VI MIRATION OF SHIP HULLS DUE TO WAVE EXCITATION. (U)

MAY 79 S T SMITH
Title: Vibration of Ship Hulls Due to Wave Excitation

Authors: SMITH, SCOTT T.

Performing Organization Name and Address:
Massachusetts Institute of Technology
Cambridge, MA

Report Date: May 1979

Number of Pages: 113

Distribution Statement:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Keywords:
- Naval Engineering
- Hull Model
- Ship Design

Abstract: SEE REVERSE

Thesis Title:
- Naval Engineering
- Hull Model
- Ship Design

Security Classification: UNCLASS

Document Number: ADA10653

Date: 23 July 1980
ABSTRACT

This thesis presents a computer program designed to estimate the first seven natural frequencies and their respective modes for ships and to estimate ship response in a Pierson-Moskowitz sea. The program was designed to function on a minimum of input. Hull offsets and deck edge height for each station are the major data required. The program computes the hydrodynamic added mass, the polar moment of inertia J, the second moment of area I, the effective shear stiffness KAG and the ship mass for each station. A Prohl sequence is used to determine hull natural frequencies and mode shape. A wave forcing function is presented which sums buoyancy, added mass and damping factors due to wave passage. The program can be used for all vessels, but program development was based on a single beam model so superstructure effects are not considered. A minimum of 20 stations is required.
VIBRATION OF SHIP HULLS DUE TO WAVE EXCITATION

by

SCOTT TEMPLE SMITH

B.S.M.E., University of Arizona (1972)

Submitted in Partial Fulfillment
of the Requirements for the
Degrees of

OCEAN ENGINEER

and

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1979

© Scott Temple Smith 1979

Signature of Author

Department of Ocean Engineering

May 11, 1979

Certified by

Thesis Advisor

Certified by

Departmental Reader

Accepted by

Chairman, Department Committee
VIBRATION OF SHIP HULLS DUE TO WAVE EXCITATION

by

SCOTT TEMPLE SMITH

Submitted to the Department of Ocean Engineering on May 11, 1979, in partial fulfillment of the requirements for the degrees of Ocean Engineer and Master of Science in Mechanical Engineering.

ABSTRACT

This thesis presents a computer program designed to estimate the first seven natural frequencies and their respective modes for ships and to estimate ship response in a Pierson-Moskowitz sea. The program was designed to function on a minimum of input. Hull offsets and deck edge height for each station are the major data required. The program computes the hydrodynamic added mass, the polar moment of inertia J, the second moment of area I, the effective shear stiffness KAG and the ship mass for each station. A Prohl sequence is used to determine hull natural frequencies and mode shape. A wave forcing function is presented which sums buoyancy, added mass and damping factors due to wave passage. The program can be used for all vessels, but program development was based on a single beam model so superstructure effects are not considered. A minimum of 20 stations is required.

Supervisor: Joao Manuel Gomes de Oliveira
Title: Assistant Professor of Ocean Engineering
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>TECHNICAL TREATMENT</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>A. Uniform Beam Vibration</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>B. Prohl Sequence</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>C. Added Mass</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>D. Wave Excitation</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>E. Damping</td>
<td>71</td>
</tr>
<tr>
<td>3</td>
<td>PROGRAM OVERVIEW</td>
<td>77</td>
</tr>
<tr>
<td>A</td>
<td>PROGRAM LISTING</td>
<td>86</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

Vibration is a phenomenon specially appealing to a number of engineers due partly to a clearly defined, extensive and intriguing body of underlying mathematical analysis. From the late 1800's when attention was first paid to the problem of ship hull vibration this body of analysis has been expanded by a large number of active researchers to provide the current comprehensive level of understanding of the subject.

It is apparent that vibration of the ship hull is a source of concern for the naval architect (and shipowner). A passenger vessel with vibration amplitudes above a certain threshold would have few repeat passengers. Fatigue of structural components due to the cyclic stresses is a factor to be considered. The conventional method of determining the strength of the hull girder does not explicitly take into account the cyclic stress associated with hull vibration. It would seem necessary to determine what these stresses might be, how they vary with time and the effect of their addition to stresses already present through ship loading and the quasistatic effect of wave support. The sophisticated equipment on board warships experience problems in an environment of excessive vibration. It is interesting to note that with continued refinement of such equipment as navigation instruments, radar, sonar, fire control computers, communications gear and electronic warfare devices the requirement for
vibration free foundations becomes more stringent. There are dangers to shipping from acoustic and pressure operated offensive weapons. Attention has been focused on noise emitted by hulls and hull vibration in general. The "acoustic signatures" of vessels play an important part in tracking foreign vessels, both surface and subsurface, by passive means. It appears that the problem of vibration control is becoming more important.

As stated, the body of analysis is large but it is apparent that the complexity of hull structures in both form, material and construction and the complexity of three-dimensional hydrodynamics combine to limit the application of the analysis to reality. It is not surprising then that the problems of hull vibration still remain and that work continues on new methods of mathematical treatment, on models and on full size ships where the adequacy of the technical progress can be shown.

This thesis is concerned with one of the two broad classes of ship hull vibration, that is synchronous or resonant vibration as opposed to local vibration. In this case the entire hull acts like a beam vibrating under some excitation from machinery, the propellor or waves. In serious cases the motion can clearly be seen by sighting along the length of the ship. The importance of a resonant vibration is dependent on the conditions of its occurrence.
If the engine at normal operating speed excites the hull then a serious problem exists. If, however, this resonance occurs at an engine speed that will be only infrequently maintained, then there is a problem of considerably less significance. Similarly, if a vessel is expected to operate in certain known sea states then it is necessary to avoid an excessive resonant condition by proper hull design.

The other class of hull vibration is a local effect. Here specific parts of the ship or certain fittings such as masts, stacks, superstructure or a panel of plating are set into motion. Depending on the point of view local vibration can also include the undesired motion of items as small as light fixtures or stanchion chains. Local vibration can have the same effects as hull resonance, that is personal discomfort and structural and equipment failures. This type of vibration is not as readily predicted and analyzed as whole hull vibration and is treated generally after the fact by locating and removing the excitation or adding local stiffening, pillars and similar structures. Obviously in many cases the excitation cannot be eliminated and additional structure is not feasible. Then the solution is the removal of the object or relaxation of the requirements.

It is apparent that the hull of a ship will vibrate only if an external force is applied to it. When this force is from slamming, the resulting shudder can be picked up by
accelerometers and can be shown to be transient in nature. A similar force can be generated by rapidly releasing a haued anchor or rapidly braking a free falling one. The transient response and information which can be obtained from it will be discussed later. Other sources of excitation can produce continuous vibration which is somewhat more insidious due to its gradual deleterious action. Such sources include those whose origin is some out-of-balance periodic force in the diesel main engine, auxiliary machinery, shafting or propellers.

It can therefore be reduced in any given instance by proper attention to balancing during construction. Diesel engine balancing is a well developed art which depends on the type of engine, number of cylinders, auxiliaries which may be run from the main engine and many other factors. Properly operating turbine equipment runs at angular velocities well above the frequencies of concern here.

The size of shafting and propellers makes perfect balancing impossible. In addition other once per revolution forces can be created if one blade of the propeller has a different shape than the other blades. Even with a perfect propeller, the blades work in a mixed wake behind the hull and the force on each varies continuously throughout each revolution. These varying forces are conveniently divided into two types according to the method of transmission to the hull.
"Propeller" forces are transmitted through the shafting to struts and bearings. "Surface" forces are transmitted through the water to the stern. Both types have a frequency of propeller angular velocity times the number of blades and are referred to as blade-rate forces. Extensive work has been carried out and resultantly the magnitude of these forces can be calculated quite accurately. For example, the propeller forces can be determined from lifting surface theory assuming the hull induced velocity field in the propeller plane is known. With the requirement that the fluid particles should remain in contact with the propeller blades, it follows that the velocity components normal to the surface of the blades due to the hull induced wake should be equal to the corresponding components of the propeller induced fluid velocities. This requirement can be expressed as a three-dimensional integral equation. The numerical computation is formidable but computer solutions yield the pressure distribution and the blade lift. Integration yields the forces. It is interesting to note that due to the dynamic behavior of the shaft, bearing reactions can be an order of magnitude higher than the forces generated at the propeller. All of the forces can be kept within tolerable limits by careful manufacture and proper attention to stern and appendage design and particularly to blade tip clearance. Some hydrodynamic disturbing forces have to be accepted, however, as part of the price of mechanical propulsion.
The excitation due to wave passage is at present an active area of research. The circular frequency of encounter of waves, ω_e, is dependent on the wave spectrum of the sea surface and the speed of the vessel. Even for the swiftest of destroyers the amount of energy available from excitation of even the lowest natural frequency is very small, the preponderance of wave energy being at lower frequencies. Ships of more recent vintage, however, are longer with some lengths over 1,000 feet and natural frequencies for the two node mode of between 3 and 5 radians/sec. There is ample energy for excitation in this range and numerous studies have concluded that "springing" as two node vibration is called is a significant addition to midship stress levels. [1][12][16][30]

When engines were first put on ship hull vibration problems arose. Shortly thereafter an effort was made to predict the frequency for the two node mode of vibration. As a result of very early work by Otto Schlich and by F.W. Todd, empirical formulae were developed which closely correlated with observed frequencies. Schlich proposed a modification to the natural frequency formula for a uniform free-free beam which is

$$\omega_2 = \frac{(\beta_2 L)^2}{2\pi} \sqrt{\frac{EI}{mL^4}}$$

(1)
where \(\frac{3}{2} L = 4,730 \), \(E \) is the Young's modulus, \(I \) is the section moment of inertia, \(m \) is the beam mass per unit length, and \(L \) is the length. This formula will be explained more fully later. Then

\[
\omega_2 = N \frac{I}{\sqrt{\Delta L^3}} \tag{2}
\]

where the units are tons for \(\Delta \), feet for \(L \), \(\text{ft}^4 \) for \(I \), and radians/sec for \(\omega_2 \). Schlick gave the following values for \(N \):

- ships with fine lines............1369.
- passenger liners...............1252.
- cargo ships...................1116.

Another early effort which was twin steps in the directions of simplicity and accuracy by F.W. Todd was based on

\[
I = CBD^3 \tag{3}
\]

where \(B \) is the beam, \(D \) is the depth, and \(C \) a coefficient dependent on \(L/D \) and the ship type. In the Todd formula, the virtual mass was used which was a function of the beam to draft ratio \(B/T \). So

\[
\omega_2 = g \frac{BD^3}{\sqrt{\Delta L^3}} \tag{4}
\]
where
\[\Delta_1 = \Delta (1.2 + B/3T) \]
(5)

Values for \(B \) are listed in [32].

In the treatment which follows the natural frequencies of a vessel are determined from offset data and other information. The process is an iterative one and can be expedited by an appropriate choice of a starting frequency. The choice of this value is from a formula devised by L.C. Burrill.

\[\omega_2 = 80,000 \pi \left[\frac{I}{\Delta L^3 (1+B/2T)(1+r_s)} \right]^{1/2} \]
(6)

where
\[r_s = \frac{3.5D^2 [3(B/D)^3 + 9(B/D)^2 + 6(B/D) + 1.2]}{L^2 (3B/D + 1)} \]
(7)

The Taylor shear correction term \(r_s \) is dimensionless.

The analysis of hull vibration has proceeded far beyond that which produced the preceding empirical formulations and this work attempts to explore the advances in considerations of damping, excitation, added mass and the use of the computer.
2. TECHNICAL TREATMENT

A. Uniform Beam Vibration

As previously stated, the mathematical base for the analysis of vibrating bodies is large and acceptance of certain broad assumptions allows complex problems to be idealized and working solutions obtained. As more realistic assumptions are made more intimate knowledge of the process is obtained. The price of course is vastly more complex solution techniques.

Consider a beam of length L. The vertical displacement at any time, t, is \(y(x,t) \) where \(x \) is the longitudinal axis of the beam. The total vertical force per unit length is \(f(x,t) \). The system parameters are the mass per unit length \(m(x) \) and the flexural rigidity \(EI(x) \) where \(E \) is Young's modulus of elasticity and \(I(x) \) is the cross section area moment of inertia about the neutral axis of bending at any position \(x \) along the beam. Consider an element of length \(dx \) of the beam. \(V(x,t) \) and \(M(x,t) \) are the shearing force and bending moment. The simplifications to be included at this point are 1) shear deformation is small in relation to bending deformation and 2) rotary inertia effects are small.

These simplifications are valid if the beam's length to depth ratio \(L/D \) is about 10 or greater and if deflections and slopes are small. Most ships underway fall into this category. [14] Another major assumption is that damping is
small enough to be neglected. This is sufficiently accurate for vibrating ships particularly in the free vibration analysis which follows. [12] The small damping present serves to limit vibration amplitude rather than modify frequency or vibration pattern. The force equation of motion in the vertical direction is then

\[
[V(x,t)+\frac{\partial V(x,t)}{\partial x} \, dx] - V(x,t)+f(x,t) \, dx=m(x) \, dx \frac{\partial^2 y(x,t)}{\partial t^2}
\]

(1)

The moment equation of motion, ignoring the inertia torque associated with the element rotation is

\[
[M(x,t) + \frac{\partial M(x,t)}{\partial x} \, dx] - M(x,t) + [V(x,t) + \frac{\partial V(x,t)}{\partial x} \, dx] \, dx
\]

\[
+f(x,t) \, dx \frac{dx}{2} = 0
\]

(2)

Here we assumed that the elemental length \(dx \) is small enough so that \(f(x,t) \) is constant along the element. Equation (2) reduces to

\[
\frac{\partial M(x,t)}{\partial x} + V(x,t) = 0
\]

(3)

Using (3) in (1) and simplifying results in

\[
-\frac{\partial^2 M(x,t)}{\partial x^2} + f(x,t) = m(x) \frac{\partial^2 y(x,t)}{\partial t^2}
\]

(4)
From basic strength of materials it is known that

\[M(x,t) = EI(x) \frac{\partial^2 y(x,t)}{\partial x^2} \tag{5} \]

(5) into (4) yields

\[\frac{\partial^2}{\partial x^2}\left[EI(x) \frac{\partial^2 y(x,t)}{\partial x^2}\right] + f(x,t) = m(x) \frac{\partial^2 y(x,t)}{\partial t^2} \tag{6} \]

which is the differential equation for the flexural vibration of a beam. [25] This is a fourth order linear nonhomogeneous partial differential equation. General solution theory requires a number of boundary conditions equal to the order of the equation. Since this equation must be integrated four times to get a solution, four arbitrary constants are introduced, thus the requirement for four boundary conditions.

In the case of interest the beam ends are free. Thus the shear and moment at the ends equal zero. From equations (3) and (5)

\[M(x,t) = EI(x) \frac{\partial^2 y(x,t)}{\partial x^2} = 0 \tag{7} \]

\[V(x,t) = \frac{\partial}{\partial x} [EI(x) \frac{\partial^2 y(x,t)}{\partial x^2}] = 0 \tag{8} \]

\[x = 0, L \]
The next analytical step is consideration of free vibration. The equation of motion reduces to

$$-\frac{3}{2} \frac{\partial^2}{\partial x^2} [E I(x) \frac{\partial^2 y(x,t)}{\partial x^2}] = m(x) \frac{\partial^2 y(x,t)}{\partial t^2}$$

(9)

with the boundary conditions (7) and (8). This forms a classic "boundary value" problem. It is opportune at this point to explore the possibility of synchronous motion. This is a motion in which the general shape of the beam displacement does not change with time. That is to say, every point of the beam executes the same motion, passing through the equilibrium position and the point of maximum excursion at the same time. This implies that the deformation $g(x,t)$ is separable in space and time. Therefore a possible solution of this boundary value problem is of the form

$$y(x,t) = Y(x) F(t)$$

(10)

where $Y(x)$ represents the general beam configuration in vertical vibration and depends on x alone, and where $F(t)$ indicates the type of motion the beam executes and depends on t alone. Introducing (10) into (9)

$$-\frac{1}{Y(x)m(x)} \frac{3}{2} \frac{\partial^2}{\partial x^2} [E I(x) \frac{\partial^2 y(x)}{\partial x^2}] = \frac{1}{F(t)} \frac{3}{2} \frac{\partial^2 F(t)}{\partial t^2}$$

(11)
where partial derivatives have been replaced by total derivatives. In addition, the variables have been separated so that the left hand side depends on x alone and the right hand side on t alone. It is apparent, therefore, that both sides must equal a constant. Let λ be that constant, then

\[
\frac{d^2 F(t)}{dt^2} - \lambda F(t) = 0
\]

(12)

where, since $X(x)$, $m(x)$ and $I(x)$ are real, λ is real.

Let $F(t)$ be of exponential form

\[
F(t) = Ae^{st}
\]

(13)

then substitution of (13) into (12) yields

\[
As^2e^{st} - \lambda Ae^{st} = 0
\]

or on dividing by Ae^{st} (for $Ae^{st} \neq 0$)

\[
s^2 - \lambda = 0
\]

so

\[
s = \pm \sqrt{\lambda}
\]

(14)
If λ is a positive number then the two roots (14) are both real and equal but opposite in sign. This suggests that there are two solutions for $F(t)$, one increasing and one decreasing exponentially with time. Both of these solutions are inconsistent with an undamped conservative system so the possibility of λ being positive can be discarded.

