Phase I Inspection Report
Cape Pond Dam
Lower Hudson River Basin, Ulster County, NY
Inventory No. 265

KENNETH J. MALE

C.T. Male
3000 Troy Road
Schenectady, New York 12309

Department of the Army
26 Federal Plaza, New York District, ColE
New York, New York 10287

Department of the Army
26 Federal Plaza, New York District, ColE
New York, NY 10287

Approved for public release; Distribution unlimited.

This report provides information and analysis on the physical condition of the dam as of the report date. Information and analysis are based on visual inspection of the dam by the reporting organization.

Examination of available documents and visual inspection of the dam did not reveal conditions which constitute an immediate hazard to human life or property. However, the dam has some serious deficiencies which require further investigation and remedial work. -

Cape Pond Dam
Lower Hudson River Basin
Ulster County

12. KEYWORDS (Continue on reverse side if necessary and identify by block number)
Dam Safety
National Dam Safety Program
Visual Inspection
Hydrology, Structural Stability
Hydrologic and hydraulic analysis indicates that maximum spillway discharge capacity is only about 21% of the PMF peak outflow. The 1/2 PMF would overtop the concrete and stone masonry dam. Structural stability analysis indicates that overtopping due to 1/2 PMF would probably cause failure of the dam. It is judged that failure due to overtopping would significantly increase the hazard to loss of life downstream from that which would exist just prior to failure. Therefore, in accordance with Corps of Engineers' screening criteria for review of spillway adequacy, spillway capacity is considered "seriously inadequate" and the dam is assessed as "unsafe, non-emergency".

The classification of "unsafe" applied to a dam because of a seriously inadequate spillway is not meant to connote the same degree of emergency as would be associated with an "unsafe" classification applied for a structural deficiency. It does mean that there appears to be a serious deficiency in spillway capacity and if a severe storm were to occur, overtopping and failure of the dam could take place, significantly increasing the hazard to loss of life downstream of the dam.
LOWER HUDSON RIVER BASIN
TOWN OF WAWARSING
ULSTER COUNTY, NEW YORK

CAPE POND DAM
NY 00265

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED

DEPARTMENT OF THE ARMY
NEW YORK DISTRICT, CORPS OF ENGINEERS
26 FEDERAL PLAZA
NEW YORK, NY 10278

JULY 1981
PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I Investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through frequent inspections can unsafe conditions be detected and only through continued care and maintenance can these conditions be prevented or corrected.

Phase I Inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the Spillway Test Flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. Because of the magnitude and rarity of such a storm event, a finding that a spillway will not pass the test flood should not be interpreted as necessarily posing a highly inadequate condition. The test flood provides a measure of relative spillway capacity and serves as an aide in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

The Phase I Investigation does not include an assessment of the need for fences, gates, no-trespassing signs, repairs to existing fences and railings and other items which may be needed to minimize trespass and provide greater security for the facility and safety to the public. An evaluation of the project for compliance with OSHA rules and regulations is also excluded.
TABLE OF CONTENTS

PREFACE

TABLE OF CONTENTS

ASSESSMENT

OVERVIEW PHOTO

VICINITY MAP

Section 1 - PROJECT INFORMATION

1.1 GENERAL

a. Authority

b. Purpose of Inspection

1.2 DESCRIPTION OF PROJECT

a. Location

b. Description of Dam and Appurtenances

c. Size Classification

d. Hazard Classification

e. Ownership

f. Operator

g. Purpose of Dam

h. Design and Construction History

i. Normal Operating Procedures

1.3 PERTINENT DATA

2 - ENGINEERING DATA

2.1 DESIGN DATA

a. Geology

b. Subsurface Investigations

c. Dam and Appurtenances

2.2 CONSTRUCTION HISTORY

2.3 OPERATION RECORD

2.4 EVALUATION

a. Availability

b. Adequacy

c. Validity
VISUAL INSPECTION

FINDINGS

- **FINDINGS**
 - a. General
 - b. Dam
 - c. Appurtenant Structures
 - d. Reservoir Area
 - e. Downstream Channel

EVALUATION

OPERATION AND MAINTENANCE PROCEDURES

- **OPERATION PROCEDURES**
- **MAINTENANCE OF DAM AND OPERATING FACILITIES**
- **EMERGENCY ACTION PLAN AND WARNING SYSTEM**
- **EVALUATION**

HYDROLOGY AND HYDRAULICS

- **DRAINAGE AREA CHARACTERISTICS**
- **ANALYSIS CRITERIA**
- **RESERVOIR CAPACITY**
- **SPILLWAY CAPACITY**
- **FLOODS OF RECORD**
- **OVERTOPPING POTENTIAL**
- **EVALUATION**

STRUCTURAL STABILITY

- **EVALUATION OF STRUCTURAL STABILITY**
 - a. Visual Observations
 - b. Design and Construction Data
 - c. Operating Records
 - d. Post-Construction Changes
 - e. Seismic Stability

STABILITY ANALYSIS
7 - ASSESSMENT AND RECOMMENDATIONS

7.1 ASSESSMENT
 a. Safety 7-1
 b. Adequacy of Information 7-1
 c. Need for Additional Investigations 7-2
 d. Urgency 7-2

7.2 RECOMMENDED MEASURES 7-3

APPENDICES

APPENDIX A - PHOTOGRAPHS
APPENDIX B - VISUAL INSPECTION CHECKLIST
APPENDIX C - HYDROLOGIC AND HYDRAULIC ENGINEERING DATA CHECKLIST AND COMPUTATIONS
APPENDIX D - STABILITY ANALYSIS
APPENDIX E - REFERENCES
APPENDIX F - AVAILABLE ENGINEERING DATA AND RECORDS
APPENDIX G - DRAWINGS

TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Overtopping Analysis</td>
<td>5-5</td>
</tr>
<tr>
<td>6.1</td>
<td>Stability Analysis</td>
<td>6-3</td>
</tr>
</tbody>
</table>
ASSESSMENT

Examination of available documents and visual inspection of the dam did not reveal conditions which constitute an immediate hazard to human life or property. However, the dam has some serious deficiencies which require further investigation and remedial work.

Hydrologic and hydraulic analysis indicates that maximum spillway discharge capacity is only about 21% of the PMF peak outflow. The 1/2 PMF would overtop the concrete and stone masonry dam. Structural stability analysis, indicates that overtopping due to 1/2 PMF would probably cause failure of the dam. It is judged that failure due to overtopping would significantly increase the hazard to loss of life downstream from that which would exist just prior to failure. Therefore, in accordance with Corps of Engineers' screening criteria for review of spillway adequacy, spillway capacity is considered "seriously inadequate" and the dam is assessed as "unsafe, non-emergency".

The classification of "unsafe" applied to a dam because of a seriously inadequate spillway is not meant to connote the same degree of emergency as would be associated with an "unsafe" classification applied for a structural deficiency. It does mean that there appears to be a serious deficiency in spillway capacity and if a severe storm were to occur, overtopping and failure of the dam could take place, significantly increasing the hazard to loss of life downstream of the dam.

Therefore, it is recommended that within 3 months after receipt of this report by the Owner, a detailed hydrologic and hydraulic analysis be started to better assess spillway capacity.
This should include a more accurate determination of the site specific characteristics of the watershed. Within 18 months after receipt of this report by the Owner, any appropriate remedial work should be completed. The detailed analysis and the design and construction observation of any remedial work should be done by a qualified, registered professional engineer.

In the meantime, the Owner should immediately institute a program to visually inspect the dam and its appurtenances at least once a month. Also, within 3 months after receipt of this report the Owner should complete development of a surveillance program for use during periods of heavy runoff and of an emergency action plan outlining action to be taken to minimize the downstream effects of an emergency, together with an effective warning system.

Structural stability analysis indicates that for 1/2 PMF and PMF conditions the spillway has unsatisfactory stability and the dam section is unstable. For normal spring-summer-fall conditions both the spillway and dam appear to have satisfactory stability. Therefore, it is recommended that a detailed structural stability analysis of the dam and spillway, under flood loading conditions be started within 3 months after receipt of this report by the Owner. This analysis should include appropriate field and laboratory work to determine actual foundation material properties and structural details, including accurate cross sections of the dam and spillway. Any necessary remedial work should be completed within 18 months after receipt of this report by the Owner. The investigation and the design and construction observation of any remedial work should be done by a qualified, registered professional engineer.

Because of other deficiencies, the following additional investigation should be started within 3 months after receipt of this report by the Owner. The investigation should be performed by a qualified, registered professional engineer.

1) Observe the flow through and over the spillway at the right training wall of the spillway during periods of high water (6 inches or more of flow over the spillway) to determine whether alterations or repairs may be required in this vicinity.

Any remedial work deemed necessary as a result of the investigation should be completed within 18 months after receipt of this report by the Owner. A qualified, registered professional engineer should design and observe the construction of any necessary remedial work.

The following remedial work should be completed by the Owner within 12 months after his receipt of this report. Where engineering assistance is indicated, the Owner should engage a qualified, registered professional engineer. Assistance by such an engineer may also be useful for some of the other work.
1) Seal the upstream side of the gravity section to reduce the quantity of and the pressure head due to seepage through it. Provide drainage facilities for such seepage that does occur.

2) Contingent on the results of the detailed hydrologic and hydraulic analysis and the detailed structural stability analysis, repair the deteriorated concrete and stone masonry of the gravity dam section, the spillway, and the spillway training walls.

3) Remove trees and brush and their root systems from the embankment, from a zone 15 feet wide next to the downstream toe, and from the area between the spillway and the natural stream channel in accordance with specifications and field observation of the work by an engineer. Backfilling the zones where stumps and roots have been removed should be done with proper material and procedures. Continue to keep these same areas clear by cutting, mowing, and cleanup at least annually.

4) Repair the riprap apron downstream of the spillway.

5) Repair the deteriorated joint in outlet pipe #1 to prevent water from leaking out of the pipe into the area of the downstream rockfill.

6) Develop and implement effective routine operation and maintenance procedures for the dam and its appurtenances. The outlet pipe gates should be exercised regularly.

7) Institute a program of comprehensive technical inspection of the dam and its appurtenances by an engineer on a periodic basis of at least once every two years.

Kenneth J. Male
President
C. T. Male Associates, P.C.
NY PE 25004

Approved by:

Sol. W. M. Smith, Jr.
New York District Engineer
Corps of Engineers

Date: 14 Sep 81
1.1 GENERAL

a. Authority

The National Dam Inspection Act, Public Law 92-367, August 8, 1972, authorized the Secretary of the Army through the Corps of Engineers to initiate a national program of dam inspection throughout the United States. The New York District of the Corps of Engineers has been assigned the responsibility of supervising the inspection of dams within New York State. C. T. Male Associates, P.C., has been retained by the New York District to inspect and report on selected dams in the State of New York. Authorization and notice to proceed was issued to C. T. Male Associates, P.C., under a letter from Michael A. Jezior, LTC, Corps of Engineers. Contract No. DACW51-81-C-0014 has been assigned by the Corps of Engineers for this work.

b. Purpose of Inspection

The purpose of the inspection program is to perform technical inspection and evaluation of non-Federal dams to identify conditions which threaten the public, and thus permit correction in a timely manner by non-Federal interests.

1.2 DESCRIPTION OF PROJECT

a. Location

The dam is located on the Beer Kill about 2.5 miles northwest of the Village of Ellenville. The dam at its maximum section is at Latitude 41 degrees - 44.9 minutes North, Longitude 74 degrees - 26.3 minutes West.

Access to the dam is from the Village of Ellenville via Cape Avenue (County Route 52). The dam and reservoir are on the south side of the road (see Vicinity Map, and Drainage Area Map Appendix C-5).

The official name of the dam is Cape Pond Dam and the official name of the impoundment is Cape Pond. The impoundment is also known as Ulster Lake.
b. Description of Dam and Appurtenances

Cape Pond Dam is a grouted masonry gravity dam with a maximum height of about 20 feet and a crest length of about 612 feet. The spillway is near the center (highest) portion of the dam and the spillway crest is 5.25 feet below the top of dam. The dam consists of a 4-foot-thick grouted masonry gravity section which is founded on a 5-foot-thick concrete footing. A concrete ogee-like section was added in 1914 on the downstream side of the spillway.

To the left and to the right of the spillway section, rockfill or earth berms have been placed on the downstream side of the masonry. On the upstream side of the gravity section, a rockfill roadway has been placed to provide access across the dam. This rockfill is about 10 feet wide on the crest and its upstream slope is about 3H:1V. The crest of the rockfill slopes down from both abutments at about a 2% grade to its low point at spillway crest elevation.

The ogee-like spillway is a concrete gravity overflow section about 4 feet wide at the top with a crest length of 147 feet. The effective length of spillway weir is reduced by 11 piers, each one foot wide, located on the spillway weir crest, which serve as supports for a walkway that crosses over the spillway. There is a short stone masonry training wall on the left side of the spillway and a concrete training wall on the right. The discharge channel consists of a hand-placed stone riprap apron for about 30 feet downstream of the toe of the spillway section.

There are 2 slide gates on the upstream side of the gravity section which discharge their flow into 2, 48-inch-diameter riveted steel outlet pipes. Each slide gate has a handwheel control in a gate house. These gate houses are wood-framed structures that are situated on top of the concrete gravity portion of the dam, to the left of the spillway. The intakes to each slide gate are formed by concrete and masonry side walls through the upstream rockfill, with wooden bridge decks across the top. At the upstream ends of the intakes there are crude wooden trash racks with about one foot clear openings.

There is also a steel pipe walkway with a wooden deck across the top of the spillway.

c. Size Classification

In accordance with Recommended Guidelines (Reference 1), Cape Pond Dam is classified as "intermediate" in size because the maximum storage capacity at the top of the dam is 3,605 acre-feet (within the 1,000 to 50,000-acre-foot range). The height of the dam is about 20 feet.
d. **Hazard Classification**

In accordance with Recommended Guidelines (Reference 1), Cape Pond Dam is classified as having a "high" hazard potential. This is because it is judged that failure of the dam would significantly increase flows downstream which could cause loss of more than a few human lives and appreciable property damage. Downstream development that could be damaged or destroyed by a dam failure includes: a bridge for Marcus Road which crosses over the Beer Kill about 2,200 feet downstream; and many dwellings located near the stream outside of the Village of Ellenville, located about 2 miles downstream (vertical drop from the dam to these dwellings is over 500 feet).

e. **Ownership**

The dam was originally constructed sometime prior to 1904 for Dwight Divine and Sons. Presently the dam and reservoir are owned by:

Cape Pond, Inc.
Cape Road
Ellenville, New York 12428

Attention: William H. Lyons, President
Lyons Road
Milton, New York 12547
(914) 795-5164

f. **Operator**

Day-to-day operation of the dam is the responsibility of:

Andrew T. Jacob
Box 21A
Cape Pond Road
Ellenville, New York 12428

(914) 647-3207

g. **Purpose of Dam**

The dam was originally constructed to store water for hydropower generation, but it was never used for this purpose. The impoundment is presently used for recreational purposes.

h. **Design and Construction History**

It is believed that the dam was constructed sometime prior to 1904 for Dwight Divine and Sons (Ulster Knife Co.). The original designer is not known. A Mr. VanKeuren of Ellenville, New York, was the construction contractor for the original dam.
There are some details of the original design on a 1914 drawing concerning the addition of a concrete spillway section (see Appendix G-1). No other data concerning the original design or construction could be found.

According to a dam report dated August 13, 1914 (see Appendix F3-1), the dam was repaired or reconstructed in 1904. The nature or extent of this work is not known.

In September of 1914 the planking of a plank and stone-filled crib apron at the toe of the spillway was removed. The stone was grouted in place and a concrete ogee-like section was added to the downstream side of the spillway.

In 1970 slide gate #1 was repaired. Part of the outlet pipe from this gate was replaced and the remainder was encased in concrete. The downstream rockfill was also rearranged and dressed up.

Refer to Section 2 of this report, as well as the Engineering Data Checklist in Appendix F2, for a more complete discussion of the design and construction history. A drawing and other engineering data are included in Appendices F3 and G.

i. **Normal Operation Procedures**

The Operator checks the dam daily. The Owner of the dam also has a dam committee, one of whose members also visits the dam once a week.

The maximum pond level was established by a court decision in the early 1900's. The Operator tries to maintain this level (slightly below the spillway crest) from April through October. Primarily gate #1 (nearest the left end of the dam), which is the easiest to operate, is used to regulate outflow. During periods of high water both gates are used.

During the period of November through May the water level is maintained about 2 feet below the spillway crest, primarily to help control vegetative growth around the shoreline.

The Operator opens the gates in anticipation of heavy flows due to storms. From experience, 2 to 3 inches of rain causes about a 6 inch rise in the water level. According to the Operator, with both gates open it takes about 36 hours to drop the water level to the old channel, essentially draining the reservoir.

1.3 **PERTINENT DATA**

a. **Drainage Area** (square miles) 19.25
b. Discharge at Dam Site (cfs)
Spillway (W.S. at top of dam) 4,890
Outlet Pipe # 1 (normally partially open)
 - (fully open w/W.S. at top of dam) 240
 - (fully open w/W.S. at spillway crest) 200
Outlet Pipe # 2 (normally closed)
 - (fully open w/W.S. at top of dam) 210
 - (fully open w/W.S. at spillway crest) 160
Spillway and Both Outlet Pipes Fully Open
(W.S. at top of dam) 5,340
Maximum Known Flood > 4,900

c. Elevations (feet - NGVD)
Based on USGS mapping the elevation base used on the
drawing by J.H. Divine in Appendix G appears to be about 900 feet
lower than NGVD (National Geodetic Vertical Datum of 1929). There-
fore, all elevations used in this report are 900 feet higher than
those found on the drawing in Appendix G and are in feet above mean
sea level NGVD.

<table>
<thead>
<tr>
<th>Elevation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top of Dam</td>
<td>1005.25</td>
</tr>
<tr>
<td>Design High Water</td>
<td>Unknown</td>
</tr>
<tr>
<td>Spillway Crest</td>
<td>1000</td>
</tr>
<tr>
<td>Entrance Invert of Outlet Pipe # 1</td>
<td>986.8 +</td>
</tr>
<tr>
<td>Entrance Invert of Outlet Pipe # 2</td>
<td>991.4 +</td>
</tr>
</tbody>
</table>

d. Reservoir Length (feet) - at spillway crest 6,300 +
e. Reservoir Surface Area (acres)
Top of Dam 448
Spillway Crest 229.6

f. Reservoir Storage (acre-feet)
Top of Dam 3,605
Spillway Crest 1,377

g. Dam
Type - Grouted masonry and concrete gravity with partial
earth berms.
Length - 612 feet (including spillway).
Top Width - Gravity Section - 4 feet.
 Upstream Rockfill - 10 feet.
Side Slopes - Upstream: 3H:1V.
 - Downstream right of spillway: Flat to 3H:1V.
 - Downstream left of spillway: 6-feet wide rock-
 fill berm with vertical face.
 - Downstream between gate houses: 4H:1V for 15 feet,
 then 1H:1V.
Zoning - Berms on both sides of grouted masonry section.
Impervious Core - Grouted masonry gravity section forms the
impervious core.
Cutoff - 5-foot-thick concrete footing (apparently on till)
forms cutoff.
Grout Curtain - None known.

h. Spillway
 Type - Ogee-like with wooden walkway, across top, at top of
dam elevation.
 Length of Weir - 136 feet clear (147 feet if 11, 1 foot wide
 piers, are included).
 Upstream Channel - Rockfill roadway 10 feet wide at spillway
crest elevation, immediately upstream.
 Pond surface upstream of roadway.
 Downstream Channel - 30-foot-wide hand-placed riprap apron
downstream of ogee with stone masonry
 training wall on left and concrete one
 on right. Further downstream natural
ground, with tree and brush growth,
 until the natural stream channel.

i. Outlet Works

1) Outlet Pipe # 1
 Size - 48-inch diameter.
 Description - 35-foot long riveted steel pipe down-
 stream from slide gate at gravity section.
 Control - Slide gate with handwheel control at gate
 house on gravity section. Gate opens up
 about 40 inches maximum.

2) Outlet Pipe # 2
 Size - 48-inch diameter.
 Description - 20-foot long riveted steel pipe down-
 stream from slide gate at gravity section.
 Control - Slide gate with handwheel control at gate
 house on gravity section. Gate opens up
 about 2 feet maximum.
SECTION 2
ENGINEERING DATA

2.1 DESIGN DATA

a. Geology

There was no geologic information available in the data for this dam. The following information was obtained from current geologic maps and publications for this region (References 28, 29, and 30), as well as from the site visit.

Cape Pond Dam is located in the Catskill Section of the Appalachian Plateaus Province. The dam is located on the eastern fringes of generally flat-lying sedimentary sequences that underlie the Catskill Mountains and associated plateaus. Bedrock in the vicinity of the dam consists of shale and sandstone, which is middle to upper Devonian in age (350 - 375 million years old).

There is no surficial geology map available for this site.

b. Subsurface Investigations

No subsurface investigations are available for this dam.

Based on the appearance of the landscape surrounding the dam and a notation in a reconstruction application dated September 22, 1914 to the New York State Conservation Commission (see Appendix F3-6), the dam is probably founded on glacial till. The till may be clayey in nature, based on the 1914 Application.

c. Dam and Appurtenances

It is suspected that the dam was constructed prior to 1904 for Dwight Divine and Sons (Ulster Knife Co.). The original designer is unknown. No direct data concerning the original design of the dam could be found. There are some details of the original design on a September 1914 drawing concerning the addition of a concrete spillway section (see Appendix G-1). A September 1914 letter and reconstruction application also contain some additional data concerning the original design (see Appendices F3-4 to F3-12).

