NEW DATA STRUCTURES FOR ORTHOGONAL QUERIES

by

Dan E. Willard

TR-22-78

This research was supported in part by the Office of Naval Research under contract N00014-76-C-0914.

The application of pyramid-like data structures to multidimensional queries has been explored in three recent papers ([86-77], [87-78], [88-78]). It will be shown here that many of the earlier results (including some of our own) can be improved by a factor of $\log N$ with a slightly modified data structure that enables k-dimensional searches, to be performed in $\Theta(\log^{k-1}N)$ time. The new revised pyramid structure can be made sufficiently efficient in a dynamic environment to have an $\Theta(\log^{k-1}N)$ record-insertion and deletion...
runtime. Queries for the special two-dimensional version of the proposed pyramid will have the same combination of $O(\log N)$ retrieval, insertion and deletion runtimes that has traditionally been associated with one-dimensional sorted lists. Our k-dimensional pyramid data structure will occupy $O(N \log^k N)$ space. The coefficient associated with its memory space utilization will only be approximately 50 percent larger than that of the otherwise considerably less efficient pyramids of ES-77, Lu-78 and W8-78. Also, it will be shown here how the combination of the concepts of this paper along with ES-75, Ri-76, Wi-78 and Wi-78a can be used to develop very useful partial match data structures.
Copyright 1979 by Dan E. Willard

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of Dan E. Willard.
INFORMATIVE ABSTRACT

NEW DATA STRUCTURES FOR ORTHOGONAL QUERIES

By Dan E. Willard
Harvard University

Computer Science classification: 3.73, 3.74
Keywords: multidimensional searching, partial match retrieval, k-d tree, quad tree, bounded balance tree, B-tree, super-B-tree

The application of pyramid-like data structures to multidimensional queries has been explored in three recent papers (BS-77, Lu-78, Wi-78). It will be shown here that many of the earlier results (including some of our own) can be improved by a factor of \(\log N \) with a slightly modified data structure that enables \(k \)-dimensional searches to be performed in \(O(\log^{k-1} N) \) time. The new revised pyramid structure can be made sufficiently efficient in a dynamic environment to have an \(O(\log^{k-1} N) \) record-insertion and deletion runtime. Queries for the special two-dimensional version of the proposed pyramid will have the same combination of \(O(\log N) \) retrieval, insertion and deletion runtimes that has traditionally been associated with one-dimensional sorted lists. Our \(k \)-dimensional pyramid data structure will occupy \(O(N \log^{k-1} N) \) space. The
coefficient associated with its memory space utilization will only be approximately 50% larger than that of the otherwise considerably less efficient pyramids of BS-77, Lu-78 and Wi-78. Also, it will be shown here how the combination of the concepts of this paper along with Be-75, Ri-76, Wi-78 and Wi-78a can be used to develop very useful partial match data structures.
There has long been an apparent need for an efficient data structure which supports retrievals on a conjunction of range predicates similar to

\[a_1 \text{ KEY.1} b_1 \land a_2 \text{ KEY.2} b_2 \land \ldots \land a_k \text{ KEY.k} b_k \]

Following Knuth's suggestion (Kn-73), a series of articles has appeared within the last five years discussing this problem in the context of a data structure which occupies \(O(N) \) space (FB-74, BS-75, Be-75, LW-77, Wi-78a). More recently, several papers have begun to appear which discuss the improved retrieval time resulting from an allocation of \(O(N \log^{k-1} N) \) memory space (BS-77, Wi-78, Lu-78). This article will show how a subtle change produces a dramatic improvement in the pyramid-like data structure of the latter series of articles.