Letting $\lambda = -\omega^2$ we have $s = \pm i\omega$ and

$$F(t) = A_1 e^{i\omega t} + A_2 e^{-i\omega t}$$

(15)

Expansion of this expression where

$$e^{i\omega t} = \cos \omega t + i \sin \omega t$$

yields

$$F(t) = A_1 \cos \omega t + iA_1 \sin \omega t + A_2 \cos \omega t - iA_2 \sin \omega t$$

$$= (A_1 + A_2) \cos \omega t + i(A_1 - A_2) \sin \omega t$$

This must reduce to a real expression and will if

$$A_1 + A_2 = C \cos \phi$$

$$i(A_1 - A_2) = C \sin \phi$$
then

\[F(t) = C \cos(\omega t - \phi) \]

(16)

Proceeding with the other part of (11) yields

\[\frac{d^2}{dx^2}[EI(x)d^2Y(x)] = \omega^2 m(x) Y(x) \]

(17)

\[0 < x < L \]

No general closed form solution of (17) exists. However, for certain special cases solutions can be obtained and for illustrative purposes the following major simplification will be made, EI(x) and M(x) are made constant along the beam's length. This takes all ships with the possible exception of some box shaped barges out of consideration but the information derived from such a step will provide some weight into the problem. (17) reduces under these assumptions to

\[\frac{d^4Y(x)}{dx^4} - \beta^4 Y(x) = 0 \quad \beta^4 = \frac{\omega^2 m}{EI} \]

(18)

The general solution of (18) can readily be verified to be

\[Y(x) = A_1 \sin \beta x + A_2 \cos \beta x + A_3 \sinh \beta x + A_4 \cosh \beta x \]

(19)
Simplifying the boundary conditions (7) and (8) yield

\[\frac{d^2 Y(x)}{dx^2} = \frac{d^3 Y}{dx^3} = 0 \quad x = 0, L \]

The second and third derivatives of \(Y(x) \) are

\[Y''(x) = A_1 \beta^2 \sin \beta x - A_2 \beta^2 \cos \beta x + A_3 \beta^2 \sinh \beta x + A_4 \beta^2 \cosh \beta x \quad (20) \]

\[Y'''(x) = A_1 \beta^3 \cos \beta x + A_2 \beta^3 \sin \beta x + A_3 \beta^3 \cosh \beta x + A_4 \beta^3 \sinh \beta x \quad (21) \]

At \(x = 0 \) (20) and (21) yield

\[A_2 = A_4 \quad \text{and} \quad A_1 = A_3 \quad (22) \]

At \(x = L \) substitution into (20) yields

\[A_1 (\sinh \beta L - \sin \beta L) + A_2 (\cosh \beta L - \cos \beta L) = 0 \quad (23) \]

and substitution into (21) yields

\[A_1 (\cosh \beta L - \cos \beta L) + A_2 (\sinh \beta L + \sin \beta L) = 0 \quad (24) \]

Parenthetically, these two equations in two unknowns can be reduced to one equation leaving \(A_2 \) in terms of \(A_1 \)
\[A_2 = \frac{-A_1 (\cosh \beta L - \cos \beta L)}{\sinh \beta L + \sin \beta L} \]

(25)

Inserting (25) and (22) into (19) yields

\[Y(x) = A \left[\sin \beta x + \sinh \beta x - \frac{(\cosh \beta L - \cos \beta L)}{\sinh \beta L + \sin \beta L} \right] (\cos \beta x + \cosh \beta x) \]

(26)

From linear algebra the determinant of the coefficients in (23) and (24) must equal zero for non-trivial values of \(A_1 \) and \(A_2 \) to exist. That is

\[
\begin{vmatrix}
\sinh \beta L - \sin \beta L & \cosh \beta L - \cos \beta L \\
\cosh \beta L - \cos \beta L & \sinh \beta L + \sin \beta L
\end{vmatrix} = 0
\]

This is known as the "characteristic determinant" and reduces to

\[(\sinh \beta L - \sin \beta L)(\sinh \beta L + \sin \beta L) - (\cosh \beta L - \cos \beta L)^2 = 0 \]

After simplification this yields

\[\cosh \beta L \cos \beta L = 1 \]

(27)

This is known as the "characteristic equation" and it is apparent that it can be solved for an infinite number of values of \(\beta \), that is, for \(\beta_r \) where \(r=1, 2, 3, \ldots \) which are defined by
\[3^4 = \omega^2 \frac{m}{EI} \quad (28) \]

From (28) an infinite set of frequencies, \(\omega_r \), are obtained. These are natural frequencies. For each \(\omega_r \) equation (26) yields a prescribed vibration shape \(Y_r(x) \) known as a "natural mode."

The general problem of determining the values of \(\beta \) in (18) for which nontrivial solutions \(Y(x) \) exist where certain boundary conditions are prescribed is called the "characteristic-value" or "eigen-value" problem with the parameters \(\omega_r \) being the eigenvalues and the functions \(Y_r(x) \) being eigenfunctions. [19][25] It is to be noted that the eigenfunctions are precise as to configuration but not to absolute value. Since (18) is homogeneous and \(Y_r(x) \) is a solution, then so is \(aY_r(x) \) where \(a \) is a constant multiplier. A unique property of these eigenfunctions forms the basis for this entire train of analytical thought. For the general case of beam vibration as expressed in (6) this property known as "orthogonality" is expressed by

\[\int_0^L m(x) Y_r(x) Y_s(x) = 0 \quad r \neq s \quad (29) \]

This orthogonality is with respect to the mass function which serves as a weighting term.
This orthogonality implies that any possible configuration of the beam can be represented as a linear combination of the natural modes of the beam. That is

$$y(x) = \sum_{r=1}^{\infty} C_r Y_r(x)$$ \hspace{1cm} (30)

This is true for any and all time t so

$$y(x,t) = \sum_{r=1}^{\infty} \eta_r(t) Y_r(x)$$ \hspace{1cm} (31)

where the C_r have been replaced by the time functions $\eta_r(t)$ which are known as the "natural coordinates."

As previously stated the eigenfunctions are not determined in regards to absolute value. A convenient normalization scheme is such that the eigenfunctions satisfy

$$\int_0^L m(x) Y_r(x) Y_s(x) = \delta_{rs} \quad r,s=1,2,3...$$ \hspace{1cm} (32)

where δ_{rs} is the dirac delta function

$$\delta_{rs} = \begin{cases} 1 & r=s \\ 0 & r\neq s \end{cases}$$

In the uniform beam example insertion of one eigenfunction and eigenvalue into (18) yields
Multiplying both sides by $Y_s(x)$ and integrating over the length gives

$$
\int_0^L Y_s(x) \frac{d^4Y_r(x)}{dx^4} = \int_0^L \omega_r^2 m Y_s(x) Y_r(x) dx = 2 \delta_{rs}
$$

Now substituting the assumed solution (31) into the beam equation (9) and assuming a uniform beam yields

$$
\sum_{r=1}^{\infty} \ddot{\eta}_r(t) m Y_r(x) + \sum_{r=1}^{\infty} q_r(t) \frac{d^4Y_r(x)}{dx^4} = 0
$$

Multiplying through by $Y_s(x)$ and integrating over the length and considering (32) and (34) yields the independent set of ordinary differential equations

$$
\ddot{\eta}_r(t) + \omega_r^2 \eta_r(t) = 0 \quad r=1,2,3...
$$

The solution to each of these equations can be shown to be

$$
\eta_r = C_r \cos(\omega_r t - \phi_r)
$$

where C_r and ϕ_r are determined from initial conditions of the beam, $y(x,0)$ and $\dot{y}(x,0)$. 23
Using (37) and (31) and setting $t=0$ yields

$$y(x,0) = \sum_{r=1}^{\infty} C_r \cos \phi_r Y_r(x)$$

$$\dot{y}(x,0) = \sum_{r=1}^{\infty} t C_r \omega_r \sin \phi_r Y_r(x)$$

Multiplying by $mY_s(x)$ and integrating over the length yields

$$C_r \cos \phi_r = \int_0^L mY_r(x) y(x,0) \, dx$$

$$C_r \sin \phi_r = \int_0^L \frac{m}{\omega_r} Y_r(x) \dot{y}(x,0) \, dx$$

which can be solved for C_r and ϕ_r.

The free vibration case for the uniform free-free beam has now been completely solved. The natural modes $Y_r(x)$ and the natural frequencies ω_r have been computed. It is the orthogonality of these modes and the fact that they span the vector space in which they are contained that makes the expansion theorems (30) and (31) correct. The natural coordinates $y_r(t)$ can be determined from initial conditions.

The forced vibration case is slightly more complex. Here substitution of the assumed solution (31) into the beam equation (6) yields
By multiplying by \(Y_s(x) \) and integrating over the length and considering the normalization integrals (32) and (34) the following independent set of ordinary differential equations are obtained

\[
\ddot{\eta}_r(t) + \omega_r^2 \eta_r(t) = F_r(t) \tag{41}
\]

where

\[
F_r(t) = \int_0^L Y_r(x) f(x,t) \, dx \tag{42}
\]

The solution to (41) generally involves the use of the convolution integral

\[
\eta_r(t) = \frac{1}{\omega_r} \int_0^t F_r(\tau) \sin \omega_r(t-\tau) \, d\tau + \eta_r(0) \cos \omega_r t + \dot{\eta}_r(0) \sin \omega_r t \tag{43}
\]

where \(\eta_r(0) \) and \(\dot{\eta}_r(0) \) are as determined by (39).

This completes the classical analysis of the forced vibration of the free-free uniform beam. It is not difficult to see that significant complications arise when the desire is present for a closer representation of reality. In (7)
inclusion of the beam theory damping term results in

\[M(x,t) = EI(x) \frac{\partial^2 y(x,t)}{\partial x^2} + \beta(x) \frac{\partial^3 y(x,t)}{\partial x^2 \partial t^2} \]

(7a)

where \(\beta(x) \) represents viscous structural damping. More on this in Section E. The equation of motion (6) then becomes

\[m(x) \frac{\partial^2 y(x,t)}{\partial t^2} + \frac{\partial^2}{\partial x^2} \left(EI(x) \frac{\partial^2 y(x,t)}{\partial x^2} \right) + \frac{\partial^2}{\partial x^2} \left(\beta(x) \frac{\partial^3 y(x,t)}{\partial x^2 \partial t^2} \right) = f(x,t) \]

(6a)

A free vibration analysis would proceed with the solution of (9) as before but no assumption as to uniformity would be made. The resulting general solution

\[\psi(x) = AF(x) + BG(x) + CA(x) + DJ(x) \]

(44)

can be obtained for sufficiently well behaved \(EI(x) \) and \(m(x) \).

Boundary conditions (7) and (8) require that

\[AF''(0) + BG''(0) + CH''(0) + DJ''(0) = 0 \]
\[AF''(L) + BG''(L) + CH''(L) + DJ''(L) = 0 \]
\[AF'''(0) + BG'''(0) + CH'''(0) + DJ'''(0) = 0 \]
\[AF'''(L) + BG'''(L) + CH'''(L) + DJ'''(L) = 0 \]
This leads to the characteristic determinant:

\[
\begin{vmatrix}
 F''(0) & G''(0) & H''(0) & J''(0) \\
 F''(L) & G''(L) & H''(L) & J''(L) \\
 F'''(0) & G'''(0) & H'''(0) & J'''(0) \\
 F'''(L) & G'''(L) & H'''(L) & J'''(L)
\end{vmatrix} = 0
\]

This is an equation in \(\omega \) and its roots are the system natural frequencies. For each root \(\omega_r \), there correspond specific values of \(A, B, C, \) and \(D \) and therefore a specific eigenfunction \(\psi_r \). The nature of the four solutions \(F, G, H, \) and \(J \) may make the solution of the determinant quite complex.

This is indeed an understatement. The general solution (44) will be a combination of transcendental functions and infinite series. Solution of the determinant would be very time consuming and costly. Additionally, inherent in the previous work has been the assumption that shear deflection and rotatory inertia are small factors. This is reasonable for the lowest vibration modes but increasingly becomes a source of error as the mode number increases, say for three or more nodes. The shear deflection, for example, is about 15\% of the bending deflection for the lowest vibration mode, that of two nodes for \(L/D = 15 \). [14] For vibration of about four nodes shear deflection becomes greater than bending deflection.
B. Prohl Sequence

A method which allows account to be taken of shear and rotary inertia and can be solved for the eigenvalues and functions is the technique devised by M.A. Prohl in 1945. It was originally produced for calculating the angular velocities at which flexible rotors would resonate. The actual rotor was simulated by a "lumped mass" system in which the rotor mass was concentrated at a number of stations. Station spacing was a matter of convenience though obviously the greater the number of stations the greater the accuracy. The stations were connected by weightless rods whose bending stiffness and shear characteristics were identical to those of the rotor section. This effective discretization allows problem solution by numerical techniques. The procedure is directly applicable to the analysis of ship hull vibration as will be shown. Let

\[m_i = \text{station mass plus added mass} \]
\[M_i = \text{bending moment} \]
\[V_i = \text{shear force} \]
\[g_i = \text{vertical deflection} \]
\[\theta_i = \text{slope} \]
\[L_i = \text{length between adjacent stations} \]
\[\omega = \text{angular velocity} \]
\[KGA_i = \text{shear stiffness which is constant along } L_i \]
\[EI_i = \text{bending stiffness which is constant along } L_i \]
\[J_i = \text{mass moment of inertia} \]

and \(i \) = subscript denoting consecutive stations.

The equations from strength of materials which govern the motion of the stations and which include shear and rotary inertia terms are

\[\theta_{i+1} = \theta_i + \frac{M_i L_{i+1}}{E I_{i+1}} + \frac{V_{i+1} L_{i+1}^2}{2E I_{i+1}} \]

(1)

\[M_{i+1} = M_i + V_{i+1} L_{i+1} - J_{i+1} \omega^2 \theta_{i+1} \]

(2)

\[Y_{i+1} = Y_i + \theta_i L_{i+1} + \frac{M_i L_{i+1}^2}{2E I_{i+1}} + \frac{V_{i+1} L_{i+1}^3}{6E I_{i+1}} - \frac{V_{i+1} L_{i+1}}{K G A_{i+1}} \]

(3)

\[V_{i+1} = V_i + m_i \omega^2 Y_i \]

(4)

It is to be noted that the mass term \(m_i \) includes the mass of hull and cargo and the entrained water or "added mass."

This will be discussed in Section C.

The relationships between the loading (shear), bending moment and deflection curves are well known from strength of materials. As \(\omega \) increases, the effect of including the rotary inertia and shear deflection terms in the equations becomes obvious, the shear and moment terms are altered increasingly.

The boundary conditions for this free-free beam are

\[M_s = M_B = 0 \]
and

\[V_s = V_B = 0 \]

where subscripts s and B represent the stern and bow respectively (more accurately the after terminus and the forward terminus). Thus for station one

\[V_1 = V_s = 0 \quad (5) \]

\[\theta_1 = \theta_s + \frac{M_s L_1}{EI_1} + \frac{V_1 V_1^2}{2EI_1} = \theta_s \quad (6) \]

\[M_1 = M_s + V_1 L_1 - J_1 \omega^2 \theta_1 = -J_1 \omega^2 \theta_s \quad (7) \]

\[Y_1 = Y_s + \theta_s L_1 + \frac{M_s L_1^2}{2EI_1} + \frac{V_0 L_1^3}{6EI_1} - \frac{V_1}{KGA_1} \]

or

\[Y_1 = Y_s + \theta_s L_1 \quad (8) \]

It can be seen by inspection of equation (1) through (4) that the values for the bending moment and shear force at any point in the ship will be a function of \(y_s, \theta_s \) and \(\omega \) in addition to the calculated ship parameters. If, at the start, \(y_s \) is set equal to one, a unit deflection of the stern, then the equations for the shear and bending moment at the bow will be expressed by the following:
\[V_B = a + b\theta_s \]
\[M_B = -c + d\theta_s \]

where \(a, b, c \) and \(d \) may be functions of \(\omega \). From the boundary condition requirement it is known that both of these equations must equal zero. Arbitrarily setting \(M_B = 0 \) and \(V_B = a + \frac{bc}{d} \) and performing the sequence calculation a number of times for various values of \(\omega \) a curve of \(V_B \) versus \(\omega \) can be obtained. This curve represents the exciting force \(V_B \) which would need to be applied at a specific frequency \(\omega \) to generate a unit deflection at the stern. The zeros of this curve, that is where the curve crosses the \(\omega \)-axis, represents the natural frequencies of the vessel where, with the absence of damping, a vanishingly small exciting force would set up synchronous motion. With the natural frequencies obtained the governing equations (1) through (4) will yield the displacement, shear, moment and slope for each station. The displacements for each frequency \(\omega_r \) are considered for this discrete case to be equivalent to the continuous system eigenfunctions and are called eigenvectors. Indeed as the number of stations becomes large the eigenvector will converge to the eigenfunction. As for the continuous case, the eigenvector must be normalized. A convenient normalization scheme is according to the following
\[\sum_{i=1}^{N} m_i y_i^2 = 1 \]

which is the discrete representation of (32) in Section A.

C. Added Mass

The preceding technical treatment of the free and forced vibration of a ship like beam involved a mass term which was either uniform or not along the length. This term included not only the mass of ship structure, machinery, cargo, etcetra as might be obtained from a weight curve but also a hydrodynamic "added mass." When a vibrating body is immersed in a fluid (air or water, for example) the fluid surrounding the body is put into continual motion which requires the expenditure of energy. Under conditions of synchronous or resonant motion, the body with this entrained water vibrates. This additional mass serves to lower significantly the natural frequencies of the vessel. It is therefore critical that a determination of this mass be made and added to that of the vessel. The total mass then, called "virtual" mass is the sum of the ship mass and the added mass. This phenomenon has been observed and treated for a few objects in classical hydrodynamics. In the case of an infinitely long circular cylinder having a cross-section of radius \(r \) translating perpendicularly to its axis with velocity \(V \) in an infinite inviscid fluid it is possible to derive the
potential flow and to calculate the kinetic energy in the fluid. It is found to be [20]

\[T = \frac{1}{2} \rho \pi r^2 v^2 \]

per unit length of cylinder where \(\rho \) is the fluid density. Letting \(M' = \rho \pi r^2 \) it is apparent that \(M' \) is the mass of fluid that is displaced by unit length of the cylinder. It is also apparent that the effect on the cylinder motion from the presence of the fluid can be allowed for by an addition of \(M' \) to the mass per unit length of the cylinder. An energy balance equation for forced motion becomes

\[\frac{d}{dt} \left(\frac{1}{2} M v^2 + \frac{1}{2} M' v'^2 \right) = F v \]

where \(F \) is the external force.

