TRANSPORT AND DIFFUSION SOLUTIONS FOR OBSCURATION USING THE XM--ETC(U)

NOV 81 S L COHN
FRADCOM/ASL-TR-0100
TRANSPORT AND DIFFUSION SOLUTIONS FOR OBSCURATION
USING THE XM-825 SMOKE MUNITION

By
Stephen L. Cohn

Approved for public release; distribution unlimited.

US Army Electronics Research and Development Command
Atmospheric Sciences Laboratory
White Sands Missile Range, NM 88002
NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The citation of trade names and names of manufacturers in this report is not to be construed as official Government endorsement or approval of commercial products or services referenced herein.

Disposition

Destroy this report when it is no longer needed. Do not return it to the originator.
The practical problem of downwind transport and diffusion of smoke from an array of sources with an arbitrary distribution of positions and emission strengths may be dealt with by integrating the distributions from the individual point sources. Identifying the effects of a number of continuous emissions may be carried out algebraically by superimposing the alongwind concentrations from successive sources to determine the cumulative contributions at some finite distance downwind. The transport and diffusion area.
source characteristics of the candidate smoke projectile XM-825 have been studied, and the resultant attributes of the multipoint-source, chemically generated smoke have been modeled. Three schemes are considered and compared to experimental data with respect to the integrated line of sight concentrations and crosswind integrated concentrations downwind of the resultant area source.
CONTENTS

LIST OF TABLES... 4
LIST OF FIGURES... 4
INTRODUCTION... 5
THEORETICAL CONSIDERATIONS... 5
 The XM-825 Candidate Smoke Munition............................ 5
 The Pseudopoint Solution.. 6
 The Infinite Line Source.. 7
 Algebraic Integration Method....................................... 7
MODEL RESULTS AND EVALUATIONS..................................... 9
CONCLUSIONS... 10
TABLE.. 12
FIGURES... 13
REFERENCES... 18
LIST OF TABLES

1. Summary of Test Conditions... 12

LIST OF FIGURES

1. Circular representation of XM-825 area source and source strength strips... 13
2. Test grid for XM-825 FWWP smoke munition.. 14
3. CWIC for XM-825 FWWP smoke munition, Test G1-A2.............................. 15
4. CWIC for XM-825 FWWP smoke munition, Test G2-A1.............................. 16
5. CWIC for XM-825 FWWP smoke munition, Test G4-A1.............................. 17
INTRODUCTION

Military requirements for more efficient smoke munitions have led to the development of the XM-825 felt wedge white phosphorus (FWWP) 155-mm projectile. The basic goals of the XM-825 were to provide a smoke munition that nearly eliminated the exothermic and the quasi-instantaneous source characteristics associated with bulk-filled white phosphorus (WP). The XM-825 projectile accomplishes this by using 92 phosphorous-impregnated felt wedges* that provide an area smoke source of a continuous nature with little or no exothermic effect when dispersed.

The continuous area source has introduced some complexities to the diffusion modeling associated with this candidate munition. However, several area source approaches to the downwind dispersion of windborne material are available. Notable among these hypotheses are a pseudopoint model advocated by Turner,1 an infinite line solution also suggested by Turner, and the algebraic integration method suggested by Pasquill.2

The three approaches to area source diffusion were investigated within the framework of the KWIK smoke algorithm.3 Results obtained during evaluation of the three methods using data from Dugway Proving Ground4 were encouraging.

THEORETICAL CONSIDERATIONS

The XM-825 Candidate Smoke Munition

The XM-825 is a 155-mm projectile designed to disperse 92 phosphorous-saturated felt wedges* which will produce a screening smoke for 5 to 10 min. The total warhead payload is 7.48 kg, consisting of 1.13 kg of felt wedges and 6.35 kg (±0.10 kg) of white phosphorus. Preliminary estimates indicate that this configuration is 82 percent efficient by weight and produces effective obscuration in the visible portion of the electromagnetic spectrum for up to 450 s.

*Configuration of XM-825 as of March 1980.