2.2 CONSTRUCTION HISTORY

a. Initial Construction

The original contractor for the dam was a Mr. VanKeuren of Ellenville, New York. No records concerning the actual con-
struction of the original dam and appurtenances are known to exist. A brief review of the construction history can be found in Appendix F2, Checklist for General Engineering Data and Interview with Dam Owner.

b. Modifications and Repairs

According to an inspection report dated August 13, 1914 (see Appendix F3-1), the dam was repaired or reconstructed in 1904. The nature or extent of this work is not known.

In September of 1914 the planking of a plank and stone-filled crib apron at the toe of the original spillway was removed (see Appendix G-1). The stone was grouted in place and a concrete ogee-like section was added to the downstream side of the spillway. J. H. Divine, Engineer, of Ellenville, New York was the designer of these modifications. The construction contractor for this work is not known.

In 1970 slide gate # 1 was repaired. Part of the outlet pipe from this gate was also replaced and the remainder was encased in concrete. The rockfills on the downstream side of the dam were also rearranged and dressed up. There are no plans or records for this work, except for bills. The contractor for this work was McDole Construction Company, Wawarsing, New York.

In 1978 the concrete sill below slide gate # 2 was replaced. This work was done by members of Cape Pond, Inc.

Also in the past other repair work has been done to the dam at various times. It is evident that concrete patching of the gravity and spillway sections has been done in the past. Also at some time in the past the flashboards were removed and some of the flashboard support sockets were filled with cement grout.

c. Maintenance and Pending Remedial Work

According to the Owner, each year about 30 or 40 tons of "clay" is dumped on the upstream side of the dam. It is dumped on the roadway and dozed into the reservoir. This work is done by a variety of local contractors.

After November first the water level is quickly dropped to the level of the slide gate sills so that the slide gates, sills, and any other items exposed can be inspected. The water level is then allowed to rise again.

In 1975 the Owner of the dam obtained cost estimates for guniting the downstream face of the spillway and exposed gravity section. This work was never done because of the cost.
2.3 OPERATION RECORD

a. Inspections

There is no known record of inspection of the dam by the Owner.

Several inspection reports and letters concerning this dam were found and they appear in Appendix F3. An August 3, 1914 Dam Report by the NYS Conservation Commission (see Appendix F3-1) describes the dam as "of very good construction and in very good condition." This report was prepared before the ogee-like section was added to the spillway.

An August 22, 1972 inspection report by the New York State Department of Environmental Conservation (NYS-DEC) appears as Appendix F3-15. This report noted that the exposed concrete surfaces were spalled, cracked, and deteriorated. It noted the presence of brush growth on the downstream slope of the dam and that there was a new concrete headwall at the end of the outlet conduit downstream of gate #1. The report also indicated that there was no evidence of periodic maintenance.

A NYS-DEC memorandum dated August 23, 1972 (see Appendix F3-18) generally discusses the August 22, 1972 NYS-DEC inspection report. It mentions the problems noted in that inspection report as well as several others. This memorandum indicates that trees as well as brush are growing on the downstream slope, that there was leakage through the ogee-like section at its mid-point, and that stone rubble and brush were observed clogging the stilling basin downstream of outlet pipe #1. This memorandum also noted that "the dam has received little maintenance for a long period of time" and suggested that a regular maintenance schedule, that addressed the problems of the dam, be implemented.

A December 20, 1977 letter from the Owner to the NYS-DEC (see Appendix F3-20) requested that the NYS-DEC inspect Cape Pond Dam. No record of any subsequent inspection, however, could be found.

Various members of Cape Pond, Inc. indicated that the dam has been inspected informally by engineers who are friends of members.

b. Performance Observations, Water Levels, and Discharges

The present seepage at the dam is about the same now as it was 20 years ago according to the members of Cape Pond, Inc., interviewed at the dam site.

Since May, 1979 the Operator of the dam has kept a daily log, mainly for security purposes. In the log, however, he has
noted when the water level is over the road or spillway. No other performance observations or routine measurements of water levels or discharges are known to exist.

c. **Past Floods or Previous Failures**

In August or September of 1955 the dam was overtopped by an unknown amount without causing any damage. In the early 1970's Ulster Heights Lake Dam, an upstream earth dam, failed and again caused Cape Pond Dam to be overtopped by an unknown amount. No damage resulted from this occurrence either. In 1977 or 1978 Ulster Heights Lake Dam failed again, but this time Cape Pond Dam was not overtopped. Also, according to the Operator, a storm event on March 6, 1980 caused the water level to rise about 2.8 feet above the spillway crest.

2.4 **EVALUATION**

a. **Availability**

As listed on Appendix F1, some engineering data and records for the dam were available in the files of the Dam Safety Section of the NYS-DEC. Some photos of the 1978 repair work and the daily log from May 1979 to the present were available from the Owner, but were not reviewed. The data from the NYS-DEC was reviewed, and all copies of the records found are included in chronological order in Appendices F3 and G. Appendix F2, Checklist for General Engineering Data and Interview with Dam Owner, also contains pertinent engineering information.

b. **Adequacy**

Available data reviewed consisted of one reconstruction drawing, a reconstruction application, 2 inspection reports, and various correspondence. Such data as original design drawings, construction specifications, design calculations, record drawings, complete data on foundation and embankment soils, and operation and performance data were not available. The lack of such in-depth engineering data does not permit a comprehensive review. Therefore, the available data was not adequate by itself to permit an assessment of the dam.

c. **Validity**

Based on field observation and checking, some of the data is not valid. The drawing appearing as Appendix G-1 shows the dam as 697.5 feet long, while field measurements indicate a length of about 612 feet. This discrepancy, however, could be due to some of the gravity section being buried underground.
The drawing of Appendix G-1 does not show the gate houses on the top of dam which presently exist. Finally the same drawing shows 14 piers in the spillway. Field observations indicate that there are only 11, with wider pier openings at the location of the missing piers.
SECTION 3
VISUAL INSPECTION

3.1 FINDINGS

a. General

Cape Pond Dam was inspected on April 8, 1981. The inspection party (see Appendix B-1) was accompanied by various individuals associated with the organization that owns the dam, Cape Pond, Inc. These individuals were William H. Lyons, President; Andrew T. Jacobs, Dam Operator; Sherman B. Loucks, member; and Thomas H. Clark, member. The weather was sunny and warm at the time of the inspection. The water surface was at about EL 1000 or at about the spillway crest. The Visual Inspection Checklist is included as Appendix B, while selected photos taken during the inspection are included as Appendix A and as the Overview Photo at the beginning of this report. Appendix A-1 is a photo index map.

b. Dam

There were no major sloughs or slides evident on the embankment portions of the dam.

Trees and Brush - Trees and brush cover the downstream slope to the right of the spillway. Some of these trees are as large as 20 inches in size. Brush to 10 feet high grows between the trees (see Photo A-3A). Leaves and other debris have been discarded along portions of the downstream slope. All of this cover interferes with proper inspection.

To the left of the spillway, there are a few trees growing from the rockfill berms on the downstream side of the concrete gravity section (see Photo A-4A).

Seepage - Seepage is occurring at low rates (< 1 gpm) at several locations from the downstream side of the spillway. These seeps seem to be associated chiefly with construction joints, since they tend to lie along horizontal lines. Photo A-10A shows a detail of the downstream side between Sta 4+60 and Sta 4+85, where it is seen that seepage is occurring only a few inches below the crest (top right in the photograph). Since the reservoir level was only a few inches below the spillway crest on the day of inspection, this observation shows that full reservoir head is acting on the upstream side of the concrete gravity section. There is no loss in hydraulic head through the fill that forms the roadway on the upstream side.
Minor clear seeps also were observed on the downstream side of both gate houses. Photo A-4B shows the seep beneath the left gate house (gate house #1). Both were seeping at a rate of a few drops per second or less.

Another minor seep was observed on the downstream side of the concrete gravity section at Sta 3+30. It is located just above ground surface in Photo A-5A (which is 8 feet below the top of the crest wall). The seepage rate was one drop per 10 seconds.

A rockfill berm was observed on the right side of the right training wall of the spillway (see Photo A-5B). This berm may have been placed to prevent scour during spillway flow. However, at the toe of this fill adjacent to the training wall a large opening was observed in the rockfill. There was no seepage occurring. Flow may occur at this location when flow passes over the spillway, by passing through the cracks in the top portion of the training wall.

Concrete and Masonry - The concrete and masonry gravity sections of the dam are in poor condition. There are vertical cracks through the wall in several locations. The top 4 feet of the gravity section is badly deteriorated on both the upstream and downstream sides, with portions of the wall missing to a depth of one foot (see Photos A-3B and A-5A). The concrete cap on the wall is also deteriorated, scaled, and it has been repaired in several locations.

c. Appurtenant Structures

1) Intake Structures and Gate Houses

The intake structures to the two slide gates (see Photo A-2A) are formed by concrete and masonry side walls through the upstream rockfill to the gravity section, with wooden bridge decks across the top. The intakes are submerged and therefore the condition of their side walls could not be assessed. At the upstream ends of the intake there are crude wooden trash racks made of 1 inch to 2 inch sticks, with one foot clear openings. Though crude, these intakes are in fairly good condition (see Photo A-7B) and are adequate to perform their functions.

There are two gate houses (see Appendix A-4A) located on top of the concrete gravity section that protect the handwheel control mechanisms for the slide gates. The gate houses are wood-framed structures with electric lights and locking doors. Both gate houses are in good condition although the roof of gate house #2 leaks.
The slide gates for both dams were only visible from the downstream side. Both gates were rusty but in good shape, with some leakage around them when closed (see Photo A-9A). The hand-wheel controls for raising the gates (see Photos A-6B and A-8A) were well lubricated. Gate #1 operates easily and is operated regularly. Gate #2 operates somewhat harder and is only operated when required to control high flows.

2) Outlet Pipes and Outlet Structures

The ends of the 2, 48-inch riveted steel outlet pipes can be seen in Photos A-7A and A-8B. Outlet pipe #1 is rusted and pitted. A joint in this pipe about 10 feet from the downstream end is open about one foot (see Photo A-9A). The last 10 feet of this pipe is also encased in concrete.

Outlet pipe #2 is also rusted and pitted. The downstream end of the pipe is rusted through to the bottom but this does not interfere with the function of the outlet. There is no headwall at the downstream end of this pipe.

3) Spillway and Discharge Channel

The dam has an ogee-like overflow spillway with 11 piers along its crest that support a walkway across the top of the spillway (see Photo A-9B). To the left of the spillway section there is a stone masonry training wall and to the right there is a concrete one. At the toe of the ogee there is a hand-placed riprap apron in the discharge channel.

The downstream concrete of the ogee-like spillway section is spalled and cracked (see Photos A-9B and A-10A). The surface was gunited in the past but it is now flaking and falling off. There is seepage through the section, probably at the location of construction joints. The toe of the ogee-like section is breaking up and there is also some erosion of the concrete. The piers on the weir crest have cracks, spalls, popouts of 1 inch to 3 inches in diameter, and efflorescence (see Photo A-10B). The weir crest also has several transverse cracks from the upstream to the downstream side. The first spillway bay on the left is also badly spalled and three piers for the walkway over the spillway appear to be missing.

There is a large crack near the top of the right spillway training wall at the change in slope (see Photos A-5B and A-6A). There is also cracking and efflorescence of the concrete of this wall.

The hand-placed riprap apron downstream from the weir crest is in fair shape (see Photos A-11A and A-11B). Some of the riprap at the downstream end is deteriorated, while elsewhere some of it was missing or disturbed. There is also some brush and tree growth at the downstream end of the apron.

3-3
d. Reservoir Area

The reservoir shores are relatively flat and forested. There was no obvious cause for concern about landslides into the reservoir or unusual erosion of the slopes (see Photo A-12A).

e. Downstream Channel

The downstream channel (see Photo A-11B) is a brush and tree-covered area of natural ground from the apron to the Beer Kill channel. This area is about 4 feet lower than the riprap apron and is relatively flat down to the natural stream channel. The natural channel is much narrower than the spillway and is encroached by heavy brush and tree growth.

3.2 EVALUATION

The trees, brush, and debris on the downstream side of the dam, both to the left and to the right of the spillway, probably do not have any significant effect on the structural stability of this dam. They do, however, prevent adequate observation of any potential seepage. The brush, trees, and debris should be removed from the dam to a distance of 15 feet downstream from the toe. Additionally, all trees and brush between the spillway and the natural stream channel should be cleared to a width at least equal to that of the spillway.

The deteriorated concrete of the gravity dam section and the spillway should be repaired in an appropriate manner. The spillway training walls should also be repaired.

The seepage observed was minor, although freezing and thawing at the seeps will continue to cause deterioration. On the downstream side of the spillway the seeps have existed for a long time. In the past they were sealed with a coating of gunite. This procedure leads to pressure buildup along the construction joints of the concrete spillway, with consequent reduction in stability. Ultimately this gunite covering spalls off and the seepage continues. When the spillway concrete is repaired, drainage from these seeps should be permitted to continue. The seeps should not be plugged.

The rockfill on the right side of the right spillway training wall should be observed during high flows over the spillway so that a judgment can be made about any needed repairs.

The rockfill apron downstream of the spillway should be repaired to prevent further deterioration.
SECTION 4

OPERATION AND MAINTENANCE PROCEDURES

4.1 OPERATION PROCEDURES

There are no written operation procedures for the dam.

Cape Pond is used for recreational purposes. The water level is maintained at about the spillway crest from April through October, and about 2 feet below the spillway crest from November through March, primarily to help control vegetative growth around the shoreline. The two outlet gates are operated as required to maintain the water level, with gate #1 being used first.

The maximum pond level was established by a court decision in the early 1900's (see Appendix F2-4). This level is a paint mark on a retaining wall to the left, upstream side of the dam, which is slightly lower than the spillway crest. This water level precludes the use of flashboards on the dam and they have not been used since the early 1900's. The Operator uses his discretion to maintain this level by operating the outlet gates. Primarily gate #1, which is the easiest to operate, is used to regulate outflow. During periods of high water both gates are used. In the past two years gate #2 was used only twice, on March 6, 1980 and February 20, 1981.

The Operator opens the gates in anticipation of heavy flows due to storms. From experience, 2 to 3 inches of rain causes about a 6 inch rise in the water level. According to the Operator, with both gates open it takes about 36 hours to drop the water level to the old channel, essentially draining the reservoir.

At the time of the inspection the pond level was about one inch below the spillway crest with outflow from the gates estimated to be 25 cfs.

4.2 MAINTENANCE OF DAM AND OPERATING FACILITIES

There are no written maintenance procedures for the dam.

The part-time operator for the dam lives in a house adjacent to the dam and checks the dam daily. Since 1975 the Owner of the dam has had a dam committee, one of whose members also visits the dam once a week.

Each year 30 to 40 tons of "clay" is dumped on the upstream side of the dam, as discussed in Section 2.2c. Also, each summer, various members of Cape Pond, Inc. do some minor concrete patching to the dam and appurtenances.
4.3 EMERGENCY ACTION PLAN AND WARNING SYSTEM

There is no emergency action plan and warning system for the dam.

4.4 EVALUATION

Maintenance of the dam and appurtenances is unsatisfactory. The condition of the dam and its appurtenances indicates that the dam does receive some routine maintenance and repair work on the gates and the concrete surfaces. Tree growth on the downstream side of the dam and in the spillway discharge channel, as well as some major concrete deterioration, however, have been allowed to occur. More effective and all-encompassing maintenance procedures need to be developed and implemented by the Owner in order to avoid the continued deterioration of the dam.

The Owner should develop an emergency action plan outlining action to be taken to minimize the downstream effects of an emergency, together with an effective warning system.
5.1 DRAINAGE AREA CHARACTERISTICS

Cape Pond Dam and Cape Pond are located on the Beer Kill in southeastern New York. About 4 miles downstream of the dam the Beer Kill joins Sandburg Creek. Sandburg Creek drains to the northeast into Rondout Creek. Rondout Creek flows east and discharges into the Hudson River.

The total drainage area at the dam is 19.25 square miles, of which about 0.36 square miles (229.6 acres), or almost two percent, is the surface area of Cape Pond at the spillway crest. Another 0.076 square miles (48.4 acres) of the total drainage area consists of the surface of an upstream reservoir in the drainage area, Ulster Heights Lake. The total drainage area upstream of and including Ulster Heights Lake is 8.99 square miles. Ulster Heights Lake Dam, NY 01107, is not covered by a Phase I Inspection Report. The drainage area of Cape Pond is located in the foothills of the Catskill Mountains and has slopes which range up to 20%. Elevations in the drainage area vary from EL 1000 to EL 1840. (See Appendices C-5 and C-6).

5.2 ANALYSIS CRITERIA

The U.S. Army Corps of Engineers Hydrologic Engineering Center's Program HEC-1 DB (Reference 3) was used to develop the test flood hydrology and perform the reservoir routing.

The purpose of this analysis was to evaluate the dam and spillway with respect to their surcharge storage and spillway capacity. Accordingly, it was assumed that the water surface was at the spillway crest at the start of the flood routing. In addition, both outlet gates were assumed to be fully open when the water surface was one foot over the spillway crest.

A constant base flow of 2 cfs per square mile was chosen to represent average conditions in the drainage area and was inputted into the program for all subareas.

The index PMP (probable maximum precipitation) inputted to the HEC-1 DB program was 21 inches for a 24-hour duration all-season storm over a 200-square-mile basin, according to HMR 33 (Reference 4). Maximum 6-hour, 12-hour, 24-hour, and 48-hour precipitation for the actual size of the drainage area (same for 10 square miles or less) were inputted to the program as percentages of the index PMP in accordance with HMR 33. A storm reduction coefficient was then applied internally by the program in order to transpose or center the storm over the actual total drainage area. Thus, the corrected 48-hour PMP for the actual total drainage area became 23.1 inches. All rainfall was distributed using the Standard Project Storm arrangement embedded in the program.

5-1
Appendices C-7 and C-8 summarize the subarea, loss rate, and unit hydrograph data inputted to the program. Four subareas were used to model the drainage area. Subarea 1 consists of all the drainage area around an upstream reservoir, Ulster Heights Lake, and Subarea 2 consists of just the surface of Ulster Heights Lake. Subarea 3 consists of all the drainage area around Cape Pond, excluding Subareas 1 and 2. Subarea 4 consists of the surface of Cape Pond.

For the land in Subareas 1 and 3, loss rates were assumed to be 1.0 inch initially and a constant 0.1 inch per hour thereafter. Snyder unit hydrograph parameters were chosen from the 1977 Lower Hudson River Basin Hydrologic Flood Routing Model (Reference 20). A conservative standard lag time was computed. The program uses the inputted lag time and Snyder peaking coefficient to solve by iteration for approximate Clark coefficients, which are then used to calculate the runoff hydrographs.

For the reservoir surfaces making up Subareas 2 and 4, loss rates were set to zero so that rainfall would equal rainfall excess, or runoff. Assuming no delay in the rainfall/runoff response, a constant unit hydrograph for a rainfall duration equal to the HEC-1 DB calculation interval was developed per Appendices C-7 and C-8 and inputted to the model for each reservoir.

Flows were routed through Subarea 2, Ulster Heights Lake, using the HEC-1 DB program in the same way as for Cape Pond. The development of elevation-storage and discharge data for Ulster Heights Lake is shown on Appendices C-9 and C-10. Routing was started with the water surface at the service spillway crest and the outlet works were assumed closed. Ulster Heights Lake Dam (see Photo A-12B) has a drop inlet service spillway and 2 overflow auxiliary spillways.

Flow from Ulster Heights Lake was routed through Subarea 3 to Cape Pond by the HEC-1 DB program using normal depth channel routing. The inputted typical cross sections defining the channel reaches were developed from and are located on the Drainage Area Map, Appendix C-5. Hand plottings of the cross sections are included as Appendix C-11.

The floods selected for analysis were the PMF (probable maximum flood) and 1/2 PMF. Floods as ratios of the PMF (e.g., 1/2 PMF) were taken as ratios of runoff, not of precipitation. Peak inflow to Cape Pond for the PMF is 26,900 cfs or 1,397 csm (cfs per square mile). Peak outflow is reduced by reservoir routing to 25,400 cfs (1,319 csm). For 1/2 PMF the peak inflow is 13,000 cfs (675 csm) and the routed peak outflow is 10,900 cfs (566 csm).

5.3 RESERVOIR CAPACITY

Storage capacity for the reservoir (assumed to be at the spillway crest, EL 1000) was obtained from an application for the
reconstruction of the dam dated September 22, 1914 (see Appendix F3-7). USGS contour mapping (see Appendix C-5) was used to obtain area measurements inside contour elevations above the spillway crest and the capacity of the reservoir for these areas was computed by the method of conic sections. A tabulation of the hand-computed reservoir volumes inputted to the program is on Appendix C-12.

At the spillway crest, EL 1000, the reservoir has a capacity of 1,377 acre-feet. At the top of dam, EL 1005.25, the reservoir has a capacity of 3,605 acre-feet. Surcharge storage between the spillway crest and the top of dam amounts to 2,228 acre-feet, or about 2.2 inches of runoff from the 19.25-square-mile drainage area. Therefore, the reservoir has some capacity to attenuate peak inflow.

5.4 SPILLWAY CAPACITY

The dam has a 136-foot-long (clear opening) concrete ogee-like spillway. The top of dam is about 5.25 feet higher than the spillway crest. In addition, the dam has 2 gated outlets which can be and are operated during high flow periods.

The discharge capacity for the spillway was computed assuming critical flow over a broad-crested weir with end contractions and pier losses. Since the spillway weir is not a true ogee, and because of the roadway upstream of and level with the crest, the broad-crested weir approximation is considered appropriate. The spillway discharge computations are presented on Appendix C-13. With water 5.25 feet over the spillway crest (i.e., water level at top of dam) the spillway discharges about 4,890 cfs.