On simplifying

\[(M+M') \frac{dv}{dt} = F \]

or

\[\frac{Md}{dt} = F - M' \frac{dv}{dt} \]
Here the presence of the fluid is equivalent to a force per unit length opposing motion. Obviously this virtual mass effect is only present in the case of accelerated motions such as vibration. For a sphere of radius r the kinetic energy of the fluid has been shown to be [20]

$$T = \frac{1}{2} \frac{2}{3} \pi \rho r^3 v^2$$

Here $M' = \frac{2}{3} \pi \rho r^3$ which is one half of the mass of displaced fluid. In general

$$M' = C \text{ times the mass of displaced fluid}$$

where C is a vertical added mass coefficient. Comparison of the added mass coefficients for the cylinder and sphere both of radius r shows the former to be twice the latter. This reveals the three dimensional effect. The general method for determining the added mass coefficients of a ship hull is a stepped procedure utilizing first a two dimensional analysis then multiplying by a three dimensional correction called a "J" factor which will be discussed later. The discrete analysis of the Prohl sequence is inherently compatible with this. At each station the geometric and material characteristics are assumed to be constant along the station length. Thus the station can be considered to
be a portion of an infinitely long cylinder and the added mass can be determined. The cylinder is supposed to consist of the underwater hull cross section and its above water mirror image. The actual ship added mass is thus one-half of this computed amount. This analysis is based on the fact that the fluid motion is streamline throughout, that is, irrotational. This is reasonable since the amplitudes and absolute velocities are small.

This assumption of irrotational flow implies that the curl of the fluid particle velocity vector field is zero, that is,

$$\nabla \times \mathbf{V} = 0$$

where ∇ is the "del" operator. This implies that the velocity vector field is the gradient of a potential function

$$\mathbf{V} = \nabla \phi$$

Additionally where the flow is incompressible and there are no sources or sinks a fluid continuity equation can be written in the form

$$\frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial y} = 0$$
or upon substitution of (1) into (2)

\[\nabla^2 \phi = 0 \]

(3)

This is the well known Laplace's Equation. The kinetic energy of any flow where a potential exists is [20]

\[2T = \int \rho (\nabla \phi)^2 dV \]

where \(dV \) is a volume element and \(\rho \) is the fluid density. As has been shown the added mass can be determined from the kinetic energy of the flow. It remains then to compute the potential for the flow around a ship section.

Classical hydrodynamics has evaluated the potential for a very few geometric shapes. In two dimensions flows past circles and ellipses have closed form equations and spheres and ellipsoids of revolution have equations for the potential in three dimensions. A method which greatly expands the number of shapes which can be analyzed is called "conformal mapping" which involves application of analytic function theory and functions of a complex variable.

To illustrate, let

\[w = f(z) \]

(4)
where

\[w = u + iv \]

\[z = x + iy \]

(4) then represents a mapping of all points in the z plane onto the w plane. If the function \(f(z) \) is single valued then the mapping is one to one, that is to each point \(z \) where \(f(z) \) is defined there exists one and only one value of \(w = u + iy \) in the w plane. The inverse will also be true if \(f(z) \) is analytic and \(f'(z) \neq 0 \). If these conditions are met, then it is also true that relative angle and shape are preserved in such a mapping (thus the term name "conformal"). Right angles in the z plane will be mapped to right angles in the w plane. Another property of complex analytic functions is that the real and imaginary parts satisfy Laplace's equation and therefore can represent fluid flows. Knowing that the potential and stream functions satisfy the Cauchy-Riemann equations

\[
\frac{\partial \phi}{\partial x} = \frac{\partial \psi}{\partial y}
\]

\[
\frac{\partial \phi}{\partial y} = -\frac{\partial \psi}{\partial x}
\]
and Laplace's equation (3) an analytic complex function can be generated by setting the potential equal to the real part and the stream function equal to the imaginary part

\[\phi(z) = \phi(x,y) + i\psi(x,y) \]

This function is often called the complex potential. Now returning to (4) and writing its inverse

\[z = F(w) \]

it is apparent that the complex potential \(\phi(z) \) is expressible as a function of \(w \) in the form \(\phi[f(w)] \)

Further this function is analytic and therefore represents a new fluid flow in the \(w \) plane. Each of the equipotential lines, boundary lines and streamlines in the original plane are mapped into the \(w \) plane. The orthogonal relationship is present and thus the actual flow around the transformed boundary is known. For example, the flow past a two dimensional body of arbitrary shape can be determined (theoretically) by generating a transformation function \(w = f(z) \) which will map the points of the boundary of a unit circle in the \(z \) plane onto the boundary of the arbitrary shape in the \(w \) plane. The inverse of the function is then substituted into the complex
potential for the flow in the z plane which is well known. Thus a complete solution for the flow about the arbitrary shape is obtained. In practice the inverse may not be manageable or only a rough approximation to the desired shape can be transformed from the unit circle. Cross-sections of ships can, with good accuracy, be transformed from a unit circle however.

The first and definitive work in this area was presented in 1929 by Professor Frank M. Lewis in the Transactions of the Society of Naval Architects and Marine Engineers. The language of the paper is a bit quaint and some of the questions raised have long since been answered, but the method presented for computation of added mass has seen only very minor modifications to the present day.

Let x, y be the coordinates of any point in a two dimensional flow and ϕ, ψ the values for the velocity potential and stream function at the same point. The equation

$$z = x + iy = f(\phi + i\psi)$$

where f designates an arbitrary function represents a two dimensional irrotational flow. The flow in the x, y plane can be further transformed to any other plane X, Y by the relation

$$Z = X + iY = f_1(x + iy)$$
where \(f_1 \) is another arbitrary function. \(Z \) is of course still a function of \(\phi + i\psi \).

Take the flow past a unit circle

\[
x^2 + y^2 = 1
\]

or in polar form

\[r = 1 \]

and transform it by means of the relation

\[
Z = X + iY = z + \frac{a + b}{z^3} = z + az^{-1} + bz^{-3}
\]

(5)

Now

\[
z = x + iy = re^{i\theta} = e^{i\theta}
\]

(6)

so

\[
X + iY = e^{i\theta} + ae^{-i\theta} + be^{-i\theta}
\]

(7)

Since

\[
e^{i\theta} = \cos \theta + i\sin \theta
\]
it follows on equating real and imaginary parts that

\[X = (l+a) \cos \theta + b \cos 3\theta \]

\[Y = (l-a) \sin \theta - b \sin 3\theta \] (8)

These are the parametric equations of the transformed circle. The semi-axis parallel to the flow \((\theta=0)\) will be of length \(X_1 = l + a + b\)

and the semi-axis perpendicular to flow \((\theta=\pi/2)\) is \(Y_1 = l - a + b\)

so the ratio of half beam over draft will be

\[H = B/D = \frac{1-a+b}{l+a+b} \] (9)

For the flow past a unit circular cylinder \(\phi\) and \(\psi\) are given by

\[\phi = U(r + \frac{l}{r}) \cos \theta \quad \psi = U(r - \frac{l}{r}) \sin \theta \]

and on the boundary \(n=1\)
\[\phi = 2U \cos \theta \quad \psi = 0 \] \hspace{1cm} (10)

This represents the flow at the boundary of a stationary cylinder and, also represents the flow at the boundary of the transformed cylinder. To obtain the solution for a moving cylinder in a fluid stationary at infinity a superposition of a uniform flow of \(-U\) must be made. For this uniform flow

\[\phi = -UX \quad \text{and} \quad \psi = -UY \] \hspace{1cm} (11)

so using (11) and (8) in (10)

\[\phi = U[(1-a) \cos \theta - b \cos 3\theta] \] \hspace{1cm} (12)

\[\psi = -U[(1-a) \sin \theta - b \sin 3\theta] \] \hspace{1cm} (13)

The kinetic energy of the fluid is

\[2T = \rho \iint (v_x^2 + v_y^2) \, dx \, dy \]

and since

\[v_x = \frac{\partial \phi}{\partial x} \quad v_y = \frac{\partial \phi}{\partial y} \]

\[2T = \rho \iint \left[\left(\frac{\partial \phi}{\partial x} \right)^2 + \left(\frac{\partial \phi}{\partial y} \right)^2 \right] \, dx \, dy \]
An application of Green's theorem allows the double integral to be replaced by a line integral computed on a path which encloses the area. In this case the fluid is bounded by the cylinder surface and by a circle whose radius is allowed to approach infinity.

\[2T = \rho \iint \left(\frac{\partial \phi}{\partial x} \right)^2 + \left(\frac{\partial \phi}{\partial y} \right)^2 \, dx \, dy = - \oint_{C_1+C_2} \phi \frac{\partial \phi}{\partial n} \, ds \]

(14)

where \(ds \) is an element of path length, \(\partial n \) is an inwardly pointing element normal to the curve, \(C_1 \) is the cylinder circumference and \(C_2 \) represents the circle with radius approaching infinity. Since the fluid is at rest far from the cylinder the line integral over \(C_2 \) will be zero. Since

\[\frac{\partial \phi}{\partial n} = - \frac{\partial \phi}{\partial s} \]

the kinetic energy is given by

\[2T = \rho \int_{C_1} \phi \phi \, ds \]

(15)

which considering that the expressions for \(\phi \) and \(\psi \) are dependent only on \(\theta \) equals

\[2T = \rho \int_0^{2\pi} U[(l-a)cos \theta - bcos3\theta] [U[(l-a)cos \theta - 3bcos3\theta]] \, d\theta \]

\[= \pi U^2 \rho [(l-a)^2 + 3b^2] \]

(16)
If the semi-axis of the transformed circle is to be B instead of $(l-a+b)$ this energy becomes

$$2T = \pi U^2 \rho [(l-a)^2 + 3b^2] \frac{B^2}{(l-a+b)^2}$$

$$= \pi U^2 \rho B^2 \left[\frac{(l-a)^2 + 3b^2}{(l-a+b)^2} \right]$$

(17)

As previously mentioned the kinetic energy of flow past a circular cylinder of radius B is

$$2T = \pi U^2 \rho B^2 = M' U^2$$

therefore the virtual mass coefficient for the transformed circle is

$$C = \frac{(l-a)^2 + 3b^2}{(l-a+b)^2}$$

(18)

and (17) becomes

$$2T = C \pi B^2 \rho U^2 = M' U^2$$

and the axial mass per unit length is

$$M' = C \pi B^2 \rho$$
For the ship hull floating on the surface this is reduced by one-half so

\[M' = \frac{1}{2}C\pi B^2 \rho \]

(19)

Solving (18) and (9) simultaneously for \(a \) and \(b \) yields

\[b = H\left[\frac{(2CH-H+1)+(H+1)\sqrt{4C-3}}{2(CH^2-H^2-H-1)}\right] \]

(20)

\[a = \frac{(1-H)(1+b)}{(1+H)} \]

(21)

and the parametric equation of the transformed circles when of draft \(D \) instead of \((l+a+b)\) are

\[X = D\left[\frac{(l+a)\cos\theta+b\cos3\theta}{(l+a+b)}\right] \]

(22)

\[Y = D\left[\frac{(l-a)\sin\theta-b\sin3\theta}{(l+a+b)}\right] \]

(23)

\(X \) in this case being vertical and the line \(\theta=0 \) coinciding with the \(X \) axis. In [22] is a collection of graphs for various values of \(H \)(half beam to draft ratio) and \(C \). The \(H \) values correspond to common ship cross sections. For each of the paired values of \(C \) and \(H \) the constants \(a \) and \(b \) were computed from (21) and (20) then the shapes of the transformed circle were plotted from (22) and (23) for values of \(\theta \) from 0 to \(\pi/2 \). The added mass for any ship section is then
computed as follows: a visual comparison of the shapes in [22] is made with the body plan for the station. Of course, the body plan must be properly dimensioned and the value of \(H \) known. The \(C \) value for the actual ship section is obtained by interpolation between adjacent curves and the added mass per foot for the ship section is obtained from (15) remembering that \(B \) is half beam. This procedure is the basis for present day calculations. Some refinements which make the procedure programmable are presented in a paper by L. Landweber and M. Macagno in 1967 in the Journal of Ship Research. An equation of the form

\[
z = w + \frac{A_1}{w} + \frac{A_2}{w^3} + \frac{A_3}{w^5} \ldots
\]

(24)

(of which (1) is a truncated version) can describe either the mapping of a hull shape to a circle or a circle to a hull shape. The constants \(A_i \) will of course be different. Furthermore, inversion formulas exist which enable the coefficient of one transformation to be determined if the inverse coefficients are known. Let (24) represent the mapping of a wetted hull-shaped contour consisting of a wetted hull and its mirror image across the waterline from the \(z \) plane into the \(w \) plane. \(S \) is the bounded area of the hull contour and \(r_0 \) is the radius of the circle in the \(w \) plane. An expression for the added mass coefficient \(C_v \) is [21]

46
\[C_V = \frac{1}{B^2} \{2(r_0^2 + A_1) - \frac{S}{\pi}\} \quad (25) \]

Let the inverse of (20) be of the form

\[T = z + \frac{B_1}{z} + \frac{B_2}{z^3} + \frac{B_3}{z^5} \ldots \quad (26) \]

A method of determining the coefficients \(B_i \) is based on the property that, among the closed curves obtained from (22) by varying the coefficients, the curve which will bound the maximum area will be a circle. Let the ship curve be termed \(C_T \) and its mapping in the \(t \) plane be termed \(C_1 \). If \(z = r(\theta)e^{i\theta} \) then

\[\oint_{C_T} \overline{z} \, dz = \oint_{C_T} r(dr + i r d\theta) = i \oint_{C_T} r^2 d\theta = Z_i S \]

where \(\overline{z} \) is the complex conjugate of \(z \). Similarly for \(C_1 \)

\[\oint_{C_1} \, dt = Z_i S_1 \quad (27) \]

where \(S_1 \) is the area bounded by \(C_1 \). Also

\[\overline{T} = \overline{z} + \frac{B_1}{z} + \frac{B_2}{z^3} + \frac{B_3}{z^5} \ldots \quad (28) \]

and

\[dT = (1 - \frac{B_1}{z^2} - \frac{3B_2}{z^4} \ldots)dz \quad (29) \]
After substitution of (28) and (29) into (27) the condition that S_1 be a maximum that is

$$\frac{\partial^3 S_1}{\partial B_i^3} = 0 \quad i = 1, 2, \ldots n$$

yields a set of n linear equations for the coefficients B_i, $i = 1$ to n. Standard matrix manipulation techniques are available for then determining the B_i. The difficulties with this method are that the convergence rate with respect to n is relatively low and the accuracy of some intermediate terms decays with increasing n. The solution to this problem is to cut off the first mapping at $n=8$ and then map the nearly circular curve C_1 from the t plane into a much more nearly circular curve C_2 in the w plane where

$$w = t + \frac{C_1}{t} + \frac{C_2}{t^3} + \frac{C_3}{t^5} \ldots$$

The C_i are determined in much the same way as were the B_i. The coefficients A_i of equation (24) can then be determined from the intermediate coefficients B_i and C_i. The added mass coefficient C_v is then determined from (25).

This thesis makes use of the above outlined procedure to compute the added mass for vertical vibration of hull sections as defined by offset data for each section.
Another significant item in this treatment is to calculate the three dimensional effect mentioned briefly earlier. Lewis, in his paper, talks of a "J" factor where

\[J = \frac{\text{Actual Kinetic Energy of Fluid}}{\text{Kinetic energy of fluid if motion is confined to transverse planes}} \]

J obviously depends on the underwater configuration and will approach unity as the ratio of length to beam gets larger and larger. That is to say as variations of the hull from section to section diminishes.

An ellipsoid of revolution is one of the very few shapes for which an exact solution has been obtained for the three dimensional flow. It is this shape that is used for the computation of the J factor for a vibrating ship. As the vibration mode goes up, and the number of nodes increases, it is apparent that the movement of water becomes more longitudinal and less transverse so that \(J_i \) values, where \(i \) represents the \(i^{th} \) mode, will decrease. The calculation of \(J_2 \) and \(J_3 \) was made in the paper by Lewis. The treatment is similar to that presented for the two dimensional case in that an equation like (1) for the kinetic energy of the fluid \(i \) used

\[2T = -\rho \int \frac{\partial \phi}{\partial n} \, ds \]

(31)
where in this case ds is an element of area. The solution of this equation can be obtained due to a closed form solution to Laplace's equation having been found for this flow. That is, the potential ϕ for vibration of two and three nodes can be substituted into (31) and values for the actual three dimensional kinetic energy can be calculated. The denominator in the expression for J (30) is computed by summing (integrating) the values obtained from a two dimensional analysis of cross sections of the body. Lewis tabled the values of J_2 and J_3 for a variety of ratios of L/B. The values are shown in Table 1.

The analysis performed by Lewis required that the vibrating cross section remain in the same plane, that is, the motion results from pure shear. This does not reflect reality and consequently there has been much discussion on the subject beginning with a written comment of Lewis' paper by his peer J. Lockwood Taylor [22][30] and continuing to the present day.

Current procedure [32] involves the determination of J by accurate measurement of the natural vibration frequencies of a given body in air and in water. For Lewis' circular ellipsoid of revolution a simple analysis is possible because the distribution of added mass is directly proportional to the distribution of actual mass ($C_v = \text{constant along the entire length}$). The mass distribution is
\[M_B = \pi r^2 \rho_B \]

where \(r \) is the radius of the circular cross section and a function of longitudinal position, \(\rho \) is density and subscript \(B \) refers to the body. The corresponding added mass is

\[M' = C_v J \pi r^2 \rho_w \]

where \(C_v = 1 \) and subscript \(w \) refers to the water in which the body is immersed. \(J \) here is considered to be a constant value applied at each cross section so that the actual three dimensional added mass is obtained from the two dimensional analysis performed. From basic vibration theory [22]

\[\omega_n = \sqrt{K/M} \]

where \(K \) represents stiffness and \(M \) mass. Put another way

\[\frac{f}{(\frac{r_a}{r_w})^2} = \frac{M_w}{M_a} \]

where \(f \) represents frequency and subscript \(a \) represents air.

