A COMPUTER PROGRAM TO PROCESS SPECTROPHOTOMETRIC ANALYTICAL DATA--ETC(U)

NOV 81 J J KNUDSEN, E L MCGOWN
INSTITUTE REPORT NO. 110

A COMPUTER PROGRAM TO PROCESS SPECTROPHOTOMETRIC ANALYTICAL DATA ASSOCIATED WITH CURVILINEAR ABSORBANCE/CONCENTRATION RELATIONSHIPS.

JOHN J. KNUDSEN, BS
EVELYN L. McGOWN, PhD

ANALYTICAL CHEMISTRY GROUP
DIVISION OF RESEARCH SUPPORT

DISTRIBUTION STATEMENT A
Approved for public release; Distribution Unlimited

NOVEMBER 1981

LETTERMAN ARMY INSTITUTE OF RESEARCH PRESDIO OF SAN FRANCISCO CALIFORNIA 94129
INSTITUTE REPORT NO. 110

Reproduction of this document in whole or in part is prohibited except with the permission of the Commander, Letterman Army Institute of Research, Presidio of San Francisco, California 94129. However, the Defense Technical Information Center is authorized to reproduce the document for United States Government purposes.

Destroy this report when it is no longer needed. Do not return it to the originator.

Citation of trade names in this report does not constitute an official endorsement or approval of the use of such items.

This material has been reviewed by Letterman Army Institute of Research and there is no objection to its presentation and/or publication. The opinions or assertions contained herein are the private views of the author(s) and are not to be construed as official or as reflecting the views of the Department of the Army or the Department of Defense. (AR 360-5)

John Marshall 13 Nov-51
(Signature and date)
A computer program, designed to provide a simple and accurate method for evaluating spectrophotometric assay data, accommodate both linear and nonlinear standard curves. The program requires manual entry by keyboard of absorbance and concentration values for the standard curve and absorbance values for the test samples. It will process up to 4 dilutions of each test sample and thus it can accommodate batches of samples containing widely differing concentrations of test compound. A regression equation (up to 4th degree) is calculated to describe the standard
curve with concentration as the independent variable and absorbance as the dependent variable. Concentrations in unknown samples are calculated from absorbances by using a method of successive approximations. A hard copy data printout lists input data, concentration of test substance in each sample, statistical data concerning the estimate of the standard curve, and a plot of the standard curve.
ABSTRACT

A computer program, designed to provide a simple and accurate method for evaluating spectrophotometric assay data, accommodate both linear and nonlinear standard curves. The program requires manual entry by keyboard of absorbance and concentration values for the standard curve and absorbance values for the test samples. It will process up to 4 dilutions of each test sample and thus it can accommodate batches of samples containing widely differing concentrations of test compound. A regression equation (up to 4th degree polynomial) is calculated to describe the standard curve with concentration as the independent variable and absorbance as the dependent variable. Concentrations in unknown samples are calculated from absorbance by using a method of successive approximations. A hard copy data printout lists input data, concentration of test substance in each sample, statistical data concerning the estimate of the standard curve, and a plot of the standard curve.
Preface

We acknowledge Dr. Jack Owicki; Department of Biophysics and Medical Physics; University of California, Berkeley, who wrote portions of an early version of the program. Two subroutines (BSECT and Monton) were modified and incorporated into the present program. We also thank Lottie Applewhite, LAIR Technical Editor, for her editorial assistance.
TABLE OF CONTENTS

Abstract..1
Preface..11
Table of Contents...v

BODY OF REPORT

Introduction..1
Program Design..1
User's Guide..7
Conclusion..13
Recommendations..13

REFERENCES...14

APPENDIX A..15
Table 1. Definition of Terms Used in Program.......................15
Table 2. Program Error Codes...16

APPENDIX B Program Listing...17

APPENDIX C Sample Program Output................................44

OFFICIAL DISTRIBUTION LIST...52
Some spectrophotometric procedures in analytical chemistry do not conform to Beer's law (1). Examples of nonlinearity between concentration and absorbance include the thiocyanate assay for iron (2), the Lowry method for protein (3), and the method for chloride recommended by Technicon (4). Nonlinearity is especially characteristic of microbiological assays for nutrients (5).

