution of a series of productions. These productions are stored in long-term memory. It is the function of a decision mechanism to determine the order in which the productions will be executed. At any given moment, the external world and the contents of short-term memory form a stimulus configuration. This configuration activates a number of productions. Which production will actually be executed depends upon two things: a) the match of the stimulus configuration to the pattern specified by the production, and b) the baseline activation level of each of the productions. The baseline activation level of a production is strongly influenced by the productions that have preceded it. The execution of one production biases the system toward the execution of certain other productions in such a way that a well-practiced task consists of a chain of productions that is usually executed as an unbroken sequence. Within this model, structural interference results from competition for one of the effectors involved in the execution of productions. Central interference results from competition for access to the decision mechanism.

Within the Production Activation Model, the decision mechanism fills the role that 'general attentional capacity' filled in the General Resource Model. Both are strictly
theoretical concepts. The difference is that the function of the decision mechanism is more fully specified within the Production Activation Model. The model thus allows us to formulate more specific questions concerning dual task interference. These questions concern the role of practice, task priority, expectancy, and several other variables. Our new contract, #N-00014-80-C-0631, was formulated within the framework provided by the Production Activation Model. Under this contract, we have proposed two main lines of research. We will a) develop a computer simulation of the Production Activation Model, and b) empirically investigate some of the questions raised by the model. The empirical investigation will provide data against which to test the computer simulation.
Reference Note

References

Jackson, M.O. Further evidence for a relationship between memory access and reading ability. Journal of Verbal Learning and Verbal

Moray, N. Where is capacity limited? Acta Psychologica, 1967,

Schneider, W., & Shiffrin, R.M. Controlled and automatic human
information processing: I. Detection, search, and attention.

Navy

1 Meryl S. Baker
NPRDC
Code P309
San Diego, CA 92152

1 Dr. Robert Breaux
Code N-711
NAVTRAEEQUIPCEN
Orlando, FL 32813

1 Chief of Naval Education and Training Liaison Office
Air Force Human Resource Laboratory
Flying Training Division
WILLIAMS AFB, AZ 85224

1 Dr. Richard Elster
Department of Administrative Sciences
Naval Postgraduate School
Monterey, CA 93940

1 DR. PAT FEDERICO
NAVY PERSONNEL R&D CENTER
SAN DIEGO, CA 92152

1 Mr. Paul Foley
Navy Personnel R&D Center
San Diego, CA 92152

1 Dr. John Ford
Navy Personnel R&D Center
San Diego, CA 92152

1 Dr. Henry M. Halff
Department of Psychology, C-009
University of California at San Diego
La Jolla, CA 92093

1 LT Steven D. Harris, MSC, USN
Code 6021
Naval Air Development Center
Warminster, Pennsylvania 18974

1 Dr. Patrick R. Harrison
Psychology Course Director
LEADERSHIP & LAW DEPT. (7b)
DIV. OF PROFESSIONAL DEVELOPMENT
U.S. NAVAL ACADEMY
ANNAPOLIS, MD 21402

Navy

1 Dr. Jim Hollan
Code 304
Navy Personnel R&D Center
San Diego, CA 92152

1 CDR Charles W. Hutchins
Naval Air Systems Command Hq
AIR-340F
Navy Department
Washington, DC 20361

1 CDR Robert S. Kennedy
Head, Human Performance Sciences
Naval Aerospace Medical Research Lab
Box 29407
New Orleans, LA 70189

1 Dr. Norman J. Kerr
Chief of Naval Technical Training
Naval Air Station Memphis (75)
Millington, TN 38054

1 Dr. William L. Maloy
Principal Civilian Advisor for Education and Training
Naval Training Command, Code 00A
Pensacola, FL 32508

1 Dr. Kneale Marshall
Scientific Advisor to DCNO(MPT)
OP01T
Washington DC 20370

1 CAPT Richard L. Martin, USN
Prospective Commanding Officer
USS Carl Vinson (CVN-70)
Newport News Shipbuilding and Drydock Co
Newport News, VA 23607

1 Dr. James McBride
Navy Personnel R&D Center
San Diego, CA 92152

1 Dr. George Moeller
Head, Human Factors Dept.
Naval Submarine Medical Research Lab
Groton, CT 06340
1 Dr. William Montague
Navy Personnel R&D Center
San Diego, CA 92152