4 Dugway Proving Ground, Development Test 1 of 155 mm Smoke Projectiles (XM-803 and XM-825), Defense Technical Information Center, Cameron Station, Alexandria, Virginia, 1979.
The Pseudopoint Solution

One approach to solving area source diffusion problems is to assume that the area can be represented by a pseudopoint located at some distance \(x_0 \) upwind of the center of the area. Thus, the origin of the vertical dispersion parameter \(\sigma_z \) is at the pseudopoint—in this case, the upwind edge of the XM-825 burst pattern. The vertical dispersion parameter (standard deviation) can then be written as:

\[
\sigma_z = c(x_0 + x)^d
\]

(1)

where \(x_0 \) is the burst radius and \(x \) the downwind distance. The coefficients and indices \(c \) and \(d \) for equation (1) are dependent upon both surface roughness and the stability of the surface boundary layer according to Pasquill.\(^2\) The obscuration power of a screening smoke is dependent upon the crosswind integrated concentration (CWIC) of the aerosol in an optical path traversing the plume. The integrated concentration through a nonbuoyant continuous plume can be shown to be given by:

\[
X_{cwic} = \left(\frac{\zeta}{\pi} \right)^{1/2} \frac{1}{\sigma_z V} \exp \left[-\frac{1}{2} \left(\frac{z}{\sigma_z} \right)^{3/2} \right]
\]

(2)

where \(\zeta \) is a munition efficiency, \(\Omega \) a relative-humidity-dependent yield factor, \(Q \) the source strength in grams per second, \(V \) the mean windspeed in meters per second, and \(z \) the height above the surface of the optical path. Equation (2) is an empirically modified version of a Gaussian plume in that a power of \(3/2 \) is used in place of the more conventional second power. This is done to compensate for non-Gaussian effects upon vertical dispersion, based upon experimental results obtained by Pasquill,\(^2\) Huang,\(^5\) and Horst.\(^6\)

The Infinite Line Source

Turner suggests that area sources may be treated by considering the area as a line source by compressing all of the sources into an infinite line running through the axis of the burst pattern. Concentrations at a given distance downwind may then be calculated from:

\[x = \frac{2q\Delta t}{\sin \phi \sqrt{2\pi} \sigma_z} \exp \left[-\frac{1}{2} \left(\frac{z}{\sigma_z} \right)^2 \right] \tag{3} \]

where \(\phi \) is the angle between the wind direction and the line source, and \(q = \frac{Q}{L} \) with \(L \) being the diameter of the burst. Equation (3) is not valid when \(\phi \) is less than 45°. The vertical standard deviation \(\sigma_z \) is calculated in the same fashion as in the pseudopoint model. The horizontal standard deviation \(\sigma_y \) is required to calculate CWIC and is determined from:

\[\sigma_y = ax^b \tag{4} \]

where the coefficient \(a \) and index \(b \) are functions of the Pasquill Stability Category. CWIC can then be calculated from the following:

\[x_{\text{CWIC}} = x(L + 4.3 \sigma_y) \tag{5} \]

The factor 4.3 is included to delineate the visible edge of the plume, where the concentration decreases to 10 percent of the centerline value.

A comparison was made between the infinite line source and a finite line source, which is basically the same equation with an edge effect error function. The difference in downwind concentrations at screening distances were found to be insignificant.

Algebraic Integration Method

The pseudopoint and infinite line source models are very simplistic models based on unrealistic geometries of the burst pattern. They are only capable of predicting an average value for CWIC. A more sophisticated approach would be to model the geometry of the burst to give a more realistic answer. The algebraic integration approach of Pasquill attempts to model the geometry with a circular burst pattern, as shown in figure 1. The circular pattern is

divided into crosswind strips of equal downwind lengths Δx. The strips are of varying widths, with the submunitions of the XM-825 spread uniformly throughout the pattern. A weighting factor W is used to represent the relative importance of the separate contributions from each strip and is given by:

$$W = n(1-d) - (n-1)(1-d)$$ \hspace{1cm} (6)

where n is the number of the strip (the first strip being farthest downwind). The index d is identical with that of equation (1). A sample of the weights for six strips for a surface roughness length of 10 cm and a Pasquill Stability Category of "B" is as follows:

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>weight factor</td>
<td>1.0</td>
<td>0.11</td>
<td>0.07</td>
<td>0.05</td>
<td>0.04</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Eighty-five percent of the source is contained in the first two strips due to the rapid decline in the contribution of the more distant strips.