The dam also has two gated outlet pipes which were considered fully open when the water surface was one foot over the spillway crest. These pipes were both modeled as orifices with free discharge. The outlet pipe discharge computations are presented on Appendix C-14. With the water level at the top of dam the outlet pipes have a total discharge capacity of about 450 cfs.

Total discharge computations are summarized on Appendix C-15. Total discharge from the dam is the sum of the discharges from the spillway and both gated outlet pipes fully open, plus flow over the dam for the overtopping condition. The top of the dam was modeled as an ideal broad-crested weir. With the water level at the top of dam, EL 1005.25, total discharge capacity is due to the spillway plus both outlet pipes fully open, or about 4,890 + 450 = 5,340 cfs.

5.5 FLOODS OF RECORD

There are no written records of past flood discharges at the dam. However, as noted in Section 2.3b, in August or September of 1955 the dam was overtopped.
In the early 1970's the dam was also overtopped when an upstream dam, Ulster Heights Lake Dam, failed. Therefore, the flood of record is estimated to have been at least 4,900 cfs, which is slightly greater than the capacity of the just spillway with the water surface at the top of dam.

5.6 OVERTOPPING POTENTIAL

The results of the overtopping analysis using the HEC-1 DB program are summarized in Table 5.1. The overtopping analysis computer input and output for the PMF and 1/2 PMF are included starting on Appendix C-16.

As noted from Table 5.1, the PMF overtops the dam by about 4.4 feet maximum with duration of overtopping of about 7.3 hours. The 1/2 PMF also overtops the dam but only by about 1.7 feet maximum with duration of overtopping of about 5.3 hours. Peak inflows are 26,900 cfs for the PMF and 13,000 cfs for 1/2 PMF. Peak outflows are reduced by reservoir routing to 25,400 cfs for the PMF and 10,900 cfs for 1/2 PMF. Time to maximum stage, or the time from the start of the 48-hour storm to peak outflow, is about 44.2 hours for the PMF and 45.3 hours for the 1/2 PMF. The peak portion of the inflow and outflow hydrographs for the PMF and 1/2 PMF are shown by the computer plots on Appendices C-26 and C-27. Total project discharge capacity at the top of dam is due to the spillway, as well as both outlet pipes fully open, and is about 5,340 cfs, or only about 21% of the PMF peak outflow and about 49% of the 1/2 PMF peak outflow.

5.7 EVALUATION

Maximum spillway discharge capacity (with both outlet pipes open) is only about 21% of the PMF peak outflow. The 1/2 PMF would overtop the concrete and stone masonry dam. Structural stability analysis indicates that overtopping due to 1/2 PMF would probably cause failure of the dam. It is judged that failure due to overtopping would significantly increase the hazard to loss of life downstream from that which would exist just prior to failure. Therefore, in accordance with Corps of Engineers' screening criteria for review of spillway adequacy, spillway capacity is considered "seriously inadequate" and the dam is assessed as "unsafe, non-emergency".
TABLE 5.1

CAPE POND DAM

OVERTOPPING ANALYSIS

CONDITIONS

- Total Drainage Area = 19.25 square miles including Ulster Heights Lake and its drainage area.
- Start Routing at Spillway Crest EL 1000
- Top of Dam EL 1005.25
- Total Project Discharge Capacity at Top of Dam = 5,340 cfs due to spillway and outlet gates #1 and #2 fully open.
- Some values rounded from computed results.

<table>
<thead>
<tr>
<th></th>
<th>PMF</th>
<th>1/2 PMF (a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFLOW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48-hour Rainfall (inches)</td>
<td>23.1</td>
<td>13.4 (b)</td>
</tr>
<tr>
<td>48-hour Rainfall Excess (inches) (c)</td>
<td>19.5</td>
<td>9.7 (d)</td>
</tr>
<tr>
<td>(cfs)</td>
<td>26,900</td>
<td>13,000</td>
</tr>
<tr>
<td>Peak Inflow (csm)</td>
<td>1,397</td>
<td>675</td>
</tr>
<tr>
<td>OUTFLOW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(cfs)</td>
<td>25,400</td>
<td>10,900</td>
</tr>
<tr>
<td>Peak Outflow (csm)</td>
<td>1,319</td>
<td>566</td>
</tr>
<tr>
<td>Time to Peak Outflow (hours)</td>
<td>44.2</td>
<td>45.3</td>
</tr>
<tr>
<td>Maximum Storage (acre-feet)</td>
<td>5,435</td>
<td>4,300</td>
</tr>
<tr>
<td>Max. W.S. Elevation (feet-NGVD)</td>
<td>1009.7</td>
<td>1007.0</td>
</tr>
<tr>
<td>Minimum Freeboard (feet)</td>
<td>overtopped</td>
<td>overtopped</td>
</tr>
<tr>
<td>Maximum Depth over Dam (feet)</td>
<td>4.4</td>
<td>1.7</td>
</tr>
<tr>
<td>Duration of Overtopping (hours)</td>
<td>7.3</td>
<td>5.3</td>
</tr>
</tbody>
</table>

(a) One half of PMF total runoff, including base flow. For PMF base flow = 2 cfs per square mile = 39 cfs.
(b) Approximation assuming total losses are the same as for the PMF.
(c) Rainfall Excess = Rainfall for the Reservoir Surface. For the rest of the drainage area, losses are assumed to be 1.0 inch initially and 0.1 inch per hour thereafter.
(d) Equal to one-half of PMF value.
6.1 EVALUATION OF STRUCTURAL STABILITY

a. Visual Observations

There are no visual observations that indicate structural instability of Cape Pond Dam.

b. Design and Construction Data

The available design data do not show any reason to suspect structural instability of this dam. However, prior to 1914, at which time the ogee-like spillway was added on the downstream side of the original concrete dam, the original dam may have been of borderline stability.

No existing stability analysis was found for any part of the dam or spillway.

c. Operating Records

No operating records were found or operational problems reported which would adversely affect the stability of the dam. As discussed previously in Section 2.3c, the dam has withstood over-topping on two occasions in the past.

d. Post-Construction Changes

It is not known when the roadway fill was placed on the upstream side of the gravity section. It may have been part of the original construction, or it may have been placed after the ogee-like spillway was added in 1914. In any case, this fill causes the gravity section to be less stable than it would be without the fill. The fill adds earth pressure in the downstream direction. The water pressure against the upstream side of the masonry is not affected by the presence of the fill because the fill is far more pervious than the leaky masonry wall. Thus, the full reservoir head acts against the masonry.

e. Seismic Stability

This dam is in Seismic Zone 1. According to Recommended Guidelines (Reference 1), a seismic stability analysis is not required.
6.2 STABILITY ANALYSIS

The concrete spillway and the upper portions of the dam can be considered gravity structures. An independent structural stability analysis was performed on a section of both the spillway and the dam. The cross section for analysis of the spillway was chosen through one of the walkway piers where the exposed height is greatest. The cross section geometry is based on the spillway modification drawing, Appendix G-1. The cross section for analysis of the dam was chosen to the right of the spillway at about Sta 3+40 where the exposed, unsupported downstream height is greatest. The cross section geometry is based on rough field measurements and visual observation (see Photo A-5B). The following loading cases were analyzed for both the spillway and the dam:

Case 1 - Normal pool at spillway crest, no tailwater by observation, full headwater uplift, roadway fill load on upstream side, apron resistance on downstream side of spillway.

Case 2 - Normal pool plus ice load was not analyzed because ice acts against the upstream side of the roadway fill. This force cannot effectively be transmitted through the fill. Ice will not be present during higher water stages unless flashboards are deliberately added.

Case 3 - Half PMF pool at EL 1007.0 or 7 feet above spillway crest (1.75 feet above top of dam), flood tailwater estimated at 1.7 feet deep or 7.8 feet below spillway crest (below failure plane for dam), full headwater and tailwater uplift, remaining conditions same as Case 1.

Case 4 - Full PMF pool at EL 1009.7 or 9.7 feet above spillway crest (4.45 feet above top of dam), tailwater estimated at 2.5 feet deep or 7 feet below spillway crest (below failure plane for dam), remaining conditions same as Case 3.

The results of the stability analysis are summarized in Table 6.1. The computations are included starting on Appendix D-1 for the spillway and on Appendix D-9 for the dam.

For all loading cases analyzed, minimum satisfactory overturning stability is considered to be a factor of safety of 1.5 with the resultant passing through the middle third of the base. For sliding stability, because of the high loading conditions and the conservative assumptions made about foundation material properties, a minimum satisfactory factor of safety of 2.0 is considered appropriate for all the loading cases analyzed, rather than the customary
TABLE 6.1
CAPE POND DAM
STABILITY ANALYSIS OF GRAVITY SECTIONS

<table>
<thead>
<tr>
<th>CASE</th>
<th>FACTOR OF SAFETY (a)</th>
<th>LOCATION OF RESULTANT (b)</th>
<th>SLIDING FACTOR OF SAFETY (c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spillway Section</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1- Normal Pool</td>
<td>1.93</td>
<td>0.46b</td>
<td>>10 effectively</td>
</tr>
<tr>
<td>2- Normal Pool plus Ice Load</td>
<td>Ice load not applicable, see text.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3- Half PMF Pool</td>
<td>1.15 unsatisfactory</td>
<td>0.12b</td>
<td>1.50 unsatisfactory</td>
</tr>
<tr>
<td>4- Full PMF Pool</td>
<td>1.02 unsatisfactory</td>
<td>0.02b</td>
<td>1.18 unsatisfactory</td>
</tr>
<tr>
<td>Dam Section</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1- Normal Pool</td>
<td>4.75</td>
<td>0.42b</td>
<td>5.72</td>
</tr>
<tr>
<td>2- Normal Pool plus Ice Load</td>
<td>Ice load not applicable, see text.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3- Half PMF Pool</td>
<td>0.94 unstable</td>
<td>-0.04b</td>
<td>1.39 unsatisfactory</td>
</tr>
<tr>
<td>4- Full PMF Pool</td>
<td>0.61 unstable</td>
<td>-0.34b</td>
<td>0.98 unstable</td>
</tr>
</tbody>
</table>

(a) Overturning factor of safety is ratio of resisting moments to driving moments taken about the toe.

(b) Distance from toe to point where resultant passes through base, expressed in terms of base dimension "b". Middle third of base is 0.33b to 0.67b.

(c) Sliding factor of safety is ratio of resisting forces to driving forces taken along horizontal failure plane.
3.0. Both overturning and sliding stability must be satisfactory in order for stability of the section to be satisfactory.

As noted from Table 6.1, for 1/2 PMF and PMF conditions (Cases 3 and 4) the spillway has unsatisfactory stability and the dam section is unstable. For normal spring-summer-fall conditions (Case 1), both the spillway and dam appear to have satisfactory stability.

For cases 3 and 4, the 1/2 PMF and PMF conditions, it should be noted that the full weight of the flowing water on the face of the sections was taken into account as a resisting force. Considering the relatively steep faces of the sections and the high head and discharge for the 1/2 PMF and PMF conditions, it is probable that the flowing water would exert little to no pressure - or even negative pressure - on the faces of the sections. Therefore, actual stability of the spillway and dam under such flood conditions might be even more unsatisfactory than presently indicated.

In view of the apparent unsatisfactory stability of the spillway and the instability of the dam, it is recommended that a detailed structural stability investigation of the dam and spillway be conducted to better assess their stability under flood loading conditions. This should include appropriate field and laboratory work to determine actual foundation material properties and structural details, including accurate cross sections of the dam and spillway. The investigation should determine what modifications to the dam and spillway, if any, are necessary to achieve satisfactory stability.
SECTION 7

ASSESSMENT AND RECOMMENDATIONS

7.1 ASSESSMENT

a. Safety

Visual inspection of Cape Pond Dam revealed the following deficiencies which affect the safety of the dam:

1) Seepage passing through joints in the spillway section.

2) Trees and brush growing on the embankment portions of the dam, in the zone adjacent to the downstream toe, and in the area between the spillway and the natural stream channel.

3) Deteriorated concrete and stone masonry of the gravity dam section, the spillway, and the spillway training walls.

4) Deterioration of the riprap apron downstream of the spillway.

5) Deterioration of one of the joints of outlet pipe #1.

Hydrologic and hydraulic analysis indicates that maximum spillway discharge capacity is only about 21% of the PMF peak outflow. The 1/2 PMF would overtop the concrete and stone masonry dam. Structural stability analysis, indicates that overtopping due to 1/2 PMF would probably cause failure of the dam. It is judged that failure due to overtopping would significantly increase the hazard to loss of life downstream from that which would exist just prior to failure. Therefore, in accordance with Corps of Engineers' screening criteria for review of spillway adequacy, spillway capacity is considered "seriously inadequate" and the dam is assessed as "unsafe, non-emergency".

Structural stability analysis indicates that for the 1/2 PMF and PMF conditions the spillway has unsatisfactory stability and the dam section is unstable. For normal spring-summer-fall conditions both the spillway and dam appear to have satisfactory stability.

b. Adequacy of Information

Available information together with that gathered during the visual inspection, while considered adequate for this Phase I inspection, is deficient in the following respects:
1) Trees, brush, and debris on the downstream side of the dam prevent adequate inspection of that area.

2) The gravity spillway section is assumed to be concrete and grouted masonry as shown on Appendix G-1. The design at other sections and the footing elevations are not known. There is also no data available on the actual material properties of the soil foundation under the concrete and stone masonry dam and the spillway. The lack of such data critically affects the structural stability analysis of the dam and spillway.

3) Minor inconsistencies in the engineering data available, based on field observation and checking, are itemized in Section 2.4c.

c. Need for Additional Investigations

The following detailed engineering investigations should be performed by a registered professional engineer qualified by training and experience in the design of dams:

1) Perform a detailed hydrologic and hydraulic analysis to better assess spillway adequacy. This should include a more accurate determination of the site specific characteristics of the watershed.

2) Perform a detailed structural stability analysis of the dam and spillway to better assess their stability under flood loading conditions. This should include appropriate field and laboratory work to determine actual foundation material properties and structural details, including accurate cross sections of the dam and spillway.

3) Observe the flow through and over the spillway at the right training wall of the spillway during periods of high water (6 inches or more of flow over the spillway) to determine whether alterations or repairs may be required in this vicinity.

d. Urgency

As recommended below in Section 7.2a, a program to visually inspect the dam at least once a month should be instituted immediately. As recommended below in Section 7.2b, development of a surveillance program and an emergency action plan should be completed within 3 months after receipt of this Phase I Inspection Report by the Owner. While the action plan is being developed, and within 3 months after receipt of this report by the Owner, the investigations recommended above in Section 7.1c should be started.
Any remedial work deemed necessary as a result of these investigations should be completed within 18 months after receipt of this report by the Owner.

Measures recommended below in Section 7.2c should be completed within 12 months after receipt of this report by the Owner.

7.2 RECOMMENDED MEASURES

The following work should be performed by the Owner. Where engineering assistance is indicated, the Owner should engage a registered engineer qualified by training and experience in the design of dams. Assistance by such an engineer may also be useful for some of the other work.

a. Complete Immediately

Institute a program to visually inspect - not just casually look at - the dam and its appurtenances at least once a month.

b. Complete Within 3 Months

Develop a surveillance program for use during and immediately after heavy rainfall or snowmelt, and also an emergency action plan outlining action to be taken to minimize the downstream effects of an emergency, together with an effective warning system.

c. Complete Within 12 Months

1) Seal the upstream side of the gravity section to reduce the quantity of and the pressure head due to seepage through it. Provide drainage facilities for such seepage that does occur.

2) Contingent on the results of the detailed hydrologic and hydraulic analysis and the detailed structural stability analysis, repair the deteriorated concrete and stone masonry of the gravity dam section, the spillway, and the spillway training walls.

3) Remove trees and brush and their root systems from the embankment, from a zone 15 feet wide next to the downstream toe, and from the area between the spillway and the natural stream channel in accordance with specifications and field observation of the work by an engineer. Backfilling the zones where stumps and roots have been removed should be done with proper material and procedures. Continue to keep these same areas clear by cutting, mowing, and cleanup at least annually.
4) Repair the riprap apron downstream of the spillway.

5) Repair the deteriorated joint in outlet pipe #1 to prevent water from leaking out of the pipe into the area of the downstream rockfill.

6) Develop and implement effective routine operation and maintenance procedures for the dam and its appurtenances. The outlet pipe gates should be exercised regularly.

7) Institute a program of comprehensive technical inspection of the dam and its appurtenances by an engineer on a periodic basis of at least once every two years.

d. Complete Within 18 Months

The following remedial work should be completed by the Owner. A qualified, registered professional engineer should design and observe the construction of the remedial work.

1) Appropriate modifications as a result of the detailed hydrologic and hydraulic analysis.

2) Appropriate modifications as a result of the detailed structural stability investigation of the dam and spillway.

3) Appropriate modifications as a result of observing flow over and through the spillway section at the right training wall of the spillway during periods of high water.
PHOTO 12 B IS INDEXED ON APPENDIX C-5.
A-2A Dam from upstream looking toward right abutment - 4/8/81

A-2B Top of upstream rockfill roadway looking toward left abutment - 4/8/81
A-3A Top of concrete gravity section and downstream slope looking toward left abutment - 4/8/81

A-3B Deteriorated concrete on upstream side of gravity section, typical of the area to the right of the spillway - 4/8/81
A-4A View of rockfill berm on downstream side of concrete gravity section looking toward right abutment. Gate house No. 1 is in foreground; gate house No. 2 is in background - 4/8/81

A-4B Seep downstream of gate house No. 1. Note bottom of gate house siding - 4/8/81
A-5A Seep at Sta 3 + 30 - 4/8/81

A-5B Right spilling training wall looking upstream, with rockfill behind it. Highest exposed portion of concrete gravity section is at left in the photo - 4/8/81
A-6A Crack at top of right spillway training wall - 4/8/81

A-6B Handwheel control mechanism for slide gate No. 2 - 4/8/81
A-7A Downstream end of outlet conduit for slide gate No. 2
4/8/81

A-7B Intake with trash rack upstream of gate No. 1 - 4/8/81
A-8A Handwheel control mechanism for slide gate No. 1 - 4/8/81

A-8B Downstream end of outlet conduit for slide gate No. 1 - 4/8/81
A-9A Inside of outlet conduit looking upstream at slide gate No. 1. Note gate leakage and gap in conduit joints - 4/8/81

A-9B Spillway and gate houses looking upstream toward left abutment. Note 3-foot drop in foreground at downstream edge of riprap apron - 4/8/81
A-10A Spillway with walkway looking downstream. Note seepage and condition of concrete - 4/8/81

A-10B Close-up of leftmost pier of spillway. Steel plate supporting downstream edge of roadway is barely visible at spillway crest 4/8/81
A-11A Spillway from walkway looking downstream. Note hand-placed riprap apron in discharge channel - 4/8/81

A-11B Spillway discharge channel looking downstream - 4/8/81
A-12A Reservoir looking upstream from left side of top of dam
4/8/81

A-12B Overview of Ulster Heights Lake Dam looking upstream
4/8/81
APPENDIX B

VISUAL INSPECTION CHECKLIST
PHASE I

VISUAL INSPECTION CHECKLIST

1. BASIC DATA

a. General

Name of Dam Cape Pond Dam
Fed. I.D.# NY00265 DEC Dam No. 751
River Basin LOWER HUDSON
Location: Town WAWARSING County ULSTER
Stream Name BEER KILL
Tributary of SANDBURG CREEK
Latitude (N) 41° 44.9' Longitude (W) 74° 26.3'
Type of Dam CONCRETE GRAVITY SECTION W/ ROCKFILLS U/S D/S
Hazard Classification HIGH
Date(s) of Inspection APRIL 8, 1981
Weather Conditions SUNNY & WARM
Reservoir Level at Time of Inspection EL 999.9
(2' LOWER THAN SPILLWAY CREST)

b. Inspection Personnel (*Recorder) THOMAS BENNEDUM - CTM
 EDWIN VOPELAK, JR. - CTM, STEVE J. POULOS - GEI

c. Persons Contacted (Including Title, Address & Phone No.)
 DAM OWNED BY CAPE POND, INC.
 WILLIAM H. LYONS, PRESIDENT, LYONS RD., MILTON, NY 12547, (914) 795-5164
 ANDREW T. JACOB, OPERATOR, BOX 21A, CAPE RD., ELLENVILLE, NY 12428, (914) 647-3207
 SHERMAN B. LOUCKS, MEMBER, (914) 647-5254
 THOMAS H. CLARK, MEMBER, (914) 652-6213

d. History
 PRIOV TO SPILLWAY
 Date Constructed 1904 Date(s) Reconstructed 1914/16

Designer UNKNOWN

Constructed By MR. VANKEUREN, ELLENVILLE, NY (DECEASED)
Owner CAPE POND INC., CAPE RD., ELLENVILLE, NY 12428
ATTN: WILLIAM H. LYONS, PRESIDENT, LYONS RD., MILTON, NY 13547

B-1
2. EMBANKMENT

a. Characteristics

GEI 1) Embankment Material Probably rockfill. Bin materials
with 3/4 in. crushed stone to form roadway on surface. Lower
portions may be large rockfill (Verbal from Mr. Lyons).

GEI 2) Cutoff Type None known

GEI 3) Impervious Core Concrete gravity section is downstream
of rockfill both at spillway and elsewhere. This portion is
really the dam. Mr. Lyons indicated that clay is dumped
on the upstream side of the rockfill periodically.

GEI 4) Internal Drainage System None

GEI 5) Miscellaneous Reservoir is at full pressure against upstream
side of concrete, since seeps from core spillway occur
on downstream side only 2 ft below reservoir level.

b. Crest

GEI 1) Vertical Alignment Surface of roadway slopes down to
spillway and then up to access right side. Irregularity
is ± 4 in. but is of no consequence. Concrete weir is level.