1 Ted M. I. Yellen
Technical Information Office, Code 201
NAVY PERSONNEL R&D CENTER
SAN DIEGO, CA 92152

1 Library, Code P201L
Navy Personnel R&D Center
San Diego, CA 92152

6 Commanding Officer
Naval Research Laboratory
Code 2627
Washington, DC 20390

1 Psychologist
ONR Branch Office
Bldg 114, Section D
666 Summer Street
Boston, MA 02210

1 Psychologist
ONR Branch Office
536 S. Clark Street
Chicago, IL 60605

1 Office of Naval Research
Code 437
800 N. Quincy Street
Arlington, VA 22217

1 Office of Naval Research
Code 441
800 N. Quincy Street
Arlington, VA 22217

5 Personnel & Training Research Programs
(Code 458)
Office of Naval Research
Arlington, VA 22217

1 Psychologist
ONR Branch Office
1030 East Green Street
Pasadena, CA 91101

1 Office of the Chief of Naval Operations
Research Development & Studies Branch
(OP-115)
Washington, DC 20350

1 Dr. Donald F. Parker
Graduate School of Business Administration
University of Michigan
Ann Arbor, MI 48109

1 LT Frank C. Petho, MSC, USN (Ph.D)
Selection and Training Research Division
Human Performance Sciences Dept.
Naval Aerospace Medical Research Laboratory
Pensacola, FL 32508

1 Roger W. Remington, Ph.D
Code L52
NAMRL
Pensacola, FL 32508

1 Dr. Bernard Rimland (03B)
Navy Personnel R&D Center
San Diego, CA 92152

1 Dr. Worth Scanland, Director
Research, Development, Test & Evaluation
N-5
Naval Education and Training Command
NAS, Pensacola, FL 32508

1 Dr. Sam Schiflett, SY 721
Systems Engineering Test Directorate
U.S. Naval Air Test Center
Patuxent River, MD 20670

1 Dr. Robert G. Smith
Office of Chief of Naval Operations
OP-987H
Washington, DC 20350

1 Dr. Alfred F. Smoode
Training Analysis & Evaluation Group
(TAEG)
Dept. of the Navy
Orlando, FL 32813
Navy

1 W. Gary Thomson
Naval Ocean Systems Center
Code 7132
San Diego, CA 92152

1 Roger Weissinger-Baylon
Department of Administrative Sciences
Naval Postgraduate School
Monterey, CA 93940

1 Dr. Ronald Weitzman
Code 54 WZ
Department of Administrative Sciences
U. S. Naval Postgraduate School
Monterey, CA 93940

1 Dr. Robert Wisher
Code 309
Navy Personnel R&D Center
San Diego, CA 92152

1 DR. MARTIN F. WISKOFF
NAVY PERSONNEL R&D CENTER
SAN DIEGO, CA 92152

1 Mr John H. Wolfe
Code P310
U. S. Navy Personnel Research and Development Center
San Diego, CA 92152

Army

1 Technical Director
U. S. Army Research Institute for the Behavioral and Social Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Dexter Fletcher
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Michael Kaplan
U.S. ARMY RESEARCH INSTITUTE
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333

1 Dr. Milton S. Katz
Training Technical Area
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Harold F. O'Neil, Jr.
Attn: PERI-OK
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Robert Sasmor
U. S. Army Research Institute for the Behavioral and Social Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Joseph Ward
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333
<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Position and Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. William Greenup</td>
<td>Maxwell AFB, AL 36112</td>
<td>Education Advisor (E031)</td>
</tr>
<tr>
<td></td>
<td>Quantico, VA 22134</td>
<td>Education Center, MCDEC</td>
</tr>
<tr>
<td>Dr. Earl A. Aluisi</td>
<td>Brooks AFB, TX 78235</td>
<td>Headquarters, U. S. Marine Corps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Code MPI-20</td>
</tr>
<tr>
<td>Dr. Genevieve Haddad</td>
<td>Brooks AFB, TX 78235</td>
<td>Special Assistant for Marine Corps Matters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Code 100M</td>
</tr>
<tr>
<td>Dr. Ronald G. Hughes</td>
<td>Bolling AFB, DC 20332</td>
<td>Office of Naval Research</td>
</tr>
<tr>
<td>Dr. Malcolm Ree</td>
<td>Washington, DC 20380</td>
<td>800 N. Quincy St.</td>
</tr>
<tr>
<td>Dr. Marty Rockway</td>
<td>Brooks AFB, TX 78235</td>
<td>Arlington, VA 22217</td>
</tr>
<tr>
<td>3700 TCHTW/TTGH Stop 32</td>
<td>Sheppard AFB, TX 76311</td>
<td>DR. A.L. SLAFKOSKY</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SCIENTIFIC ADVISOR (CODE RD-1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HQ, U.S. MARINE CORPS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WASHINGTON, DC 20380</td>
</tr>
</tbody>
</table>
CoastGuard