This equation for the circular ellipsoid considered is
<table>
<thead>
<tr>
<th>L/B</th>
<th>LEWIS J₂</th>
<th>TOWNSIN J₂</th>
<th>LEWIS J₃</th>
<th>TOWNSIN J₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1.000</td>
<td></td>
<td>1.000</td>
<td>.924</td>
</tr>
<tr>
<td>10.02</td>
<td>.859</td>
<td>.764</td>
<td>.808</td>
<td>.696</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>.764</td>
<td>.770</td>
<td>.696</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>.683</td>
<td>.725</td>
<td>.591</td>
</tr>
<tr>
<td>7.11</td>
<td>.789</td>
<td></td>
<td>.725</td>
<td>.591</td>
</tr>
<tr>
<td>8.48</td>
<td>.829</td>
<td></td>
<td>.770</td>
<td>.591</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>.837</td>
<td>.793</td>
<td>.793</td>
</tr>
<tr>
<td>12.95</td>
<td>.897</td>
<td>.859</td>
<td>.859</td>
<td>.793</td>
</tr>
<tr>
<td>15.82</td>
<td>.922</td>
<td>.890</td>
<td>.859</td>
<td>.793</td>
</tr>
<tr>
<td>22.4</td>
<td>.954</td>
<td>.932</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>.947</td>
<td>.924</td>
<td></td>
<td></td>
</tr>
<tr>
<td>∞</td>
<td>1.000</td>
<td>.947</td>
<td>1.000</td>
<td>.924</td>
</tr>
</tbody>
</table>

TABLE 1
where the vibrating mass in air M_a is assumed to be due only to the mass of the body and dL is differential length. Equation (35) is reduced to

$$J = \left[\left(\frac{f_a}{f_w} \right)^2 - 1 \right] \frac{\rho_B}{\rho_W}$$

Values from this equation obtained by R.L. Townsin [32] are listed in Table 1 and a comparison with the Lewis values shows a significant decrease reflecting the fact that no restrictions or assumptions were made concerning the cause of the motion. For ship-like vibrating bodies the procedure is somewhat more complex. Frequencies in water and air are both measured experimentally and calculated. For the water calculation several assumed values of J are used to obtain a plot of J_n versus f. A reduction constant obtained from comparison of the two air frequencies is used to correct the measured water frequency. This abscissa is used to obtain the J_n ordinate from the J_n versus f plot. Townsin proposes and this thesis employs the following empirical formula for J_n as a function of B/L.
This formula agrees closely with data through J_7.

The remaining consideration which is presented deals with a "sectional longitudinal inertia correction" labelled, by the author, j_i (the lower case to reflect a relation with the Lewis J factor). In most determinations of actual added mass per section an equation of the form of (19) is consistently used. That is

$$m'_i = \frac{1}{2}C_i \pi B_i^2 \rho$$

(38)

and

$$\frac{M'}{\Sigma m'_i} = J$$

or

$$M' = J \Sigma \frac{m_i}{i=1}$$

(39)

so

$$m'_i = \frac{1}{2}C_i B_i^2 \rho J$$

(40)
where \(m_i \) represents the 2-D section added mass, \(C_i \) and \(B_i \) are the section added mass coefficient and half beam respectively, \(M' \) is the 3-D added mass for the entire body and \(M'_i \) is the supposed 3-D section added mass. The departure from reality in (40) is apparent. \(J \) of the entire body represents a fixed fraction which when multiplied by the added mass of a 2-D flow gives the actual 3-D added mass for the entire body. There are some sections of a vibrating ship where the fluid motion is in fact very close to two dimensional and the added mass should be very close to that calculated from (38). At other sections, particularly near bow and stern, the flaw departs quite significantly from a pure two dimensional flow and the added mass would be less than that obtained from (40).

To take into account these aspects the author proposes to use \(j_i \).

Let the added mass at section \(i \) for a 2-D analysis be

\[
m'_i = \frac{1}{2} C_i \pi B_i^2 \rho
\]

(38)

and let the actual 3-D added mass be

\[
M''_i = \frac{1}{2} C_i \pi B_i^2 \rho j_i
\]

(41)
then

\[M' = \sum_{i=1}^{N} M_i' = \sum_{i=1}^{N} \sum_{j=1}^{m_i} \] (42)

The requirement that equations (39) and (42) yield the same value for \(M' \) requires that

\[\sum_{i=1}^{N} m_i' = \sum_{i=1}^{N} \sum_{j=1}^{m_i} \] (43)

Let

\[j_i = 1 - d_i b \] (44)

where \(d_i \) is a difference factor computed for each section by

\[d_i = \frac{|(m_{i+1} - m_i) + (m_i - m_{i-1})|}{2} + \frac{n}{2N} \sum_{i=1}^{N} m_i' \]

\[= \frac{|m_{i+1} - m_i - 1|}{2} + \frac{n}{2N} \sum_{i=1}^{N} m_i' \] (45)

and \(b \) is a normalization constant to be determined by substitution of (44) into (43). In (45) \(N \) is the number of stations and \(n \) is the number of nodes in the vibrating mode. As the number of nodes increase three dimensional flow increases at all stations so \(j_i + J \). An example will serve to illustrate.

Assume that an analysis has determined the 2-D sectional
added masses to be as listed in column 2 of Table 2. The difference factors from (45) are listed in column 3. Substituting the totals of columns 2 and 4 into (43) yield

\[0.81(692) = 692 - (28380 + 47886n)b \]

\[b = \frac{131.5}{(28380 + 47886n)} \]

<table>
<thead>
<tr>
<th>b (x10^{-3})</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.633</td>
<td>0</td>
</tr>
<tr>
<td>1.723</td>
<td>1</td>
</tr>
<tr>
<td>1.059</td>
<td>2</td>
</tr>
<tr>
<td>0.764</td>
<td>3</td>
</tr>
</tbody>
</table>

Column 5 lists \(M_i \) or the \(m_i \). Columns 6, 7 and 8 show the actual added mass at each station for vibrations of 0, 1 and 3 nodes respectively. Notice as n increases the added mass approaches the values in column 5.
D. Wave Excitation

The forcing function $f(x_i, t)$ used in the previous treatment represents the total external force per unit length at any section x_i and any time t. It includes the many effects of the waves encountered, the motion of the ship and the fluid flow. It is, as such, very complicated and the subject of much research. [12][16]

The most simple formulation of wave excitation would be due strictly to buoyancy changes from wave passage.

$$f(x_i, t) = \int_{V_0}^{V} \gamma \, dV$$

where an elemental volume dV is equal to $b_i dy$ to give

$$f(x_i, t) = \int_{0}^{\zeta(t)} \gamma b_i dy$$

(1)

where b_i is the breadth of the ship and a function of y, ζ is the wave height at any time t and γ is the specific weight of water. It has been traditional in naval architecture to use a trochoidal wave [14] to model the wave form for deep water waves. With sharper crests and flatter troughs it makes a very close approximation to the actual sea surface. However, this wave form cannot be derived from the velocity potential for surface waves and the parametric equations which describe a trochoid are an additional complexity in any analysis.
A wave form which is more manageable and is derived from hydrodynamic theory of waves of finite amplitude was prepared by G.G. Stokes in 1847 [14].

\[\zeta = \frac{\bar{\zeta}}{2} \cos(\omega t - Kx) + \frac{K\bar{\zeta}^2}{2} \cos(\omega t - Kx) \]

(2)

where \(\bar{\zeta} \) is half wave height from trough to crest and the circular frequency \(\omega \) and the wave number \(K \) are related by

\[K = \frac{2}{\omega} = \frac{2\pi}{L_w} = \frac{g}{V_w^2} \]

(3)

for deep water waves where \(L_w \) is the wave length and \(V_w \) is the celerity or wave velocity. In (2) a simple traveling cosine wave is modified by a harmonic which is half the length of the fundamental but which moves with the same celerity. This wave form has the same sharp peaks and wider troughs as does the trochoid but the fact that it is nonlinear with respect to height makes it somewhat less attractive. In the program suitable approximations will be made.

It is well known that the pressure in a still body of water is equal to \(\gamma h \) where \(h \) is the distance below the still surface. It is also well known that in deep water the water particles have a circular motion which serves to reduce the pressure according to Bernoulli's theorem. That is, for a simple harmonic wave,
\[p = \gamma h + \zeta \gamma e^{-Kw} \cos(\omega t - Kx) \]

(4)

This is the Smith effect. The pressure on the hull due to the wave passage is then

\[p_m = \zeta \gamma e^{-Kh} \]

(5)

where \(\zeta \) is given by (2). The buoyancy due to this pressure is an integration of the vertical component of the pressure over the surface area of a hull slice of unit length. That is

\[f(x,t) = \int_0^s p_w \tilde{n} \cdot \tilde{j} \, ds \]

where \(\tilde{n} \) is an outward pointing unit normal to the hull and \(\tilde{j} \) is the unit vector in the positive y direction. For a ship vertically sided to the baseline this reduces to

\[f(x,t) = p_w(T)b \]

or with (5)

\[f(x,t) = b \zeta \gamma e^{-KT} \]

(6)

where \(T \) is the draft.
Since the pressure given by (5) is seen to, in effect, reduce the waveheight ζ, an effective wave height ζ^* can be defined so that

$$f_1(x,t) = \gamma b \zeta^*$$ \hspace{1cm} (7)

where the assumption is made that the ship is vertically sided at the waterline so that b is constant over the range of ζ^*. The subscript 1 indicates that this buoyancy force is only part of the total excitation. ζ^* is given by [16]

$$\zeta^* = \zeta [1 - K \int_{-T}^{0} ye^K_y dy]$$ \hspace{1cm} (8)

where z is the hull offset and y is distance to the design waterline. The integral serves to weigh the determination of the reduction factor by the hull shape. For a section with a vertical side to the baseline (8) would reduce to

$$\zeta^* = \zeta [1 - K \int_{-T}^{0} e^{K_y_y} dy]$$

$$= \zeta [1 - \int_{-T}^{0} e^{K_y_y} dy]$$

$$= \zeta [1 - (1 - e^{-KT})]$$

$$= \zeta e^{-KT}$$

62
so that

\[f_1(x,t) = \gamma b\zeta e^{-KT} \]

which is identical to (6). The discrete form of (8) is

\[\zeta^* = \zeta \left[1 - \frac{K}{b} \sum_{i=1}^{n} z_i e^{\Delta y_i} \right] \tag{9} \]

and for the discrete forcing function per unit length

\[f_1(x_j,t) = \gamma b_j \zeta^* = \gamma b_j \zeta \left[1 - \frac{K}{b_j} \sum_{i=1}^{n} z_i e^{\Delta y_i} \right] \tag{10} \]

where \(\zeta \) is given by (2).

The behavior of the bracketed term is to reduce the wave height as \(K \) increases. For small \(K \) the term is very close to 1. Consider the straight sided vessel again. A reduction in wave height to one-tenth of the long wave value requires

\[.1 = e^{-KT} \]

\[-2.30 = -KT \]

\[K = T/2.30 \]

63
For a draft of 20 feet $K = 8.70$ which corresponds to a wave length of .72 feet. So as K increases the correction term approaches zero. Thus there are two major effects taking place to reduce the energy available for excitation of the higher modes of a ship hull. First the wave height decreases as the frequency increases and the effect on an immersed body decreases as the frequency increases.

Due to the logarithmic decrease in (9) the discrete form of the correction term, hereinafter called D, causes some convergence problems, that is, as K increases D fails to approach zero if the increment Δy_i is too large. In the program four foot waterlines are used and the following slightly modified expressions must be employed.

$$D = e^{-KTS}$$

$$S = \frac{1}{b_n} \sum_{i=1}^{n} Z_i$$

Equation (11) has the proper limiting values and accounts for the hull shape also.

There are two other parts to the forcing function to be presented. As the wave passes down the side of the ship the vertical component of the orbital velocity has a damping effect and this force can be expressed by

$$f_z(x_j,t) = (N' - Vd)\dot{\xi}$$

(12)
where \((\text{N}'-\text{Vdm}'/\text{dx})\) is the sectional hydrodynamic damping coefficient which will be discussed later and \(\dot{H}^*\) is the time derivative of the effective wave height. The third force is due to the inertia of the added mass

\[f_3(x_j,t) = m_j^i \dot{H}^* \] \hspace{0.5cm} (13)

where \(\dot{H}\) is the effective vertical acceleration of the wave height. As was discussed in Section C the added mass may be incorporated into the equation of motion in two ways, either as an addition to the mass of the vessel and placed on the left hand side or as an exciting term and placed on the right hand side. The superposition principle allows the separation of the added mass effect in this case since two separate motions are being superposed, the vibratory motion of the vessel and the harmonic motion of the waves.

In (13) \(m_j^i\) is the added mass calculated for immersion to the still water waterline. As the wave passes, the draft at a section changes and so does the added mass, but here the sides at the waterline are assumed to be nearly vertical and the change in added mass is very small so the effect can be neglected.

The total excitation force is then

\[f(x,t) = \sum_{i=1}^{3} f_i(x,t) \] \hspace{0.5cm} (14)
and the modal excitation force is obtained by multiplying by Y_r and summing over the ship length as shown in Section A.

$$F_r(t) = \sum_{i=1}^{N} Y_r(x_i) f(x_i, t)$$ \hspace{1cm} (15)

The correct surface height, velocity and acceleration are

$$\zeta^* = D \zeta \cos(\omega t - Kx) + \frac{DK\zeta^2}{2} \cos(2\omega t - 2Kx)$$

$$\bar{\zeta} = -D\omega \zeta \sin(\omega t - Kx) - DK\zeta^2 \sin(2\omega t - 2Kx)$$ \hspace{1cm} (16)

$$\bar{\zeta} = -D\omega \zeta \cos(\omega t - Kx) - 2DK\zeta^2 \cos(2\omega t - 2Kx)$$

and

$$f(x_i, t) = \gamma b_i \zeta^* + (N' - Vd'm'/dx) \bar{\zeta}^* + m_i \bar{\zeta}^*$$

$$= (\gamma b_i - m_i D_i \omega^2 \zeta) \cos(\omega t - Kx)$$

$$-D_i \omega \zeta (N' - Vd'm'/dx) \sin(\omega t - Kx)$$

$$+ \left(\frac{\gamma b_i D_i K^2}{2} - 2D_i K^2 \zeta^2 m_i \right) \cos2(\omega t - Kx)$$

$$-D_i K \omega \zeta^2 (N' - Vd'm'/dx) \sin2(\omega t - Kx)$$ \hspace{1cm} (17)
Let

\[G_{11} = \gamma b_1 D_1 \bar{\zeta} - m_1 D_1 \omega^2 \bar{\zeta} \]

\[G_{12} = -D_1 \omega \bar{\zeta} (N' - \text{Vdm}'/dx) \]

\[G_{13} = \frac{\gamma b_1 D_1 K \bar{\zeta}^2}{2} - 2m_1 K D_1 \omega^2 \bar{\zeta}^2 \]

\[G_{14} = -D_1 K \omega \bar{\zeta}^2 (N' - \text{Vdm}'/dx) \]

then

\[f(x_i, t) = G_{i1} \cos \omega t \cos Kx + G_{i1} \sin \omega t \sin Kx \]

\[+ G_{i2} \sin \omega t \cos Kx - G_{i2} \cos \omega t \sin Kx \]

\[+ G_{i3} \cos 2\omega t \cos 2Kx + G_{i3} \sin 2\omega t \sin 2Kx \]

\[+ G_{i4} \sin 2\omega t \cos 2Kx - G_{i4} \cos 2\omega t \sin 2Kx \]

(19)

Substitution into (15) yields

\[F_r(t) = \cos \omega t \sum_{i=1}^{N} Y_r(x_i) G_{i1} \cos Kx_i A \]

\[+ \sin \omega t \sum_{i=1}^{N} Y_r(x_i) G_{i1} \sin Kx_i B \]

67
\[+ \sin \omega t \sum Y_r(x_i) G_{i2} \cos Kx_i C \]

\[- \cos \omega t \sum Y_r(x_i) G_{i2} \sin Kx_i D \]

\[+ \cos 2 \omega t \sum Y_r(x_i) G_{i3} \cos 2 Kx_i \]

\[+ \sin 2 \omega t \sum Y_r(x_i) G_{i3} \sin 2 Kx_i \]

\[+ \sin 2 \omega t \sum Y_r(x_i) G_{i4} \cos 2 Kx_i \]

\[- \cos 2 \omega t \sum Y_r(x_i) G_{i4} \sin 2 Kx_i \] \hspace{1cm} (20)