In our discussion, \(L \) will denote the initial list of elements, \(L_v \) the subset of \(L \) that descends from tree-node \(v \), and \(P_0(k, L) \) the \(k \)-dimensional pyramid structure that was advocated in the previous articles. This pyramid will be inductively defined according to the value of \(k \) as follows:
1) If \(k = 1 \), then the corresponding \(\mathcal{P}_0(k, L) \) pyramid will be defined as a tree representation of list \(L \) that has an \(O(\log N) \) height and has sorted its records by increasing \(\text{KEY.1} \) value.

2) Given that \(k - 1 \) dimensional pyramids are previously defined, \(\mathcal{P}_0(k, L) \) will be inductively defined as a tree with \(O(\log N) \) height that has the records of \(L \) sorted by increasing \(\text{KEY.k} \) value and which additionally associates each interior node \(v \) with an auxiliary \(\mathcal{P}_0(k-1, L_v) \) pyramid. This auxiliary pyramid was called an SDS field in Wi-78.

For a query \(q \) of the canonical form

\[
a_1 < \text{KEY.1} < b_1 & a_2 < \text{KEY.2} < b_2 & \ldots a_k < \text{KEY.k} < b_k
\]

the following terminology will be used:

i) \(\text{SET}(q) \) will denote the subset of the initial file that satisfies \(q \)

ii) \(\text{COUNT}(q) \) will denote the number of records belonging to \(\text{SET}(q) \)

iii) given a previously defined function \(F \), \(\text{SUM}(q) \) will denote the sum of the \(F \)-values of those records belonging to \(\text{SET}(q) \)

The "locate-and-copy" time of a specified retrieval algorithm will be defined as the amount of runtime needed by the procedure
to find and transfer the members of SET(q) into the user's workspace. This concept is not very useful, because the degenerate case where COUNT(q) = N forces all procedures to have an O(N) worst-case locate-and-copy time. Consequently, another notion will be necessary in our worst-case analysis, and this paper will rely on the following two measurements:

i) the "locate" retrieval time of a search procedure will be defined as the difference obtained when subtracting COUNT(q) from the locate-and-copy time (worst-case analysis of locate runtime is meaningful because this quantity has been automatically adjusted to avoid the trivial degeneration that results when COUNT(q) is a large quantity).

ii) the aggregate-scan time of a retrieval algorithm is defined as the amount of time needed to scan the SET(q) collection of records for the purpose of calculating one of its aggregate values, such as SUM(q) or COUNT(q).

The application of the above two concepts to P(k) pyramids was discussed in BS-77, Lu-78 and Wi-78. Some of the results obtained in these papers were quite similar, since they were written during overlapping time periods. What was known about pyramids previous to this article is given below:

1) SUM(q) and COUNT(q) can be calculated in O(logN) worst-case aggregate-scan time (BS-77, Lu-78, Wi-78).
2) \(\text{SET}(q) \) can be calculated in \(O(\log^k N) \) worst-case locate
time (observed in Wi-78 as a straightforward generalization
of item 1).

3) If \(L \) is initially the empty set, and if a sequence of \(N \)
insertion and deletion commands are subsequently given,
then the total time needed to dynamically adjust \(P_0(k,L) \)
in response to this command sequence will have a worst-
case \(O(N \log^k N) \) magnitude. (First proposed in Wi-78.
Several months later an independent derivation of a basically
similar procedure was presented in a conference as Lu-78.)

4) The above result can be strengthened to indicate the
existence of a procedure that executes individual
insertion and deletion commands in \(O(\log^k N) \) worst-case
time (Wi-78; also in Wi-78b).

5) Several of the above results can have their runtime
reduced by a factor of \(\log N \) in a batch environment
where \(N \) operations are simultaneously performed.