1 Chief, Psychological Research Branch
U. S. Coast Guard (G-P-1/2/TP42)
Washington, DC 20593

1 Mr. Thomas A. Warm
U. S. Coast Guard Institute
P. O. Substation 18
Oklahoma City, OK 73169

Other DoD

12 Defense Technical Information Center
Cameron Station, Bldg 5
Alexandria, VA 22314
Attn: TC

1 Military Assistant for Training and Personnel Technology
Office of the Under Secretary of Defense for Research & Engineering
Room 3D129, The Pentagon
Washington, DC 20301

1 DARPA
1400 Wilson Blvd.
Arlington, VA 22209
Civil Govt

1 Dr. Susan Chipman
Learning and Development
National Institute of Education
1200 19th Street NW
Washington, DC 20208

William J. McLaurin
66610 Howie Court
Camp Springs, MD 20031

Dr. Andrew R. Molnar
Science Education Dev.
and Research
National Science Foundation
Washington, DC 20550

Dr. Joseph Psotka
National Institute of Education
1200 19th St. NW
Washington, DC 20208

Dr. H. Wallace Sinaiko
Program Director
Manpower Research and Advisory Services
Smithsonian Institution
801 North Pitt Street
Alexandria, VA 22314

Dr. Frank Withrow
U. S. Office of Education
400 Maryland Ave. SW
Washington, DC 20202

Dr. Joseph L. Young, Director
Memory & Cognitive Processes
National Science Foundation
Washington, DC 20550

Non Govt

1 Dr. John R. Anderson
Department of Psychology
Carnegie Mellon University
Pittsburgh, PA 15213

1 Dr. John Annett
Department of Psychology
University of Warwick
Coventry CV4 7AL
ENGLAND

1 Dr. Michael Atwood
Science Applications Institute
40 Denver Tech. Center West
7935 E. Prentice Avenue
Englewood, CO 80110

1 Dr. Alan Baddeley
Medical Research Council
15 Chaucer Road
Cambridge CB2 2EF
ENGLAND

1 Dr. Patricia Baggett
Department of Psychology
University of Denver
University Park
Denver, CO 80208

1 Dr. Jackson Beatty
Department of Psychology
University of California
Los Angeles, CA 90024

1 Dr. Isaac Bejar
Educational Testing Service
Princeton, NJ 08450

1 CDR Robert J. Biersner
Program Manager
Human Performance
Navy Medical R&D Command
Bethesda, MD 20014
Dr. Ina Bilodeau
Department of Psychology
Tulane University
New Orleans, LA 70118

Liaison Scientists
Office of Naval Research,
Branch Office, London
Box 39 FPO New York 09510

Dr. Lyle Bourne
Department of Psychology
University of Colorado
Boulder, CO 80309

Col Ray Bowles
800 N. Quincy St.
Room 804
Arlington, VA 22217

Dr. Robert Brennan
American College Testing Programs
P. O. Box 168
Iowa City, IA 52240

Dr. Bruce Buchanan
Department of Computer Science
Stanford University
Stanford, CA 94305

Dr. C. Victor Bunderson
WICAT INC.
UNIVERSITY PLAZA, SUITE 10
1160 S. STATE ST.
OREM, UT 84057

Dr. Pat Carpenter
Department of Psychology
Carnegie-Mellon University
Pittsburgh, PA 15213

Dr. John B. Carroll
Psychometric Lab
Univ. of No. Carolina
Davie Hall 013A
Chapel Hill, NC 27514

Dr. Charles Myers Library
Livingstone House
Livingstone Road
Stratford
London E15 2LJ
ENGLAND