GEI 2) Horizontal Alignment Upstream crestline is straight.
Concrete portion is essentially straight.

GEI 3) Lateral Movement None observed

GEI 4) Surface Cracks None observed on embankment

GEI 5) Miscellaneous Roadway vs. from left 3 sides of
spillway is higher than spillway crest. Steel plates
between concrete and roadway hold latter in place

c. Upstream Slope

GEI 1) Slope (Estimate H:V) 3H:1V

GEI 2) Undesirable Growth or Debris, Animal Burrows
Minor, Grass and 2 ft high brush. No animal burrows.

GEI 3) Sloughing, Subsidence or Depressions None. Some
Irregularity in planeness of observable surface,
most of which was underwater
GEI 4) Slope Protection
Rockfill 3 to 10 in. size, relatively flat, sand-stone/ limestone (gray). At spillway the stones near the top are up to 2 ft in long dimension.

GEI 5) Surface Cracks or Movement at Toe
Concrete wall upstream on left side is cracked at Sta. 5+35, 4+58, 5+60, 5+69. Offset of 1/8₉₅ at Sta 5+52.

GEI d) Downstream Slope
*Rock: flat to 5H:IV
6 ft wide rockfill bench between gatehouses (4H:IV for 15 ft, then 3H:IV.)*

GEI 1) Slope (Estimate - H:V)
6 ft wide rockfill bench between gatehouses (4H:IV for 15 ft, then 3H:IV.)

GEI 2) Undesirable Growth or Debris, Animal Burrows Trees growing from rockfill on left of spillway to 10 in. in. Trees in 20 in. on right of spillway - fully forested.

GEI 3) Sloughing, Subsidence or Depressions
Very irregular to right of spillway. Rockfill (3-in.) placed to right of right side spillway training wall apparently to support wall, possibly because leakage has been observed in past.

GEI 4) Surface Cracks or Movement at Toe
None observable.

GEI 5) Seepage
Sh. 3+55 is lowest point where masonry on left side is exposed to ft. of spillway, 1 drop/see., increasing at 1 drop/sec. at 6 ft below crest wall. (which is 6 ft above spillway crest). Masonry spoiled at this location. Seepage from right side of spillway at 0.5 ft, 1.2 ft, and 8 ft below crest Sta 5+70 to 3+70. Seepage of a few drops per second on right side of right gatehouse at 18 in. below spawky crest (just below foundation concrete) one drop per second as left gatehouse.

GEI 6) External Drainage System (Ditches, Trenches, Blanket)
None.

GEI 7) Condition Around Outlet Structure
Seep noted in 5) is 3 ft above the right outlet structure ds of gatehouse.

GEI 8) Seepage Beyond Toe
None observed.

GEI e) Abutments - Embankment Contact
Good right and left, upstream and downstream.

B-3
3. DRAINAGE SYSTEM

GEI a. Description of System None

GEI b. Condition of System N.A.

GEI c. Discharge from Drainage System N.A.

4. INSTRUMENTATION (Monumentation/Surveys, Observation Wells, Weirs, Piezometers, Etc.) None

5. RESERVOIR

GEI a. Slopes Flat 5H:1V or less. Forested with hard-woods except for a few (apparently plank) white pines near camps along shore.

GEI b. Sedimentation Pond is only 4 ft deep, according to Mr. Lyons.

GEI c. Unusual Conditions Which Affect Dam None, noted
6. AREA DOWNSTREAM OF DAM
 a. Downstream Hazard (No. of Homes, Highways, etc.) NO NOTHING MAJOR NEAR STREAM FOR 21 MILES. THEN VARIOUS DWELLINGS THROUGH VILLAGE OF ELEVENFIE; ROAD W/ BRIDGE CROSSING 720'S DS OF DAM.
 b. Seepage, Growth Brush and 3-10 in. trees within 100 ft from spillway. Forested natural stream further downstream.
 c. Evidence of Movement Beyond Toe of Dam. None.
 d. Condition of Downstream Channel BRUSH + TREES DS OF SPILLWAY OUTLET PIPE CHANNELS, BRUSH AND TREE ENCRUSTMENT OF CHANNEL DS 100' FROM SPILLWAY, NATURAL CHANNEL MUCH NARROWER THAN SPILLWAY OPENING & BECOMES STEEP FURTHER DOWNSTREAM.

7. SPILLWAY(S) (Including Discharge Channel)
 a. General OGEE-LIKE OVERFLOW SPILLWAY W/ ABOUT 4' CREST WIDTH + 11 PIERS FOR WALKWAY, EACH ABOUT 1' WIDE, TOTAL WIDTH 47' (136' W/ 10 PIERS) ALSO REMAINS OF FLASHBOARD HINGES + PIN SOCKETS WHICH ARE NO LONGER FUNCTIONAL. OGEE-LIKE SECTION DS W/ STONE (LEFT) + CONC. (RIGHT) TRAINING WALLS + HAND-PLACED ROCK RIPRAP. DISCHARGE AREA AT 3/4 END FOR ABOUT 30'. ALSO ROCKFILL W/ 1' WIDE CREST AT WEIR CREST APPROACH.
 b. Condition of Service Spillway Generally Fair, DS of 'OGEE' CONCRETE SPALLED + CRACKED (COLD JOINTS), SOME GUNITING OF SURFACE WAS DONE, BUT NOW IT IS FLAKING + FALLING OFF, SEEPAGE THROUGH SECTION (SEE 9.a), DS END OF OGEE BREAKING UP + SOME CONCRETE EROSION ON DS SIDE. PIERS ON WEIR CREST HAVE CRACKED CONCRETE SPALLS, POPOUTS 1" TO 3" DIA., EFFLORESCENCE, 3 PIERS SEEM TO HAVE BEEN REMOVED.
 c. Condition of Auxiliary Spillway Weir Crest Has Several Transverse Cracks From US To DS Side At Crest, First Bay On Left Side Is Badly Spalled. Right Training Wall Has Crack (2" WIDE) AT END POINT, RANDOM CRACKING + EFFLORESCENCE.
 c. Condition of Auxiliary Spillway - N/A.
d. Condition of Discharge Channel
 SOME DETERIORATION OF
 HAND-PLACED RIPRAP AT DIS END, SOME OF RIPRAP IS MISSING
 OR DISTURBED, BRUSH + TLEES DIS OF PAYING

8. RESERVOIR DRAIN/OUTLET PIPE 1 (NEAREST LEFT ABUTMENT)
 a. Type: Pipe ✓ Conduit ___ Other ___
 b. Material: Concrete ___ Metal ✓ Other ___
 c. Size: 48" DIA Length 35'
 d. Invert Elevations: Entrance 986.6 Exit 986.8
 e. Physical Condition (Describe)
 Unobservable ______
 1) Material RIVETED STEEL PIPE DIS OF CONCRETE WALL
 2) Joints ABOUT 1' Alignment JOINT 10' FROM END OFFSET 1'
 3) Structural Integrity PIPE JOINT 10' FROM END OPEN 1'
 PIPE RUSTING & PITTING, APPEARS ADEQUATE
 4) Hydraulic Capability GOOD, SOME TAILWATER AT
 DIS END
 f. Means of Control: Gate ✓ Valve ___ Uncontrolled ___
 Operation: Operable ✓ Inoperable ___ Other ___
 Present Condition (Describe) HANDWHEEL CONTROL FOR RAISING
 GATE STEM PROTECTED BY LOCATED GATE HOUSE, GEARING WELL
 LUBRICATED, OPERATES EASILY & OPERATED REGULARLY
 g. Other Outlets (water mains, diversion pipes) ________
 SEE NEXT PAGE FOR OUTLET PIPE 2 ________
8. RESERVOIR DRAIN/OUTLET PIPE 2 (NEAREST SPILLWAY)

a. Type: Pipe ✓ Conduit ___ Other ___

b. Material: Concrete ___ Metal ✓ Other ___

c. Size: 48" Dia ______ Length 20'

d. Invert Elevations: Entrance 991.4 Exit 991.4

e. Physical Condition (Describe)

 Unobservable _______________________

 1) Material RIVETED STEEL PIPE D/S OF CONCRETE WALL

 2) Joints OKAY Alignment GOOD

 3) Structural Integrity PIPE RUSTING & PITTING, PIPE RUSTED THROUGH BOTTOM & D/S END OF LITTLE CONSEQUENCE, APPEARS ADEQUATE

 4) Hydraulic Capability GOOD, FREE DISCHARGE @ D/S END

f. Means of Control: Gate ✓ Valve ___ Uncontrolled ___

 Operation: Operable ✓ Inoperable ___ Other ___

 Present Condition (Describe) HANDWHEEL CONTROL FOR RAISING GATE STEM PROTECTED BY LOCKED GATE HOUSE, GEARING WELL LUBRICATED, OPERATES HARDER THAN GATE 1, OPERATED WHEN REQUIRED DURING HIGH FLOW PERIODS

g. Other Outlets (water mains, diversion pipes) ___

 N/A
9. STRUCTURAL

a. Concrete Surfaces: Top 4' of Gravity Section (core wall) on U/S + D/S sides is badly eroded (as deep as 1'), deteriorated, and scaled. Cap was repaired in several places; surface coating of concrete on D/S side of core is cracking, peeling, and scaling off.

b. Structural Cracking: See c.5). Pier cracked, probably due to expansion and contraction of walkway pipe supports also cracks (cold joints) in D/S side of core section 4 in right training wall near crest at bend point.

c. Movement: Horizontal & Vertical Alignment (Settlement): See c.5). D/S side of pier up to 0.2' lower than U/S side; may have been poured this way.

d. Junctions with Abutments or Embankments: Appears to have been seepage in past to right of rt ds training wall, because of hole beneath rockfill at 3' toe. Training wall is cracked and flow could easily enter rockfill through these cracks during spillway overflow.

e. Drains: Foundation, Joint, Face: None

f. Water Passages, Conduits, Sluices: Water passages are riveted steel pipe D/S w/ slide gates at concrete wall section. Some leakage at gate when closed, U/S approaches to gates submerged & unobservable.

g. Seepage or Leakage:

<table>
<thead>
<tr>
<th>Bays</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top of apron</td>
<td>□</td>
<td></td>
</tr>
<tr>
<td>Top of spillway apron</td>
<td>□</td>
<td></td>
</tr>
</tbody>
</table>

...Seeps O patches X missing flashboard pier.

Looking upstream

B-8
h. Joints - Construction, etc.

SEEPAGE ON SIDE OF Ogee is along horizontal lines, probably at construction joints.

i. Foundation Best guess - glacial fill.

j. Abutments Good condition. Probably glacial fill.

k. Control Gates None. Out gates on outlet pipes.

l. Approach & Outlet Channels Spillway approach is rockfill.

Berm gradually sloping up to its 10' crest width at spillway crest. Dis channel of spillway much narrower than spillway. Vegetation & brush along channels. Outlet pipe approaches are about 10' wide w/ conc. side walls & grudge deck across top. Dis end of pipe #1 has riprap area + then flows to stream. Dis end of #2 has discharge to area next to spillway. Then flows to stream. Dis of spillway.

m. Energy Dissipators (Plunge Pool, etc.) Ponding area w/ riprap +

stone walls at end of pipe #1, ripraped area at end of pipe #2,

+ hand placed riprap for 30' at dis toe of oggee.

n. Intake Structures Crude wooden trash racks (made of 1" to 2" sticks w/ openings at 1/3 end of 10' wide openings in an 1/3 concrete wall. Wood bridge decks across top of intake areas, through upstream rockfill.

o. Stability

p. Miscellaneous
10. APPURTE NANT STRUCTURES (Power House, Lock, Gatehouse, Service Bridge, Other)
 a. Description: WALKWAY ACROSS SPILLWAY SECTION, 7 GATE HOUSES ON DAM SECTION, ALL IN LINE WITH CONCRETE GRAVITY SECTION OF DAM, 2 - WOODEN BRIDGE DECKS OR 2 X 4 ROADS ACROSS INTAKES TO SLIDE GATES, A PADLOCKED GATE ACROSS ROCKFILL AT US SIDE OF GRAVITY SECTION CONTROLS ACCESS TO DAM.
 GATE HOUSE #1 - WOOD FRAME STRUCTURE W/ STEEL ROOF & 2 LOCKABLE DOORS
 GATE HOUSE #2 - WOOD FRAME STRUCTURE W/ ASPHALT SHINGLE ROOF & 2 LOCKABLE DOORS
 WALKWAY - STEEL PIPE STRUCTURE W/ WOODEN DECKING SET ON PIERS IN SPILLWAY THAT CLOSES SPILLWAY OPENING
 b. Condition: GATE HOUSE #1 - GOOD CONDITION
 GATE HOUSE #1 - GOOD CONDITION, ROOF LEAKS
 WALKWAY - GOOD CONDITION, STEEL PIPING NEEDS PAINTING, DECKING UNPAINTED, PIER SUPPORT CONC. FAIR (SEE 7.b.)
 BRIDGES OVER INTAKES ARE UNPAINTED BUT IN GOOD CONDITION

11. MISCELLANEOUS MECHANICAL/ELECTRICAL EQUIPMENT
 a. Description: POWER FOR LIGHTING INSIDE 2 GATE HOUSES
 b. Condition: LIGHTS IN GATE HOUSES WORK

12. OTHER
APPENDIX C

HYDROLOGIC AND HYDRAULIC ENGINEERING DATA
CHECKLIST AND COMPUTATIONS

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrologic and Hydraulic Engineering Data Checklist</td>
<td>C-1</td>
</tr>
<tr>
<td>Drainage Area Map</td>
<td>C-5</td>
</tr>
<tr>
<td>Drainage Areas</td>
<td>C-6</td>
</tr>
<tr>
<td>Drainage Area Data for HEC-1 DB Model</td>
<td>C-7</td>
</tr>
<tr>
<td>Ulster Heights Lake</td>
<td></td>
</tr>
<tr>
<td>Elevation - Area - Storage Computations</td>
<td>C-9</td>
</tr>
<tr>
<td>Discharge Computations</td>
<td>C-10</td>
</tr>
<tr>
<td>Drainage Area Routing</td>
<td></td>
</tr>
<tr>
<td>Cross Sections of Subarea 3 Channel</td>
<td>C-11</td>
</tr>
<tr>
<td>Cape Pond</td>
<td></td>
</tr>
<tr>
<td>Elevation - Area - Storage Computations</td>
<td>C-12</td>
</tr>
<tr>
<td>Discharge Computations</td>
<td>C-13</td>
</tr>
<tr>
<td>Overtopping Analysis</td>
<td></td>
</tr>
<tr>
<td>Computer Input</td>
<td>C-16</td>
</tr>
<tr>
<td>Computer Output - Complete</td>
<td>C-18</td>
</tr>
<tr>
<td>Inflow and Outflow Hydrograph plots</td>
<td>C-26</td>
</tr>
</tbody>
</table>
PHASE I INSPECTION

HYDROLOGIC AND HYDRAULIC
ENGINEERING DATA CHECKLIST

Name of Dam CAPE POND DAM Fed. Id. # NY00265

1. AREA-CAPACITY DATA

<table>
<thead>
<tr>
<th>Elevation (ft.)</th>
<th>Surface Area (acres)</th>
<th>Storage Capacity (acre-ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Top of Dam</td>
<td>1005.25</td>
<td>448 EST.</td>
</tr>
<tr>
<td>b. Design High Water (Max. Design Pool)</td>
<td>UNKNOWN</td>
<td></td>
</tr>
<tr>
<td>c. Auxiliary Spillway Crest</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>d. Pool Level with Flashboards</td>
<td>N/A (FLASHBOARD SUPPORTS NOW UNUSABLE)</td>
<td></td>
</tr>
<tr>
<td>e. Service Spillway Crest</td>
<td>1000</td>
<td>229.6</td>
</tr>
</tbody>
</table>

2. DISCHARGES

 | Volume (cfs) |
 |-----------------|-----------------|-----------------|
 | a. Average Daily | UNKNOWN | |
 | b. Spillway @ Top of Dam | 4,890 | |
 | c. Spillway @ Design High Water | UNKNOWN | |
 | d. Service Spillway @ Auxiliary Spillway Crest Elevation | N/A | |
 | e. Low Level Outlets * COMBINED CAPACITY, W.S. AT TOP OF DAM | 450 | |
 | f. Total (of all facilities) @ Top of Dam | 5,340 | |
 | g. Maximum Known Flood AUGUST 1955 DAM OVERTIPPED EARLY 1978'S DAM OVERTIPPED WHEN ULSTER HEIGHTS LAKE DAM U/S FAILED | >4900 EST. | |
 | h. At Time of Inspection | ~25 cfs | |

* DAM HAS 2 OUTLET PIPES:
 OUTLET PIPE 1: INV. EL 986.8 : CAPACITY W/ W.S. @ TOP OF DAM 240 cfs
 OUTLET PIPE 2: INV. EL 991.4 : CAPACITY W/ W.S. @ TOP OF DAM 210 cfs
3. **TOP OF DAM**

 Elevation: 1005.25

 Earth Fill W/ Massive Concrete Core Wall Partially Exposed

 a. Type: B_conc. Gravity Spillway Section, Permeable Rock Fill 1/2 of Dam

 b. Width Corewall 4'
 Length 612' (465' w/o Spillway)

 c. Spillover: Service Spillway

 d. Location: About at Center of Dam

4. **SPILLWAY**

 SERVICE

 a. Type: From 1976 NPSdot Topo quad
 Elevation: (Fill)

 b. Type: Ogee-Like Overflow

 c. 147' (Includes 11 Piers @ 1' Each)
 Width

 Type of Control

 d. Uncontrolled

 REMAINS OF FLASHBOARD HINGES & PIN Sockets

 Type

 e. Controlled: (Flashboards; gate)

 f. Number

 g. Size/Length

 h. CONCRETE
 Invert Material

 i. Anticipated Length
 of Operating Service

 About 10' from Spillway Crest to 1/2 Rock Paving

 j. Chute Length

 k. ~11'
 Height Between Spillway Crest & Approach Channel Invert (Weir Flow)

 l. Other

 C-2
5. OUTLET STRUCTURES/EMERGENCY DRANOWN FACILITIES
 a. Type: Gate _____ Sluice _____ Conduit __ Penstock __
 b. Shape 2 RIVETED STEEL PIPES w/ SLIDE GATES AT COREWALL END
 c. Size 2- 48" DIA LENGTH OUTLET PIPE 1: 35' LENGTH OUTLET PIPE 2: 20'
 d. Elevations: Entrance Invert OUTLET PIPE 1: ~196.8 OUTLET PIPE 2: ~99.4
 Exit Invert OUTLET PIPE 1: 196.8 OUTLET PIPE 2: 99.4
 e. Tailrace Channel: Elevation OUTLET PIPE 1: ~98.6 OUTLET PIPE 2: ~98.6

6. FLOOD WATER CONTROL SYSTEM
 a. Warning System NONE

 b. Method of Controlled Releases (mechanisms) GATES ON
 OUTLET PIPES 1 & 2 CAN BE OPERATED. GATE ON OUTLET PIPE ONE IS USED FOR NORMAL OPERATION

7. CLIMATOLOGICAL GAGES REFERENCE 21-22
 a. Type RECORDING & NON-RECORDING PRECIPITATION GAGE INDEX # 2587
 b. Location VILLAGE OF ELLENVILLE LAT. 41° 43', LONG. 74° 24'
 c. Period of Record 1944 TO PRESENT (ABOUT 2 MILES FROM DAM)
 d. Maximum Reading UNKNOWN Date

8. STREAM GAGES REFERENCE 24
 a. Type SURFACE WATER STATION USGS GAGE # 01366650
 b. Location SANDBURG CREEK AT ELLENVILLE
 LAT. 41° 42' 54", LONG. 74° 23' 21", ~ 4 MILES S.E. OF DAM
 c. Period of Record APRIL 1957 TO 1977
 d. Maximum Reading 4,660 cu = 82.2 cm Date AUG. 19, 1960
 DA: = 56.7 sq. mi

9. OTHER

C-3
10. DRAINAGE BASIN CHARACTERISTICS

a. Drainage Area 19.251 sq. miles or 12,320.3 acres

b. Land Use - Type RURAL - RESIDENTIAL, UPLAND SWAMPY AREAS

c. Terrain - Relief FLAT AREAS AND AREAS W/ SLOPES TO 20%, ELEVATIONS FROM EL 1000 TO EL 2340

d. Surface - Soil GLACIAL TILL

e. Runoff Potential (existing or planned extensive alterations to existing surface or subsurface conditions)

MODIFICATIONS TO UPSTREAM RESERVOIR (ULSTER HEIGHTS LAKE). THE DAM ON ULSTER HEIGHTS LAKE HAS FAILED IN THE PAST.

f. Potential Sedimentation Problem Areas (natural or man-made; present or future)

NONE.

g. Potential Backwater Problem Areas for Levels at Maximum Storage Capacity (including surcharge storage)

NONE NOW KNOWN; IN EARLY 1900'S PROBLEMS CAUSED BY USE OF FLASHBOARDS (NOW NO LONGER USED)

h. Dikes - Floodwalls (overflow & non-overflow) - Low Reaches Along the Reservoir perimeter

Location N/A

Elevation

i. Reservoir

<table>
<thead>
<tr>
<th>Spillway Crest</th>
<th>Length @ Maximum Design Pool 6300' (at Spillway Crest) (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Length of Shoreline (@ Service Spillway Crest) 28,500 (feet)</td>
</tr>
</tbody>
</table>
DRAINAGE AREAS