Such batch procedures include:

5a) an algorithm that constructs an entire \(P_0(k,L) \)
data structure in \(N \log^{k-1} N \) time (BS-77, Lu-78)

5b) a procedure that calculates ECDF statistics in
\(N \log^{k-1} N \) time (BS-77)

5c) given \(n \) queries of \(q_1, q_2 \ldots q_n \), a procedure
that calculates their \(\text{SUM}(q) \) and \(\text{COUNT}(q) \) values
in \(N \log^{k-1} N \) time (Wi-78)
The discussion in this paper will focus on topics 1 through 4 rather than the batch algorithms of topic 5. It will be shown here that the runtimes associated with topics 1-4 can almost be reduced by a factor of \(\log N \), thus deriving the new magnitude of \(O(\log^{k-1} N) \). We say "almost" because the criterion used for measuring runtime here is slightly weaker than that in Wi-78 and the previous references. The distinction is that the earlier papers discussed worst-case optimization in a dynamic environment, whereas the improved results of this paper are either expected runtimes in a dynamic environment or worst-case runtimes in a static environment. Our new algorithm can be controlled to ensure that its worst-case performance will always be at least as efficient as that of Wi-78.

The symbols \(P_e(k) \), \(P_s(k) \) and \(P_d(k) \) will denote the three modified versions of the \(P_o(k) \) pyramid proposed in this article. All three will occupy the same \(O(N \log^{k-1} N) \) quantity of memory space previously associated with \(P_o(k) \), and each will solve a slightly different type of optimization problem. Below are listed the three main results that will be proven in this paper:

Theorem 1: The \(P_s(k) \) pyramid (of definitions 2 and 5) will provide a static environment where \(\text{SUM}(q) \), \(\text{COUNT}(q) \) and \(\text{SET}(q) \) can be evaluated in \(O(\log^{k-1} N) \) worst-case time.

Theorem 2: The \(P_e(k) \) pyramid (of definitions 1 and 5) will provide a partially dynamic environment where \(\text{SET}(q) \) can be located in \(O(\log^{k-1} N) \) worst-case time and where records can be inserted or deleted in \(O(\log^{k-1} N) \) expected time.
Theorem 3: The $P_d(k)$ pyramid (of definitions 3 through 5) will provide a fully dynamic environment where record insertions, record deletions, and retrievals of $SET(q)$ can be executed in $O(\log^{k-1}N)$ expected time and $O(\log^{k-1}N)$ worst-case runtime. (A comparison of theorems 2 and 3 indicates that $P_d(k)$ has better update and worse retrieval time than $P_e(k)$.)

In addition to discussing the above three classes of pyramids, this paper will also make brief mention of a new type of partial match and partial region query data structure which is quite similar to these pyramids. This new data structure (discussed in section 2) will enable the user to improve retrieval time by allocating $O(N \log N)$ additional units of space.
PART 1

The algorithms in this paper will make frequent subroutine-calls to the super-B-tree procedure introduced in Wi-78 (soon to be widely disseminated in Wi-78b). Because of its importance, the next several paragraphs will summarize the nature of this super-B-tree procedure.

In the forthcoming discussion as well as throughout this paper, it will be assumed that our trees have been structured so that there exists a one-to-one correspondence between the leaves of the tree and the record of the list it represents (as opposed to a pairing between general nodes and records). An SDS field will be defined as any auxiliary data structure which the user has created for the purpose of describing the descendants of a given interior node. A tree (which is a representation of a sorted list with $O(\log N)$ height) will be called an augmented tree if it assigns an SDS field to each of its interior nodes. For instance, the $P_0(k)$ pyramids (whose definitions were given in the second paragraph of this paper) are examples of an augmented tree.

The super-B-tree theorem describes the worst-case amount of runtime needed to insert and delete a record in augmented trees, in terms of a parameter w that denotes the amount of runtime needed to insert or delete a single record in an SDS field. The theorem states that arbitrary insertion and deletion operations can be performed within $O(w \log N)$ worst-case runtime.
This result is significant because the super-B-tree procedure simultaneously ensures that the augmented tree will have $O(\log N)$ worst-case height, and that no insertion or deletion command can cause the runtime involved in adjusting SDS fields to exceed the $O(w \log N)$ worst-case upper bound. (A traditional 3-tree algorithm (AVL-62, NR-73, AHU-74) will not satisfy this condition because $O(wN)$ worst-case time will be spent adjusting the SDS fields when "rebalancing" is performed.)