Deviation from Beer's law may occur when the absorption band (or emission line) is not completely resolved (1). Most spectrophotometers employ a finite group of frequencies. The wider the bandwidth of radiation passed by the filter, the greater the apparent deviation from Beer's law. The deviation is generally more evident at higher concentrations and the curve bends toward the concentration (x) axis. Also discrepancies are also usually found when the absorbing solute dissociates or associates in solution, because the nature of the species in solution will vary with concentration. Scattered light from suspensions, fluorescence, or stray light may also cause deviation from Beer's law (1).

When an analyst arbitrarily draws a straight line or estimates a linear slope through standard curve points which are not linear, but curve toward the x axis, the result is underestimation of test samples with low concentrations and overestimation of the high samples. When the nonlinearity is severe enough, the analyst is forced to refer to the standard curve for each test sample. This is tedious and highly subject to human error. The program described in this report was created to eliminate the need for visual reference to a standard curve and to speed up the processing of data from such analyses. The program is also convenient for linear standard curves when several dilutions per test sample are assayed.

PROGRAM DESIGN

A computer program was written to perform the calculations necessary for analysis of curvilinear spectrophotometric absorbance/concentration data. The computer hardware and commercial software necessary for implementation of the program are presented under Materials. Details of the program itself, including a discussion of mathematical algorithms used, a definition of terms required for data entry, and limitations of the program, are addressed in Methods. A step-by-step presentation of the program as encountered by the user during execution is included under USER'S GUIDE.

Materials

To make the program available to all potential users at the
The following paragraphs present the mathematical algorithms used in the program, limitations, and special terms required for the user to understand and use the program.

The mathematical model used to relate absorbance to concentration data for purpose of generating a regression equation from user input standard curve data is the simple polynomial

\[y = a_0 + a_1 x + \ldots + a_n x^n \]

where,
- \(x \) = standard concentration (independent variable)
- \(y \) = observed absorbance (dependent variable)
- \(n \) = maximum degree of polynomial (discussed below)

This model allows for the calculation of a regression equation which can vary from a linear model (where \(n = 1 \)) up to a polynomial of maximum degree \(n \). The maximum degree of the regression equation allowed by the program has been arbitrarily limited to four. We have found that polynomial equations up to a maximum degree of four (a quartic equation) can be used to model even those assays which exhibit extreme nonlinearity (e.g., microbiological nutrient assays).

The IMSL subroutine (6) included in the program performs the computations required for a standard univariate curvilinear regression analysis. Orthogonal polynomials are used by the subroutine to compute the regression polynomial (7,8). In addition to calculating the regression coefficients of the polynomial, the subroutine also
provides the usual analysis of variance table information along with other statistical inferences for each model parameter. The fitted model returned by the subroutine is

$$y_i = a_0 + a_1 x_i + a_2 x_i^2 + \cdots + a_p x_i^p + e_i$$

where: y_i = predicted absorbance for ith data point (dependent variable)

x_i = standard concentration for ith data point (independent variable)

p = maximum degree of polynomial (limited to four in this program)

a_{0-p} = computed regression coefficients

$i = 1, \ldots, N$ (number of data points)

e_i = population random error

The population random errors corresponding to e_i are assumed to be uncorrelated, to have means of zero, and have variances σ^2. During execution of the program the user has the choice of computing either a polynomial regression model or a linear regression model (in cases where it is known that the relationship between absorbance and concentration is linear under given assay conditions.)

Because of the possibility that the generated polynomial will not be monotonic over the input concentration range, a subroutine has been incorporated into the program to detect this condition. If the generated polynomial is not monotonic over the input concentration range, the program will abort and the user will be instructed to check data for accuracy or prepare a new standard curve if necessary.

In order to facilitate the computation of sample concentration data from the calculated regression model and also to allow the analyst a certain degree of latitude in preparing standard curves, the concepts of "standard volume" and "standard equivalent volume" have been used (see Appendix A, Table 1 for definitions). In preparing the standard curve for a given assay, it will be assumed that the analyst has prepared one solution of known concentration (representing the maximum concentration in the curve) and from this solution will prepare the standard curve. For purposes of illustration, a hypothetical example is given and the following assay parameters are assumed:
a. Total volume of standard (including diluent) = 2.0 ml

b. Number of points in standard curve = 11.

The analyst would prepare his standard curve in the following manner.