Or

\[F_r(t) = P_{r1} \cos(\omega t - \theta_1) \]

\[+ P_{r2} \cos(\omega t - \theta_2) \]

\[+ P_{r3} \cos(2 \omega t - \theta_3) \]

\[+ P_{r4} \cos(2 \omega t - \theta_4) \] \hspace{1cm} (21)
where

\[P_{r1} = \left\{ \sum_{i=1}^{N} Y_r(x_i)G_{i1}\cos Kx_i \right\}^2 + \left\{ \sum_{i=1}^{N} Y_r(x_i)G_{i1}\sin Kx_i \right\}^2 \right]^{1/2} \]

\[P_{r2} = \left\{ \sum_{i=1}^{N} Y_r(x_i)G_{i2}\cos Kx_i \right\}^2 + \left\{ \sum_{i=1}^{N} Y_r(x_i)G_{i2}\sin Kx_i \right\}^2 \right]^{1/2} \]

\[P_{r3} = \left\{ \sum_{i=1}^{N} Y_r(x_i)G_{i3}\cos 2Kx_i \right\}^2 + \left\{ \sum_{i=1}^{N} Y_r(x_i)G_{i3}\sin 2Kx_i \right\}^2 \right]^{1/2} \]

\[P_{r4} = \left\{ \sum_{i=1}^{N} Y_r(x_i)G_{i4}\cos 2Kx_i \right\}^2 + \left\{ \sum_{i=1}^{N} Y_r(x_i)G_{i4}\sin 2Kx_i \right\}^2 \right]^{1/2} \]

\[\theta_1 = \arctan \frac{\sum_{i=1}^{N} Y_r(x_i)G_{i1}\sin Kx_i}{\sum_{i=1}^{N} Y_r(x_i)G_{i1}\cos Kx_i} \]

\[\theta_2 = \pi - \arctan \frac{\sum_{i=1}^{N} Y_r(x_i)G_{i2}\cos Kx_i}{\sum_{i=1}^{N} Y_r(x_i)G_{i2}\sin Kx_i} \]

\[\theta_3 = \arctan \frac{\sum_{i=1}^{N} Y_r(x_i)G_{i3}\sin 2Kx_i}{\sum_{i=1}^{N} Y_r(x_i)G_{i3}\cos 2Kx_i} \]

\[\theta_4 = \pi - \arctan \frac{\sum_{i=1}^{N} Y_r(x_i)G_{i4}\cos 2Kx_i}{\sum_{i=1}^{N} Y_r(x_i)G_{i4}\sin 2Kx_i} \]
The P_{ri} i-1,2,3,4 are known as "participation factors" and were obtained by weighting the wave forces by the mode shape. The factors indicate the participation of the wave forces in exciting a certain mode. Solution of the independent equations for the modal response as discussed in Section C yields

$$\eta_r(t) = \sum_{i=1}^{4} \frac{P_{ri}\cos(\omega t-\theta_i+\epsilon_r)}{(\omega_0^2-\omega^2)^2+(C_0^2\omega^2)}^{1/2}$$

(24)

where

$$\epsilon_r = \arctan \left(\frac{C_0^2\omega}{\omega_0^2-\omega^2} \right)$$

The most significant part of this exact time history is the magnitude of the response. Equation (24) may be manipulated to yield the amplitude of the sinusoidal response

$$\eta_r = \left\{ \sum_{i=1}^{4} P_{ri}\cos\theta_i \right\}^2 + \left\{ \sum_{i=1}^{4} P_{ri}\sin\theta_i \right\}^2 \right\}^{1/2}$$

(25)

The nonlinearity of the expression for the height of the sea surface can be eliminated by dropping the modifying harmonic. Although the simple cosine term is not an exact representation of the sea surface it is ideal for representing the many component waves of the general sea. It also allows the principle of superposition to be applied and for these reasons the program incorporates this modification. Resultantly $G_3=G_4=P_3=P_4=0$ with significant subsequent simplification of the program.
This analysis assumes that the presence of the vessel does not disturb the wave motion which it, in fact, does. This, then, provides an upper bound to excitation and real forces will be less. How much less is a matter for speculation and research.

E. Damping

It would not be incorrect to say that relatively little is known about damping associated with ship hull vibration. To be able to calculate the amplitudes of desired quantities such as stress levels, bending moments and displacements, the distribution of damping in the hull, cargo and surrounding water should be known. The available literature is sparse, [4][11][16][17] but it is generally assumed that energy is dissipated thru a number of mechanisms. A convenient categorization divides the mechanisms into those which are hydrodynamic and those which are not. Water friction and the generation of both surface and pressure (sound) waves are the hydrodynamic effects. Structural and cargo damping are non-hydrodynamic. Another possible way of differentiating the loss mechanisms is to determine where the damping takes place, either within or external to the hull.

As described previously, superposition of the natural modes of the ship yields for vertical vibration

\[y(x,t) = \sum_{r=0}^{\infty} Y_r(x) \eta_r(t) \]

(1)
where $Y_r(x)$ is the normalized mode shape and $\eta_r(t)$ is the natural coordinate which incorporates the natural frequency, initial conditions and modal damping factor into a time dependent function. Motion for $r=0,1$ is heave and pitch respectively. Fortunately the damping in ship hull vibration is relatively small so that calculations for the natural modes and frequencies can be carried out assuming no damping without significant error. This is especially true for the lower modes.

Other qualitative information concerning damping has been known for some time. Higher modes are less affected by hydrodynamic damping due to in part the smaller displacements involved. In these modes structural damping is the major factor. The situation is reversed for lower modes. The generation of sound waves increases as the vibration frequency goes up but this remains a very small quantity throughout the range of interest, that is ω less than about 35 rad/sec. For rigid body motion there is, of course, no structural damping. If vibration analysis is of concern and sea-keeping is not then discussion can be limited to distortion modes $r > 2$. Surface wave generation increases with decreasing ω. For even the largest of vessels, however, ω_2 is greater than about 2.5 rad/sec and wave making damping is far less than structural damping. [17]
In a discussion of damping it is common to refer to the logarithmic decrement δ associated with a mode or given damping mechanism.

$$\delta = \frac{2\pi \zeta}{\sqrt{1-\zeta^2}} = \ln\left(\frac{x_1}{x_2}\right)$$ \hspace{1cm} (2)

where ζ is the critical damping ratio associated with the mode or mechanism and x_1 and x_2 are values of the response separated by one wave period.

Since structural damping is the significant factor and appears to be manageable there has been some effort directed at its analysis.[4] This damping derives from hysteresis in the steelwork. The logarithmic decrement for this is a power function of the stress. For levels of stress less than about 30,000 psi

$$\delta = C_0^n$$ \hspace{1cm} (3)

where C is a material constant and $n = 3$. At higher stress the exponent increases rapidly and other effects such as stress history become important. For steel plate (3) becomes

$$6 \times 10^{-5} \leq \delta \leq 1.6 \times 10^{-4}$$
Values for a welded structure go up with the complexity of the structure and may lie in the range

\[9 \times 10^{-3} \leq \delta \leq 3 \times 10^{-2} \]

This dramatic increase is explained in part by the high residual stresses from welding and stress concentrations at joints. There may also be as yet undiscovered hysteresis effects which are structure related instead of material related.

Ships of current design are usually welded but in riveted ships coulomb friction at the joints is very important. In traditional analysis this dry friction is treated differently from other damping effects. The coulomb damping force is not a function of velocity rather it has a constant value for all velocities and varies only in sign. This directional force is treated as an excitation force which opposes motion and equations for each direction are solved. One test concluded that riveted ships have twice the structural damping of welded ships.[17] This would obviously vary with ship age and history.

Experiments have been performed on loaded and unloaded vessels to determine cargo damping effects. Results show that cargo does increase the logarithmic decrement but formulations which have been made to quantify the effect have failed to predict well.[17]
The literature separates the generation of surface waves from the other damping mechanisms. It is that part of the hydrodynamic damping that can be derived from potential theory and the only part of ship damping with a solid mathematical base. However, the literature goes on to say that in the distortion modes the natural frequencies are relatively high and the displacements so small that for most existing vessels the effect can be taken as zero. A bit ironic. In equation (11) of Section D the term in parentheses \((N' - Vd'm'/dx)\) is the sectional hydrodynamic damping coefficient according to the strip theory approach used in this paper. \(N'\) is a parameter which quantifies the generation of surface waves and \(Vd'm'/dx\) is a forward speed correction term. \(V\) is velocity and \(m'\) is the added mass. This coefficient, it is seen, varies along the hull length and this distribution of damping effect is important for computation of exciting forces. The normal mode analysis in Section A required that the damping be proportional to the mass and stiffness distribution. Otherwise the modal equations would not be uncoupled. Since the predominant damping source is structural this assumption is not too far off, even though the distribution of the sectional hydrodynamic damping is weighted at the bow and stern. \(N'\) is nearly zero amidships but gets larger at the bow and stern. The effect is still very small. Only the forward speed correction will be considered in this work and consequently the amplitude obtained will be slightly high.
Consideration of equation (2) brings up the fact that in much practical usage all the damping effects are lumped into one parameter and its value obtained from a spectral analysis of stress data taken from a vessel which is loaded impulsively so that all modes are excited. Several full scale measurements from slamming or mechanical excitation (anchor drop test) have been obtained and modal damping constants calculated. [11] [17] Some convenient empirical relations have been devised from such experiments and other means so that values for the \(C_r \) can be obtained quickly. From basic vibration theory [24]

\[
C_r = 2\omega_r \delta_r
\]

\[
\frac{2 \omega_r \delta_r}{\sqrt{(2\pi)^2 + \delta_r^2}}
\]

and a formula for the logarithmic decrement which seems to give intermediate and hopefully representative values is [17]

\[
\delta_r = 1.065 \times 10^{-2} \omega_r^{1/2} \quad \omega < 31.5
\]

Equations (4) and (5) will be used in this paper to determine the \(C_r \).
3. PROGRAM OVERVIEW

Estimation of the parameters for use in the Prohl sequence calculations is a choice made by the author. The values of m, A, I and J for each section could be obtained from scantling lists and a weight curve but their assembly would be time consuming and defeat one of the purposes of this work, that is rapid vibration information with a minimum of data required as input. Therefore the subroutine HULL for estimating these quantities has been incorporated into the program. Input required is station spacing, number of stations, displacement, thickness of side shell, main deck and bottom plating, offset data and deck edge heights for each station.

Sectional mass is computed by first obtaining the total sectional area from the offset data for each station. A partial sectional area is computed by the use of the five-eight rule [14] and the offset data. An additional area is computed which is equal to the deck edge height minus the highest waterline for which offset data is input times the offset at that waterline. The sectional area equals the sum. A uniform permeability is a reasonable assumption for naval vessels so that the mass is proportional to the area at each station. The sum of the sectional areas is divided into the displacement to get an area density. The density is then multiplied by each sectional area to obtain a
sectional mass. No attempt is made to account for superstructure concentration of mass or its effect on stiffness. A two beam ship model would be the next step in sophistication.

The mass moment of inertia, J, about the neutral axis is determined by first assuming that the beam cross section has a uniform distribution of mass. Naval vessels are characteristically longitudinally framed. In the midship section the hull strength is provided by the main deck, side shell and bottom plating and their associated longitudinals. A thirty inch spacing is not uncommon and the stiffener area to plate area ratio is about .3. So, the effect of longitudinal is taken into account by increasing the plating thickness by 30%. The neutral axis is determined by a calculation of the first moment of the hull steel. The sectional area density is then used along with the offset data in a second moment calculation about the neutral axis. Each hull cross section is divided by waterlines with four foot spacing. The area from the baseline to the first waterline is assumed to be bounded by a parabola. All subsequent areas are assumed to be trapezoids. The distance from the neutral axis to the centroid of each incremental area is computed, squared and multiplied by the area. The second moment of the area about its own centroid is computed. The sum of all these terms equals the sectional second moment. This is multiplied by the sectional area density to obtain J.
The moment of inertia, I, is obtained by a second moment calculation of the hull steel around the neutral axis.

The effective shear area KA in a hull shape is very difficult to determine. Traditional practice has been to use only the vertical side shell and any continuous longitudinal bulkheads in the calculation. Analytically obtained values for K are for simple symmetric shapes only. [15]

Calculations by the author for box type sections with various side, deck and bottom thickness and beam/draft ratios shows that an approximate value for the effective shear area can be obtained from the following

\[(KA)_i = 0.87(2tD) = 1.74tD\] \hspace{1cm} (1)

where \(t\) is the sideshell thickness and \(D\) is the depth. Then for steel

\[KAG_i = 1.74tDE/2(1+\mu)\]

or

\[KAG_i = 2.35 \times 10^8 \, tD\] \hspace{1cm} (2)

for \(t\) in inches and \(D\) in feet.
Subroutine NMODES first computes the virtual mass of each station which varies with the mode of vibration for which a solution is sought. Burrill's formula [14] is used to estimate the frequency of two mode vibrations and the J factor for that mode is formed and virtual masses computed. Equations (1) through (4) of Section B are solved for each station given a value of \(\omega \) in the following way: the shear, bending moment, displacement and slope at any station \(i \) are assumed to be of the form

\[
\begin{align*}
V_i &= a_i + b_i \theta_s \\
M_i &= -c_i + d_i \theta_s \\
y_i &= e_i + f_i \theta_s \\
\theta_i &= g_i + h_i \theta_s
\end{align*}
\]

where \(\theta_s \) is an unknown initial slope at the stern. Then (1) through (4) of Section B are used to determine the conditions at station \(i+1 \)

\[
\begin{align*}
a_{i+1} &= a_i + m_i \omega^2 e_i \\
b_{i+1} &= b_i + m_i \omega^2 f_i
\end{align*}
\]
\[g_{i+1} = g_i - \frac{c_i L}{E_i I_{i+1}} + \frac{a_{i+1} L^2}{2E_i I_{i+1}} \]
\[h_{i+1} = h_i + \frac{d_i L}{E_i I_{i+1}} + \frac{b_{i+1} L^2}{2E_i I_{i+1}} \]
\[-c_{i+1} = -c + a_{i+1} L - J_{i+1} \omega^2 g_{i+1} \]
\[d_{i+1} = d_i + b_{i+1} L - J_{i+1} \omega^2 h_{i+1} \] \hspace{1cm} (4)
\[e_{i+1} = e_i + g_i L - \frac{c_i L^2}{2E_i I_{i+1}} + \frac{a_{i+1} L^3}{6E_i I_{i+1}} - \frac{a_{i+1} L}{KGA_{i+1}} \]
\[f_{i+1} = f_i + h_i L + \frac{d_i L^2}{2E_i I_{i+1}} + \frac{b_{i+1} L^3}{6E_i I_{i+1}} - \frac{b_{i+1} L}{KGA_{i+1}} \]

From the treatment in Section B

\[\theta_s = \frac{c_N}{d_N} \] \hspace{1cm} (5)

and

\[a_N + \frac{b_N c_N}{d_N} = 0 \] \hspace{1cm} (6)

at a natural frequency. The subroutine performs the sequence calculation until opposite signs are obtained for the quantity on the left hand side of (6) for two values of \(\omega \). A natural frequency is then known to lie between these two values.
The subroutine is designed to determine the natural frequencies to an accuracy of ±0.04 radian/sec. After a natural frequency is obtained the mode shape is determined from

\[y_i = e_i + f_i \frac{C_N}{d_N} \]

(7)

and normalized by the method discussed in Section B

\[\sum_{i=1}^{N} m_i y_i^2 = 1 \]

Data obtained from the Andersson reference [2] for a 60,000 ton tanker was input into NMODES. The resulting natural frequencies obtained are compared with the measured frequencies in radians/sec.

<table>
<thead>
<tr>
<th>NMODES</th>
<th>[2]</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.92</td>
<td>4.89</td>
</tr>
<tr>
<td>2</td>
<td>10.63</td>
<td>10.43</td>
</tr>
<tr>
<td>3</td>
<td>16.68</td>
<td>16.41</td>
</tr>
<tr>
<td>4</td>
<td>23.20</td>
<td>22.91</td>
</tr>
<tr>
<td>5</td>
<td>29.26</td>
<td>29.17</td>
</tr>
<tr>
<td>6</td>
<td>34.88</td>
<td>35.03</td>
</tr>
<tr>
<td>7</td>
<td>39.77</td>
<td>40.33</td>
</tr>
</tbody>
</table>

The percent difference is quite small.
The input subprogram reads data which is punched according to the format listed after each read statement. The data must be placed in the proper fields, decimal points must be punched and all integers must be right justified.

STA is an integer variable and is the number of stations for which offset data is given. STASPA is the station spacing in feet, DISPL is the displacement of the vessel in long tons. The program later changes this value and does all calculations in slugs, BEEM is the beam of the vessel in feet. (Another variable with the correct spelling is used in the program.) T1, T2 and T3 are the main deck, side shell and bottom plating thicknesses respectively of the midship section in inches. DECKE is the deck edge height from bow to stern in feet. There must be one entry per station. DATA is offset data, one card per station. All entries are in decimal feet. The first field is a real integer (decimal point must be included) which is closest to the draft at that station divided by 4. The remaining twelve fields are offset data starting from the bottom and proceeding upward at four foot intervals. The first field must have a real integer less than or equal to twelve and only 12 waterlines may be input, unused fields may be punched with zeros.
The output will list the computed station mass in slugs, the mass moment of inertia J in slug ft2, the second moment of area I in ft4, shear stiffness K_{AG} in lbf and the 2-D added mass for each station in slugs. The program will list the first seven natural frequencies and the normalized mode shapes. The program will also list the response amplitude operator over the frequency range of interest for speeds of 0, 10, 20 and 30 knots. It will also list the response of the vessel to a Pierson-Moskowitz fully developed sea with a wind speed of 50 knots. Response amplitude is in inches measured at the bow.

It is obvious from a look at the Pierson-Moskowitz formula that precious little energy exists at frequencies above the first mode of vibration, springing. It is reasonable then to assume that wave excitation is significant only for large, long and shallow vessels. The large masses and the low stiffnesses (due to reduced depth) are responsible for a relatively low first natural frequency, one low enough that sufficient energy is available for excitation. Too, as wave frequency goes up the effect on a vessel of constant draft drops off logarithmically as has been shown. The only times then that the higher modes will be excited are when slamming occurs or under some other impulse type loading. The value of the program lies in the beam parameters obtained.
from the HULL subroutine, the natural frequencies and mode shapes obtained from NMODES and the forcing data which can be retrieved from FORCE. The node location in the natural modes is important as possible locations for placement of machinery operating at or near that natural frequency since excitation at a node will not excite vibration.