This paper's discussion of pyramids will begin with the $P_e(2,L)$ because it is the simplest of our various pyramids. The definition of $P_e(2,L)$ is given below:

Definition 1: A $P_e(2,L)$ pyramid will be defined as a two-part data structure consisting of a dictionary D and an augmented tree T. The former will be defined as a B-tree which has its records sorted by KEY.1 and which possesses pointers that map each record of the dictionary onto the location where the record is stored in the SDS field of the root of T. Here T will be defined as a tree which has its records sorted by KEY.2 and which uses the following rules to define the SDS fields of each of its nodes v:

A) SDS(v) will be a doubly-chained sorted list which has taken v's descendants (in T) and arranged them by order of increasing KEY.1 value.

B) In addition to containing its name, the entry for record R in SDS(v) will contain the following information:
i) pointers to the predecessor and successor of \(R \) in this SDS field

ii) a "LEFT.DOWN.POINTER" that contains the address of the least record in the SDS field of \(v \)'s left son whose KEY.1 value is greater than or equal to that of \(R \)

iii) a "RIGHT.DOWN.POINTER" that similarly contains the address of the least record in the SDS field of \(v \)'s right son whose KEY.1 value is greater than or equal to that of \(R \)

Our first lemma will discuss retrieval operations in \(P_e(2,1) \) pyramids. In that discussion, as well as elsewhere in this paper, it will be necessary to speak of the nodes which are "critical" with respect to a range predicate such as \(a < \text{KEY} < b \). An interior node \(v \) of a specified tree will be defined as critical whenever the following two conditions hold:

i) all leaf records that descend from \(v \) satisfy this range condition;

ii) the same is not true for \(v \)'s father (in other words, one of the father's descendants does not satisfy the range condition).

Lemma 1: Let \(q \) denote a two-dimensional query of the form \(a_1 < \text{KEY}.1 < b_1 \) and \(a_2 < \text{KEY}.2 < b_2 \). In the context of the \(P_e(2,1) \) pyramid:
A) search operations for SET(q) can be executed in $O(\log N)$ **worst-case** locate time

B) insertions and deletions can be executed in $O(\log N)$ **expected** runtime

Proof: Only proposition A requires verification, since B is rendered trivial by the fact that it discusses only **expected** runtime. In our proof of A, the symbol $INF(a_1, v)$ will denote the least record in SDS(v) whose $KEY.1 \geq a_1$. The search procedure that A needs to locate SET(q) will consist of the following three steps:

1) Find the address of $INF(a_1, \text{root of } T)$ in $\log N$ time (by using dictionary D).

2) Let $INF(a_1, \text{critical})$ denote the union of the $INF(a_1, v)$ elements of those nodes v in T that are critical with respect to $a_2 < KEY.2 < b_2$. This step will construct the $INF(a_1, \text{critical})$ set in $O(\log N)$ time by using the binary tree that is rooted at $INF(a_1, \text{root of } T)$ and generated by the LEFT.DOWN and RIGHT.DOWN pointers.

3) Construct the sought-after SET(q) in $\text{COUNT}(q)$ runtime by making the obvious walk down the list of "successor" pointers that is generated by $INF(a_1, \text{critical})$.

The above algorithm obviously performs locate-and-copy operations for SET(q) in $O(\log N + \text{COUNT}(q))$ time. Subtracting $\text{COUNT}(q)$ from this quantity, we obtain the result that SET(q) has an $O(\log N)$ locate runtime.