<table>
<thead>
<tr>
<th>STANDARD VOLUME (ml)</th>
<th>VOLUME OF DILUENT (ml)</th>
<th>SS TOTAL VOLUME (ml)</th>
<th>STANDARD EQUIVALENT VOLUME (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.0)</td>
<td>2.0</td>
<td>2.0</td>
<td>0.0</td>
</tr>
<tr>
<td>(0.2)</td>
<td>1.8</td>
<td>2.0</td>
<td>0.1</td>
</tr>
<tr>
<td>(0.4)</td>
<td>1.6</td>
<td>2.0</td>
<td>0.2</td>
</tr>
<tr>
<td>(0.6)</td>
<td>1.4</td>
<td>2.0</td>
<td>0.3</td>
</tr>
<tr>
<td>(0.8)</td>
<td>1.2</td>
<td>2.0</td>
<td>0.4</td>
</tr>
<tr>
<td>(1.0)</td>
<td>1.0</td>
<td>2.0</td>
<td>0.5</td>
</tr>
<tr>
<td>(1.2)</td>
<td>0.8</td>
<td>2.0</td>
<td>0.6</td>
</tr>
<tr>
<td>(1.4)</td>
<td>0.6</td>
<td>2.0</td>
<td>0.7</td>
</tr>
<tr>
<td>(1.6)</td>
<td>0.4</td>
<td>2.0</td>
<td>0.8</td>
</tr>
<tr>
<td>(1.8)</td>
<td>0.2</td>
<td>2.0</td>
<td>0.9</td>
</tr>
<tr>
<td>(2.0)</td>
<td>0.0</td>
<td>2.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

The user enters only the "Standard Volume" (noted by an asterisk above) along with its corresponding absorbance during execution of the program. The "standard volume" is scaled by the program over the range: $0.0 \leq \text{STANDARD EQUIVALENT VOLUME} \leq 1.0$ for computational purposes within the program and for graphical presentation of the generated regression curve in the hardcopy data output of the program. Because of this scaling feature, the user is free to choose the assay volume to suit the test and/or instrumentation requirements. The maximum absorbance accepted by the program in its current form is 2.0. If transmittance values are determined instead of absorbance units, they must be converted by the user into absorbance units before the data can be entered in the program. A total of 30 standard curve data points (i.e., absorbance, standard volume pairs) can be input.

Upon successful completion of the regression equation (see Appendix A, Table 2 for error code descriptions), the program accepts certain alphanumeric information used in the hardcopy data output. This information consists of 1) name of assay, 2) type of sample, 3) date of assay, and 4) name of investigator. Complete instructions for entering this information are provided under USER'S GUIDE. Standard concentration and sample dilution factor information is also entered at this time, along with the number of dilutions per sample and the volume of the sample at each dilution. The program will accept up to 4 dilutions per
sample. Finally, the sample number and the corresponding measured absorbance(s) (if more than one sample volume was prepared) for each sample are entered.

The mathematical technique used in this program to compute concentration from measured absorbance is a numerical iterative procedure commonly referred to as the method of successive approximations. Because the standard curve regression equation was generated with absorbance (dependent variable) as a function of concentration (independent variable), the equation must be either solved analytically for concentration as a function of absorbance or numerical techniques must be applied to arrive at a solution. Although analytical methods are available for the closed solution of equations up to the third degree, no generally applicable technique exists for the solution of quartic and higher degree equations (9, 10). Iterative techniques approximate the root(s) of equations to some prescribed degree of accuracy. The subroutine employed in this program computes the unknown concentration to ± 1.0 x 10⁻⁵ standard equivalent volume. A complete description of this technique is presented in Appendix B, under Subroutine 'BSECT'.

After the unknown "standard equivalent volume" has been determined from the measured absorbance, the following relationship is used to compute the actual concentration of substance in the sample(s).

\[
\text{[SUBSTANCE]} = (\text{STD.EQ.VOL})(\text{SS.TOT.VOL})(\text{STD.CONC.})/(1/\text{SD.VOL})/\text{DF}
\]

where:

\[
\text{SUBSTANCE} = \text{concentration (or amount/unit weight) of test substance in original sample.}
\]

\[
\text{STD.EQ.VOL.} = \text{Standard equivalent volume (calculated by BSECT subroutine).}
\]

\[
\text{SS.TOT.VOL.} = \text{sample and standard total volume.}
\]

\[
\text{STD.CONC.} = \text{concentration of standard used to prepare curve.}
\]

\[
\text{SD.VOL.} = \text{sample dilution volume.}
\]

\[
\text{DF} = \text{dilution factor.}
\]

(See Appendix A, Table 1 for further explanations of the abbreviations.)
The preceding calculation is based on SS total volume and is therefore independent of total reaction volume. For purposes of this program, the amounts of any additional reagents do not affect the calculations.