<table>
<thead>
<tr>
<th>Area Description</th>
<th>(acres)</th>
<th>(square miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watershed Direct to Ulster Heights Lake (Subarea 1)</td>
<td>5,103.4</td>
<td>8.912</td>
</tr>
<tr>
<td>Ulster Heights Lake Surface (Subarea 2) @ Outlet Box EL = 1013 (See C-9)</td>
<td>48.4</td>
<td>0.76</td>
</tr>
<tr>
<td>Watershed Above Cape Pond + Below Ulster Heights Lake (Subarea 3)</td>
<td>6,338.9</td>
<td>9.904</td>
</tr>
<tr>
<td>Cape Pond Surface (Subarea 4) @ Spillway Crest, EL = 1000 (See C-12)</td>
<td>229.6</td>
<td>0.359</td>
</tr>
<tr>
<td>Total</td>
<td>12,320.3</td>
<td>19.251</td>
</tr>
</tbody>
</table>
DRAINAGE AREA DATA FOR HEC-1 DB MODEL

SUBAREA 1: AREA TRIBUTARY TO ULSTER HEIGHTS LAKE
AREA = 8.912 SQUARE MILES

LOSS RATES: 1.0" INITIALLY
0.1"/HOUR - CONSTANT LOSS RATE

UNIT HYDROGRAPH PARAMETERS: USE SNYDER METHOD

\[A = \text{DRAINAGE AREA} = 8.912 \text{ SQUARE MILES} \]
\[L = \text{LENGTH OF MAIN WATERCOURSE TO UPSTREAM LIMIT OF DRAINAGE AREA} = 4.01 \text{ MILES} \]
\[L_{CA} = \text{LENGTH ALONG MAIN WATERCOURSE TO POINT OPPOSITE THE CENTROID OF THE DRAINAGE AREA} = 0.57 \text{ MILES} \]
\[C_{S} = \text{SNYDER'S BASIN COEFFICIENT} = 1.7 \text{ (FROM REF. 20)} \]
\[C_{P} = \text{SNYDER'S PEAKING COEFFICIENT} = 4.70 \text{ (FROM REF. 20)} \]
\[T_{D} = \text{STANDARD LAG IN HOURS} = C_{S} \left(L - L_{CA} \right)^{0.5} = 2.18 \text{ HOURS} \]

\[t' = \text{USE} \quad T'_{D} = 2.2 \text{ HOURS} \]

REQUIRES UNIT RAINFALL DURATION \(t' \) / \(t_{P} \)
\[t'_{P} = \frac{t'}{T'_{D}} = \frac{2.2}{2.18} = 1.0 \text{ hr = 60 min} \text{ max} \]
\[\text{USE} \quad t'_{P} = 0 \text{ min} < 24 \text{ min OK} \]

SUBAREA 2: ULSTER HEIGHTS LAKE SURFACE, AREA = 0.76 SQ. MILES = 484 ACRES

LOSS RATES: NONE BECAUSE RAINFALL \(\neq \) RUNOFF FOR WATER SURFACE

UNIT HYDROGRAPH PARAMETERS:

FOR U.H. W/ 10 MINUTE DURATION & 1" RAIN
\[\bar{Q} = \Delta \left(\frac{\text{A} \left(\frac{\text{m}}{\text{h}} \right) \left(\frac{\text{ft}}{\text{m}} \right) \left(\frac{\text{min}}{\text{h}} \right) \left(\frac{\text{sec}}{\text{min}} \right)}{10 \text{ min} \times 12 \text{ in.} \times 1 \text{ ft}} \right) \text{ (10 min))} \]
\[\bar{Q} = 293 \text{ cfs} \quad \text{(w/o loss rate)} \]
DRAINAGE AREA DATA FOR HEC-1 DB MODEL

SUBAREA 3: AREA ABOVE CAPE POND + BELOW ULSTER HEIGHTS LAKE TRIBUTARY TO CAPE POND, AREA = 9,904 SQUARE MILES

LOSS RATES: 1.0" - INITIALLY
0.1"/HOUR - CONSTANT LOSS RATE

UNIT HYDROGRAPH PARAMETERS: USE SNYDER METHOD

A = DRAINAGE AREA = 9,904 SQUARE MILES
L = LENGTH OF MAIN WATERCOURSE TO UPSTREAM LIMIT OF DRAINAGE AREA = 4.85 MILES
L_A = LENGTH ALONG MAIN WATERCOURSE TO POINT OPPOSITE THE CENTROID OF THE DRAINAGE AREA = .83 MILES
C_A = SNYDER'S BASIN COEFFICIENT = 1.7 (FROM REF. 20)
C_p = SNYDER'S PEAKING COEFFICIENT = .470 (FROM REF. 20)
K_p = STANDARD LAG IN HOURS = C_A (L / L_A) q = 2.58 HOURS

\[t = \frac{L_A}{K_p} = 2.6 \text{ HOURS} \]

\[k_p = \frac{q}{L_A} = 0.22 \text{ ft/s} \]

SUBAREA 2: CAPE POND SURFACE, AREA = .557 SQ. MILES = 229.6 ACRES

LOSS RATES: NONE BECAUSE RAINFALL \neq RUNOFF FOR WATER SURFACE

UNIT HYDROGRAPH PARAMETERS:

FOR U.H. W/10 MINUTE DURATION 4 1" RAIN

\[Q = \frac{A(l")}{K} = \frac{229.6 \text{ acres} \times 43,560 \text{ ft}^2}{10 \text{ minutes} \times 1 \text{ acre} \times 1 \text{ ft} \times \frac{1 \text{ minute}}{60 \text{ seconds}}} \]

\[Q = 1,389 \text{ ft}^3 \text{ min}^{-1} \text{ (w/o loss rate)} \]
ELEVATION - AREA - STORAGE COMPUTATIONS

ULSTER HEIGHTS LAKE VOLUME: For storage above spillway crest volume computed by method of conic sections

\[
\Delta V_{12} = \frac{1}{3} \left(A_1 + A_2 + \frac{1}{2} A_1 A_2 \right)
\]

INPUT

<table>
<thead>
<tr>
<th>ELEVATION (NGVD - ft.)</th>
<th>AREA (acres)</th>
<th>VOLUME (acre-feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1013</td>
<td>48.4</td>
<td>240 (1)</td>
</tr>
<tr>
<td>1013.5</td>
<td>51.0 (INTERPOLATED)</td>
<td>272.8 (INTERPOLATED)</td>
</tr>
<tr>
<td>TOP OF DAM</td>
<td>84.5</td>
<td>699</td>
</tr>
<tr>
<td>1040</td>
<td>250.5</td>
<td>3902</td>
</tr>
</tbody>
</table>

(1) INFORMATION FROM ENGINEERING REPORTS AND PLANS for dam construction in 1969 as found in files of NYSDEC.

(2) FROM USGS TOPOGRAPHIC MAPPING.
Discharge Computations - Ulster Heights Lake Dam

Dam Appurtenance

<table>
<thead>
<tr>
<th>Outlet Pipe</th>
<th>Elevation (NGVD)</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invert El = 1001</td>
<td>3' Diameter</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outlet Box (Service Spillway)</th>
<th>CREST EL = 1013</th>
<th>8' x 10' Drop Inlet</th>
</tr>
</thead>
<tbody>
<tr>
<td>CREST EL = 103.5</td>
<td>60' Bottom Width</td>
<td></td>
</tr>
<tr>
<td>86' Top Width</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>East Channel Spillway (Left)</th>
<th>CREST EL = 1013.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>40' Bottom Width</td>
<td></td>
</tr>
<tr>
<td>66' Top Width</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>West Channel Spillway (Right)</th>
<th>CREST EL = 1020</th>
</tr>
</thead>
<tbody>
<tr>
<td>175' Crest Length</td>
<td></td>
</tr>
</tbody>
</table>

Table: Discharge Computations

<table>
<thead>
<tr>
<th>Elevation</th>
<th>H_{OB}</th>
<th>H_{ES}</th>
<th>H_u</th>
<th>H_d</th>
<th>Q_{MPE}</th>
<th>Q_{ES}</th>
<th>Q_{WS}</th>
<th>Q_{SWL}</th>
<th>Q_{SP}</th>
<th>Q_{DM}</th>
<th>Q_{TOTAL}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1013</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1013.5</td>
<td>.5</td>
<td>0</td>
</tr>
<tr>
<td>1014</td>
<td>1.5</td>
<td>.5</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1016</td>
<td>3.25</td>
<td>2.5</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>45</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1018</td>
<td>5.45</td>
<td>4.5</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>373</td>
<td>549</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1020</td>
<td>7.65</td>
<td>6.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>726</td>
<td>444</td>
<td>1502</td>
<td>160</td>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td>1022</td>
<td>9.85</td>
<td>8.5</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>581</td>
<td>478</td>
<td>1528</td>
<td>11,786</td>
<td>11,786</td>
<td>11,786</td>
</tr>
<tr>
<td>1024</td>
<td>11.05</td>
<td>10.5</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>8403</td>
<td>6092</td>
<td>14,655</td>
<td>4,322</td>
<td>4,322</td>
<td>18,977</td>
</tr>
</tbody>
</table>

* From Engineering Data Found in NYSDEC Files. Q assumed constant for simplicity.

** Used formula for critical flow over a broad crested weir:

$$ Q = 3.087LH^{1.5} $$ (Ref. 9). Used avg. L as H changed so that area would be the same.

*** Calculated by HEC-1 DB Program where $Q = 3.087LH^{1.5}$ (formula for critical flow over broad crested weir).
C.T. MALE ASSOCIATES, P.C.
3000 TROY ROAD, SCHENECTADY, N.Y. 12309

JOB: CAPE POND DAM

SHEET NO. 4 OF 5

CALCULATED BY: ELY DATE: 4/14/81

CHECKED BY: LMA DATE: 4/20/81

SCALE: 1"=200'

STA 10+00
(LOOKING DOWNSTREAM)

n CHANNEL = 0.03
n OVERBANK = 0.04

SCALE: HOR. 1"=8'
VERT. 1"=200'

STA 35+00
(LOOKING DOWNSTREAM)

n CHANNEL = 0.03
n OVERBANK = 0.04

SCALE: HOR. 1"=8'
VERT. 1"=400'

STA 95+00
(LOOKING DOWNSTREAM)

n CHANNEL = 0.03
n OVERBANK = 0.04

SCALE: HOR. 1"=8'
VERT. 1"=400'
ELEVATION - AREA - STORAGE COMPUTATIONS

CAPE POND VOLUME: FOR STORAGE ABOVE SPILLWAY CREST VOLUME COMPUTED
BY METHOD OF CONIC SECTIONS \(\Delta V = \frac{h}{3} (A_1 + A_2 + \frac{1}{2} (A_1 - A_2)) \)

<table>
<thead>
<tr>
<th>ELEVATION (NGVD - ft.)</th>
<th>AREA (acres)</th>
<th>VOLUME (acre-feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTLET PIPE 1 INVERT</td>
<td></td>
<td>986.8</td>
</tr>
<tr>
<td>OUTLET PIPE 2 INVERT</td>
<td></td>
<td>991.4</td>
</tr>
<tr>
<td>SPILLWAY CREST</td>
<td>1000</td>
<td>229.6</td>
</tr>
<tr>
<td>TOP OF DAM</td>
<td>1005.25</td>
<td>448 (EST)</td>
</tr>
<tr>
<td></td>
<td>1010</td>
<td>646.4</td>
</tr>
</tbody>
</table>

(1) CONSTRUCTION DRAWING ELEVATION BASE IS APPROXIMATELY
900' LOWER THAN NGVD ELEVATION. (SEE APPENDIX G-1)

(2) IMPOUNDING CAPACITY AT SPILLWAY CREST FROM RECONSTRUCTION
APPLICATION DATED 9/22/74. (SEE APPENDIX F3-7)

(3) FROM USGS TOPOGRAPHIC MAPPING.

NOTE: DIFFERENCE BETWEEN OUTLET PIPE INVERTS, SPILLWAY CREST, TOP OF DAM BASED ON FIELD MEASUREMENTS.
DISCHARGE COMPUTATIONS - CAPE POND DAM

SERVICE SPILLWAY CAPACITY - ASSUMED TO ACT AS BROAD-CRESTED WEIR W/ PIER AND ABUTMENT EFFECTS.

SERVICE SPILLWAY ELEVATION

![Diagram of CAPE POND DAM](image)

\[Q = 3.087LH^{1.5} \]
FORMULA FOR FLOW OVER BROAD-CRESTED WEIR, REFERENCE 9

WHERE:
- \(L = L' - 2(NK_p + K_a)H \)
 FROM REFERENCE 8, PAGE 372
- \(L' = 147\times 11 = 1617' \)

\(\)
- \(L = 1005.25 \)
- \(L = 1004 \)
- \(L = 1003 \)
- \(L = 1002 \)
- \(L = 1001 \)
- \(L = 1000 \)
- \(L = 967 \)
- \(L = 12.5 \)
- \(L = 10 \)
- \(L = 8 \)
- \(L = 6 \)
- \(L = 4 \)
- \(L = 2 \)
- \(L = 1 \)
- \(L = 0 \)

\(H = 1.5 \)

\(Q = 0.062 \)

ELEVATION

<table>
<thead>
<tr>
<th>(feet)</th>
<th>(feet)</th>
<th>(feet)</th>
<th>(feet)</th>
<th>(cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>0</td>
<td>136</td>
<td>136</td>
<td>0</td>
</tr>
<tr>
<td>1001</td>
<td>1</td>
<td>136</td>
<td>136</td>
<td>147</td>
</tr>
<tr>
<td>1002</td>
<td>2</td>
<td>136</td>
<td>136</td>
<td>1173</td>
</tr>
<tr>
<td>1003</td>
<td>3</td>
<td>136</td>
<td>136</td>
<td>2141</td>
</tr>
<tr>
<td>1004</td>
<td>4</td>
<td>136</td>
<td>136</td>
<td>3276</td>
</tr>
<tr>
<td>1005.25</td>
<td>5.25</td>
<td>136</td>
<td>136</td>
<td>4887</td>
</tr>
<tr>
<td>1006</td>
<td>6</td>
<td>136</td>
<td>136</td>
<td>5942</td>
</tr>
<tr>
<td>1008</td>
<td>8</td>
<td>136</td>
<td>136</td>
<td>9030</td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
<td>136</td>
<td>136</td>
<td>12456</td>
</tr>
<tr>
<td>1012</td>
<td>12</td>
<td>136</td>
<td>136</td>
<td>16159</td>
</tr>
</tbody>
</table>

C-13
Discharge Computations - Cape Pond Dam

Outlet Pipe Capacity

DAM HAS TWO 48' RIVETED STEEL OUTLET PIPES W/ UPSTREAM CONTROL GATES AT DAM. DAM HAS PART-TIME OPERATOR WHO LIVES AT DAM & OPERATES GATES AS NECESSARY.

\[
Q = CA \sqrt{2gh}
\]

Formula for Orifice Flow Through Pipe

(WITH FREE EXCHANGE)

Gate 1: Located near left abutment, looking D/S
- Pipe slope flat, invert @ EL 986.8, t @ EL 988.8

Gate 2: Located near spillway
- Pipe slope flat, invert @ EL 991.4, t @ EL 993.4

C = 0.6, A = \frac{1}{2} \pi (2)^2 = 4.25 sq. ft. (both outlets)

<table>
<thead>
<tr>
<th>Elevation (ft)</th>
<th>h (ft)</th>
<th>h (ft)</th>
<th>Q (cfs)</th>
<th>Q (cfs)</th>
<th>Q (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>11.2</td>
<td>6.6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1001</td>
<td>12.2</td>
<td>7.6</td>
<td>2.11</td>
<td>167</td>
<td>167</td>
</tr>
<tr>
<td>1002</td>
<td>13.2</td>
<td>8.6</td>
<td>2.20</td>
<td>174</td>
<td>174</td>
</tr>
<tr>
<td>1003</td>
<td>14.2</td>
<td>9.6</td>
<td>2.38</td>
<td>187</td>
<td>182</td>
</tr>
<tr>
<td>1004</td>
<td>15.2</td>
<td>10.6</td>
<td>2.36</td>
<td>197</td>
<td>192</td>
</tr>
<tr>
<td>1005.25</td>
<td>16.45</td>
<td>11.86</td>
<td>2.45</td>
<td>208</td>
<td>333</td>
</tr>
<tr>
<td>1006</td>
<td>17.2</td>
<td>12.6</td>
<td>2.51</td>
<td>215</td>
<td>466</td>
</tr>
<tr>
<td>1008</td>
<td>19.2</td>
<td>14.6</td>
<td>2.65</td>
<td>231</td>
<td>496</td>
</tr>
<tr>
<td>1010</td>
<td>21.2</td>
<td>16.6</td>
<td>2.79</td>
<td>247</td>
<td>526</td>
</tr>
<tr>
<td>1012</td>
<td>23.2</td>
<td>18.6</td>
<td>2.91</td>
<td>261</td>
<td>552</td>
</tr>
</tbody>
</table>

* h = Height from water surface to outlet at gates

C-14
DISCHARGE COMPUTATIONS - CAPE POND DAM

DAM APPURtenANCE

<table>
<thead>
<tr>
<th>SERVICE SPILLWAY</th>
<th>CREST EL = 1000</th>
<th>147' CREST LENGTH (EXCLUDES SPILLWAY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAM</td>
<td>CREST EL = 1005.25</td>
<td>465' CREST LENGTH (EXCLUDES SPILLWAY)</td>
</tr>
<tr>
<td>OUTLET PIPE 1</td>
<td>INVERT EL = 986.8</td>
<td>4' DIA. STEEL PIPE</td>
</tr>
<tr>
<td>OUTLET PIPE 2</td>
<td>INVERT EL = 991.4</td>
<td>4' DIA. STEEL PIPE</td>
</tr>
</tbody>
</table>

FOR FLOW OVER DAM: \(Q = \frac{3.057LH^3}{B} \) (FORMULA FOR CRITICAL FLOW OVER BROAD-CRESTED WEIR, REFERENCE 9).

ELEVATION (NGVD), HD (Ft), \(Q_{O1} \) (cfs), \(Q_{O2} \) (cfs), \(Q_{S} \) (cfs), \(Q_{T} \) (cfs), \(Q_{O1} \) (cfs), \(Q_{O2} \) (cfs), \(Q_{T} \) (cfs)

<table>
<thead>
<tr>
<th>ELEVATION (NGVD)</th>
<th>HD (Ft)</th>
<th>(Q_{O1}) (cfs)</th>
<th>(Q_{O2}) (cfs)</th>
<th>(Q_{S}) (cfs)</th>
<th>(Q_{T}) (cfs)</th>
<th>(Q_{O1}) (cfs)</th>
<th>(Q_{O2}) (cfs)</th>
<th>(Q_{T}) (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1001</td>
<td>0</td>
<td>2.11</td>
<td>167</td>
<td>417</td>
<td>795</td>
<td>0</td>
<td>795</td>
<td>795</td>
</tr>
<tr>
<td>1002</td>
<td>0</td>
<td>2.20</td>
<td>177</td>
<td>1,173</td>
<td>1,570</td>
<td>0</td>
<td>1,570</td>
<td>1,570</td>
</tr>
<tr>
<td>1003</td>
<td>0</td>
<td>2.28</td>
<td>187</td>
<td>2,41</td>
<td>2,556</td>
<td>0</td>
<td>2,556</td>
<td>2,556</td>
</tr>
<tr>
<td>1004</td>
<td>0</td>
<td>2.36</td>
<td>197</td>
<td>3,216</td>
<td>3,709</td>
<td>0</td>
<td>3,709</td>
<td>3,709</td>
</tr>
<tr>
<td>1005.25</td>
<td>0</td>
<td>2.45</td>
<td>208</td>
<td>4,887</td>
<td>5,340</td>
<td>0</td>
<td>5,340</td>
<td>5,340</td>
</tr>
<tr>
<td>1006</td>
<td>.75</td>
<td>2.51</td>
<td>215</td>
<td>5,942</td>
<td>6,408</td>
<td>0</td>
<td>6,408</td>
<td>6,408</td>
</tr>
<tr>
<td>1008</td>
<td>2.75</td>
<td>2.65</td>
<td>231</td>
<td>9,050</td>
<td>9,526</td>
<td>0</td>
<td>9,526</td>
<td>9,526</td>
</tr>
<tr>
<td>1010</td>
<td>4.75</td>
<td>2.79</td>
<td>247</td>
<td>12,456</td>
<td>12,982</td>
<td>14,860</td>
<td>27,842</td>
<td></td>
</tr>
<tr>
<td>1012</td>
<td>6.75</td>
<td>2.91</td>
<td>261</td>
<td>16,156</td>
<td>16,708</td>
<td>25,174</td>
<td>41,882</td>
<td></td>
</tr>
</tbody>
</table>

Form CTM-405
<table>
<thead>
<tr>
<th>Page</th>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 3</th>
<th>Column 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>3</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Note: The table above contains numerical data that seems to be related to various calculations or measurements, possibly in a scientific or engineering context. The specific details are not clear without additional context.
<table>
<thead>
<tr>
<th>W</th>
<th>2.6</th>
<th>.47</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>0</td>
<td>5A-4</td>
<td>1</td>
</tr>
<tr>
<td>K1 SUBAREA & RUNOFF COMPUTATION</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>1</td>
<td>-1</td>
<td>19.251</td>
</tr>
<tr>
<td>T</td>
<td>21</td>
<td>103</td>
<td>114</td>
</tr>
<tr>
<td>U</td>
<td>30</td>
<td>1395</td>
<td>1</td>
</tr>
<tr>
<td>V</td>
<td>-7</td>
<td>5A-4C</td>
<td>1</td>
</tr>
<tr>
<td>W</td>
<td>3</td>
<td>COMBINING HYDROGRAPHS 2C, 3, 6, 4</td>
<td>1</td>
</tr>
<tr>
<td>Y</td>
<td>0</td>
<td>1352</td>
<td>1</td>
</tr>
<tr>
<td>Z</td>
<td>250</td>
<td>250</td>
<td>1</td>
</tr>
<tr>
<td>1ST FLOW THROUGH RESERVOIR 2 (CAPE POND)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Y4 190</td>
<td>1001</td>
<td>1002</td>
<td>1003</td>
</tr>
<tr>
<td>Y5</td>
<td>195</td>
<td>1570</td>
<td>1550</td>
</tr>
<tr>
<td>SS</td>
<td>1377</td>
<td>551</td>
<td>3</td>
</tr>
<tr>
<td>SE</td>
<td>900</td>
<td>1000</td>
<td>1010</td>
</tr>
<tr>
<td>S+ 1000</td>
<td>15</td>
<td>3.067</td>
<td>1.5</td>
</tr>
</tbody>
</table>