QED
The next objective of this paper will be to design and study a new pyramid that is capable of efficiently calculating $\text{SUM}(q)$ and $\text{COUNT}(q)$ values. This pyramid will be called $P_s(2,L)$ and is defined below:

Definition 2: The $P_s(2,L)$ pyramid will be defined as containing all the information of $P_e(2,L)$ plus two additional fields for each record R stored in $\text{SDS}(v)$. These fields will be denoted as $\text{SUM}(r)$ and $\text{COUNT}(R)$. In the context of v's SDS field, these fields will specify the respective SUM and COUNT of the subset of $\text{SDS}(v)$ whose $\text{KEY}.1$ value is greater than or equal to the $\text{KEY}.1$ value of R.

Lemma 2: In addition to satisfying part A of Lemma 1, the $P_s(2,L)$ pyramids will enable $\text{SUM}(q)$ and $\text{COUNT}(q)$ to be calculated in $O(\log N)$ worst-case aggregate-scan time.

Proof: Using reasoning similar to Lemma 1, it can be verified that all the members of the $\text{INF}(a_1, \text{critical})$ and $\text{INF}(b_1, \text{critical})$ sets can be found in $\log N$ time. The present lemma follows from this observation and the fact that

\[
\text{SUM}(q) = \sum_{x \in \text{INF}(a_1, \text{critical})} \text{SUM}(x) - \sum_{y \in \text{INF}(b_1, \text{critical})} \text{SUM}(y)
\]

\[
\text{COUNT}(q) = \sum_{x \in \text{INF}(a_1, \text{critical})} \text{COUNT}(x) - \sum_{y \in \text{INF}(b_1, \text{critical})} \text{COUNT}(y)
\]

\[\text{QED}\]
The next goal of this section will be to design a pyramid that optimizes on worst-case insertion and deletion time in addition to the expected time optimization mentioned in Lemma 12. The proposed pyramid will be called $P_d(2,L)$. Our discussion commences with the following preliminary definition:

Definition 3: Let s denote an interior node of an augmented tree that is contained in a $P_e(2,L)$ pyramid, y a record in $SDS(s)$, x the predecessor of y in this SDS field, and v the father of s. The symbol $ASSOC(s,y)$ will denote the subset of $SDS(v)$ whose records R satisfy the inequality $KEY.1(x) < KEY.1(R) ≤ KEY.1(y)$.

Definition 4: A $P_d(2,L)$ pyramid will be defined as having a data structure identical to $P_e(2,L)$ in all respects but one. The distinction is that the $P_d(2,L)$ pyramid will not have any LEFT.DOWN.POINTER or RIGHT.DOWN.POINTER fields. Instead, each member of an SDS field of $P_d(2,L)$ will contain two new fields called LEFT.DOWN.LEAF and RIGHT.DOWN.LEAF, such that

i) each record y belonging to the SDS field of the left son of v will be associated with a 2-3 tree whose leaves are the LEFT.DOWN.LEAVES of the ASSOC $[(\text{left son of } v), y]$ set and whose root points to y;

ii) each record y belonging to the SDS field of the right son of v will be associated with a similar 2-3 tree whose leaves are the RIGHT.DOWN.LEAVES of ASSOC $[(\text{right son of } v), y]$.
The above 2-3 trees of the \(P_d(2,L) \) pyramid will henceforth be called mapping trees. The runtime characteristics of this pyramid will be discussed in the next lemma. The proof of that lemma assumes that the reader is familiar with the characteristics of 2-3 trees that were discussed in AHU-74.

Lemma 3: Each of the following operations can be performed in \(O(\log N) \) expected and \(O(\log^2 N) \) worst-case time with the use of a \(P_d(2,L) \) pyramid:

A) searches for \(\text{SET}(q) \);

B) insertions and deletions

Proof of A: The algorithm for performing searches in \(P_d(2,L) \) pyramids is identical to that of \(P_e(2,L) \), except that the former will traverse a path from a \texttt{DOWN.LEAF} to the root of the associated mapping tree on those occasions when the latter would simply advance to the position indicated by the corresponding \texttt{LEFT} or \texttt{RIGHT.DOWN.POINTER}. This difference cannot increase the runtime of the \(P_d(2,L) \) procedure by a factor of more than \(\log N \) (since 2-3 trees have \(\log N \) worst-case heights). Furthermore, expected retrieval time should not increase at all, since the mapping trees in the present application will have an \(O(1) \) expected height. Thus the previous Lemma 1 implies that \(P_d(2,L) \) will have \(O(\log N) \) expected and \(O(\log^2 N) \) worst-case retrieval times.