Numerous comment cards have been inserted in the program and can be used to understand the many small procedures, which are a natural part of any project of this dimension. The text of this thesis serves only to discuss the major technical areas and not the interesting but obviously minor structural details of software construction. The program listing which follows is divided into the subroutines. A sample input record and output record are shown.
C
MAIN PROGRAM TO EVALUATE HULL RESPONSE TO WAVE EXCITATION
COMMON STA, STASPA, BEEN, DRAFT, DEPTH, T1, T2, T3, DISPL, KAI (40), KAG (40)
1, STARAS (40), SUBHA (40), MODE (7, 40), FIUR (7), ADDHAS (40), DECKE (40), DAT
1A (1, 40), KAO (4, 50), PLOHO (5, 50)
DIMENSION BLAM (40)
INTEGER STA
REAL NODE, XX, LBP, KAPPA, JFACT, KAG
CALL INPUT
CALL ADHASS
CALL HULL
CALL MNODES
CALL FORCE
CALL OUTPUT
STOP
END
SUBROUTINE INPUT
COMMON STA,STASPA,BEEM,DRAFT,DEPTH,T1,T2,T3,DISPL,RMI(40),RKAG(40)
1,STAMAS(40),SRJNA(40),MODE(7,40),FREQN(7),ADDMAS(40),DECKE(40)DAT
1A(13,40),RAO(4,250),PERMOS(5,250)
INTEGER STA
REAL MODE,KX,LBP,KAPPA,JFACT,KAG
READ(5,10) STA,STASPA,DISPL,BEEM,DRAFT,DEPTH,T1,T2,T3
10 FORMAT(I2,8F9.0)
 READ(5,20)(DECKE(I),I=1,STA)
20 FORMAT(10F8.0)
 DO40 J=1,STA
 READ(5,30)(DATA(J,I)I=1,13)
30 FORMAT(13F6.0)
40 CONTINUE
RETURN
END
SUBROUTINE ADMAD
COMMON STA, STASPA, BECN, DR4FT, DLPT9, T1, T2, T3, DISPL, KMI (40), RKAG (40)
1, SLAMAS (40), SJMA (40), N0DE (7, 40), FREQN (7), ADDMAS (40), BLECKE (45), DAT
1A (13, 40), RAO (4, 50), PERMS (5, 50)
DIMENSION Z (91), L2 (90), R (91), D (91), K0 (91), P (16), L (8), K (8), T (91)
1), E (8, 9), L (91), E (8), R (8), L (8), D (8), G (8), X (91), ETA (91), T (91, 1)
16)
INTEGER STA
REAL N0DE, KX, LDB, KAPPA, JFACT, KAG
PP=1.14159265
DANG=0.174533
DO 980 LIM=1, STA
RS (1)=0.
Z (1)=0.
DO 5 J=1,90
RS (J+1)=0.
5 Z (J+1)=Z (J)+DANG
11=DATA (1, LIM)
K=1
6 CONTINUE
1F (K .NE. 1) GOTO 7
X 2=0.
X 3=DATA (2, LIM)
Y 1=4.
Y 2=0.
Y 3=4.
GOTO 8
7 X 1=X 2
X 2=X 3
X 3=DATA (K+1, LIM)
Y 1=Y 2
Y 2=Y 3
Y 3=Y 3+4.
8 K1=11
C DETERMINING ANGULAR LIMITS
IF(K.GE.3) A1=ATAN((Y1-Y2)/X1)/DANG
A1=1.+ATAN((Y1-Y2)/X2)/DANG
IF(K.LT.6) A1=1
IF(K.LE.2) N1=90
IF(K=1) 11,600,11
C DETERMINE HULL BOTTOM PARABOLA
600 A1=4.*X3**2
B1=B1,
C1=C1,
GOTO 18
11 CONTINUE
C DETERMINE PARABOLAS FOR SIDESHELL
D1=A1**2*X2+X4**2*X1+X2**2*X3-X3**2*X2-X1**2*X3-X2**2*X1
C D1=0. IMPLIES VERTICAL SIDE OR ZERO INTERCEPT
1F(D1<0) 463,600,600
453 IF(ABS(D1)<1.) 20,20,15
15 B1=(X1**2*X2+X3**2*Y1*X2**2*Y3-X3**2*Y2-X1**2*Y3-X2**2*Y1)/D1
40 A1=(Y1*X2+X1*Y3+X3*Y2-Y3*X2+Y1-Y2*X1)/D1
C1=(X1**2*X2*Y3+X1**2*X2*Y3**2+X1*Y2**2*X3-
X3**2*X2*Y1-X3*X2**2*Y1)/D1
C CHECK PARABOLA Y-AXIS INTERCEPT
L1(C1<4.*N1) 405,405,640
C CHECK SLOPE OF THE CURVE
405 IF(2.*A1+A1+D1) 640,640,18
20 IF(K.EQ.2) GOTO 640
C RS(L) FOR A LINEAR SECTION OF PLATING
DO 40 L=N1,N1
C2=COS(A1)
ROOT=X2/C2
IF(RS(L).EQ.0.) RS(L)=ROOT
L1(L.1.600..600.) RS(L)=(RS(L)+ROOT)/2.
36 CONTINUE
GOTO 160
C RS(L) FOR A VERTICAL SECTION OF PLATING
640 A1=1.+ATAN((Y1-Y2)/X2)/DANG
DO 650 L=N1,N1
\begin{verbatim}
C E1 = -TAN(Z(L))
SLOPE = 4./X2(X1)
XX = (4.*Y11 - Y1 + SLOPE*X1) / (SLOPE - E1)
ROOT = SQRT(XX**2 + (E1*XX)**2)
IF (S(L) .LE. 0.) RS(L) = ROOT
IF (S(L) .GT. 0.) RS(L) = (RS(L) + ROOT) / 2.
C C = K(1) FOR A PARABOLIC SECTION OF PLATING
DO 3 L = 1, N1
E1 = -TAN(Z(L))
ROOT = SQRT(XX**2 + (E1*XX)**2)
IF (S(L) .LE. 0.) RS(L) = (RS(L) + ROOT) / 2.
IF (S(L) .GT. 0.) RS(L) = ROOT
C CONTINUE
C GOTO 100
C C IF (K-1) .GE. 0.) GOTO 110
C K = K + 1
C GOTO 6
C C DETERMINING AREA OF WET HULL"N2
C S = 0.
DO 10 J = 1, J96
RS(J + 1) = RS(J + 1)**2
10 S = S + ANG2(RS(J) + ANG2(RS(J + 1))
S = S0 + 4.
C C NORMALIZE RS(L)
DO 20 J = 1, J91
20 RS(J) = RS(J) / RS
\end{verbatim}
BE = SQRT(KS(I))
SO = P

209 DO 210 J = 1, 8
AJ = J
L(J) = 0.
DO 220 I = 1, 91
IF ((J - 1) * KS(I) > 0) GOTO 211
TE(I) = -ALOG(SQRT(KS(I))) * COS(2. * Z(I))
GOTO 220

220 CONTINUE
DO 212 L = 1, 90

212 E(J) = E(J) + 2. * (TE(L) + TL(L + 1)) * DANG
DO 214 K = 1, 8
AK = K
TE = (2. * AJ - 1.) / (2. * AK - 1.)
BI(J, K) = 0.
DO 213 L = 1, 90

213 TA(I) = TT * COS(2. * (AJ - AK) * Z(I)) / KS(I) ** (J + K - 1)

TA(J) = TT * COS(PP * (AJ - AK)) / KS(I) ** (J + K - 1)
DO 214 L = 1, 90
BI(J, K) = BI(J, K) + 2. * (TA(I) + TA(L + 1)) * DANG

214 CONTINUE

210 CONTINUE
DO 215 J = 1, 6

215 BI(J, 9) = E(J)
DO 218 K = 2, 9
DA = BI(K - 1, K - 1)
IF (DA > N) GOTO 216
K1 = K - 1
GOTO 999

216 DO 217 I = K, 9

217 BI(K - 1, I) = BI(K - 1, I) / EA
DO 219 J = 1, 8
IF ((K - 1) * J > 2. * J) GOTO 218
r = BI(J, K - 1)
DO 219 I=K,9
219 A1(J,1)=B1(J,1)-F*B1(K-1,1)
218 CONTINUE
 DO 220 I=1,8
220 B(I)=B1(I,9)
 DO 247 I=1,9
 K(I)=SQRT(US(I))
 CE(I)=-v(I)/K(I)
 D(I)=COS(Z(I))
 G(I)=SIN(Z(I))
 DO 245 J=2,8
 R(J)=K(J-1)*RS(J)
 CE(J)=-v(J)/K(J)
 AP=-2.0J-1
 D(J)=COS(AP*Z(J))
245 G(J)=SIN(AP*Z(J))
 X1(I)=K(I)*D(I)
 ETA(I)=K(I)*G(I)
 DO 246 K=1,8
 X1(I)=X1(I)-CE(K)*D(K)
246 ETA(I)=ETA(I)+CE(K)*G(K)
 U(I)=SQRT(X1(I)*X1(I)+ETA(I)*ETA(I))
247 X(I)=ATAN2(ETA(I),X1(I))
 S1=50
 DO 248 J=1,8
248 S1=S1+3(I)*E(J)
 K=0
 M=0
 RES=0.0
 DO 249 M=1,9
 D2(I)=Z((I+1)-Z(I))
249 M=1
 D2(I)=D2(I)*D2(I)
 M=M+1
 RES=RES+D2(I)
 M=M+1
 DO 250 J=1,9
250 RES=RES+D2(J)
 DO 250 J=1,9
 BETA=0.0
 S1=S1/RES
 DO 250 J=1,9
DEQ(J) = (EQ(J) - 4.4) / 8N
DO 250 L = 1, 10
P(L) = 0.
L = L + 2
T(J, L) = DEL(J) * COS(H(J) (L + 2))
IF (L .GT. 1) GOTO 250
T1(J) = T(J, 1) * DEL(J)
250 CONTINUE
Q1 = 0.
DO 251 J = 1, 16
DO 251 L = 1, 90
1F (J .EQ. 1) Q1 = Q1 + DZ(L) * W(J) (L) + T1(L)
251 P(J) = P(J) + DZ(L) * W(J) (L, J) + T(L, J)
SA = 0.
DO 254 K = 2, 16
L = K - 1
AL = 2*K - 1
SA = SA + P(K) * P(J) * AL
254 CONTINUE
CLJ = -(P(J) + SA * Q1) / 2.
S2 = 0.
DO 260 J = 1, 16
AJ = 2 * J - 1
260 S2 = S2 + AJ + 2(J) * S2
S2 = -1 * S2 + P(J) * AL
RJCZ = S2 / W
C DETERMINE CV
CV = (22 + 22 * (LOG22 - LOG2) - 1) / W**2
C DETERMINE ADDNAS FOR EACH SECTION
ADDNAS (LIM) = CV * 10 * 23 * 235 * STASA
990 CONTINUE
GOTO 999
999 WRITE (6, 990) K1
990 PRINT ("TH1", "TH2", ADDNAS, 1, 11, " TH1 DIAGONAL IS ZERO. THIS ABO"
LITS THE ADDNAS SUBROUTINE ")
CONTINUE
RETURN
END
SUBROUTINE HULL
COMMON STA, STAS, H2, H2A, DRAFT, DEPTH, T1, T2, T3, DISPL, KMI (40), RKAG (40),
TRIAS (40), SHSIA (40), HCSH (7, 40), EKQUB (7), ADDHAS (40), DLECKE (40), DAIT
LA (13, 40), ALG (4, 50), PERMOS (5, 50)
DIMENSION AREA (14), Y (14), SAREA (40)
INTEGER STA
REAL MODA, KX, LBP, KAPPA, JFACT, RAG
MARKA=0.
C INCREASE HULL THICKNESS BY 30%
T1=T1*1.3
T2=T2*1.3
T3=T3*1.3
DO 590 N=1, STA
C MOMENT OF INERTIA SECTION
C AREA OF PLATING
AREA (1)=T1*SQRT(10.*DATA (2, 4) **2)
AREAS=AREA (1)
DO 71=2, 12
1P(DATA (1+1, N)-LQ) GOTO 8
AREA (1)=12*SQRT (10.*DATA (1, N) - DATA (1+1, N)) **2)
AREAS=AREAS+AREA (1)
7 CONTINUE
8 110-1-1
111=1
112=1+1
TL1=1.10*4.
AREA (111)=(DLECKE (N)-TWL)*T2
AREA (112)=DATA (111, N)*T1
AREAS=AREAS+AREA (111)+AREA (112)
C DETERMINE FIRST MOMENT OF THE PLATING
AREAL=0.
DO 9 J=1, 112
Y (J)=2.*EQUAV ((J-1)+4)
AREAL=AREAL+AREA (J)*Y (J)
9 CONTINUE
Y (111)=(DLECKE (4)+TWL)/2.
VIBRATION OF SHIP HULLS DUE TO WAVE EXCITATION (U)
MAY 79 S T SMITH
Y(I+2)=DECKE(N)
DO 11 J=111,112
AREA1=AREA1+AREA(J)*Y(J)
11 CONTINUE
C DETERMINE HEIGHT OF THE NEUTRAL AXIS
YNA=AREA1/AREAS
C SUM TO GET PARTIAL I
RHI(N)=0.
DO 13 J=1,112
RHI(N)=RHI(N)+AREA(J)*(Y(J)-YNA)**2
13 CONTINUE
C ADD SEGMENT 2ND MOMENTS TO GET I(N)
RHI(N)=RHI(N)/6.+(FLOAT((I11-2)*4*3)*T2+4.***3*T3+T2*(DECKE(N)-FLOAT(110*4))**J)/12.
C J CALCULATION
C DETERMINE AREAS BETWEEN WATERLINES
AREA2=333*(J.*DATA(2,N)-DATA(3,N))
SAKIA(N)=AREA2
A42=(YNA-2.5)**2
C DETERMINE 2ND MOMENTS ABOUT CENTROID AND NEUTRAL AXIS
CM.ND=5.9*SQRT((DATA(2,N))
CM.ND=ALN2*AREA2
SJNA=ALN2*CM.ND
DO 15 J=2,110
IF(J,N,110) ALA2=333*(5.*DATA(J+1,N)+8.*DATA(J,N)-DATA(J-1,N))
IF(J,N,110) ALA2=333*(5.*DATA(J+1,N)+8.*DATA(J,N)-DATA(J+1,N))
AL2=(YNA-(4.*DATA(J,N)+2.*DATA(J+1,N))/(3.*(DATA(J,N)+DATA(J+1,N)+DATA(J+1,N))))*FLOAT((J-1)*4))**2
B1=DATA(J+1,N)-DATA(J,N)
B=DATA(J+1,N)
CM.ND=-1.7736*(b.**2+6.*B1*B1+2.)/(2.*B+B1)
SAKIA(N)=SJNA+ALN2*AREA2
15 SAKIA(N)=SAKIA(N)+AREA2
H=DECKE(N)-FLOAT(110*4)
CM.ND=DATA(111,N)**2/12.
AL2=((DECKE(N)+FLOAT(110*4))/2.-YNA)**2
AAREA2=DATA(I11,N)*H
SAREA (N)=(SAREA (N) + AREA2)*2.
SJMA (N)=(SJMA (N) + CENM*AREA2*ARM2)*2.
C DETERMINE TOTAL SECTION AREA
949 #AREA=#AREA+SAREA (N)
C DETERMINE KAG
990 RKAG (N)=T2*DECKE (N) * 1.007808
C DETERMINE AREA DENSITY
991 DENSITY=DISPL*2240./(WAREA*32.2)
C DETERMINE STATION MASS AND MASS MOMENT
DO 17 N=1,STA
SJMA (N)=SJMA (N) * DENSITY
STARS (N)=SAREA (N) * DENSITY
17 CONTINUE
RETURN
END
SUBLRINTME M0DES
COMMON STA, STASPA, BEEN, DRAFT, DEPT, T1, T2, T3, DISPL, LAI (40), EKAG (40)
1, STAMAS (40), SEJNA (40), MCOE (740), FREQN (7), ADFHRS (40), DECKE (40), DAT
1A (1340), RAO (4, 50), PLEMS (5, 50)
DIMENSION OMEGA (3), AKLEN (3), VTHMAS (40), DIFF (40), AX (40), DX (40), C
1XX (40), DX (40), VXX (40), FXX (40), GXX (40), HXX (40), DIFF2 (40)
INTEGER STA
REAL AXE, XX, LBD, KAPPA, JFACT, KAG
LBD = FLAT (STA-1) * STASPA
BEN = BEEN
BD = BEAM/DEPTH
C DETERMINE TAYLOR SHEAR CORRECTION TERM
10 TAYLOR = 3.5 * DEPTH * 2 * (3 * BD ** 3 + 9. * BD ** 2 + 9. * BD + 1.2) / ((LBD ** 2 * (3 * BD +
1.2)))
C DETERMINE INITIAL OMEGA (1)
OMEGA (1) = 0.25136 * SQRT (KM1 (STA/2) / (DISPL * LBD ** 3 * (1 + BEAM / (2 * DRAFT) +
1.2 * TAYLOR))) - 1.3
OMEGA (2) = OMEGA (1) + 1.5
OMEGA (3) = O.
LOG = STA-1
C DETERMINE VIRTUAL MASS REDUCTION FACTORS FOR EACH STATION
DIFF (1) = ADFMAS (2) / 2.
DIFF (STA) = ADFMAS (STA-1) / 2.
ADFMAA = ADFMAS (1) * ADFMAS (STA)
DO 10 J =
ADFMAA = ADFMAA * ADFMAS (J)
DIFF (J) = ABS ((ADFMAS (J-1) - ADFMAS (J+1)) / 2.)
10 CONTINUE
DO 999 N = 1, 7
C DETERMINE THE 3-0 J FACTOR
40 JFACT = 1.02-3. * (1.2-1. * FLOAT (N+1)) * BEAM / LBD
MODEF = FLOAT (N+1) * ADFMASH / STA
DIFFS = 0.
DO 45 J = 1, STA
DIFF2 (J) = DIFF (J) + MODEF
DIFFS = DIFF2 (J) + ADFMAS (J) + DIFFS
CONTINUE