The program also provides the option of calculating more than one set of sample data (with different dilution factors, sample volumes, etc.) from the same standard curve regression equation. A complete listing of the program is provided in Appendix B.
USER'S GUIDE

General

Before giving a detailed description of the program from the user's point of view, two points must be discussed. The first deals with limitations of the program and the second is related to provisions made for 'unknown' sample data entry.

This program provides the analyst with a simple and accurate computational method for evaluating spectrophotometric assay data as an alternative to graphical techniques which are usually tedious and error-prone. The program generates a linear or polynomial regression equation from input standard curve data points. This equation is then used as a statistical model to estimate unknown sample concentration data from known absorbances. The program should not be used for purposes of inferring information about the nature of the chemical reaction involved in a particular chemical or microbiological assay (e.g., reaction mechanisms or kinetics).

Provision has been made in the program to allow entry of up to four dilutions per 'unknown' test sample. There are several reasons for including this feature. First, interfering substances can often be detected by assaying the test sample at several different dilutions. This problem is common in microbiological assays and is referred to as "upward" or "downward" drift, depending on whether the nonspecific interference is stimulatory or inhibitory. Thus for some assays, this feature could be considered as a monitor of the validity of the results for each sample. Secondly, with several dilutions, the analyst can handle samples with widely different concentrations of test substance without being forced to repeat samples which fall out of the range of the standard curve. It is often time-effective (particularly if automated pipetting equipment is available) to include extra dilutions and to disregard outlying values. Finally, the feature increases the statistical power of the resultant data by increasing the number of replicates.

Specific User Instructions

In the complete operational description of the program, capitalized sequences denote program output displayed on the user's terminal, underlined sequences denote prompts requiring user data input, and the appropriate user response is enclosed in parentheses. The program is outlined in the following nine steps.
STEP 1.) The user accesses the program at a timesharing terminal by entering the CLI command 'EXECUTE ASSAY'. A brief introduction to the program will be displayed on the terminal. The user presses <RETURN> to resume program execution.

STEP 2.) Instructions are given for entering standard curve data points, then the following series of prompts are displayed for data point entry.

DATA POINT NO.: 'n'

ENTER VOLUME OF STANDARD ('IND VARIABLE'):
(User enters volume of standard used for given data point.)

ENTER MEASURED ABSORBANCE FOR ABOVE VOLUME ('DEP' VARIABLE):
(User enters absorbance. Allowed absorbance range is 0.0 to 2.0.)

EXAMINE ABOVE ENTRIES. IF YOU WISH TO CORRECT EITHER OR BOTH VALUE(S), ENTER '1' BELOW.

.....ENTER '1' TO CORRECT DATA POINT ENTRY.

.....ENTER '2' TO CONTINUE DATA POINT ENTRY.

.....ENTER '999' TO TERMINATE DATA POINT ENTRY.

ENTER CHOICE:
(User enters '1' to correct data point entry just made, '2' to enter another data point, or '999' to terminate data point entry.)

At least five data points are recommended for linear standard curves and at least eight data points are recommended for nonlinear standard curves. A maximum of thirty data points may be entered.
STEP 3.) After all standard curve data points have been entered, the program outputs to the terminal the following message.

ENTER TYPE OF REGRESSION CURVE DESIRED -- LINEAR OR POLYNOMIAL

.....ENTER '1' FOR LINEAR REGRESSION CURVE.

.....ENTER '2' FOR POLYNOMIAL REGRESSION CURVE.

ENTER CHOICE: (User enters '1' if the assay is known to be linear, or '2' if a polynomial regression curve is desired.)

STEP 4.) Program displays the following message at the terminal:

CALCULATING POLYNOMIAL REGRESSION EQUATION.

If any error conditions are detected by the regression subroutine, a message indicating the fact will appear at the terminal. The most likely cause for an error to be detected is an insufficient number of data points for the requested type of regression equation. If an error occurs, the program must be aborted and the cause corrected before the user can continue. Possible error conditions are listed in Appendix A, Table 2.

If the regression equation was successfully computed, the following message appears at the terminal:

POLYNOMIAL REGRESSION EQUATION OF DEGREE 'n' HAS BEEN CALCULATED.

STEP 5.) The user is next requested to enter information to annotate output data. The following prompts are displayed:

ENTER TYPE OF ASSAY: User enters description of assay. (Maximum, 32 alphabetic characters.)
ENTER DATE OF ASSAY:
(User enters the date assay was conducted. Maximum of 32 alphanumeric characters may be entered.)