The contribution to the downwind concentration of a given strip n is:

$$x = W A q_n(1-d)^{-1} \left[(j^{1-d}) \right]^{n \Delta x} \left(n-1 \right) \Delta x$$ \hspace{1cm} (7)

where $A = \frac{\lambda \Omega}{\sin \phi \pi \sigma_Z}$, q_n is the source strength of strip n in grams per meter per second and j is a dummy variable. Calculating the total CWIC at some downwind sampling distance requires that concentrations first be calculated for each separate strip and then be summed over the six strips, using the appropriate weighting factors. In addition, σ_Z must be calculated separately for each strip, since the successive strips are farther upwind by a distance of Δx. CWIC is then evaluated from:

$$x_{\text{cwic}} = x(L_s + 4.3 \sigma_y)$$ \hspace{1cm} (8)

assuming that L_s is the width of the source strips.
MODEL RESULTS AND EVALUATIONS

The three area sources postulates were used to evaluate seven sets of experimental data extracted from data reports published by Dugway Proving Ground. Of the seven examples, three were chosen for inclusion in this report. The remainder were eliminated because of apparent improper burning characteristics, unfavorable wind direction, or a combination of both. A summary of test conditions is listed in table 1 and the test grid is illustrated in figure 2.

The integrated concentration values of the pseudopoint, infinite line, and algebraic integration models are as follows:

<table>
<thead>
<tr>
<th>Test</th>
<th>Pseudopoint</th>
<th>Infinite Line</th>
<th>Algebraic Integration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peak</td>
<td>Mean</td>
<td>Peak</td>
</tr>
<tr>
<td>G1-A2</td>
<td>0.66 g m(^{-2})</td>
<td>1.62 g m(^{-2})</td>
<td>2.19 g m(^{-2})</td>
</tr>
<tr>
<td>G2-A1</td>
<td>0.50 g m(^{-2})</td>
<td>1.24 g m(^{-2})</td>
<td>1.99 g m(^{-2})</td>
</tr>
<tr>
<td>G4-A1</td>
<td>0.49 g m(^{-2})</td>
<td>1.20 g m(^{-2})</td>
<td>2.11 g m(^{-2})</td>
</tr>
</tbody>
</table>

The pseudopoint model generates average integrated concentrations which are consistently the lowest of the three models. It underpredicts the measured values, as shown in figures 3, 4, and 5. This is not surprising, due to the simplifying assumptions in the model.

The infinite line model does better than the pseudopoint model in giving average integrated concentrations that are closer to the measured values, as shown in figures 3, 4, and 5. However, during the final 150 s of burn time the model overpredicts. For test G4-A1, the results are slightly high for the entire burn.

The algebraic integration model (which will be called the circle model due to the shape of the modeled burst) gives the best results of the three. This model generates both a peak and a geometric mean value for CWIC. The peak value is the highest CWIC that is expected for the given meteorological conditions and the distance from the optical line of sight. The threshold value of smoke which will obscure the visible wavelengths is calculated from:

\[
CL = \frac{\tan T_{smk}}{-\alpha}
\]

\(^4\)Dugway Proving Ground, Development Test 1 of 155 mm Smoke Projectiles (XM-803 and XM-825), Defense Technical Information Center, Cameron Station, Alexandria, Virginia, 1979.
where \(CL \) is the concentration, \(T_{smk} \) the transmittance, and \(\alpha \) the extinction coefficient. The threshold concentration is calculated to be 0.7 g m\(^{-2}\). This value occurs at an average burn time of 450 s. By assuming the peak value occurs at the beginning of the burn, an estimate of the emission rate curve of the XM-825 can be made. The results are labeled "circle" in figures 3, 4, and 5. The actual emission characteristics curve, as reported by Carter,\(^7\) indicates that the emission rate of the XM-825 decreases with time after its initial buildup time. This is due to the peculiarities of the burn characteristics of the phosphorous-impregnated felt submunitions. (The geometric mean value is listed with the model results shown previously.)

The overestimation of CWIC by this model for the first 75 s of the burn—which is evident in figures 3, 4, and 5—is a function of the buildup time, the time required for the smoke plume to reach the measuring line, and the percentage of the cloud that actually drifts through the optical line of sight. As with the infinite line model there is a slight overestimation of CWIC in test G4-A1. Both of these overestimates could be caused by the failure of some of the submunitions to burn properly, thus giving lower concentrations than would normally be expected.