* INPUT AS 1005.3 INSTEAD OF 1005.25 BECAUSE OF LENGTH OF FIELD RESTRICTION.
FLOOD HYDROGRAPH PACKAGE (HEC-13)
DAM SAFETY VERSION: JULY 1978
LAST MODIFICATION: 20 FEB 79

RUN DATE: 8/12/81
TIME: 3:10 PM

DAM INSPECTION: DAG91-01-C-0014
DATE: 02/03/78

JOB SPECIFICATION

- **NAMER**
- **IYEAR**
- **IMRN**
- **MEIRK**
- **IEPLT**
- **IPRT**
- **NSTAN**

MULTI-PLAN ANALYSES TO BE PERFORMED

- **NPLAN**
- **NRATIO**
- **LRTID**

RTIOS

- 1.00
- 0.50

SUR-AREA RUNOFF COMPUTATION

<table>
<thead>
<tr>
<th>SITAG</th>
<th>ICOMP</th>
<th>IECOM</th>
<th>IATAG</th>
<th>JPLT</th>
<th>IPRT</th>
<th>INAME</th>
<th>ISITAG</th>
<th>ISAUTO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

HYDROGRAPH DATA

LOSS DATA

FOUR-HOUR UNIT HYDROGRAPH DATA

| IHR | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

RECESSION DATA

- **STINGS**
- **-2.00**
- **-0.5CH**
- **0.00**
- **RTIOK**

UNIT HYDROGRAPHIC END-OF-PERIOD ORDINATES

<table>
<thead>
<tr>
<th>LAG</th>
<th>2.22 HOURS</th>
<th>CP</th>
<th>0.47</th>
<th>VOL</th>
<th>0.99</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>23.6</td>
<td>89.5</td>
<td>143.</td>
<td>295.</td>
<td>338.</td>
</tr>
<tr>
<td>536.</td>
<td>510.</td>
<td>489.</td>
<td>461.</td>
<td>432.</td>
<td>403.</td>
</tr>
<tr>
<td>262.</td>
<td>250.</td>
<td>242.</td>
<td>227.</td>
<td>213.</td>
<td>194.</td>
</tr>
<tr>
<td>133.</td>
<td>132.</td>
<td>128.</td>
<td>119.</td>
<td>112.</td>
<td>105.</td>
</tr>
<tr>
<td>92.</td>
<td>87.</td>
<td>83.</td>
<td>79.</td>
<td>75.</td>
<td>71.</td>
</tr>
<tr>
<td>79.</td>
<td>75.</td>
<td>71.</td>
<td>67.</td>
<td>63.</td>
<td>59.</td>
</tr>
<tr>
<td>47.</td>
<td>44.</td>
<td>40.</td>
<td>37.</td>
<td>34.</td>
<td>31.</td>
</tr>
<tr>
<td>Stations</td>
<td>Elevation (ft)</td>
<td>Cross Section Coordinates (ft)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>-------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00</td>
<td>1021.00</td>
<td>1200.00, 1002.50, 1200.00, 1000.50, 1300.00, 1000.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1200.00</td>
<td>1021.00</td>
<td>2900.00, 1020.00, 2900.00, 1021.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Normal Depth Channel Routing

<table>
<thead>
<tr>
<th>Stations</th>
<th>Elevation (ft)</th>
<th>Cross Section Coordinates (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>1021.00</td>
<td>1200.00, 1002.50, 1200.00, 1000.50, 1300.00, 1000.00</td>
</tr>
<tr>
<td>1200.00</td>
<td>1021.00</td>
<td>2900.00, 1020.00, 2900.00, 1021.00</td>
</tr>
</tbody>
</table>

Sub-Area Runoff Calculation

<table>
<thead>
<tr>
<th>Subarea</th>
<th>Curve Length (ft)</th>
<th>Stage (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>INTDG</td>
<td>INRG</td>
<td>TAREA</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>9.90</td>
</tr>
</tbody>
</table>

PRECIP DATA

<table>
<thead>
<tr>
<th>SPEE</th>
<th>P5S</th>
<th>R6</th>
<th>N12</th>
<th>R24</th>
<th>R48</th>
<th>R72</th>
<th>R96</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>21.00</td>
<td>103.00</td>
<td>116.00</td>
<td>126.00</td>
<td>134.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

LOSS DATA

<table>
<thead>
<tr>
<th>LQO Tout</th>
<th>Stark</th>
<th>Dlkr</th>
<th>Rtid</th>
<th>Erain</th>
<th>Stkrs</th>
<th>Rtid</th>
<th>Strl</th>
<th>Cnstl</th>
<th>Alsmk</th>
<th>Rtmp</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.10</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

UNIT HYDROGRAPH DATA

<table>
<thead>
<tr>
<th>Tp = 2.00</th>
<th>CP = 0.47</th>
<th>NTA = 0</th>
</tr>
</thead>
</table>

RECESSION DATA

<table>
<thead>
<tr>
<th>STREAM</th>
<th>QRCR</th>
<th>RUB = 0.00</th>
<th>RT30R = 1.00</th>
</tr>
</thead>
</table>

END-OF-PERIOD FLOW

<table>
<thead>
<tr>
<th>PODA</th>
<th>MR-PN</th>
<th>PERIOD</th>
<th>RAIN</th>
<th>EXCS</th>
<th>LOSS</th>
<th>COMP.G</th>
<th>PODA</th>
<th>MR-PN</th>
<th>PERIOD</th>
<th>RAIN</th>
<th>EXCS</th>
<th>LOSS</th>
<th>COMP.G</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

SUMMARY REPORT

SUM 23.13 19.25 3.66 6374031.5873.474.31 5118409.231

SUB-AREA RUNOFF COMPUTATION

SUB-AREA RUNOFF COMPUTATION

<table>
<thead>
<tr>
<th>ESTAG</th>
<th>LCON</th>
<th>ITAPE</th>
<th>JPLT</th>
<th>JPRY</th>
<th>PLARE</th>
<th>LSTAGE</th>
<th>IAUTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.04</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

HYDROGRAPH DATA

<table>
<thead>
<tr>
<th>INTDG</th>
<th>INRG</th>
<th>TAREA</th>
<th>SNAP</th>
<th>TRSPC</th>
<th>RATIO</th>
<th>ISNOW</th>
<th>ISAME</th>
<th>LOCAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>9.30</td>
<td>0.00</td>
<td>19.25</td>
<td>0.00</td>
<td>0.000</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

PRECIP DATA

<table>
<thead>
<tr>
<th>SPEE</th>
<th>P5S</th>
<th>R6</th>
<th>N12</th>
<th>R24</th>
<th>R48</th>
<th>R72</th>
<th>R96</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>21.00</td>
<td>103.00</td>
<td>116.00</td>
<td>126.00</td>
<td>134.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

LOSS DATA

<table>
<thead>
<tr>
<th>LQO Tout</th>
<th>Stark</th>
<th>Dlkr</th>
<th>Rtid</th>
<th>Erain</th>
<th>Stkrs</th>
<th>Rtid</th>
<th>Strl</th>
<th>Cnstl</th>
<th>Alsmk</th>
<th>Rtmp</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

RECESSION DATA

<table>
<thead>
<tr>
<th>STREAM</th>
<th>QRCR</th>
<th>RUB = 0.00</th>
<th>RT30R = 1.00</th>
</tr>
</thead>
</table>

END-OF-PERIOD FLOW

<table>
<thead>
<tr>
<th>PODA</th>
<th>MR-PN</th>
<th>PERIOD</th>
<th>RAIN</th>
<th>EXCS</th>
<th>LOSS</th>
<th>COMP.G</th>
<th>PODA</th>
<th>MR-PN</th>
<th>PERIOD</th>
<th>RAIN</th>
<th>EXCS</th>
<th>LOSS</th>
<th>COMP.G</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
| OPERATIONAL AREA | RATIO | 1 | 0.50
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HYDROGRAPH AT SA-1</td>
<td>8.91</td>
<td>13452.7</td>
<td>2726.6</td>
</tr>
<tr>
<td></td>
<td>(23.28)</td>
<td>436.701</td>
<td>219.351</td>
</tr>
<tr>
<td>HYDROGRAPH AT SA-2</td>
<td>0.08</td>
<td>0.891</td>
<td>445.6</td>
</tr>
<tr>
<td></td>
<td>(0.201)</td>
<td>25.234</td>
<td>12.614</td>
</tr>
<tr>
<td>2 COMBINED SA-2C</td>
<td>8.99</td>
<td>13588.4</td>
<td>2794.2</td>
</tr>
<tr>
<td></td>
<td>(23.28)</td>
<td>441.611</td>
<td>220.701</td>
</tr>
<tr>
<td>ROUTED TO RES 1</td>
<td>8.99</td>
<td>14856.9</td>
<td>2318.6</td>
</tr>
<tr>
<td></td>
<td>(23.28)</td>
<td>420.661</td>
<td>207.222</td>
</tr>
<tr>
<td>ROUTED TO 10-0C</td>
<td>8.99</td>
<td>14840.7</td>
<td>2308.6</td>
</tr>
<tr>
<td></td>
<td>(23.28)</td>
<td>420.231</td>
<td>206.931</td>
</tr>
<tr>
<td>ROUTED TO 35-0C</td>
<td>8.99</td>
<td>13660.9</td>
<td>2222.2</td>
</tr>
<tr>
<td></td>
<td>(23.28)</td>
<td>412.201</td>
<td>205.491</td>
</tr>
<tr>
<td>ROUTED TO 95-00</td>
<td>8.99</td>
<td>13267.3</td>
<td>2137.2</td>
</tr>
<tr>
<td></td>
<td>(23.28)</td>
<td>425.691</td>
<td>212.263</td>
</tr>
<tr>
<td>HYDROGRAPH AT SA-3</td>
<td>8.90</td>
<td>12951.1</td>
<td>7894.6</td>
</tr>
<tr>
<td></td>
<td>(25.65)</td>
<td>444.321</td>
<td>222.161</td>
</tr>
<tr>
<td>HYDROGRAPH AT SA-4</td>
<td>0.04</td>
<td>4223.0</td>
<td>2117.2</td>
</tr>
<tr>
<td></td>
<td>(0.97)</td>
<td>314.591</td>
<td>99.701</td>
</tr>
<tr>
<td>3 COMBINED SA-4C</td>
<td>19.25</td>
<td>2649.7</td>
<td>1293.2</td>
</tr>
<tr>
<td></td>
<td>(49.86)</td>
<td>763.691</td>
<td>390.271</td>
</tr>
<tr>
<td>ROUTED TO RES 2</td>
<td>19.25</td>
<td>25419.7</td>
<td>10494.4</td>
</tr>
<tr>
<td></td>
<td>(49.86)</td>
<td>719.291</td>
<td>308.891</td>
</tr>
</tbody>
</table>

PEAK FLOW AND STORAGE END OF PERIOD SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS

FLOWS IN CUBIC FEET PER SECOND (CUBIC METERS PER SECOND)

AREA IN SQUARE MILES (SQUARE KILOMETERS)
Summary of Dam Safety Analysis

Plan 1

<table>
<thead>
<tr>
<th>Elevation</th>
<th>Initial Value</th>
<th>Spillway Crest</th>
<th>Top of Dam</th>
</tr>
</thead>
<tbody>
<tr>
<td>1013.00</td>
<td>1013.00</td>
<td>1020.00</td>
<td>699</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Storage</th>
<th>Outflow</th>
</tr>
</thead>
<tbody>
<tr>
<td>240</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ratio</th>
<th>Maximum</th>
<th>Maximum</th>
<th>Maximum</th>
<th>Maximum</th>
<th>Duration</th>
<th>Time of</th>
<th>Time of</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPF</td>
<td>Reservoir Depth</td>
<td>Storage Outflow</td>
<td>Over T.D. Max Outflow Failure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>1024.99</td>
<td>2.09</td>
<td>1112.6</td>
<td>1420.8</td>
<td>4.63</td>
<td>42.90</td>
<td>0.00</td>
</tr>
<tr>
<td>0.50</td>
<td>1020.33</td>
<td>0.33</td>
<td>792.2</td>
<td>7318.2</td>
<td>2.33</td>
<td>42.67</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Plan 1 Station 10+00

<table>
<thead>
<tr>
<th>Ratio</th>
<th>Maximum</th>
<th>Maximum</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow</td>
<td>CFS</td>
<td>Stage, Ft</td>
<td>Hours</td>
</tr>
<tr>
<td>1.00</td>
<td>1480.0</td>
<td>1022.6</td>
<td>42.67</td>
</tr>
<tr>
<td>0.50</td>
<td>730.8</td>
<td>1014.0</td>
<td>42.83</td>
</tr>
</tbody>
</table>

Plan 1 Station 15+00

<table>
<thead>
<tr>
<th>Ratio</th>
<th>Maximum</th>
<th>Maximum</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow</td>
<td>CFS</td>
<td>Stage, Ft</td>
<td>Hours</td>
</tr>
<tr>
<td>1.00</td>
<td>1460.0</td>
<td>1012.6</td>
<td>43.00</td>
</tr>
<tr>
<td>0.50</td>
<td>712.2</td>
<td>1010.3</td>
<td>43.17</td>
</tr>
</tbody>
</table>

Plan 1 Station 95+00

<table>
<thead>
<tr>
<th>Ratio</th>
<th>Maximum</th>
<th>Maximum</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow</td>
<td>CFS</td>
<td>Stage, Ft</td>
<td>Hours</td>
</tr>
<tr>
<td>1.00</td>
<td>1320.3</td>
<td>1013.1</td>
<td>44.13</td>
</tr>
<tr>
<td>0.50</td>
<td>643.7</td>
<td>1010.5</td>
<td>44.30</td>
</tr>
</tbody>
</table>
APPENDIX D

STABILITY ANALYSIS
STABILITY ANALYSIS OF SPILLWAY SECTION

CROSS SECTION FOR ANALYSIS - Typical section based on drawing Appendix G-1. Take highest section through pier.

Pier about 1' thick

ASSUMED CRITICAL FAILURE PLANE FOR O/T & SLIDING
C. T. MALE ASSOCIATES, P.C.

JOB: CAPE POND DAM

SHEET NO. 2 OF 8

CALCULATED BY: J. T. M.
DATE: 8/21/81

CHECKED BY: F. P. C.
DATE: 8/24/81

SCALE: None

3000 TROY ROAD, SCHENECTADY, N.Y. 12309

518-765-0976

Dead Load

\[
W_d = \sum \text{Volume} \times \text{Unit Wt} = \sum (\text{load}) \times \text{arm about toe} = \text{M}_d
\]

- \(W_1 = 5 \times 14.5 \times 1 \times 0.150 \times f_c = 10.88 \times (5/2 + 9) = 125.06 \)
- \(W_2 = 1/2 \times 6 \times 9 \times 1 \times 0.150 = 4.05 \times ((6 \times 2/3) + 3) = 28.35 \)
- \(W_3 = 6 \times 5.5 \times 1 \times 0.150 = 4.95 \times (6/2 + 3) = 29.70 \)
- \(W_4 = 3 \times 5.5 \times 1 \times 0.150 = 2.48 \times 3/2 = 3.71 \)
- \(W_5 = 15 \times 5.5 \times 1 \times 0.150 = 12.3B \times 15/2 = 92.81 \)
- \(W_6 = 4 \times 4 \times 1 \times 0.150 = 2.40 \times (4/2 + 10) = 28.80 \)

\(M_d = 37.14\) k

CASE 1 - Normal pool at spillway crest, no TW, full HW uplift, rock & earth fill roadway at spillway crest 1/3 to rockfill area at HW toe.

Overturning Forces

\[
W_d = \text{total load} = 37.14\text{k as above} = 308.43
\]

Horizontal Force

\[
W_h = \text{wt of normal HW} = 1 \times 9.45 \times 0.0624 = 0.90 \times (1/2 + 14) = 13.12
\]

\(W_F = \text{submerged wt of fill} \) where \(M_F = 130 - 62.4 \)

- \(M_F = 0.6B + 1/c = 0.06B + 1/c \)
- \(= 1 \times 14.5 \times 0.068 = 0.99 \times (1/2 + 14) = 14.30 \)

\(D-2 \)
CASE 1 OVERTURNING (cont'd)

\[A = \text{Active pressure, where } \varphi_A = 120 + \frac{h}{c} = 0.120 \text{ k/ft} \]
\[K_p = \text{coefficient of horizontal active earth pressure} = 4.0 \]
\[= \frac{1}{2} \times 10.5 \times 0.120 \times 4 \times 10.5 = 26.46 \times 10.5/3 = \frac{92.61}{2} \]
\[E_M = 428.46 \]

Driving Forces

\[D = \text{Normal HW pressure} \]
\[= \frac{1}{2} \times 20 \times 0.0624 \times 20 = 12.48 \times 20 = 83.20 \]
\[D_1 = \text{Submerged fill pressure, where } h_f = 0.068 \text{ ft} \]
\[k_d = \text{coefficient of horizontal submerged earth pressure} \]
\[\alpha + \beta = 0.5 \]
\[= \frac{1}{2} \times 20 \times 0.068 \times 0.5 \times 20 = 6.8 \times 20 = 45.33 \]
\[U = \text{Normal HW uplift} \]
\[= \frac{1}{2} \times 20 \times 0.0624 \times 15 = 9.36 \times 15 \times 2 = 93.5 \]
\[E_M = 222.13 \]

\[F_S = \frac{E_M}{E_M} = \frac{428.46}{222.13} = 1.93 \]

Resultant from toe \[d = \frac{E_M}{E_M} = \frac{E_M - E_M}{W_d + W_l + W_f} \]
\[d = \frac{206.33}{37.14 + 0.90 + 0.99 - 9.36} = \frac{206.33}{29.67} = 6.95 \times 2 = 0.446 \]

CASE 1 SLIDING

Assume sliding along concrete/soil contact

Resisting Forces

\[R_s = \text{Horizontal resisting force} = E_V \tan \phi + C \text{ (Reference 1)} \]
\[C = \text{cohesion along failure plane} = 0 \]
\[\phi = \text{angle of sliding section} = 32^\circ \text{ assumed} \]
\[E_V = \text{vertical effective force} \]
\[= 29.67 \text{ k per ft above} \]
\[R_s = 29.67 \tan 32^\circ = 18.54 \text{ k} \]

Driving Forces

\[D_1 = \text{Normal HW pressure} \text{ from } 0 \text{ ft above} = 12.48 \]
\[D_2 = \text{Submerged fill pressure} \text{ from } 0 \text{ ft above} = 6.80 \]
\[A = \text{Active pressure} \]
\[F_S = R_s/D_2 = 18.54/7.18 = \text{effectively } \infty \]

D-3
CASE 2 - Normal Pool plus ice load

N/A, same as Case 1, since ice acts against the upstream side of the roadway fill. This force cannot effectively be transmitted through the fill. Ice will not be present during higher water stages unless flashboards are deliberately added.
ESTIMATE TAILWATER FOR FLOOD CONDITIONS

Based on theoretical velocity of flow at toe of an overflow spillway, this method gives a lower bound on depth which is the most critical case for stability purposes.

\[
\frac{1}{2} \text{PMF} \quad Q = 10,900 \text{ cfs total, } H = 100.7 \quad \text{d} \quad 100.7
\]

\[
\text{PMF} \quad Q = 25,400 \quad \text{d} \quad 100.7
\]

Page Appendix C-13, Flow over just spillway:

\[
\frac{1}{2} \text{PMF} \quad 100.7, \quad Q_s = 7490 \text{ cfs}
\]

\[\text{PMF} \quad 100.7, \quad Q_s = 11,940 \quad \text{d} \quad 100.7
\]

Spillway length clear at crest = 136'

Specific discharge at toe = \(Q_s/L = \frac{Q_s}{147}\)

For \(\frac{1}{2} \text{PMF}\)

\[H = 100.7 - 1000 = 70.0\]

\[Z = 100.5 - 16.5\]

\[\therefore V = 30 \text{ fps}\]

\[\frac{g}{d} = \frac{7490}{47} = 51.0 \text{ ft}^3/\text{sec}\]

\[d = \frac{81}{30} = 2.7 \text{ ft}/\text{sec}\]

\[d = 1.7\]

\[\therefore \text{TW EL = 992.2}\]

For PMF

\[H = 100.7 - 1000 = 9.7\]

\[Z = 100.5 - 19.7\]

\[\therefore V = 32 \text{ fps}\]

\[\frac{g}{d} = \frac{1140}{147} = 81.2\]

\[d = \frac{81}{32} = 81.2\]

\[d = 2.5\]

\[\therefore \text{TW EL = 993.0}\]

Fig. 14-15. Curves for determination of velocity at the toe of spillways with slopes 1 on 0.6 to 0.8.
By Chow, Ref. 32

0.8H: V = 1H: 1.25V

0.6H: V = 1H: 1.67V

ACTUAL = 1H: 1.5V OK
CASE 3 - 1/2 PMF pool, full H/L & TW uplift, remainder same as Case 1

\[\frac{1}{2} \text{PMF EL 1007.0} \]