ENTER TYPE OF SAMPLE:
(User enters description of sample. Maximum of 32 alphanumeric characters may be entered.)

ENTER NAME OF INVESTIGATOR:
(User enters name of person conducting assay. Maximum of 32 alphanumeric characters may be entered.)

STEP 6. Information required to calculate 'unknowns' is now entered. These data consist of dilution factor information, concentration of standard, the number of sample dilutions and the volume of each sample dilution.

STANDARD CONCENTRATION DATA:

ENTER NUMERICAL PORTION OF STANDARD CONCENTRATION:
(User enters numerical portion of 'standard' concentration.)

ENTER UNITS OF STANDARD:
(User enters units of standard (e.g., ng/ml, mg/ml, etc. A maximum of 6 characters may be entered.)

ENTER INITIAL DILUTION FACTOR OF SAMPLE MATERIAL:
(User enters initial dilution factor of sample material.)
If initial dilution factor is greater than 1000, the user will be requested to re-enter the units of the standard. For example, if the original units were 'ng/ml' then 'ug/ml' should be entered, or if the original units were 'mg/l' then g/l should be entered.

ENTER NUMBER OF SAMPLE DILUTIONS PER SAMPLE (MIN. 1, MAX. 4):

(User enters number of sample dilutions made for each sample. If only one, a '1' must be entered. Maximum that can be entered is '4'.)

ENTER 'MLS OF SAMPLE' AT DILUTION 'n':

(User enters the number of milliliters of sample used at each dilution volume.)

STEP 7. Unknown absorbances and sample numbers are now entered into the program. A brief description of the sample entry procedure is displayed at the terminal, then the following prompts are given.

ENTER SAMPLE NUMBER:

(User enters a numerical sample number. The range the sample number can assume is from 1 to 9999.)

ENTER ABSORBANCE AT SAMPLE DILUTION 'n':

(User enters measured absorbance at indicated sample dilution.)

EXAMINE ABOVE DATA. IF YOU WISH TO CORRECT ANY ENTRY, ALL DATA FOR SAMPLE (n) MUST BE RE-ENTERED.

.....ENTER '1' TO CORRECT DATA.

.....ENTER '2' TO CONTINUE WITH DATA ENTRY.

.....ENTER '999' TO TERMINATE DATA ENTRY.
ENTER CHOICE: (User enters '1' if he wishes to correct a data entry just made, '2' to enter data for another sample, or '999' to terminate data entry.)

The user may enter absorbance data for up to fifty (50) samples.

STEP 8.) The user is now given the option of entering another set of data using the same regression curve. For example, if the user had data for more than 50 samples, he could use this feature to avoid the necessity of re-calculating the standard curve. This feature is also helpful if some samples had different initial treatment (e.g., different dilution factor).

DO YOU WISH TO ENTER MORE DATA USING SAME STANDARD CURVE?

.........ENTER '1' TO COMPUTE ANOTHER DATA SET.
.........ENTER '2' TO EXIT PROGRAM.

ENTER CHOICE: (User enters '1' if he wishes to compute another set of data using same regression curve, or '2' to exit program.)

STEP 9.) At this point the following message is output to users terminal and program execution ceases.

OUTPUT DATA FILE 'ASSAY.DATA' CREATED. END OF PROGRAM.

An output data file named 'ASSAY.DATA' was created by the program in the user's directory. A hardcopy printout of this file can be obtained at the line printer located in the Institute's central computing facility by entering the CLI command 'QPRINT ASSAY.DATA'.

Hardcopy output provided by the program to the user consists of regression equation statistical data (analysis of variance table information along with statistical inferences pertaining to computed
regression coefficients), input standard curve data points, and predicted values of absorbance (dependent variable) calculated using the regression model. A low resolution graph of both the input standard curve data points and the computed regression equation is provided for visual inspection of the curve. Sample data output includes assay parameters, input sample absorbances along with corresponding actual concentration of test substance in the sample material. If more than one dilution per test sample was performed, the mean concentration is calculated. The output includes not only the mean of all calculated values for each sample, but also an 'adjusted mean'. The choice of the range (mean ± 10%) for accepting values for the adjusted mean was purely arbitrary. The purpose of this feature is not only to eliminate spurious values, but also to allow the analyst to ascertain the variability of the assay. By scanning one column in the output, one can quickly determine how many (if any) dilutions yielded values which were more than 10% above or below the mean. Examples of data output for both a linear and nonlinear assay are given in Appendix C.