QED
Proof of 3: It is sufficient to confirm the proposition only for the deletion algorithm, since the insertion procedure is similar. Upon the user's command to delete a record R, the following three-step procedure will be executed.

1) Utilize dictionary D (of Definition 1) and the mapping trees to perform a straightforward search that finds all the entries for record R in the SDS fields of the $P_d(2,L)$ pyramid.

2) Repeatedly execute the following three substeps in order to remove R from each of the above SDS fields:
 a) Delete the LEFT.DOWN and RIGHT.DOWN leaves of R from their mapping trees;
 b) Merge the old mapping tree whose roots pointed to R into the mapping tree whose roots point to R's immediate predecessor (in the relevant SDS field);
 c) Deallocate R's memory space in the SDS field and make the predecessor and successor fields of its predecessor and successor point to each other.

3) Remove record R from $P_d(2,L)$'s augmented tree and use the super-B-tree algorithm to rebalance the augmented tree (so that it retains its $O(\log N)$ height).

The $O(\log^2 N)$ worst-case runtime of steps 1 and 2 can be understood given the observation that the time-consuming parts of these steps consisted of $O(\log N)$ invocations of certain specific 2-3 tree manipulation algorithms for which AHU-74
Willard - 15

has verified an \(O(\log N)\) worst-case runtime. The super-B-tree theorem indicates that the amount of time needed by step 3's rebalancing procedure must have the same magnitude as the SDS field updating which takes place in step 2. Thus the combined runtime of all three steps of our deletion algorithm has the \(O(\log^2 N)\) worst-case magnitude which Lemma 3 attributed to it.

Similar reasoning can be used to confirm the \(O(\log N)\) expected runtime of deletion operations. In essence, this runtime follows from the \(O(1)\) expected heights of the mapping trees.

The final goal of this section will be to generalize Lemmas 1 through 3 for \(k\)-dimensional pyramids. Below is our definition of \(k\)-dimensional pyramids:

Definition 5: Let \(P_i\) denote one of the symbols of \(P_e, P_s\) or \(P_d\), and let \(L_v\) denote the subset of list \(L\) that is a descendant of \(v\). The symbol \(P_i(k,L)\) will denote a typical \(k\)-dimensional pyramid representation of \(L\). If \(k \geq 3\), then the associated \(P_i(k,L)\) pyramid will be inductively defined as an augmented tree sorted by \(\text{KEY,k}\) whose SDS field equals \(P_i(k-1, L_v)\).

Claim 1: The portions of Theorems 1 through 3 that discuss retrieval times of \(k\)-dimensional pyramids are valid. (The statement of these theorems can be found in the introductory portion of this paper.)
Proof: For $k \geq 3$, consider a retrieval procedure that locates the nodes which are critical with respect to $a_k < \text{KEY} < b_k$ and that recursively calls itself to search the SDS fields of these nodes. It is trivial to verify that such a procedure will cause $P_i(k)$ pyramids to have a retrieval time that exceeds $P_i(k-1)$ by a factor of $\log N$. This fact, combined with Lemmas 1 through 3, easily inductively verifies the claim.

QED

Claim 2: The portions of Theorems 1 through 3 that discuss insertion and deletion runtimes are also valid.

Proof: The super-E-tree theorem implies that the update time of a $P_i(k)$ pyramid will exceed that of $P_i(k-1)$ by a factor of $\log N$. The claim follows from the conjunction of this fact, the principle of induction, and Lemmas 1 through 3.