Approximate

\[\text{Wt of flowing water more than counteracted by neglecting flood uplift} \]

EL 1004

EL 1000

Overturning

Resisting Forces = Moment arm about toe

\[W_d, W_h, W_f \text{ same as Case 1, sheet 2} \]

\[T_W = \text{flood TW pressure} \]

\[= \frac{1}{2} \times 10.2 \times 0.0624 \times 12.2 = 4.64 \times 12.73 = 18.88 \]

\[A = \text{submerged Apron pressure, where} \]

\[F = 0.120 - 0.0624 = 0.058 \text{ ksf} \]

\[k_p = 4.0 \text{ psi sheet 3} \]

\[= \frac{1}{2} \times 10.2 \times 0.058 \times 10.5 = 10.79 \times 10.53 = 44.76 \]

\[W_{f2} = \text{flood HW wt} \]

\[= 1 \times 10 \times 0.0624 = (0.44) \times (12 + 14) = 6.33 \]

\[E_{MR} = 405.82 \]
CASE 3: OVERTURNING (Cont'd)

Driving Forces \times \text{Moment arm about toe} = M_D

\begin{align*}
D_1 &= \text{same as Case 1 sheet 3} = 83.20 \\
D_2 &= \text{same as Case 1 sheet 3} = 45.33 \\
U_1 &= \text{same as Case 1 sheet 3} = 93.60 \\
U_2 &= \text{portion of fill at top} \\
7 \times 0.0624 \times 1 &= 0.44 \times \frac{1}{2} + 14 = 6.33 \\
D_1 &= \text{flood water pressure} \\
7 \times 0.0624 \times 24 &= 10.48 \times \frac{24}{2} = \frac{125.80}{354.76} = \frac{EM_D}{EM_P} = 354.76 \\
FS &= \frac{EM_P}{EM_D} = \frac{405.82}{354.76} = 1.15 \\
\text{Resultant from toe} &= d = \frac{EM_P}{EV} = \frac{EM_P - EM_D}{W_D + W_{H1} + W_{H2} + W_F - U_1 - U_2} = \frac{51.56}{37.14 + 0.90 + 0.44 + 0.99 - 9.36 - 0.44} = 1.74' \\
d &= 1.74' \times \frac{6}{12} = 0.126 \\
\text{CASE 3: SLIDING same failure plane & theory as Case 1 sheet 3.} \\
\text{Resisting Forces} \\
EV &= \sqrt{29.67 \text{ per ft. above}} \Rightarrow R_s = 29.67 \text{ ft} \times 32 = \frac{1854}{k} \\
\text{Driving Forces} \\
D_1 &= \text{flood water pressure} \text{ per ft. above} = 10.48 \\
D_2 &= \text{normal} \Rightarrow D_1 \text{ per sheet 3} = 12.48 \\
P_3 &= \text{submerged fill pressure} = \frac{P_3}{\text{per sheet 3}} = 6.8 \\
P_2 &= \text{flood water pressure} \text{ per ft. sheet 6} = 6.4 \\
A &= \text{submerged mean press.} \Rightarrow \frac{A}{D_2} = \frac{12.79}{10.33} = 1.26 \\
FS &= \frac{R_s}{D_2} = \frac{18.54}{10.33} = 1.50
CASE 4 - PMF OVERTURNING, same as Case 3, sheet 6 & 7, w/ TW EL 993.0

Resisting Forces x Moment arm about toe = \(M_R \)

\[\begin{align*}
W_D &= \text{Flood H2O wt. for } 1009.7 - 1000 = 9.7 \\
W_H1 &= 9.7 \times 1 \times 0.0624 = 0.61 \times 11.12 = 8.78 \\
W_H2 &= \text{Flood H2O pressure for } 993 - 980 = 13.0 \\
&= \frac{1}{2} \times 13 \times 0.0624 \times 13 = 5.27 \times \frac{13}{3} = 22.85
\end{align*} \]

\(E_M = 410.24 \)

Driving Forces

\[\begin{align*}
D_2, D_3 &= \text{same as Case 3, sheet 4} = 270.13 \\
U_2 &= \text{part of } \frac{1}{2} \text{ of Flood up, PL} = 9.7 \times 0.0624 \times 1 = 0.61 \times 11.12 = 8.78 \\
D_1 &= \text{Flood H2O pressure} = 9.7 \times 0.0624 \times 3 = 14.53 \times 14.12 = 174.32
\end{align*} \]

\(E_M = 405.23 \)

\(F_S = \frac{E_M}{E_M} = \frac{410.24}{405.23} = 1.02 \)

Resultant beam force = \(d = \frac{E_M}{E_M} = \frac{410.24 - 405.23}{2} = \frac{0.21}{2} = 0.24 \times 0.02 = 0.026 \)

\(d = \frac{7.01}{37.14 + 0.90 + 0.61 + 0.97 - 9.36 - 0.61} = \frac{29.67}{0.24 \times 0.02} = 15 \)

CASE 4 - PMF SLIDING, same methodology as Case 3 sheet 7

Resisting Forces \(E_V = 29.67 \) \(\therefore R_S = 29.67 \times \tan 32^\circ = 18.54 \)

Driving Forces

\[\begin{align*}
D_2, D_3 &= \text{same as Case 3, sheet 4} = 6.49 \\
D &= \text{Flood H2O press. per 61 ft above} = 14.53 \\
TW &= \text{" TW"} = 15.75
\end{align*} \]

\(F_S = \frac{R_S}{D_S} = \frac{18.54}{15.75} = 1.18 \)

D-8
Stability Analysis of Dam

Cross Section for Analysis - To right of spillway at about sta 3+40 where exposed, unsupported fill height is greatest (see photo A-5B). Dimensions based on rough field measurements and to lesser extent on drawing Appendix G-1.

Dead Load Volume x Unit Wt. = W x Arm about toe = M
W_D = 4x8x1 x 0.150 kcf = 4.8 k x 4/2 = 9.6 ft k

B' 3H:1V
Concrete & Masonry

EL 1001.75

Fill

EL 1005.25

Presious Roadway

3.5' 10'

W_D

2' 3H:1V

Fill

Dead Moment

M = W x Arm about toe = 9.6 ft k

El 997.25
CASE 1 - Normal pool at spillway crest, no TW, full HW uplift, fill to 3.5' below top on Y/S side. EL 1005.25

CURVATURE

Resisting Forces

Only \(W_D = 4.8k \) , \(\Sigma M_R = 9.60 \text{ ft k} \) per sheet

Driving Forces \(\times \text{ Moment arm about toe} = M_D \)

- \(D_1 = \text{Normal HW pressure} \)
 \[D_1 = 0.21 \times 2.75 \times 0.5 \times 2.75 = 0.21 \times 2.75/3 = 0.22 \]

- \(D_2 = \text{Fill pressure} \) where \(H_F = 130 \text{ ft CF} = 0.130 \text{ k CF} \)
 \[D_2 = 1.75 \times 2.75/3 = 0.33 \]

- \(D_3 = \text{Submerged fill pressure} = 1.75 \times 0.5 \times 1.75 = 0.33 \times (1.75/3 + 2.75) = 0.33 \]

- \(D_4 = \text{Normal HW universe} \)
 \[D_4 = 0.13 \times 2.75 \times 0.5 \times 2.75 = 0.13 \times 2.75/3 = 0.12 \]

- \(U = \text{Normal HW universe} \)
 \[U = 0.13 \times 2.75 \times 0.0624 \times 4 = 0.34 \times (4 \times 2.75) = 0.92 \]

- \(\Sigma M_D = 2.02 \)

- \(FS = \Sigma M_R / \Sigma M_D = 9.60 / 2.02 = 4.75 \)

Resultant from toe = \(d = \frac{2M_D}{EV} = \frac{\Sigma M_R - \Sigma M_D}{W_D - U} \)

\[d = 1.70 \times \frac{5}{2} = 0.426 \]

- **D-10**
CASE 1 Sliding Assume sliding along cracked concrete
 Resisting Forces
 \[R_s = \text{horiz. resisting force} = \Sigma V \tan \phi + c \] (Reference 1)
 where \(c = \text{cohesion along failure plane} = 0 \)
 \(\phi = \text{angle of sliding friction} = 45^\circ \) assumed
 \(V = \text{vertical effective force} \)
 \[= 4.46 \text{ k per pft above} \]
 \[R_s = 4.46 \tan 45^\circ = 4.46 \text{ k} \]

 Driving Forces
 \(D_1 = \text{normal H2O pressure} = \text{per sheet 2} = 0.24 \text{ k} \)
 \(D_2 = \text{full pressure} = \text{""""} = 0.10 \)
 \(D_3 = \text{submerged full pressure} = \text{""""} = 0.31 \)
 \(D_4 = \text{“"""”} = 0.13 \)
 horiz. driving force \(D_s = 0.78 \text{ k} \)

 \[F_s = \frac{R_s}{D_s} = \frac{4.46}{0.78} = 5.72 \]

CASE 2 - Normal pool plus ice load.

N/A, same as Case 1, since ice acts against the upstream side of the roadway fill. This force cannot effectively be transmitted through the fill. Ice will not be present during higher water stages unless flashboards are deliberately added.
CASE 3 - ½ PMF Pool, full HW uplift, remainder same
as Case 1.

\[
\text{Fill} \quad \text{EL 1001.75}
\]

\[
\gamma \text{ normal} \quad \text{EL 1000}
\]

\[
4.5 \gamma_k \quad 8H_w \quad 1.75 \gamma_k \quad 2.75 \gamma_k
\]

Overflowing

Only resisting force: \(W_d = \frac{4.8}{12} \) \(\rightarrow \) \(EM_d = 9.6 \) k ft/sec

Driving Forces \(\times \) Moment from about toe: \(= \) \(MD \)

\(D_1 = \) Flood HW pressure

\[D_2 = \frac{1}{2} \times 8 \times 0.0624 \times 8 = 0.87 \times \frac{g}{2} = 3.49 \]

\(D_3 = \) Submerged fill pressure

\[U = \text{Normal HW pressure} = 0.34 \text{k} \text{pm sec} \]

\(FS = \frac{EM}{EMD} = \frac{9.6}{10.25} = 0.94 \)

Resultant from base: \(d = \frac{EM}{12V} = \frac{EM - EM_d}{W_d - U} = -0.65 \)

\[d = -0.15 \times 12 = -0.046 \]

D-12
CASE 3 - SLIDING same theory as Case 1, sheet 3
\[\Sigma V = 4.46 \quad ; \quad R_s = 4.46 \sin 45^\circ = 3.21 \text{ k} \]

Driving Forces:
\[D_1 = \text{per sheet 4} = 0.87 \]
\[D_2 = \quad " \quad " \quad = 2.00 \]
\[D_3 = \quad " \quad " \quad = 0.34 \]
\[D_s = 3.21 \text{ k} \]

\[F_s = \frac{R_s}{D_s} = \frac{4.46}{3.21} = 1.39 \]

CASE 4 - PMF OVERTURNING same methodology as

Case 3:
\[\Sigma M_p = 9.60 \quad \text{due to only WW} \]

Driving Forces:
\[D_1, D_2, D_3 \text{ same as Case 3, sheet 4} \]
\[D_1 = \text{Flood H20 pressure, } 100 \times 100 \times 8.5 = 4.45 \]
\[4.45 \times 0.0624 \times 8 = 2.02 \times 8/2 = 8.09 \]
\[E_M = 15.65 \]

\[F_s = \frac{2 \Sigma M_p}{E_M} = 9.60 \times \frac{15.65}{15.65} = 0.61 \]

Resultant beam force:
\[d = \frac{E_M}{\Sigma V} \quad \frac{9.60 - 15.65}{4.46 \text{ Case 3}} = -6.05 \]
\[d = 1.36' \times 1/4 = -0.346 \]

CASE 4 - SLIDING same methodology as Case 3
\[\Sigma V = 4.46 \quad ; \quad R_s = 4.46 \sin 45^\circ = 4.56 \text{ k} \]

Driving Forces:
\[D_2 \text{ and } D_3 \text{ same as Case 3 above} = 2.34 \]
\[D_1 = \text{per 0/4 above} = 0.22 \]
\[D_s = 4.56 \text{ k} \]

\[F_s = \frac{R_s}{D_s} = \frac{4.46}{4.56} = 0.98 \]
APPENDIX E

REFERENCES
REFERENCES

This is a general list of references pertinent to dam safety evaluations. Not all references listed have necessarily been included in this specific report.

"Engineering and Design, National Program For Inspection of Non-Federal Dams", ER 1110-2-106, Dept. of the Army, Office of the Chief of Engineers, 26 September 1979, with Change 1 dated 1 March 1980. Included as Appendix D of the ER is "Recommended Guidelines For Safety Inspection of Dams".

TR 51, "All-Season Probable Maximum Precipitation, U.S. East of 105th Meridian for Areas from 1000 to 20,000 Square Miles and Durations from 6 to 72 Hours", U.S. Dept. of Commerce, NOAA, National Weather Service, 1974.

APPENDIX F

AVAILABLE ENGINEERING DATA AND RECORDS

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>Location of Available Engineering Data and Records</td>
</tr>
<tr>
<td>F2</td>
<td>Checklist for General Engineering Data and Interview with Dam Owner</td>
</tr>
<tr>
<td>F3</td>
<td>Copies of Engineering Data and Records</td>
</tr>
</tbody>
</table>
APPENDIX F

SECTION F1

LOCATION OF AVAILABLE ENGINEERING DATA AND RECORDS

1. **Owner**: Cape Pond, Inc.
 Cape Road
 Ellenville, NY 12428
 Attn: William H. Lyons, President
 Lyons Road
 Milton, NY 12547
 914-795-5164

 Attn: Andrew T. Jacob, Operator
 Box 21A, Cape Pond Rd.
 Ellenville, NY 12428
 914-647-3207

 Available: Daily log from May 1979 to present, with water levels over the spillway and road recorded.

2. **Designer**: Unknown.

3. **Construction Contractor**: Mr. VanKeuren
 Ellenville, NY (deceased)

4. **Designer for 1914 Modifications**:
 J. H. Divine
 Ellenville, NY
 (business status unknown, not contacted)

5. **Construction Contractor for 1914 Modifications**: Unknown.

6. **Construction Contractor For 1970 Repairs on Gate 1**:
 McDole Construction Co.
 Wawarsing, NY (now retired)

7. **Agency**: NYS Department of Environmental Conservation
 50 Wolf Road
 Albany, NY 12233
 Attn: George Koch, P.E., Chief, Dam Safety Section
 518-457-5557

 Available: Drawing, inspection reports, and construction application and letters concerning 1914 modifications.
PHASE I INSPECTION

CHECKLIST FOR GENERAL ENGINEERING DATA

& INTERVIEW WITH DAM OWNER

Name of Dam: Cape Pond Dam Fed. Id. #: NY00265
Date: April 8, 1981 Interviewer(s): Thomas P. Bennedum

Dam Owner/Representative(s) Interviewed, Title & Phone:
William H. Lyons, Pres., Cape Pond Inc., Bus. 914-562-5780
Sherman B. Loucks, Member, 914-647-5054, Thomas H. Clark, Member
& Operator (see below) 914-562-6213

1. OWNERSHIP (name, title, address & phone #)
Cape Pond, Inc., Cape Rd., Ellenville, NY 12428
Attn: William H. Lyons, President, Lyons Rd., Milton, NY 12547
(near Newburgh)

2. OPERATOR (name, title, address & phone # of person responsible for day-to-day operation)
Andrew T. Jacob, Box 21A, Cape Pond Rd., Ellenville, NY 12428, 914-547-3207 (Hse. next to left abutment)
a. Operator Full/Part time Part time (DEC Forest Ranger, W/Region 3, New York, Full time)

3. PURPOSE OF DAM
a. Past Constructed for hydro storage by Dwight Divine & Sons
(Ulster Knolls Co.), but never used. 1949 Divine died &
employees formed Corp. & bought dam & property.
b. Present Recreation, restricted to Corp. members &
one private family owning property abutting lake & part of
lake. Also, one after parcel w/1/1 of frontage, which

4. DESIGN DATA
a. Designed When: unknown, except prior 1904 +
b. By (name, address, phone #, business status) unknown
c. Geology Reports None known
d. Subsurface Investigations None known
e. Design Reports/Computations (H&H, stability, seepage) None known
f. Design Drawings (plans, sections, details) None known

g. Design Specifications None known

h. Other 1914 modification drawings (see Appendix E-1) show some details of original design.

5. CONSTRUCTION HISTORY

a. Initial Construction
1) Completed When Unknown, except prior 1904±

2) By (name, address, phone #, business status)
Mr. Van Keuren, Ellenville, NY (deceased)

3) Borrow Sources/Material Tests Cement from Rosendale
Cement Works, p/ma Kingston NY (not in business now)
Also supplied Brooklyn Bridge.

4) Construction Reports/Photos None known

5) Diversion Scheme/Construction Sequence Unknown

6) Construction Problems None known

7) As-Built Drawings (plans, sections, details) None known

8) Data on Electrical & Mechanical Equipment Affecting Safe Operation of Dam Only electric is for outside lights. No data on gate mechanisms.

9) Other n/a
4576

b. Modifications (review design data & initial construction items as applicable & describe): 1914 replaced plank & stone crib appr w/ grouted in stone & constructed concrete apron to below exist. spillway. Engineer was J.H. Divine, Ellenville, NY (business status unknown). Contractor unknown. See Appendix F3-4 thru F3-14 & drawing on Appendix G-1. Work was finished in 1915.

c. Repairs & Maintenance (review design data & initial construction items as applicable & describe): 1970 replaced gate #1 (nearest left) replaced part of #1 outlet conduit & encased rest in concrete, & ramped & dressed up rock sill on d/s side. No plans & no records except bills. Contractor was McDele Const. Co., Wapping, NY (now retired). "McDele 1970" Cast in Concrete (see 9- other)

6. OPERATION RECORD

a. Past Inspections (dates, by, authority, results) ________
 • Aug, 3, 1914 by NYS Cons. Comm. (see App. F3-1)
 • Aug. 30, 1972 by NYS-DEC (see App. F3-1b) Last

 • Gates leak, #2 leaks more.

c. Post-Construction Engineering Studies/Reports ________
 None known

d. Routine Rainfall, Reservoir Levels & Discharges May, 1979 - present Operator has kept daily log (for security) & has noted when W.L. is over road or spillway. Will try to send copy of logs.

F2-3
e. Past Floods That Threatened Safety (when, cause, discharge, max. pool elevation, any damage) • Aug. - Sept. 1955 W.L. same distance above top of core wall (dam) 3 m. 1.5. Early 1970's heavy storm caused failure of core (see 9-OTHER)

f. Previous Failures (when, cause, describe) None Known

g. Earthquake History (seismic activity in vicinity of dam) None Known

7. VALIDITY OF DESIGN, CONSTRUCTION & OPERATION RECORDS (note any apparent inconsistencies) • Dwg. App. G-1 shows dam length as 697.5'. Measures 612', but ends of core wall probably underground. • No gate houses shown on dwg. • Dwgs. shows 14 piers in spillway. Only has 11 piers, 3 piers missing & openings wider than rest.

8. OPERATION & MAINTENANCE PROCEDURES

a. Operation Procedures in writing? No Obtain copy or describe. (reservoir regulation plan, normal pool elevation and status of operating facilities, who operates & means of communication to controller, mode of operating facilities, i.e., manual, automatic, remote). Early 1930's suit brought by Cooper who was flooded because Divine had flashboards on spillway. Court decision established W.L. at "paint mark" at left of dam (i.e., at spillway crest per level shots). Owner has standing order (spec).

b. Maintenance Procedures in writing? No Obtain copy or describe. • Since 1975 been a dam committee (chairman + 2 members + Lyons + operator). Either chairman or members look at dam once/wk. Operator looks daily. • Each summer various members do miscell (cont'd on F2-6)
c. Emergency Action Plan & Warning System in Writing? No
Obtain copy or describe. (actions to be taken to minimize the D/S effects of an emergency)

- Feel that flood control project in Ellenville (stream channelization & Cen. flood walls) provides protection.
- If situation arose, would call Ellenville Police Dept. & Mayor.

9. OTHER

5c) Repairs & Maintenance • (1970 cont'd) on top of 1/s end of outlet conduit #1, Kelly was either sand supplier or crane operator.
- Summer 1978 replaced bottom concrete sill gate #2, work done by members. Owner has some photos before/after & will try to locate them.
- 1975 & 1975 got estimate to grout 1/s face of spillway & exposed core wall. Work never done, too expensive.

6a) Past Inspections
- Various informal inspections by members, friends who are engineers, but no written reports produced.
- Dam may have been 'looked at' by COE during flood control work in Ellenville in 1955 and early 1970's.

6e) Past Floods • (early 1970's cont'd) Ulster Heights Dam (earthen) U/S, which caused Cape Pond to be O/T by unknown amount.
- 1977-78 Ulster Hts. Dam failed again because of storm, but Cape Pond not O/T.
- March 6, 1980 flood caused w/e 1"-2" above step in U/S concrete wall at left of dam (i.e., about 3.8' above spillway crest based on level shots).
- In 25 yrs. of memory, water has never flooded camps.
8a) Operation... that this level be maintained. Operator uses his discretion as to how to maintain this level.
- Normally both gates closed. No flashboards on spillway. Old FOB hinge pins on piers & pipe sockets on crest (some missing)
- Try to maintain W.L. at "paint mark" (i.e., slightly below road across dam) from April thru Nov. 1.
- Use gate #1 (near left) primarily & gate #2 only during high water. #1 works more easily than #2.
- Both gates are operated manually. Gate #1 sill is 18' below top of core wall & opens about 40" max. Gate #2 sill is 12' below top of core wall & opens about 2' max. Both gates are on 48" diam outlet conduit.
- After Nov. 1 W.L. quickly dropped to level of gate sills to inspect gates, sills & any other items & then W.L. allowed to rise.
- Nov. 1 to April 1 try to maintain W.L. about 2' below "paint mark" (spillway crest) primarily to help in weed control.
- Will open gates in anticipation of heavy flows due to storms. From experience, 2"-3" of rain causes about a 6" rise in W.L. about 24 hr. later.
- With both gates open, requires about 36 hr. to drop W.L. to old channel, essentially draining all storage.