CONCLUSIONS

The computer program described in this report provides a simple and accurate method for evaluating spectrophotometric assay data. It is a general purpose program which will process any analytical data that must be referred to a standard curve. It will accommodate up to 4 dilutions per sample and thus can handle batches of analyses with widely differing concentrations of test substance. The program is available to anyone at this Institute.

RECOMMENDATIONS

None.
REFERENCES

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>STANDARD VOLUME</td>
<td>Actual volume (in milliliters) of standard used to prepare each individual point in standard curve.</td>
</tr>
<tr>
<td>SS. TOTAL VOLUME</td>
<td>Standard or sample total volume (volume of standard or sample plus diluent). This value must equal maximum volume of standard.</td>
</tr>
<tr>
<td>STANDARD EQUIVALENT VOLUME</td>
<td>Input standard volumes scaled over the range of 0.0 to 1.0 inclusive. The standard volumes are scaled over this range for computational purposes and graphical presentation of the standard curve in the program output data.</td>
</tr>
<tr>
<td>DILUTION FACTOR</td>
<td>Initial dilution factor of sample material which occurs during sample preparation including dilution necessary to bring absorbance of test substance into range of the standard curve.</td>
</tr>
<tr>
<td>STANDARD CONCENTRATION</td>
<td>Concentration of test substance in the standard used to prepare the standard curve.</td>
</tr>
<tr>
<td>SAMPLE DILUTION VOLUME</td>
<td>Actual volume of sample (in milliliters) included in reaction mixture. This volume plus diluent must equal the SS. TOTAL VOLUME.</td>
</tr>
<tr>
<td>MEAN CONCENTRATION</td>
<td>Computed average concentration of test substance in sample if more than one sample dilution volume analyzed.</td>
</tr>
<tr>
<td>ADJUSTED MEAN CONCENTRATION</td>
<td>Computed average concentration of test substance in sample excluding those values exceeding ± 10% of the computed mean concentration if more than one sample dilution volume analyzed.</td>
</tr>
</tbody>
</table>
TABLE 2 - PROGRAM ERROR CODES

STANDARD CURVE ENTRY: All errors detected by the program which are related to standard curve data point entry are fatal to program execution. The user must correct the problem in the data and then access the program again. Errors at this point in the program are always caused by failure to enter at least three data points for a linear regression model, or a minimum of five data points for a polynomial regression model. If an error is detected, the following message will be displayed on the users terminal: STOP "INADEQUATE NUMBER OF DATA POINTS".

SAMPLE HARCOPY DATA OUTPUT: The following error conditions may be detected by the program during computation of output data.

1.) If measured absorbance of test substance is outside the range of the computed standard curve regression model, an error code of '-111' will appear in the output data of the program in the appropriate column. To correct this error the user must dilute sample material to bring concentration of the test substance into range of the standard curve.

2.) If the concentration of test substance at all dilution volumes for a given sample exceeded ± 10% of the computed mean concentration, an error code of '-93X' will appear in the 'ADJUSTED MEAN CONCENTRATION' column of the output data.
ASSAY DATA ANALYSIS PROGRAM

PROGRAM NAME: "ASSAY"

WRITTEN - MAY 1981 - J.J. KNUEDSEN, LAIR, DIV. OF RESEARCH
SUPPORT, ANALYTICAL CHEMISTRY GROUP

LANGUAGE - DATA GENERAL FORTRAN V

PURPOSE

PROGRAM TO PROCESS SPECTROPHOTOMETRIC ANALYTICAL DATA ASSOCIATED
WITH CURVILINEAR ABSORBANCE/CONCENTRATION RELATIONSHIPS

PROGRAM SYMBOL DEFINITION TABLE (EXCLUDING LOOP CONTROL INDEXES)