QED

Although the discussion in this section was centered on measurements of CPU runtime, the proposed data structures are also useful in minimizing disc accesses. To illustrate this point, we consider the $P_e(2)$ pyramid.

In a paging environment, the SDS fields of $P_e(2)$ pyramids should be arranged so that consecutive records in their sorted lists appear on the same page. Let k denote the average number of records stored on a typical page, and r the fraction of the
file's total records that satisfy \(c < \text{KEY.2} < d \). A full locate-
and-copy operation to retrieve the records satisfying
\(a < \text{KEY.1} < b \ AND \ c < \text{KEY.2} < d \) from a \(P_e(2) \) pyramid will require
\[
C_1 \log N + \frac{\text{COUNT}(3)}{k} \text{ worst-case page accesses} \text{ (for some small constant } C_1 \text{). In contrast, the same query would require }
\]
\[
C_2 \log N + \frac{\text{COUNT}(3)}{k} \text{ expected page accesses with a (KEY.1-sorted) B-tree }
or some other conventional method of organizing a file. As } r \text{ is always less than one and usually very small, the } P_e(2) \text{ pyramids produce a clear gain in efficiency.}
Note Added February 15

At the time when the November draft of this paper was completed, I was aware of the possibility of slightly modifying the structure of the P_d pyramids by giving them mapping trees with a "multiway" rather than 2-3 structure. Multiway trees have been described in Kn-73, and they are the generalization of 2-3 trees that assign each interior node between $2M$ and $2M-1$ sons (for some fixed M). The employment of multiway mapping trees in the context of P_d pyramids would produce an improvement in the coefficient associated with retrieval time at the expense of the update runtime coefficient. Such a modification of the runtime coefficient was not mentioned in my entire draft because I did not consider it especially subtle.

I now realize that multiway mapping trees are more important than I previously expected because they can be used to define new magnitudes of runtime. This can be done if M is treated as a variable rather than a constant. For instance, if M is defined as the least integer such that $M^M > n$ then the multiway mapping trees will produce a $\log \log N$ improvement in retrieval time at the expense of an $\log N/(\log \log N)^2$ worsening of update runtime. Hence, a $\log^k N/ \log \log N$ retrieval and $\log^{k+1} N/(\log \log N)^2$ worst-case update can be associated with k dimensional pyramids. This change in worst-case runtime is produced without altering the basic $\log^{k-1} N$ expected runtime that is associated with $P_d(k)$ pyramids. It appears that many users may desire to employ this technique since a high priority is usually assigned to optimizing retrieval runtime. Further improvements in the magnitude of retrieval runtime do not appear possible without seriously damaging the worst-case update runtime associated with $P_d(k)$ pyramids.
PART 2

One serious disadvantage to the data structures of the preceding section is that they consume $O(N \log^{k-1} N)$ space. This allocation of memory space will generally be prohibitively expensive when k is greater than 3.

To save memory space, it is often useful to combine the theory of partial match data structures with the super-E-trees of Wi-78. A discussion of partial match data structures can be found in Be-75, Ri-76 and Wi-78a. These data structures are representations of k-dimensional files that occupy $O(N)$ space and associate $O(1)$ retrieval time with requests of the form:

$$\text{KEY.i}_1 = C_1 \land \text{KEY.i}_2 = C_2 \land \ldots \land \text{KEY.i}_j = C_j.$$

The distinction between the Be-75, Ri-76 and Wi-78 structures is rather technical. Ri-76 relies on hashing and consequently associates an $O(1)$ runtime with insertion and deletion operations. Be-75 utilizes tree representations for its partial match files, whose advantage is that they additionally enable searches to be done on a conjunction of range queries such as

$$a_1 \prec \text{KEY.i}_1 \prec b_1 \land a_2 \prec \text{KEY.i}_2 \prec b_2 \land \ldots \land a_j \prec \text{KEY.i}_j \prec b_j$$

(discussed in detail in LW-77). Wi-78a describes a dynamic generalization of Be-75 designed to guarantee an $O(\log^2 N)$ worst-case insertion and deletion time.