Dr. William Chase
Department of Psychology
Carnegie Mellon University
Pittsburgh, PA 15213

Dr. Kenneth E. Clark
College of Arts & Sciences
University of Rochester
River Campus Station
Rochester, NY 14627

Dr. Norman Cliff
Dept. of Psychology
Univ. of So. California
University Park
Los Angeles, CA 90007

Dr. Lynn A. Cooper
LRDC
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15213

Dr. Meredith P. Crawford
American Psychological Association
1200 17th Street, N.W.
Washington, DC 20036

Dr. Kenneth B. Cross
Anacapa Sciences, Inc.
P.O. Drawer Q
Santa Barbara, CA 93102

Dr. Ronna Dillon
Department of Guidance and Educational P
Southern Illinois University
Carbondale, IL 62901

Dr. Emmanuel Donchin
Department of Psychology
University of Illinois
Champaign, IL 61820
Non Govt

Dr. Hubert Dreyfus
Department of Philosophy
University of California
Berkely, CA 94720

Dr. William Dunlap
Department of Psychology
Tulane University
New Orleans, LA 70118

LCOL J. C. Eggenberger
DIRECTORATE OF PERSONNEL APPLIED RESEARCH
101 COLONEL BY DRIVE
OTTAWA, CANADA K1A OK2

Dr. Richard L. Ferguson
The American College Testing Program
P.O. Box 168
Iowa City, IA 52240

Dr. Edwin A. Fleishman
Advanced Research Resources Organ.
Suite 900
4330 East West Highway
Washington, DC 20014

Dr. John R. Frederiksen
Bolt Beranek & Newman
50 Moulton Street
Cambridge, MA 02138

Dr. Alinda Friedman
Department of Psychology
University of Alberta
Edmonton, Alberta
CANADA T6G 2E9

Dr. R. Edward Geiselman
Department of Psychology
University of California
Los Angeles, CA 90024

1 DR. ROBERT GLASER
LRDC
UNIVERSITY OF PITTSBURGH
3939 O'HARA STREET
PITTSBURGH, PA 15213

1 Dr. Marvin D. Glock
217 Stone Hall
Cornell University
Ithaca, NY 14853

Dr. Daniel Gopher
Industrial & Management Engineering
Technion-Israel Institute of Technology
Haifa
ISRAEL

1 DR. JAMES G. GREENO
LRDC
UNIVERSITY OF PITTSBURGH
3939 O'HARA STREET
PITTSBURGH, PA 15213

1 Dr. Harold Hawkins
Department of Psychology
University of Oregon
Eugene OR 97403

1 Dr. James R. Hoffman
Department of Psychology
University of Delaware
Newark, DE 19711

1 Glenda Greenwald, Ed.
"Human Intelligence Newsletter"
P. O. Box 1163
Birmingham, MI 48012

1 Dr. Lloyd Humphreys
Department of Psychology
University of Illinois
Champaign, IL 61820

1 Library
HumRRO/Western Division
27857 Berwick Drive
Carmel, CA 93921
Non Govt

Dr. Steven W. Keele
Dept. of Psychology
University of Oregon
Eugene, OR 97403

Dr. David Kieras
Department of Psychology
University of Arizona
Tucson, AZ 85721

Dr. Kenneth A. Klivington
Program Officer
Alfred P. Sloan Foundation
630 Fifth Avenue
New York, NY 10111

Dr. Stephen Kosslyn
Harvard University
Department of Psychology
33 Kirkland Street
Cambridge, MA 02138

Mr. Marlin Kroger
1117 Via Goleta
Palos Verdes Estates, CA 90274

Dr. Jill Larkin
Department of Psychology
Carnegie Mellon University
Pittsburgh, PA 15213

Dr. Alan Lesgold
Learning R&D Center
University of Pittsburgh
Pittsburgh, PA 15260

Dr. Charles Lewis
Faculteit Sociale Wetenschappen
Rijksuniversiteit Groningen
Oude Boteringestraat 23
9712GC Groningen
Netherlands

Dr. James Lumsden
Department of Psychology
University of Western Australia
 Nedlands W.A. 6009
AUSTRALIA