INTEGER VARIABLES

IX - ARGUMENT SUBRT 'RLFOR'.INPUT ROW DIM OF MATRIX 'XYW'
N - ARGUMENT SUBRT 'RLFOR'.INPUT NUMBER OF DATA POINTS (STD CURVE)
MDP - ARGUMENT SUBRT 'RLFOR'.CONTROL VECTOR OF LENGTH 2
IB - ARGUMENT SUBRT 'RLFOR'.INPUT ROW DIMENSION OF MATRIX 'B'
IP - ARGUMENT SUBRT 'RLFOR'.INPUT ROW DIMENSION OF MATRIX 'PREP'
IERR - ARGUMENT SUBRT 'RLFOR'.ERROR PARAMETER
ERROR - ARGUMENT SUBRT 'MONOT'.ERROR PARAMETER
IERR - ARGUMENT SUBRT 'BSECT'.ERROR PARAMETER
NVOL - MAX NUMBER OF DILUTION VOLUMES FOR GIVEN ASSAY
SNUM - INPUT VARIABLE. TEMPORARILY STORE SAMPLE NUMBER
SNUMBER -VECTOR OF MAX LENGTH 50 TO HOLD SAMPLE NUMBERS
GRAPH - TWO DIMENSIONAL MATRIX TO HOLD LOW RESOLUTION GRAPH
LABEL1 - VECTOR OF LENGTH 51 TO HOLD VERT AXIS LABEL OF 'GRAPH'
A - TEST INTEGER AND ARGUMENT OF SUBRT 'PLOT'
MTEST - TEST INTEGER.DETERMINES IF MORE THAN ONE SAMPLE DATA
ANALYSIS WILL BE PERFORMED USING SAME 'STANDARD CURVE'
ITEST - TEST INTEGER.CONTROLS TYPE OF REGRESSION CURVE CALCULATED

REAL VARIABLES

ABSORBANCE - TWO DIM MATRIX TO HOLD INPUT SAMPLE ABSORBANCES
CONC - TWO DIM MATRIX TO HOLD DATA FOR SAMPLE 'UNKNOWN' CONC
LABEL2 - VECTOR OF LENGTH 51 TO HOLD VERT AXIS LABEL OF 'GRAPH'
MCPLUS - VARIABLE TO HOLD 'MEAN CONC' + (MEAN CONC) *O DATA
MMINUS - VARIABLE TO HOLD 'MEAN CONC' + (MEAN CONC) *0 DATA
STAND - VARIABLE TO HOLD NUMERICAL PORTION OF STANDARD CONC
DILFAC - VARIABLE TO HOLD SAMPLE DILUTION FACTOR
SVOL - VARIABLE TO TEMPORARILY HOLD INPUT SAMPLE VOLUMES
SVOLUME - VECTOR OF LENGTH 4 TO HOLD INPUT SAMPLE VOLUMES
DAT - TWO DIM MATRIX TO HOLD STANDARD CURVE INPUT DATA
MAXVOL - VARIABLE TO HOLD MAXIMUM STANDARD CURVE INPUT VOLUME
MAXABS - VARIABLE TO HOLD MAXIMUM STANDARD CURVE INPUT ABSORBANCE