The preliminary center-to-center impact separations can be computed based on the weighted circular model. The equation to compute the separation is a variation of equation (7), which is as follows:

\[
x = \frac{\sum (w_i n_i) \omega \lambda}{\frac{1}{\pi V c} x_{cwic}} \Delta x (1-d)
\]

(10)

For stability category C the impact separation is 132 m, and for category B the impact separation is 121 m.

CONCLUSIONS

The pseudopoint model underpredicts the average integrated concentrations in all cases investigated. Therefore, this model would overpredict the number of munitions necessary to screen and would not be an acceptable model. The infinite line model, although better than the pseudopoint model still overpredicts the final 150 s of the burn. This would cause too few munitions to be expended, risking the deterioration of the screen. The circle model appears to be the best fit to the experimental data. It gives a fairly good

\(^7\)Dugway Proving Ground, Basic Smoke Characterization Test, TECOM-DPG-TP-77-311, Dugway Proving Ground, Utah, 1979.
estimate of the emission curve, as shown in figures 3, 4, and 5. The over-
estimation of the concentrations in the model only occurs during the first
75 s of the burn, which is the buildup time of the smoke generated by this
munition. This model has the promise of giving good expenditure estimates,
and it deserves further investigation.
TABLE 1. SUMMARY OF TEST CONDITIONS

<table>
<thead>
<tr>
<th>Test</th>
<th>G1-A2</th>
<th>G2-A1</th>
<th>G4-A1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date - Time</td>
<td>8 Aug 78 - 1020</td>
<td>8 Aug 78 - 1228</td>
<td>8 Sep 78 - 1219</td>
</tr>
<tr>
<td>Wind direction (8 m)</td>
<td>339°</td>
<td>338°</td>
<td>330°</td>
</tr>
<tr>
<td>Windspeed (8 m)</td>
<td>3.8 m/s</td>
<td>3.8 m/s</td>
<td>3.8 m/s</td>
</tr>
<tr>
<td>Relative humidity (4 m)</td>
<td>16%</td>
<td>14%</td>
<td>11%</td>
</tr>
<tr>
<td>Temperature (8 m)</td>
<td>29.3°C</td>
<td>30.8°C</td>
<td>31.7°C</td>
</tr>
<tr>
<td>Visibility (km)</td>
<td>48</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>Cloud cover</td>
<td>0%</td>
<td>0%</td>
<td>10%</td>
</tr>
<tr>
<td>Stability category</td>
<td>C</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Entry angle</td>
<td>15.9°</td>
<td>15.9°</td>
<td>15.9°</td>
</tr>
<tr>
<td>Burst altitude (m)</td>
<td>102</td>
<td>103</td>
<td>101</td>
</tr>
<tr>
<td>Time to obscuration (s)</td>
<td>9.5</td>
<td>11</td>
<td>13</td>
</tr>
</tbody>
</table>
Figure 1. Circular representation of XM-825 area source and source strength strips.
Figure 2. Test grid for XM-825 FWP smoke munition.
Figure 3. CWIC for XM-825 FWNP smoke munition, Test G1-A2.
Figure 4. CWIC for XM-825 FWMP smoke munition, Test G2-A1.
Figure 5. CWIC for XM-825 FWMP smoke munition, Test G4-A1.
REFERENCES

DISTRIBUTION LIST

Commander
US Army Aviation Center
ATTN: ATZQ-D-MA
Fort Rucker, AL 36362

Dr. Frank D. Eaton
Geophysical Institute
University of Alaska
Fairbanks, AK 99701

John M. Hobbie
Naval Weapons Center
Code 3918
ATTN: Dr. A. Shlanta
China Lake, CA 93555

c/o Kentron International
2003 Byrd Spring Road
Huntsville, AL 35807

Chief, Atmospheric Sciences Div
Code ES-81
NASA
Marshall Space Flight Center, AL 35812

Commanding Officer
Naval Envir Prediction Rsch Facility
ATTN: Library
Monterey, CA 93940

Commander
US Army Missile Command
ATTN: DRDMI-RRA/Dr. O. M. Essenmenger
Redstone Arsenal, AL 35809

Sylvania Elec Sys Western Div
ATTN: Technical Reports Lib
PO Box 205
Mountain View, CA 94040

Commander
US Army Missile Command
ATTN: DRDMI-OG (B. W. Fowler)
Redstone Arsenal, AL 35809