Non Govt

1 Mr. Merl Malehorn
Dept. of Navy
Chief of Naval Operations
OP-113
Washington, DC 20350

1 Dr. Erik McWilliams
Science Education Dev. and Research
National Science Foundation
Washington, DC 20550

1 Dr. Mark Miller
TI Computer Science Lab
C/O 2824 Winterplace Circle
Plano, TX 75075

1 Dr. Allen Munro
Behavioral Technology Laboratories
1845 Elena Ave., Fourth Floor
Redondo Beach, CA 90277

1 Dr. Donald A Norman
Dept. of Psychology C-009
Univ. of California, San Diego
La Jolla, CA 92093

1 Dr. Melvin R. Novick
356 Lindquist Center for Measurement
University of Iowa
Iowa City, IA 52242

1 Dr. Jesse Orlansky
Institute for Defense Analyses
440 Army Navy Drive
Arlington, VA 22202

1 Dr. Seymour A. Papert
Massachusetts Institute of Technology
Artificial Intelligence Lab
545 Technology Square
Cambridge, MA 02139

1 Dr. James A. Paulson
Portland State University
P.O. Box 751
Portland, OR 97207
<table>
<thead>
<tr>
<th>Non Govt</th>
<th>Non Govt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 MR. LUIGI PETRULLO</td>
<td>1 Dr. Andrew M. Rose</td>
</tr>
<tr>
<td>2431 N. EDGEMOOD STREET</td>
<td>American Institutes for Research</td>
</tr>
<tr>
<td>ARLINGTON, VA 22207</td>
<td>1055 Thomas Jefferson St. NW</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20007</td>
</tr>
<tr>
<td>1 Dr. Martha Polson</td>
<td>1 Dr. Ernst Z. Rothkopf</td>
</tr>
<tr>
<td>Department of Psychology</td>
<td>Bell Laboratories</td>
</tr>
<tr>
<td>Campus Box 346</td>
<td>600 Mountain Avenue</td>
</tr>
<tr>
<td>University of Colorado</td>
<td>Murray Hill, NJ 07974</td>
</tr>
<tr>
<td>Boulder, CO 80309</td>
<td></td>
</tr>
<tr>
<td>1 DR. PETER POLSON</td>
<td>1 DR. WALTER SCHNEIDER</td>
</tr>
<tr>
<td>DEPT. OF PSYCHOLOGY</td>
<td>DEPT. OF PSYCHOLOGY</td>
</tr>
<tr>
<td>UNIVERSITY OF COLORADO</td>
<td>UNIVERSITY OF ILLINOIS</td>
</tr>
<tr>
<td>BOULDER, CO 80309</td>
<td>CHAMPAIGN, IL 61820</td>
</tr>
<tr>
<td>1 Dr. Steven E. Poltrock</td>
<td>1 Dr. Alan Schoenfeld</td>
</tr>
<tr>
<td>Department of Psychology</td>
<td>Department of Mathematics</td>
</tr>
<tr>
<td>University of Denver</td>
<td>Hamilton College</td>
</tr>
<tr>
<td>Denver, CO 80208</td>
<td>Clinton, NY 13323</td>
</tr>
<tr>
<td>1 Dr. Mike Posner</td>
<td>1 Committee on Cognitive Research</td>
</tr>
<tr>
<td>Department of Psychology</td>
<td>% Dr. Lonnie R. Sherrod</td>
</tr>
<tr>
<td>University of Oregon</td>
<td>Social Science Research Council</td>
</tr>
<tr>
<td>Eugene OR 97403</td>
<td>605 Third Avenue</td>
</tr>
<tr>
<td></td>
<td>New York, NY 10016</td>
</tr>
<tr>
<td>1 DR. DIANE M. RAMSEY-KLEE</td>
<td>1 Dr. David Shucard</td>
</tr>
<tr>
<td>R-K RESEARCH & SYSTEM DESIGN</td>
<td>Brain Sciences Labs</td>
</tr>
<tr>
<td>3947 RIDGEMONT DRIVE</td>
<td>National Jewish Hospital Research Center</td>
</tr>
<tr>
<td>MALIBU, CA 90265</td>
<td>National Asthma Center</td>
</tr>
<tr>
<td></td>
<td>Denver, CO 80206</td>
</tr>
<tr>
<td>1 MINRAT M. L. RAUCH</td>
<td>1 Robert S. Siegler</td>