DO 50 J=1,3
VIRMAS(J) = STAMAS(J) * ADDMAS(J) * (1. - DBOY * DIPPS2(J))
50 CONTINUE

DO 110 I=1,3
IF(WMEGA(I) .EQ. 0.) GOTO 110
OMEGA2 = WMEGA(I) * * 2
C PERFORM THE PHOENIX SEQUENCE

AXX(1) = 0.
BXX(1) = 0.
CXX(1) = 0.
DXX(1) = OMEGA2 * SRIJNA(1)
EXX(1) = 1.
FXX(1) = LDP * J2
GXX(1) = 0.
HXX(1) = 1.
DO 106 J=2,STA
EL = 2.16609 * (R4I(J) + kMI(J-1))
KAG = (kKAG(J) + kKAG(J-1)) / 2.
AXX(J) = AXX(J-1) + VIRMAS(J-1) * OMEGA2 * EXX(J-1)
BXX(J) = BXX(J-1) + VIRMAS(J-1) * OMEGA2 * FXX(J-1)
CXX(J) = CXX(J-1) + GXX(J-1) * STASPA - CXX(J-1) * STASPA * 2 / (2. * E1) + AXX(J) * 1(STASPA * 3 / (E1 - STASPA/KAG)
FXX(J) = FXX(J-1) + AXX(J-1) * STASPA + DXX(J-1) * STASPA * 2 / (2. * E1) + BXX(J) * 1(STASPA * 3 / (E1 - STASPA/KAG)
GXX(J) = GXX(J-1) + (AXX(J) * STASPA / 2. - CXX(J-1)) * STASPA / E1
HXX(J) = HXX(J-1) + (BXX(J) * STASPA / 2. + DXX(J-1)) * STASPA / E1
CXX(J) = CXX(J-1) - AXX(J) * STASPA + GXX(J) * OMEGA2 * SRIJNA(J)
DXX(J) = DXX(J-1) - BXX(J) * STASPA - HXX(J) * OMEGA2 * SRIJNA(J)
106 CONTINUE
THETA = CXX(STA) / DXX(STA)
C DECREASING SIGNAL EXCITATION AT THE Stern
AKLEN(J) = AXX(STA) + BXX(STA) * THETA
110 CONTINUE
120 IF(WMEGA(I) .EQ. J) GOTO 160
C IDENTIFY A ZERO IN THE SHEAR CURVE
130 IF ((ARLEN(1) * ARLEN(2)) .GT. 0.) GOTO 280
C CHECK TO SEE IF OMEGA(2) IS A NATURAL FREQUENCY
SPUD = ATAN2 (ARLEN(1), ARLEN(2))
SPUDS = ABS (SPUD)
IF (ABS (SPUDS - 1.570796) .LE. 0.0001) GOTO 250
C DETERMINE IMMEDIATE OMEGA
140 RATIO = ABS (ARLEN(1) / ARLEN(2))
DELW1 = (OMEGA(2) - OMEGA(1)) * RATIO / (1. + RATIO)
DELW2 = OMEGA(2) - OMEGA(1) - DELW1
OMEGA(3) = OMEGA(1) + DELW1
OMEGA(1) = 0.
OMEGA(2) = 0.
GOTO 60
C NARROW THE ZONE WIDTH
160 IF (DELL1 - DELW2) .LT. 162, 162, 164
162 IF ((ARLEN(1) * ARLEN(3)) .LE. 0.) DDLDEL = ARLEN(3) * DELW1 / (ARLEN(1) -
1 - ARLEN(3))
IF ((ARLEN(1) * ARLEN(3)) .GT. 0.) DDLDEL = ARLEN(3) * DELW1 / ARLEN(1)
GOTO 165
164 IF ((ARLEN(2) * ARLEN(3)) .LE. 0.) DDLDEL = -ARLEN(3) * DELW2 / (ARLEN(2)
1 - ARLEN(3))
IF ((ARLEN(2) * ARLEN(3)) .GT. 0.) DDLDEL = -ARLEN(3) * DELW2 / ARLEN(2)
165 IF (DELL1L) 170, 170, 180
170 OMEGA(1) = OMEGA(3) + 2. * DDLDEL
OMEGA(2) = OMEGA(3)
GOTO 190
180 OMEGA(1) = OMEGA(3)
OMEGA(2) = OMEGA(3) + 2. * DDLDEL
190 OMEGA(3) = .
C CHECK FOR PROXIMITY TO NATURAL FREQUENCY
230 IF (ABS (DELL1L) - .04) 270, 270, 60
250 OMEGA(1) = OMEGA(2)
270 FREQU(3) = (OMEGA(1) + OMEGA(2)) / 2.
GOTO 50.
200 OMEGA(1) = OMEGA(2)
\[\Omega(2) = \Omega(2) + 1. \]

GOTO 60

C \text{ OBmAIN NATURAL NOl}E

500 \text{ SUn}=0.

DO 510 J=1,STA

\text{NOlE}(N,J) = EXX(J) + FXX(J) * THeTA

SUN=SUN+NOlE(N,J)**2+VIRMA S(J)

510 \text{ CONTINUE}

C \text{ NORMALIZE NOlE}

DO 520 J=1,STA

\text{NOlE}(N,J) = NOlE(N,J)/SRT(SUN)

520 \text{ CONTINUE}

C \text{ ADVANCE SEARCH ZONE}

\Omega(1) = \Omega(2) + 1.

\Omega(2) = \Omega(2) + 2.

999 \text{ CONTINUE}

RTURO

ENI
SUBROUTINE FORCE
COMSUN STA, STASPA, BEAM, DRAFT, DEPTII, T1, T2, T3, DISPM, DMI (40), HRKAG (40)
L, STASH (40), SIGMA (40), MOTE (7, 40), FREQN (7), ADNMA (40), DECK (40), DAT
1A, (11, 40), KAO, (4, 50), PERNS, (5, 50)
DIMENSION DSHAS (40), BEAM (40), DELTA (40), G (2, 40)
INTEGER STA
REAL MODL, BB, LBP, KAPPAA, JFACT, KAG
C
C DETERMINED/DX
C DSHASS (1) = ADDHAS (1)
C DO 20 J = 2, STA
C DSHASS (J) = ADDHAS (J) - ADDHAS (J - 1)
C JUN=J-1
C DSHASS (JUN) = (DSHASS (JUN) + DSHASS (J)) / 2.
C
20 CONTINUE
C DSHASS (STA) = (DSHASS (STA) - ADDHAS (STA)) / 2.
C
C INITIALIZE PERNS AND KAO
C DO 40 J = 1, 4
C DO 30 K = 1, 50
C PERNS (J, K) = 0.
C KAO (J, K) = 0.
C
30 CONTINUE
C
40 CONTINUE
C
C DETERMINING FREQUENCY LIMITS
C PERNS (5, 1) = SQRT (67.395 / (FLOAT (STA - 1) * STASPA))
C DOME = (SQRT (67.395 / STASPA) - PERNS (5, 1)) / 50.
C DO 42 J = 2, 50
C PERNS (5, J) = PERNS (5, J - 1) + DOME
C
42 CONTINUE
C
C LOOP FOR FORWARD SPEED ITERATION
C DO 910 L = 1, 4
C OMEGA = PERNS (5, 1)
C
C SHIP SPEED IN FT/SEC
C VEL = FLOAT (L - 1) * 15.90
C
44 M = 1
C
45 OMGA2 = OMEGA2 * #2
C KAPPAA = OMEGA2 / 12.174
C
DETERMINE WAVE HEIGHT CORRECTION TERM DELTA
DO 60 J=1,STA
 SUM=0.
 LIMA=DATA(1,J)
 BEAM(J)=DATA(LIMA+1,J)
 DO 50 K=1,LIMA
 SUM=SUM+DATA(K+1,J)
50 CONTINUE
 EXPON=KAPPA*DRAT*SUM/(BEAM(J)*LIMA)
 IF(EXPON-50.) 55,55,58
 55 DELTA(J)=2.718**(EXPON)
 GOTO 60
58 DELTA(J)=.
 60 CONTINUE
C
CUGGPP IF WAVE HEIGHTS ARE TOO SMALL
 SUM=0.
 DO 65 J=1,STA
 SUM=SUM+DELTA(J)
65 CONTINUE
 IF(SUM-.01) 68,68,69
 68 A=50
 GOTO 70
 69 DO 70 J=1,STA
C
LOUYNCE, ADDotted MASS, AND DAMPING WAVE FORCES
 G(1,J)=(1.9474*BEAM(J)*STASPA-ADDMAS(J)*OMEGA2)*DELTA(J)
 G(2,J)=DELTA(J)*OMEGA*VELCE*DRASS(J)
70 CONTINUE
C
SUM MODAL EXCITATION FORCES
DO 80 I=1,7
 SUM1=0.
 SUM2=0.
 SUM3=0.
 SUM4=0.
 DO 80 J=1,STA
 KK=KAPPA*STASPA*FLGAT(J-1)
 80 SUM1=SUM1+KK*G(I,J)
 SUM2=SUM2+KK*G(1,J)
 SUM3=SUM3+KK*G(2,J)
SUM1=SUM1*FOM1*COS(KX)
SUM2=SUM2*FOM1*SIN(KX)
SUM3=SUM1*FOM2*COS(KX)
SUM4=SUM4*FOM2*SIN(KX)
90 CONTINUE

C MODAL DAMPING COEFFICIENT

DELTA1=1.0658-0.2*SQRT(FREQN(I))

DAMP1=2.*FREQN(I)*DELTA1/SQRT(39.478*DELTA1**2)
PARTS1=SQRT(SUM1**2+SUM2**2)
PARTS2=SQRT(SUM3**2+SUM4**2)

IF(PARTS1+PARTS2-1.E-30) 80, 80, 100
10) IF((ABS(SUM2)+ABS(SUM1)) .LT. 1.E-40) SUM2=1.E-40
IF((ABS(SUM4)+ABS(SUM3)) .LT. 1.E-40) SUM4=1.E-40
450 THETA1=ATAN2(SUM2,SUM1)
470 THETA2=3.1416-ATAN2(SUM3,SUM4)

550 KAO(L,J)=KAO(L,J)+SQRT(((PARTS1*COS(THETA1)+PARTS2*COS(THETA2))**2+
1*(PARTS1*SIN(THETA1)+PARTS2*SIN(THETA2))**2)/((FREQN(I)**2-OMEGA2)*
1*2*(DAMP1+OMEGA)**2)
80 CONTINUE
IF(L-1) 800, 800, 850
800 OMEGA=O/MEGA
GOTO 860

C DETERMINE FREQUENCY OF ENCOUNTER

850 OMEGA=(-1.*SQRT(1.+.1243*VELOC*OMEGA))/(6.22E-02*VELOC)
660 PERNO5(L,J)=8.3d5/OMEGA**5*2.71828**(-0.01555/OMEGA**4)
670 OMEGA=OMEGA+DORLGA
900 IF(A-50) 905, 910, 910
905 A=A+1
GOTO 45

910 CONTINUE
DO 990 L=1,4
DL 950 J=1,90
PERNO5(L,J)=SQRT(PERNOS(L,J)) *KAO(L,J) *MODE(1,1) *12.
950 CONTINUE
990 CONTINUE
RETURN
END
SUBROUTINE OUTPUT
COMMON STA, STASPA, Elem, DRAFT, DEPTH, T1, T2, T3, DISPL, KMI (40), RKAG (40)
1, STAAS (40), SHRMA (40), MCD (7, 40), FREQN (7), ADDHAS (40), DCKE (40), DAT
1A (15, 46), LAG (4, 50), PERMOS (5, 60)
INTEGER STA
REAL MODE, KK, LDP, KAPPA, JFACT, KAG
WRITE (6, 770)
770 FORMAT ('**
 WRITE (6, 5)
 5 FORMAT ('** STATION \\
 WRITE (6, 10) (L, STAAS (1), SHRMA (1), MCI (1), RKAG (1), ADDHAS (1), J = 1, STA)
 WRITE (6, 770)
 DO 25 I = 1, 7
 WRITE (6, 15) I, FREQN (I)
 15 FORMAT ('** NATURAL FREQUENCY NUMBER 'I', I1, ' IS 'F7.3, ' RAD/SEC'
 WRITE (6, 20) (MODE (I, J), J = 1, STA)
 20 FORMAT ('**JX, 5G12.4)
 25 CONTINUE
 WRITE (6, 770)
 WRITE (6, 30)
 30 FORMAT ('**V = 0', '21A', 'V = 10', '20X', 'V = 20', '20X', 'V = 30', '2AX', 'FREQUENCY
 WRITE (6, 35) RAG RESPONSE, LAG RESPONSE
 35 FORMAT ('**RAG RESPONSE', 'L00 R00 E00N00 R00 E00N00 R00 E00N00
 DO 40 3 = 1, 56
 WRITE (6, 35) PERMOS (5, 4), (RAG (L, M), PERMOS (L, M), L = 1, 4)
 40 CONTINUE
 RETURN
END
<table>
<thead>
<tr>
<th></th>
<th>20</th>
<th>52.63</th>
<th>80000.</th>
<th>100.</th>
<th>35.</th>
<th>55.</th>
<th>2.0</th>
<th>1.75</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>65.</td>
<td>60.</td>
<td>60.</td>
<td>55.</td>
<td>55.</td>
<td>55.</td>
<td>55.</td>
<td>55.</td>
<td>55.</td>
<td>60.</td>
</tr>
<tr>
<td>55.</td>
<td>55.</td>
<td>55.</td>
<td>55.</td>
<td>55.</td>
<td>55.</td>
<td>55.</td>
<td>55.</td>
<td>55.</td>
<td>60.</td>
</tr>
</tbody>
</table>

Sample Input
<table>
<thead>
<tr>
<th>STATION</th>
<th>MASS</th>
<th>J</th>
<th>I</th>
<th>KAG</th>
<th>ADDMAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.215E06</td>
<td>0.672E08</td>
<td>0.272E05</td>
<td>0.267E11</td>
<td>0.150E06</td>
</tr>
<tr>
<td>2</td>
<td>0.242E06</td>
<td>0.642E08</td>
<td>0.264E05</td>
<td>0.247E11</td>
<td>0.224E06</td>
</tr>
<tr>
<td>3</td>
<td>0.274E06</td>
<td>0.724E08</td>
<td>0.293E05</td>
<td>0.247E11</td>
<td>0.236E06</td>
</tr>
<tr>
<td>4</td>
<td>0.269E06</td>
<td>0.596E08</td>
<td>0.256E05</td>
<td>0.226E11</td>
<td>0.333E06</td>
</tr>
<tr>
<td>5</td>
<td>0.242E06</td>
<td>0.626E08</td>
<td>0.267E05</td>
<td>0.226E11</td>
<td>0.366E06</td>
</tr>
<tr>
<td>6</td>
<td>0.290E06</td>
<td>0.643E08</td>
<td>0.273E05</td>
<td>0.226E11</td>
<td>0.386E06</td>
</tr>
<tr>
<td>7</td>
<td>0.294E06</td>
<td>0.653E08</td>
<td>0.277E05</td>
<td>0.226E11</td>
<td>0.397E06</td>
</tr>
<tr>
<td>8</td>
<td>0.296E06</td>
<td>0.658E08</td>
<td>0.278E05</td>
<td>0.226E11</td>
<td>0.403E06</td>
</tr>
<tr>
<td>9</td>
<td>0.297E06</td>
<td>0.660E08</td>
<td>0.279E05</td>
<td>0.226E11</td>
<td>0.405E06</td>
</tr>
<tr>
<td>10</td>
<td>0.297E06</td>
<td>0.660E08</td>
<td>0.279E05</td>
<td>0.226E11</td>
<td>0.405E06</td>
</tr>
<tr>
<td>11</td>
<td>0.297E06</td>
<td>0.660E08</td>
<td>0.279E05</td>
<td>0.226E11</td>
<td>0.405E06</td>
</tr>
<tr>
<td>12</td>
<td>0.297E06</td>
<td>0.660E08</td>
<td>0.279E05</td>
<td>0.226E11</td>
<td>0.405E06</td>
</tr>
<tr>
<td>13</td>
<td>0.297E06</td>
<td>0.660E08</td>
<td>0.279E05</td>
<td>0.226E11</td>
<td>0.405E06</td>
</tr>
<tr>
<td>14</td>
<td>0.296E06</td>
<td>0.658E08</td>
<td>0.278E05</td>
<td>0.226E11</td>
<td>0.403E06</td>
</tr>
<tr>
<td>15</td>
<td>0.294E06</td>
<td>0.653E08</td>
<td>0.277E05</td>
<td>0.226E11</td>
<td>0.397E06</td>
</tr>
<tr>
<td>16</td>
<td>0.292E06</td>
<td>0.643E08</td>
<td>0.273E05</td>
<td>0.226E11</td>
<td>0.386E06</td>
</tr>
<tr>
<td>17</td>
<td>0.282E06</td>
<td>0.626E08</td>
<td>0.267E05</td>
<td>0.226E11</td>
<td>0.366E06</td>
</tr>
<tr>
<td>18</td>
<td>0.269E06</td>
<td>0.596E08</td>
<td>0.256E05</td>
<td>0.226E11</td>
<td>0.333E06</td>
</tr>
<tr>
<td>19</td>
<td>0.242E06</td>
<td>0.551E08</td>
<td>0.239E05</td>
<td>0.226E11</td>
<td>0.236E06</td>
</tr>
<tr>
<td>20</td>
<td>0.242E06</td>
<td>0.642E08</td>
<td>0.264E05</td>
<td>0.247E11</td>
<td>0.224E06</td>
</tr>
</tbody>
</table>