Let $A(\text{KEY.0, k, } \prec)$ denote an augmented tree which

i) has its records sorted by KEY.0

ii) has SDS fields that consist of partial match data structures describing the k keys of $\text{KEY.1, KEY.2} \ldots \text{KEY.k}$
iii) satisfies the Nievergelt-Reingold $BB(\alpha)$ condition (the nature of which can be explained if the ratio of v's left son's descendants over v's descendants is denoted as $p(v)$: here $BB(\alpha)$ requires that all nodes of the tree satisfy $\alpha < p(v) < 1 - \alpha$)

Let N_{ab} denote the cardinality of the subset of our initial file that satisfies $a < \text{KEY.0} < b$. The theorems of Be-75, Ri-76 and Wi-78a can be easily generalized to show that $A(\text{KEY.0}, k, \alpha)$ associates an $O(N_{ab}^{1-1/k})$ worst-case retrieval time with queries of the form:

$$a < \text{KEY.0} < b \quad \& \quad \text{KEY.i}_1 = C_1 \quad \& \quad \text{KEY.i}_2 = C_2 \quad \& \quad \ldots \quad \text{KEY.i}_j = C_j$$

In contrast, the same query in traditional partial match files would require $O(N^{1-1/k})$ worst-case runtime (where N denotes the file's cardinality). Thus the $A(\text{KEY.0}, k, \alpha)$ data structure will have a significantly improved retrieval time, produced through an allocation of $N \log N$ additional units of memory space.

The point of this example is that the super-B-tree algorithm has many significant applications beyond the pyramids of the last section. In the present context, subroutines-calls to the super-B-tree algorithm will guarantee that any record can be inserted into and deleted from $A(\text{KEY.0}, k, \alpha)$ in $O(\log N)$ time if Rivest-like hash systems are used to define the SDS fields, and in $O(\log^3 N)$ worst-case runtime if the otherwise more flexible k-d trees of Be-75 and Wi-78a are employed. Several other useful applications of the super-B-tree procedure are discussed in Wi-78.
CONCLUSION

Our goal in this paper was to improve the runtime of multidimensional systems by employing data structures which require more than $O(N)$ space. It was shown here that this could be done with data structures that occupy as little as $O(N \log N)$ or $O(N \log^2 N)$ space. This result could be quite significant if the cost of computer memory continues to drop at the same rate as it has in the past.
REFERENCES

Wi-78a Dan E. Willard, "Balanced Forests of K-d* Trees as a Dynamic Data Structure"; submitted to CACM; also will be a Harvard Aiken Computer Lab Research Report.

Wi-78b "Super-B-trees": two articles based on extracts from Wi-78 that will be completed and mailed to CACM and J. ACM before Dec. 31, 1978.

NOTE TO THE READER: Several references are made in this article to the super-B-tree algorithm. That algorithm was described in my dissertation (Wi-78), and a condensation (Wi-78a) should be available within a month's time. On completion, this condensation will be submitted to CACM for publication (also a second, much more technical description will go to J. ACM). I deliberately wrote this article and Wi-78a before producing a revised edition of my work on super-B-trees because I wanted to put my new ideas on paper before considering how to present the old ones more clearly.
nal Queries," ince (1978),

combined

is for Region
nal Binary Search
arch Trees of
), pp. 33-43.
Rithms,"

Search Algorithm,
ent; formally
73; published
port; to be
land Publishing
ions in

see as a
also will
ort.
acts from WI-73
d J.CK. before

this article
escrbed in my
ould be available
tion will be
ch more technical
his article and
on super-3-trees
considering