8b) Maintenance... concrete patching on age & core wall. Work is evident.
- Each year about 30-40 tons of "clay" dumped on each side. Dumped on road and drenched in. Done by variety of local contractors.

8c) Emergency Action Plan
- Stenner damps 700' to Wilson's market end of Cape Rd.
- Club owns alternate parcels dls to junk yard about 3½ miles d/s
APPENDIX F

SECTION F3

COPIES OF ENGINEERING DATA AND RECORDS

TABLE OF CONTENTS

Inspection Report, by NYS Conservation Commission (Richard L. Hyde) - August 3, 1914	F3-1
Letter Concerning 1914 Modifications, by J. H. Divine - September 18, 1914	F3-4
Letter Approving Plans for 1914 Modifications, by NYS Conservation Commission - September 29, 1914	F3-13
Inspection Report, by NYS-DEC, August 22, 1972	F3-15
Memorandum on August 22, 1972 Inspection, by Robert Ryczek (NYS-DEC) - August 23, 1972	F3-18
Letter Requesting Inspection, by Cape Pond, Inc. (William H. Lyons) - December 20, 1977	F3-20
CONSERVATION COMMISSION,
DIVISION OF INLAND WATERS.

GENTLEMEN:

I have the honor to make the following report in relation to the structure known as the [Dam Name] Dam.

This dam is situated upon the [Stream Name] in the Town of [Town Name], [County Name], about [Distance] mile from the Village or City of [City Name], [County Name]. The distance down stream from the dam, to the [Reference Point Name] is about [Distance].

The dam is now owned by [Owner Name] and was built in or about the year [Year], and was extensively repaired or reconstructed during the year [Year].

As it now stands, the spillway portion of this dam is built of [Material], and the other portions are built of [Material].

As nearly as I can learn, the character of the foundation bed under the spillway portion of the dam is [Character], and under the remaining portions such foundation bed is [Character].
The total length of this dam is \(\frac{9}{5} \) feet. The spillway or waste-weir portion is about \(\frac{17}{4} \) feet long, and the crest of the spillway is about \(\frac{5}{9} \) feet below the top of the dam.

The number, size and location of discharge pipes, waste pipes or gates which may be used for drawing off the water from behind the dam, are as follows:

State briefly, in the space below, whether, in your judgment, this dam is in good condition, or bad condition, describing particularly any leaks or cracks which you may have observed.)

The dam is in very good condition.

Reported by [Signature]

(Address—Street and number, P. O. Box or R. F. D. route)

(Name of place) (SEE OTHER SIDE)

DEC

F3-2
(In the space below, make one sketch showing the form and dimensions of a cross section through the spillway or waste-weir of this dam, and a second sketch showing the same information for a cross section through the other portion of the dam. Show particularly the greatest height of the dam above the stream bed, its thickness at the top, and thickness at the bottom, as nearly as you can learn.)

(In the space below, make a third sketch showing the general plan of the dam, and its approximate position in relation to buildings or other conspicuous objects in the vicinity.)
The Conservation Commission,
Albany, N.Y.

Attention of Mr. A. R. McKinnon:-

Gentlemen:—

As discussed with Mr. McKinnon on his visit of inspection here this Spring, we contemplate the replacement of the plank and stone crib apron of our dam at the Cape, this town, on north branch of Bearkill Creek, with concrete constructions and the incidental reinforcement of the dam by continuing the concrete work on the conventional "o g" curve to the spillway.

The writer expects to be in Albany on Tuesday and Wednesday next (September 22nd & 23rd) and would be glad to go over our plans in detail with Mr. McKinnon at any time on either of the dates noted. If this arrangement is satisfactory, kindly make an appointment by return mail or wire us.

Owing to the lateness of the season, it is
The Conservation Commission—#2.

desirable that the work, if done this fall, be gotten under way as soon as possible.

Yours very truly,

Dwight Divine & Sons.
APPLICATION FOR CONSTRUCTION OR RECONSTRUCTION OF A DAM

Application is hereby made to the Conservation Commission of the State of New York, in compliance with the provisions of Chap. LXV of the Consolidated Laws, the Conservation Law, for approval of the detailed specifications and plans, marked Plan of finished
Concrete Fillings for Cape Pond Dam, herewith submitted, for the construction of the dam herein described. All provisions of law will be complied with in the erection of the said dam, whether specified herein or not.

Sept 22, 1914
(Date)

{Signature of Applicant}

[Signatures]

[Address of Applicant]
LOCATION AND GENERAL DATA

Site of dam is on South Branch of Good Bull Head Kill, a branch of Roundout (small drain]}. Creek within the limits of the town of Wawayanda, County of Ulster.

(Give approximate distance from well-known bridge, dam, village or mouth of stream, so that work can be located on map of state)

Purpose of dam: Storage of flood waters.

Reasons for making changes in existing structure: Reinforcement and lessening of main tars.

DATA AND DIMENSIONS

General:

Nature of foundations: Hard jam - Clay

Materials of which dam is to be constructed: Concrete

Area of watershed above dam: Twenty-two square miles

Area of water surface of pond at level of spillway crest: 2.75 acres.

Capacity of reservoir (at above level): 60,000,000 cubic feet.

Length of spillway crest: 150' (136' effective) feet.

Maximum depth of water on spillway crest: 4' feet.

Maximum discharging capacity of spillway: 4,600 cubic feet per second.

Maximum discharging capacity of spillway per square mile of drainage area: 95.2 cubic feet per second.
Masonry or timber portion:

Length on top.. 9.5 feet.
Length in stream bed.. 7.5 feet.
Maximum height above stream bed................................ 12.5 feet.
Maximum height above foundation bed........................... 24.5 feet.
Maximum width of base.. 14 feet.
Maximum width of top.. 5 feet.
Elevation of top above maximum water level in pond........ 2 feet.
Elevation of top above spillway crest.............................. 5 feet.

Earth portion:

Embankment:

Length on top.. feet.
Length in stream bed.. feet.
Maximum height above stream bed... feet.
Maximum width of base... feet.
Maximum width of top... feet.
Elevation of top above maximum water level in pond............ feet.
Elevation of top above spillway crest.................................... feet.
Slope, upstream face..
Slope, downstream face...-

Core wall:

Material..-
Elevation of top above spillway crest.................................... feet.
Width of top.. feet.
Batter of faces..
Maximum height above foundations................................. feet.
Maximum width of base.. feet.
Is fish way provided? No.

General description of regulating works, gate houses, outlet pipes, penstocks, forebays, canals, flashboards, gates, log chutes, etc.

2' high hinged flash boards.
2 - 1.5' round gates (see plans) fitted with screen and divers.

Names of owners of property which will be submerged by construction of dam, with approximate submerged area owned by each.

Dumriet Division, 240 acres
A. R. Deane and others, 35 acres

It is intended to complete work covered by this application by Nov 15, 1914.

REPORT UPON APPLICATION

CONSERVATION COMMISSION — DIVISION OF INLAND WATERS

Albany, Sept 22, 1914

I have carefully examined the plans of the above dam, and find that if the work is constructed in accordance with the plans filed, Sept 22, 1914, with good workmanship and the specified materials, that it will be safe.

Approved:

[Signature]
Chief Engineer.

[Signature]
Inspector of Docks and Dams.
APPROVAL BY COMMISSION

STATE OF NEW YORK

CONSERVATION COMMISSION

ALBANY

On ______________, the Conservation Commission, by resolution duly adopted, approved of the above application for the {construction, reconstruction} of dam 751, Lover's Lake, and hereby gives permission for the {construction, reconstruction} of said dam within ________________ months from date in accordance with the specifications and plans, and subject before erection to the approval by the Inspector of the materials of construction and of the foundation bed when stripped and prepared, and subject to the inspection of the work during and after construction. This approval may be amended if deemed necessary to secure a safe structure.

(Seal)

Secretary to Commission.

REPORT ON INSPECTION OF FOUNDATION

CONSERVATION COMMISSION — DIVISION OF INLAND WATERS

Albany

Work on the above dam was started ________________, contracts for the same having been awarded to ________________.

On ______________,

approved:

Inspector of Docks and Dams.

Chief Engineer.

DEC F3-10
REPORT ON COMPLETION OF WORK

CONSERVATION COMMISSION — DIVISION OF INLAND WATERS

Ellenville Aug 13-15
Albany

On Aug 13-15, I inspected the above work and found that it had been completed in a satisfactory manner.

Approved:

Inspector of Docks and Dams.

Chief Engineer.

INSTRUCTIONS TO APPLICANTS

Requirements for Plans.— Before beginning the construction, reconstruction, alteration or extension of a structure for impounding water, the owner of the proposed structure shall submit, in duplicate, to the Conservation Commission complete drawings showing the location of the dam, the flow line of the impounded water, the boundary lines and the ownership of the property affected, the nature of the foundation bed, the character of the materials to be employed, the size and the location of the discharge and control gates, the general and special features of the dam, and such dimensions as are necessary for the calculation of the stresses and the erection of the structure.

Drawings shall be on sheets of uniform size 24 inches wide by 36 inches long. Each sheet shall have a white space 3 inches high by 6 inches long below the title to receive the stamp of approval. On each sheet of every set of drawings there shall be clearly printed a conspicuous title in which shall appear the name of the county, the name of the city, village or town, and the name of the stream in which the dam is located, and the name of the owner thereof. The scale of the drawings shall be stated under the title. When the designs have been approved by the Commission, one set will be returned to the owner, with such approval endorsed thereon. Copies in duplicate of the specifications under which the dam is to be constructed shall accompany the plans.

Inspection.— The name of the inspector and a statement of his experience in such work must be sent to the Commission. There must also be sent a sample of at least one-half a cubic foot of sand and twenty cubic inches of the stone for concrete or masonry to be used in the structure, and of the natural materials in the foundation bed. The foundation bed, after it has been cleared and prepared, must be inspected subject to approval by the Inspector of the Commission. The inspection of materials takes about ten days in the laboratory. On request tags will be sent for labeling the materials.
Dec 2-14. Room again will filled with about 2 tbsp. of water well thick up with large pieces of point. 1 0 R 11-44.
Sept. 29, 1914.

Dwight Divine & Sons,
Ellenville, N. Y.

Gentlemen:

Enclosed you will find print of plan for dam known in our records as Serial #176, Dam #751, Lower Hudson River Watershed.

Upon the plan you will find a certificate signed by the Secretary to the Commission stating that by a duly adopted resolution your plans and specifications have been approved in accordance with the provisions of Section 22 of the Conservation Law.

You will also find enclosed copy of the resolution, which please read carefully and acknowledge receipt.

Yours truly,

CONSERVATION COMMISSION,

By,

Secretary to Commission.

F3-13
WHEREAS, Dwight Divine & Sons of Ellenville, N. Y.,
did on the 22nd day of September, 1914 submit plans and
specifications for the reconstruction of a dam on the North
Branch of Good Bier Kill, a branch of the Rondout Creek within
the limits of the town of Warwarsing, said dam being known in
Conservation Commission records as Dam #751 Lower Hudson River
Watershed; and did by Conservation Commission serial #176 make
application for the approval of said plans and specifications
under the provisions of the Conservation Law, and

WHEREAS, said plans and specifications have been ap-
proved by the Chief Engineer and the Inspector of Docks and
Dams and said plans signed by them respectively. Now, There-
fore, Be it

RESOLVED, that said plans and specifications be and
hereby are approved, provided however that this resolution
shall not be deemed to authorize any invasion of any property
rights, public or private, by any person in carrying out the
requirements of this resolution, nor to create any claim or
demand against the State of New York.
AS BUILT INSPECTION

1. Location of Spillway and outlet
 - Elevations
2. Size of Spillway and outlet
 - Geometry of Non-overflow section

GENERAL CONDITION OF NON-OVERFLOW SECTION

1. Settlement
2. Joints
3. Cracks
4. Surface of Concrete
5. Deflections
6. Leakage
7. Settlement of Embankment
8. Crest of Dam
9. Undermining
10. Upstream Slope
11. Toe of Slope
12. Downstream Slope

GENERAL CONDITION OF SPILLWAY AND OUTLET WORKS

1. Auxiliary Spillway
2. Service or Concrete Spillway
3. Stilling Basin
4. Spillway Toe
5. Joints
6. Surface of Concrete
7. Mechanical Equipment
8. Plunge Pool
9. Drain

Maintenance

1. Evaluation
2. Hazard Class
3. Inspector

COMMENTS:

All exposed concrete surfaces were spall and cracked with some material falling away. Brush immediately downstream of headwall. A new concrete headwall should be built downstream of the 46" drain at the north end of the dam. P3-15
DEC DAM INSPECTION REPORT CODING

1. River Basin - Nos. 1-23 on Compilation Sheets
2. County - Nos. 1-62 Alphabetically
3. Year Approved -
4. Inspection Date - Month, Day, Year
5. Apparent use -
 1. Fish & Wildlife Management
 2. Recreation
 3. Water Supply
 4. Power
 5. Farm
 6. No Apparent Use
6. Type -
 1. Earth with Aux. Service Spillway
 2. Earth with Single Conc. Spillway
 3. Earth with Single non-conc. Spillway
 4. Concrete
 5. Other
7. As-Built Inspection - Built substantially according to approved plans and specifications

 Location of Spillway and Outlet Works
 1. Appears to meet originally approved plans and specifications.
 2. Not built according to plans and specifications and location appears to be detrimental to structure.
 3. Not built according to plans and specifications but location does not appear to be detrimental to structure.

 Elevations
 1. Generally in accordance to approved plans and specifications as determined from visual inspection and use of hand level.
 2. Not built according to plans and specifications and elevation changes appear to be detrimental to structure.
 3. Not built according to plans and specifications but elevation changes do not appear to be detrimental to structure.

 Size of Spillway and Outlet Works
 1. Appears to meet originally approved plans and specifications as determined by field measurements using tape measure.
 2. Not built according to plans and specifications and changes appear detrimental to structure.
 3. Not built according to plans and specifications but changes do not appear detrimental to structure.

 Geometry of Non-overflow Structures
 1. Generally in accordance to originally approved plans and specifications as determined from visual inspection and use of hand level and tape measure.
 2. Not built according to plans and specifications and changes appear detrimental to structure.
 3. Not built according to plans and specifications but changes do not appear detrimental to structure.

 General Conditions of Non-Overflow Section
 1. Adequate - No apparent repairs needed or minor repairs which can be covered by periodic maintenance.
 2. Inadequate - Items in need of major repair.

 (Items) For boxes listed on condition under non-overflow section.
 1. Satisfactory.
 2. Can be covered by periodic maintenance.
 3. Unsatisfactory - Above and beyond normal maintenance.
General Condition of Spillway and Outlet Works

1. Adequate - No apparent repairs needed or minor repairs which can be covered by periodic maintenance.
2. Inadequate - Items in need of major repair.

For items listed conditions listed under spillway and outlet works.

1. Satisfactory.
2. Can be covered by periodic maintenance.
3. Unsatisfactory - Above and beyond normal maintenance.
4. Dam does not contain this feature.

Maintenance

1. Evidence of periodic maintenance being performed.
2. No evidence of periodic maintenance.
3. No longer a dam or dam no longer in use.

Hazard Classification Downstream

1. (A) Damage to agriculture and county roads.
2. (B) Damage to private and/or public property.
3. (C) Loss of life and/or property.

Evaluation - Based on Judgment and Classification in Box Nos.

Evaluation for Unsafe Dam

1. Unsafe - Repairable.
2. Unsafe - Not Repairable.
3. Insufficient evidence to declare unsafe.

<table>
<thead>
<tr>
<th>River Basin</th>
<th>County</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOWER HUDSON</td>
<td>1 Albany</td>
</tr>
<tr>
<td>UPPER HUDSON</td>
<td>2 Albany</td>
</tr>
<tr>
<td>RIVER</td>
<td>3 Brattleboro</td>
</tr>
<tr>
<td>DELAWARE</td>
<td>4 Brattleboro</td>
</tr>
<tr>
<td>LAKE CHAMPLAIN</td>
<td>5 Brattleboro</td>
</tr>
<tr>
<td>NEW YORK</td>
<td>6 Brattleboro</td>
</tr>
<tr>
<td>SUGAR</td>
<td>7 Brattleboro</td>
</tr>
<tr>
<td>QUEENSBURY</td>
<td>8 Brattleboro</td>
</tr>
<tr>
<td>GLENS FALLS</td>
<td>9 Brattleboro</td>
</tr>
<tr>
<td>ALLEGHENY</td>
<td>10 Brattleboro</td>
</tr>
<tr>
<td>LAKE ERIE</td>
<td>11 Brattleboro</td>
</tr>
<tr>
<td>WESTERN LAKE ONTARIO</td>
<td>12 Brattleboro</td>
</tr>
<tr>
<td>CENTRAL LAKE ONTARIO</td>
<td>13 Brattleboro</td>
</tr>
<tr>
<td>EASTERN LAKE ONTARIO</td>
<td>14 Brattleboro</td>
</tr>
<tr>
<td>SALMON RIVER</td>
<td>15 Brattleboro</td>
</tr>
<tr>
<td>TICONDERGA</td>
<td>16 Brattleboro</td>
</tr>
<tr>
<td>BLACK RIVER</td>
<td>17 Brattleboro</td>
</tr>
<tr>
<td>WEST ST. LAWRENCE</td>
<td>18 Brattleboro</td>
</tr>
<tr>
<td>EAST ST. LAWRENCE</td>
<td>19 Brattleboro</td>
</tr>
<tr>
<td>RACQUEL RIVER</td>
<td>20 Brattleboro</td>
</tr>
<tr>
<td>ST. REGIS RIVER</td>
<td>21 Brattleboro</td>
</tr>
<tr>
<td>TREATMENT</td>
<td>22 Brattleboro</td>
</tr>
<tr>
<td>OSWEGATCHIE</td>
<td>23 Brattleboro</td>
</tr>
<tr>
<td>GLENS FALLS</td>
<td>24 Brattleboro</td>
</tr>
</tbody>
</table>

DEC

F3-17
D.O.T, Registered Dam No. 751
Lower Hudson River Basin
Township of Wawarsing
County of Ulster
Owner: Cape Pond Inc.
c/o Mr. Milford Misner, Secretary/Treasurer
R.D. 1, Box 154
Kerhonicson, New York 12446

On August 22, 1972, an inspection of the above dam was made by Principal Engineering Technician Robert Ryczek of this Department. The following is a report of the condition of the structure at the time of the inspection:

1. **Description and Use of this Structure**

 The dam is situated on the Bear Kill 3 miles upstream of the Village of Ellenville and is known as the Cape Pond Dam. The impoundment behind the dam (in excess of 200 acres) is used for recreation by a private club with cottages located along its shores. At the time of the inspection, water was observed running out a 48" steel pipe located adjacent to the north end of the service spillway with the water elevation approximately one foot below the spillway crest. The dam, originally built in 1906 was reconstructed in 1914 to include a concrete ogee type spillway.

2. **General Condition of Non-overflow Section**

 The exposed portions of the concrete core wall extending into the banks on either end of the structure have spald and cracked with portions fallen away. Trees and brush were observed growing along the downstream slope.

3. **General Condition of the Spillway and Outlet Works**

 The face of the ogee spillway has spald in various areas with some leakage observed near its mid-point. Settlement under the spillway apron has taken place opening the construction joints and allowing vegetation to take root. Recent excavation of the stone rubble located above the 48" steel drain pipe at the north end of the dam and its new concrete encasement was noted. Stone rubble and brush were observed clogging the stilling basin.
4. Evaluation and Hazard Class

The dam has received little maintenance for a long period of time. A regular maintenance schedule is suggested with immediate attention given to the stilling basin and spald sections of concrete. The dam has been given a "B" hazard due to its impoundment size. An access road to the opposite shore of the pond exists immediately upstream of the dam thus requiring the water elevation to be maintained below its designed height decreasing the impoundment considerably. Insufficient evidence was found to declare the dam unsafe.
Mr. William Righter
E&S DEC
30 Wolf Rd.
Albany, N.Y. 12233

Dear Sir:

This letter is in reference to an inspection of a private dam located in Ellenville, N.Y. For my telephone conversation with Mr. Robert Green, New Paltz DEC, I hereby request an on site inspection of the concrete and earthen dam at Cape Pond Inc., Cape Road, Ellenville, N.Y. to evaluate maintenance program and condition.

Location is approximately three (3) miles west of Ellenville village adjacent to Cape Road.

This dam is a spillway type dam, concrete with thirty (30) ft. earthen backing, with two (2) working gates for control of water height.

Any information or help you could provide would be appreciated.

Please mail reply to my business address, as there are no winter residence at the Cape.

Very truly yours,

WILLIAM H. LYONS
President
Cape Pond Inc.
Ellenville, N.Y.
APPENDIX G

DRAWINGS

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Proposed Concrete Spillway (modifications), by J. H. Divine - September 1914</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G-1</td>
</tr>
</tbody>
</table>
Dwight Divine and Son's.

Plan of proposed concrete spillway for
The Cape Pond Dam
in the Town of Wawarsing, Ulster Co., N.Y.
J. H. Divine Engineer
Ellenville, N.Y.
September 1916.
Design as assumed Elevation
F.D.C.

FROM DEC
REDUCED TO 60% OF ORIGINAL
FILMED
3-8