</tr>
<tr>
<td>P II 4</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>BUNDESMINISTERIUM DER VERTEIDIGUNG</td>
<td>Carnegie-Mellon University</td>
</tr>
<tr>
<td>POSTFACH 1328</td>
<td>Department of Psychology</td>
</tr>
<tr>
<td>D-53 BONN 1, GERMANY</td>
<td>Schenley Park</td>
</tr>
<tr>
<td></td>
<td>Pittsburgh, PA 15213</td>
</tr>
<tr>
<td>1 Dr. Mark D. Reckase</td>
<td>1 Dr. Edward E. Smith</td>
</tr>
<tr>
<td>Educational Psychology Dept.</td>
<td>Bolt Beranek & Newman, Inc.</td>
</tr>
<tr>
<td>University of Missouri-Columbia</td>
<td>50 Moulton Street</td>
</tr>
<tr>
<td>4 Hill Hall</td>
<td>Cambridge, MA 02138</td>
</tr>
<tr>
<td>Columbia, MO 65211</td>
<td>1 Dr. Robert Smith</td>
</tr>
<tr>
<td></td>
<td>Department of Computer Science</td>
</tr>
<tr>
<td>1 Dr. Fred Reif</td>
<td>Rutgers University</td>
</tr>
<tr>
<td>SESAME</td>
<td>New Brunswick, NJ 08903</td>
</tr>
<tr>
<td>c/o Physics Department</td>
<td></td>
</tr>
<tr>
<td>University of California</td>
<td></td>
</tr>
<tr>
<td>Berkely, CA 94720</td>
<td></td>
</tr>
</tbody>
</table>
| 1 | Dr. Richard Snow
School of Education
Stanford University
Stanford, CA 94305 |
|---|---|
| 1 | Dr. Robert Sternberg
Dept. of Psychology
Yale University
Box 11A, Yale Station
New Haven, CT 06520 |
| 1 | Dr. Albert Stevens
BOLT BERANEK & NEWMAN, INC.
50 MOUTON STREET
CAMBRIDGE, MA 02138 |
| 1 | Dr. Thomas G. Sticht
Director, Basic Skills Division
HUMRRD
300 N. Washington Street
Alexandria, VA 22314 |
| 1 | David E. Stone, Ph.D.
Hazeltine Corporation
7680 Old Springhouse Road
McLean, VA 22102 |
| 1 | Dr. Patrick Suppes
INSTITUTE FOR MATHEMATICAL STUDIES IN
THE SOCIAL SCIENCES
STANFORD UNIVERSITY
STANFORD, CA 94305 |
| 1 | Dr. Kikumi Tatsuoka
Computer Based Education Research
Laboratory
252 Engineering Research Laboratory
University of Illinois
Urbana, IL 61801 |
| 1 | Dr. David Thissen
Department of Psychology
University of Kansas
Lawrence, KS 66044 |
| 1 | Dr. Douglas Towne
Univ. of So. California
Behavioral Technology Labs
1845 S. Elena Ave.
Redondo Beach, CA 90277 |
| 1 | Dr. J. Uhlaner
Perceptronics, Inc.
6271 Varie1 Avenue
Woodland Hills, CA 91364 |
| 1 | Dr. William R. Uttal
University of Michigan
Institute for Social Research
Ann Arbor, MI 48106 |
| 1 | Dr. Howard Wainer
Division of Psychological Studies
Educational Testing Service
Princeton, NJ 08540 |
| 1 | Dr. Phyllis Weaver
Graduate School of Education
Harvard University
200 Larsen Hall, Appian Way
Cambridge, MA 02138 |
| 1 | Dr. David J. Weiss
No60 Elliott Hall
University of Minnesota
75 E. River Road
Minneapolis, MN 55455 |
| 1 | Dr. Keith T. Wescourt
Information Sciences Dept.
The Rand Corporation
1700 Main St.
Santa Monica, CA 90406 |
| 1 | Dr. Susan E. Whiteley
PSYCHOLOGY DEPARTMENT
UNIVERSITY OF KANSAS
LAWRENCE, KANSAS 66044 |
| 1 | Dr. Christopher Wickens
Department of Psychology
University of Illinois
Champaign, IL 61820 |
| 1 | Dr. J. Arthur Woodward
Department of Psychology
University of California |