Sample Output

106
<table>
<thead>
<tr>
<th>NATURAL FREQUENCY NUMBER 1</th>
<th>IS</th>
<th>2.407 RAD/SEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.576E-03</td>
<td>0.4416E-03</td>
<td>0.3393E-03</td>
</tr>
<tr>
<td>-0.7721E-04</td>
<td>-0.1761E-03</td>
<td>-0.2527E-03</td>
</tr>
<tr>
<td>-0.3159E-03</td>
<td>-0.2778E-03</td>
<td>-0.2124E-03</td>
</tr>
<tr>
<td>0.1091E-03</td>
<td>0.2392E-03</td>
<td>0.3733E-03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NATURAL FREQUENCY NUMBER 2</th>
<th>IS</th>
<th>6.040 RAD/SEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5409E-03</td>
<td>0.3244E-03</td>
<td>0.1062E-03</td>
</tr>
<tr>
<td>-0.3465E-03</td>
<td>-0.3636E-03</td>
<td>-0.3040E-03</td>
</tr>
<tr>
<td>0.1359E-03</td>
<td>0.2707E-03</td>
<td>0.3577E-03</td>
</tr>
<tr>
<td>0.1486E-03</td>
<td>0.4046E-04</td>
<td>0.2555E-03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NATURAL FREQUENCY NUMBER 3</th>
<th>IS</th>
<th>10.611 RAD/SEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4966E-03</td>
<td>0.2153E-03</td>
<td>-0.6335E-04</td>
</tr>
<tr>
<td>-0.3183E-03</td>
<td>-0.1375E-03</td>
<td>0.9863E-04</td>
</tr>
<tr>
<td>0.3511E-03</td>
<td>0.1787E-03</td>
<td>0.5520E-04</td>
</tr>
<tr>
<td>-0.3225E-03</td>
<td>-0.13d1E-03</td>
<td>0.1351E-03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NATURAL FREQUENCY NUMBER 4</th>
<th>IS</th>
<th>15.573 RAD/SEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4547E-03</td>
<td>0.1132E-03</td>
<td>-0.2093E-03</td>
</tr>
<tr>
<td>-0.5812E-04</td>
<td>-0.2399E-03</td>
<td>0.9932E-03</td>
</tr>
<tr>
<td>-0.2454E-03</td>
<td>-0.4066E-03</td>
<td>0.3191E-03</td>
</tr>
<tr>
<td>0.3773E-03</td>
<td>0.2712E-03</td>
<td>0.3199E-04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NATURAL FREQUENCY NUMBER 5</th>
<th>IS</th>
<th>20.577 RAD/SEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4191E-03</td>
<td>0.2339E-04</td>
<td>-0.3191E-03</td>
</tr>
<tr>
<td>0.2551E-03</td>
<td>0.3097E-03</td>
<td>0.2133E-03</td>
</tr>
<tr>
<td>-0.2809E-03</td>
<td>-0.8392E-04</td>
<td>0.3776E-03</td>
</tr>
<tr>
<td>-0.3131E-03</td>
<td>-0.3558E-03</td>
<td>0.6133E-04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NATURAL FREQUENCY NUMBER 6</th>
<th>IS</th>
<th>25.436 RAD/SEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3747E-03</td>
<td>0.5765E-04</td>
<td>-0.3748E-03</td>
</tr>
<tr>
<td>0.4170E-03</td>
<td>0.2393E-03</td>
<td>0.2414E-03</td>
</tr>
<tr>
<td>0.3340E-03</td>
<td>0.3345E-03</td>
<td>0.7484E-04</td>
</tr>
<tr>
<td>0.1571E-03</td>
<td>0.3920E-03</td>
<td>0.1463E-03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NATURAL FREQUENCY NUMBER 7</th>
<th>IS</th>
<th>29.985 RAD/SEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3545E-03</td>
<td>0.1263E-03</td>
<td>0.3933E-03</td>
</tr>
<tr>
<td>0.3276E-03</td>
<td>0.1733E-03</td>
<td>0.4019E-03</td>
</tr>
<tr>
<td>0.2106E-03</td>
<td>0.2982E-03</td>
<td>0.3505E-03</td>
</tr>
<tr>
<td>0.8062E-04</td>
<td>0.3612E-03</td>
<td>0.2413E-03</td>
</tr>
</tbody>
</table>

Sample Output

107
<table>
<thead>
<tr>
<th>Frequency</th>
<th>FAC</th>
<th>RESPONSE</th>
<th>FAC</th>
<th>RESPONSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2596</td>
<td>4.285</td>
<td>0.4529</td>
<td>24.34</td>
<td>1.232</td>
</tr>
<tr>
<td>0.2770</td>
<td>5.968</td>
<td>0.7934</td>
<td>26.82</td>
<td>2.170</td>
</tr>
<tr>
<td>0.3045</td>
<td>8.014</td>
<td>1.2718</td>
<td>23.30</td>
<td>2.060</td>
</tr>
<tr>
<td>0.3319</td>
<td>10.32</td>
<td>1.679</td>
<td>29.53</td>
<td>3.021</td>
</tr>
<tr>
<td>0.3293</td>
<td>12.77</td>
<td>2.132</td>
<td>28.79</td>
<td>4.142</td>
</tr>
<tr>
<td>0.3468</td>
<td>15.27</td>
<td>2.533</td>
<td>27.34</td>
<td>4.259</td>
</tr>
<tr>
<td>0.3642</td>
<td>17.72</td>
<td>2.961</td>
<td>24.49</td>
<td>3.991</td>
</tr>
<tr>
<td>0.3817</td>
<td>19.99</td>
<td>3.396</td>
<td>26.11</td>
<td>3.346</td>
</tr>
<tr>
<td>0.3991</td>
<td>21.95</td>
<td>3.227</td>
<td>14.32</td>
<td>2.363</td>
</tr>
<tr>
<td>0.4165</td>
<td>23.46</td>
<td>3.253</td>
<td>8.240</td>
<td>1.356</td>
</tr>
<tr>
<td>0.4340</td>
<td>24.43</td>
<td>3.176</td>
<td>3.562</td>
<td>1.383</td>
</tr>
<tr>
<td>0.4514</td>
<td>24.66</td>
<td>3.003</td>
<td>17.34</td>
<td>2.721</td>
</tr>
<tr>
<td>0.4689</td>
<td>24.17</td>
<td>2.748</td>
<td>23.20</td>
<td>4.243</td>
</tr>
<tr>
<td>0.4863</td>
<td>22.34</td>
<td>2.427</td>
<td>33.49</td>
<td>3.768</td>
</tr>
<tr>
<td>0.5037</td>
<td>23.81</td>
<td>2.659</td>
<td>49.95</td>
<td>7.051</td>
</tr>
<tr>
<td>0.5212</td>
<td>13.04</td>
<td>1.664</td>
<td>53.59</td>
<td>7.865</td>
</tr>
<tr>
<td>0.5386</td>
<td>14.70</td>
<td>1.265</td>
<td>64.37</td>
<td>3.200</td>
</tr>
<tr>
<td>0.5560</td>
<td>16.93</td>
<td>0.8828</td>
<td>66.38</td>
<td>6.145</td>
</tr>
<tr>
<td>0.5735</td>
<td>7.134</td>
<td>0.5359</td>
<td>63.90</td>
<td>7.438</td>
</tr>
<tr>
<td>0.5907</td>
<td>3.430</td>
<td>0.2410</td>
<td>56.58</td>
<td>6.331</td>
</tr>
<tr>
<td>0.6084</td>
<td>0.5410</td>
<td>0.35602E-01</td>
<td>44.57</td>
<td>4.753</td>
</tr>
<tr>
<td>0.6258</td>
<td>2.690</td>
<td>0.1659</td>
<td>28.67</td>
<td>2.925</td>
</tr>
<tr>
<td>0.6432</td>
<td>4.545</td>
<td>0.2631</td>
<td>10.31</td>
<td>1.534</td>
</tr>
<tr>
<td>0.6607</td>
<td>5.501</td>
<td>0.2993</td>
<td>11.73</td>
<td>1.053</td>
</tr>
<tr>
<td>0.6781</td>
<td>5.552</td>
<td>0.2341</td>
<td>29.24</td>
<td>2.525</td>
</tr>
<tr>
<td>0.6956</td>
<td>4.305</td>
<td>0.2316</td>
<td>43.73</td>
<td>3.728</td>
</tr>
<tr>
<td>0.7130</td>
<td>3.466</td>
<td>0.1575</td>
<td>52.54</td>
<td>4.288</td>
</tr>
<tr>
<td>0.7304</td>
<td>1.309</td>
<td>0.7762E-01</td>
<td>54.10</td>
<td>4.230</td>
</tr>
<tr>
<td>0.7479</td>
<td>0.1637</td>
<td>0.6840E-02</td>
<td>47.93</td>
<td>3.550</td>
</tr>
<tr>
<td>0.7653</td>
<td>1.280</td>
<td>0.4911E-01</td>
<td>34.66</td>
<td>2.432</td>
</tr>
<tr>
<td>0.7828</td>
<td>2.217</td>
<td>0.8016E-01</td>
<td>16.78</td>
<td>1.153</td>
</tr>
<tr>
<td>0.8002</td>
<td>2.545</td>
<td>0.3764E-01</td>
<td>8.525</td>
<td>3.505</td>
</tr>
<tr>
<td>0.8176</td>
<td>2.377</td>
<td>0.7540E-01</td>
<td>25.43</td>
<td>1.621</td>
</tr>
<tr>
<td>0.8351</td>
<td>1.622</td>
<td>0.5036E-01</td>
<td>39.26</td>
<td>2.395</td>
</tr>
<tr>
<td>0.8525</td>
<td>0.7051</td>
<td>0.2032E-01</td>
<td>44.76</td>
<td>2.543</td>
</tr>
<tr>
<td>0.8699</td>
<td>0.2318</td>
<td>0.6514E-02</td>
<td>41.19</td>
<td>2.335</td>
</tr>
<tr>
<td>0.8874</td>
<td>0.3979</td>
<td>0.2406E-01</td>
<td>28.74</td>
<td>1.573</td>
</tr>
<tr>
<td>0.9048</td>
<td>1.215</td>
<td>0.3103E-01</td>
<td>11.57</td>
<td>2.6115</td>
</tr>
<tr>
<td>0.9223</td>
<td>1.142</td>
<td>0.2791E-01</td>
<td>43.32</td>
<td>5.245</td>
</tr>
<tr>
<td>0.9397</td>
<td>0.7593</td>
<td>0.1790E-01</td>
<td>29.66</td>
<td>1.401</td>
</tr>
<tr>
<td>0.9571</td>
<td>0.2937</td>
<td>0.6528E-02</td>
<td>33.82</td>
<td>1.947</td>
</tr>
<tr>
<td>0.9746</td>
<td>0.3554</td>
<td>0.6492E-02</td>
<td>37.73</td>
<td>1.734</td>
</tr>
<tr>
<td>0.9920</td>
<td>0.3443</td>
<td>0.1107E-01</td>
<td>28.59</td>
<td>1.779</td>
</tr>
<tr>
<td>1.009</td>
<td>0.3493</td>
<td>0.1072E-01</td>
<td>10.75</td>
<td>3.428</td>
</tr>
<tr>
<td>1.027</td>
<td>0.3514</td>
<td>0.6566E-02</td>
<td>15.08</td>
<td>3.534</td>
</tr>
<tr>
<td>1.044</td>
<td>0.1576</td>
<td>0.2425E-02</td>
<td>32.52</td>
<td>1.234</td>
</tr>
<tr>
<td>1.062</td>
<td>0.2312</td>
<td>0.5099E-02</td>
<td>36.38</td>
<td>1.426</td>
</tr>
<tr>
<td>1.079</td>
<td>0.1598</td>
<td>0.5941E-02</td>
<td>30.60</td>
<td>1.153</td>
</tr>
<tr>
<td>1.097</td>
<td>0.2442</td>
<td>0.3477E-02</td>
<td>15.54</td>
<td>5.731</td>
</tr>
<tr>
<td>1.114</td>
<td>0.5232E-31</td>
<td>0.7958E-03</td>
<td>10.23</td>
<td>2.3632</td>
</tr>
</tbody>
</table>

Sample Output

108
<table>
<thead>
<tr>
<th>RAQ</th>
<th>RESPONSE</th>
<th>RAQ</th>
<th>RESPONSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>52.31</td>
<td>1.035</td>
<td>79.66</td>
<td>0.5799</td>
</tr>
<tr>
<td>59.28</td>
<td>2.253</td>
<td>89.32</td>
<td>1.472</td>
</tr>
<tr>
<td>63.44</td>
<td>3.619</td>
<td>96.67</td>
<td>2.974</td>
</tr>
<tr>
<td>67.29</td>
<td>5.570</td>
<td>105.6</td>
<td>5.035</td>
</tr>
<tr>
<td>69.27</td>
<td>7.213</td>
<td>109.9</td>
<td>7.301</td>
</tr>
<tr>
<td>68.83</td>
<td>8.450</td>
<td>110.5</td>
<td>9.467</td>
</tr>
<tr>
<td>65.42</td>
<td>9.025</td>
<td>106.6</td>
<td>11.06</td>
</tr>
<tr>
<td>58.60</td>
<td>9.767</td>
<td>97.41</td>
<td>11.68</td>
</tr>
<tr>
<td>49.13</td>
<td>7.599</td>
<td>32.57</td>
<td>11.02</td>
</tr>
<tr>
<td>34.11</td>
<td>5.568</td>
<td>01.96</td>
<td>8.951</td>
</tr>
<tr>
<td>17.89</td>
<td>2.971</td>
<td>36.54</td>
<td>5.590</td>
</tr>
<tr>
<td>13.36</td>
<td>2.231</td>
<td>15.57</td>
<td>2.478</td>
</tr>
<tr>
<td>32.81</td>
<td>5.454</td>
<td>37.64</td>
<td>8.148</td>
</tr>
<tr>
<td>56.21</td>
<td>9.237</td>
<td>72.36</td>
<td>12.10</td>
</tr>
<tr>
<td>79.11</td>
<td>12.73</td>
<td>138.3</td>
<td>18.07</td>
</tr>
<tr>
<td>99.14</td>
<td>15.67</td>
<td>139.7</td>
<td>23.29</td>
</tr>
<tr>
<td>114.1</td>
<td>17.57</td>
<td>163.7</td>
<td>27.13</td>
</tr>
<tr>
<td>121.8</td>
<td>19.25</td>
<td>177.2</td>
<td>29.04</td>
</tr>
<tr>
<td>120.7</td>
<td>17.54</td>
<td>177.4</td>
<td>29.65</td>
</tr>
<tr>
<td>109.7</td>
<td>15.46</td>
<td>162.9</td>
<td>25.85</td>
</tr>
<tr>
<td>89.03</td>
<td>12.14</td>
<td>133.5</td>
<td>20.76</td>
</tr>
<tr>
<td>59.83</td>
<td>7.889</td>
<td>91.01</td>
<td>13.85</td>
</tr>
<tr>
<td>25.40</td>
<td>3.236</td>
<td>40.07</td>
<td>5.955</td>
</tr>
<tr>
<td>18.50</td>
<td>2.277</td>
<td>25.38</td>
<td>3.660</td>
</tr>
<tr>
<td>52.96</td>
<td>6.297</td>
<td>76.68</td>
<td>10.84</td>
</tr>
<tr>
<td>82.65</td>
<td>9.492</td>
<td>121.6</td>
<td>16.73</td>
</tr>
<tr>
<td>101.6</td>
<td>11.27</td>
<td>150.7</td>
<td>20.19</td>
</tr>
<tr>
<td>106.4</td>
<td>11.40</td>
<td>158.7</td>
<td>20.69</td>
</tr>
<tr>
<td>95.66</td>
<td>9.903</td>
<td>143.4</td>
<td>18.19</td>
</tr>
<tr>
<td>70.56</td>
<td>7.360</td>
<td>106.5</td>
<td>13.13</td>
</tr>
<tr>
<td>35.54</td>
<td>3.438</td>
<td>34.31</td>
<td>6.515</td>
</tr>
<tr>
<td>15.42</td>
<td>1.442</td>
<td>22.39</td>
<td>2.612</td>
</tr>
<tr>
<td>48.58</td>
<td>4.396</td>
<td>71.73</td>
<td>8.137</td>
</tr>
<tr>
<td>76.50</td>
<td>6.700</td>
<td>113.9</td>
<td>12.57</td>
</tr>
<tr>
<td>68.86</td>
<td>7.535</td>
<td>132.3</td>
<td>14.27</td>
</tr>
<tr>
<td>32.41</td>
<td>6.768</td>
<td>123.7</td>
<td>12.92</td>
</tr>
<tr>
<td>53.38</td>
<td>4.646</td>
<td>33.12</td>
<td>8.943</td>
</tr>
<tr>
<td>24.12</td>
<td>1.361</td>
<td>36.68</td>
<td>3.623</td>
</tr>
<tr>
<td>26.24</td>
<td>1.963</td>
<td>36.36</td>
<td>3.742</td>
</tr>
<tr>
<td>58.55</td>
<td>4.251</td>
<td>87.44</td>
<td>8.198</td>
</tr>
<tr>
<td>77.39</td>
<td>5.453</td>
<td>116.0</td>
<td>10.59</td>
</tr>
<tr>
<td>75.64</td>
<td>5.175</td>
<td>113.6</td>
<td>12.15</td>
</tr>
<tr>
<td>53.54</td>
<td>3.559</td>
<td>62.58</td>
<td>6.997</td>
</tr>
<tr>
<td>20.54</td>
<td>1.327</td>
<td>31.03</td>
<td>2.623</td>
</tr>
<tr>
<td>31.34</td>
<td>1.950</td>
<td>46.40</td>
<td>3.824</td>
</tr>
<tr>
<td>60.94</td>
<td>3.724</td>
<td>91.37</td>
<td>7.346</td>
</tr>
<tr>
<td>72.93</td>
<td>4.336</td>
<td>109.5</td>
<td>8.538</td>
</tr>
<tr>
<td>61.48</td>
<td>3.558</td>
<td>92.36</td>
<td>7.371</td>
</tr>
<tr>
<td>31.29</td>
<td>1.764</td>
<td>47.35</td>
<td>3.517</td>
</tr>
<tr>
<td>20.62</td>
<td>1.132</td>
<td>30.95</td>
<td>2.259</td>
</tr>
</tbody>
</table>

Sample Output

109
REFERENCES