Tetra Tech Inc.
ATTN: L. Baboolal
630 N. Rosemead Blvd.
Pasadena, CA 91107

Commander
US Army Missile R&D Command
ATTN: DRDMI-TEM (R. Haraway)
Redstone Arsenal, AL 35809

Geophysics Officer
PMTC Code 3250
Pacific Missile Test Center
Point Mugu, CA 93042

Redstone Scientific Information Center
ATTN: DRSMI-RPRD (Documents)
US Army Missile Command
Redstone Arsenal, AL 35809

Commander
Naval Ocean Systems Center
(Code 4473)
ATTN: Technical Library
San Diego, CA 92152

HQ, Fort Huachuca
ATTN: Tech Ref Div
Fort Huachuca, AZ 85613

Meteorologist in Charge
Kwajalein Missile Range
PO Box 67
APO San Francisco, CA 96555

Commander
US Army Intelligence
Center & School
ATTN: ATSI-CD-MD
Fort Huachuca, AZ 85613

Director
NOAA/ERL/APCL R31
RB3-Room 567
Boulder, CO 80302

Commander
US Army Yuma Proving Ground
ATTN: Technical Library
Bldg 2105
Yuma, AZ 85364

Library-R-51-Tech Reports
NOAA/ERL
320 S. Broadway
Boulder, CO 80303
TRASANA
ATTN: ATAA-SL (D. Anguiano)
WSMR, NM 88002

Commander
US Army White Sands Missile Range
ATTN: STEWS-PT-AL
White Sands Missile Range, NM 88002

Rome Air Development Center
ATTN: Documents Library
TSLD (Bette Smith)
Griffiss AFB, NY 13441

Environmental Protection Agency
Meteorology Laboratory, MD 80
RSci Triangle Park, NC 27711

US Army Research Office
ATTN: DRXRO-PP
PO Box 12211
RSci Triangle Park, NC 27709

Commandant
US Army Field Artillery School
ATTN: ATSF-CD-MS (Mr. Farmer)
Fort Sill, OK 73503

Commandant
US Army Field Artillery School
ATTN: ATSF-CF-R
Fort Sill, OK 73503

Commandant
US Army Field Artillery School
ATTN: Morris Swett Library
Fort Sill, OK 73503

Commander
US Army Dugway Proving Ground
ATTN: STEDP-MT-DA-M
(Mr. Paul Carlson)
Dugway, UT 84022

Commander
US Army Dugway Proving Ground
ATTN: MT-DA-L
Dugway, UT 84022

US Army Dugway Proving Ground
ATTN: STEDP-MT-DA-T
(Dr. W. A. Peterson)
Dugway, UT 84022

Inge Dirmhirn, Professor
Utah State University, UMC 48
Logan, UT 84322

Defense Technical Information Center
ATTN: DTIC-DDA-2
Cameron Station, Bldg. 5
Alexandria, VA 22314

Commanding Officer
US Army Foreign Sci & Tech Cen
ATTN: DRXST-IS1
220 7th Street, NE
Charlottesville, VA 22901

Naval Surface Weapons Center
Code G65
Dahlgren, VA 22448

Commander
US Army Night Vision & Electro-Optics Lab
ATTN: DELNV-D
Fort Belvoir, VA 22060

Commander
USATRADOC
ATTN: ATCD-FA
Fort Monroe, VA 23651

Commander
USATRADOC
ATTN: ATCD-IR
Fort Monroe, VA 23651

Dept of the Air Force
5WM/DN
Langley AFB, VA 23665

US Army Nuclear & Cml Agency
ATTN: MONA-WE
Springfield, VA 22150

Director
US Army Signals Warfare Lab
ATTN: DELSW-OS (Dr. Burkhardt)
Vint Hill Farms Station
Warrenton, VA 22186

Commander
US Army Cold Regions Test Cen
ATTN: STECR-OP-PM
APO Seattle, WA 98733
ATMOSPHERIC SCIENCES RESEARCH REPORTS

42. Gillespie, James B., and James D. Lindberg, "A Method to Obtain Diffuse Reflectance Measurements from 1.0 and 3.0um Using a Cary 17I Spectrophotometer," ECOM-5806, November 1976.

53. Rubio, Roberto, and Mike Izquierdo, "Measurements of Net Atmospheric Irradiance in the 0.7- to 2.8-Micrometer Infrared Region," ECOM-5817, May 1977.

DATE
FILMED
2-8