APPENDIX B
C * VALUE - VARIABLE TO TEMPORARILY HOLD INPUT STD CURVE INPUT DATA
C * DIV - VARIABLE TO DIVIDE SAMPLE CONC BY 1000 IF 'DILFAC' > 1000.
C * Q - VARIABLE SET TO .1 TO ARBITRARILY CONTROL EXCLUSION OF SAMPLE
C * CONCENTRATION FROM MEAN ADJUSTED CONCENTRATION TABULATION
C *
C * DOUBLE PRECISION VARIABLES
C * ------- ------- ------- -------
C * XYW - ARGUMENT SUBRT 'RLFOR'. TWO DIM MATRIX (DATA POINT I/O)
C * RSQ - ARGUMENT SUBRT 'RLFOR'. CONTROL DEGREE OF FITTED MODEL
C * ALBP - ARGUMENT SUBRT 'RLFOR'. VECTOR OF LENGTH 2 CONTAINING RISK
C * LEVELS
C * ANOVA - ARGUMENT SUBRT 'RLFOR'. OUTPUT VECTOR OF LENGTH 13
C * B - ARGUMENT SUBRT 'RLFOR'. TWO DIM MATRIX (OUTPUT OF REGRESSION
C * EQUATION COEFFICIENTS AND OTHER STATISTICAL DATA
C * WK - ARGUMENT SUBRT 'RLFOR'. WORK VECTOR
C * PRED - ARGUMENT SUBRT 'RLFOR'. OUTPUT 'N' BY 6 MATRIX
C * XTOL - ARGUMENT SUBRT 'RSECT'. SET EQUAL TO TOLERANCE REQUIRED
C * BY 'BSECT' SUBROUTINE
C * TEMP1 - TEMPORARY STORAGE VARIABLE
C * TEMP2 - TEMPORARY STORAGE VARIABLE
C * XLO - ARGUMENT SUBRTS 'BSECT','MONOT','PLOT2'. LOWER RANGE OF
C * 'STANDARD EQUIVALENT VOLUME'
C * XHI - ARGUMENT SUBRTS 'BSECT','MONOT','PLOT2'. UPPER RANGE OF
C * 'STANDARD EQUIVALENT VOLUME'
C * HD1 - VECTOR OF LENGTH 6 CONTAINING ALPHAMERIC ASSAY DATA
C * HD2 - VECTOR OF LENGTH 6 CONTAINING ALPHAMERIC ASSAY DATA
C * HD3 - VECTOR OF LENGTH 6 CONTAINING ALPHAMERIC ASSAY DATA
C * HD4 - VECTOR OF LENGTH 6 CONTAINING ALPHAMERIC ASSAY DATA
C * HD5 - VARIABLE CONTAINING ALPHAMERIC ASSAY DATA
C * COEFF - VECTOR OF LENGTH 6 CONTAINING REGRESSION COEFFICIENTS
C * SABS - ARGUMENT SUBRT 'BSECT'. TRANSFER SAMPLE ABSORBANCE TO
C * SUBRT 'RSECT'
C *
C ***
C PROGRAM DATA TYPE STATEMENTS
C
INTEGER IX,N,MDP(3),IB,IP,IER,IERROR,NVOL,SNUM,IERR,
1 SNUMBER(50),GRAPH(0:50,0:100),LABEL1(51),A,
1 ITEST,MTEST,NTEST
REAL ABSORBANCE(50,4),CONC(50,8),LABEL2(51),MCPLUS,MCMINUS,
1 STAND,DILFAC,SVOL,SVOLUME(4),DAT(30,3),MAXVOL,MAXABS,
1 VALUE,DIV,Q

DOUBLE PRECISION XYW(30,7),RSQ,ALBP(2),ANOVA(13),B(7,12),WK(100),
1 PRED(30,6),XTOL,TEMP1,TEMP2,XLO,XHI,HD5,
1 COEFF(6),HD1(4),HD2(4),HD3(4),HD4(4),HD5,SABS,X
C PROGRAM PARAMETERS

PARAMETER XHI=1.0, XLO=1.0E-8, XTOL=1.0E-5, Q=1.0E-1

C PROGRAM SYMBOL INITIALIZATION STATEMENTS

TYPE"<NL><NL>"

PAUSE "PRESS <return> TO CONTINUE"

TYPE"<NL><NL>STANDARD CURVE ENTRY ROUTINE: <NL>"

TYPE"<NL>ENTER STANDARD CURVE DATA POINTS AT THIS TIME, IN"

TYPE"INCREASING 'STANDARD VOLUME' ORDER. WHEN LAST DATA POINT"

TYPE"HAS BEEN ENTERED, IT IS NECESSARY TO ENTER '999' TO TERMINATE"

TYPE"STANDARD CURVE ENTRY ROUTINE.<NL>"

C STANDARD CURVE DATA POINT ENTRY ROUTINE

20 \n\nN=N+1

TYPE"------------------------------------ <NL>"

24 WRITE(10,1000) N

WRITE(10,1005)

READ FREE (11) VALUE

DAT(N,1)=VALUE

WRITE(10,1010)

READ FREE (11) VALUE

DAT(N,2)=VALUE

TYPE"<NL>EXAMINE ABOVE ENTRIES. IF YOU WISH TO CORRECT"

TYPE"EITHER OR BOTH VALUE(S), ENTER '1' BELOW.<NL>"

26 TYPE"......ENTER '1' TO CORRECT DATA POINT ENTRY"

TYPE"......ENTER '2' TO CONTINUE WITH DATA POINT ENTRY"

TYPE"......ENTER '999' TO TERMINATE DATA POINT ENTRY"

ACCEPT"<NL>ENTER CHOICE: "', I

IF(I.EQ.1) GO TO 24
IF(I.EQ.2) GO TO 28
IF(I.EQ.999) GO TO 30

GO TO 26

28 GO TO 20

30 TYPE"<NL><NL><NL><NL>"

TYPE"ENTER TYPE OF REGRESSION CURVE DESIRED — LINEAR OR POLYNOMIA"

1L<NL>"

TYPE"......ENTER '1' FOR LINEAR REGRESSION CURVE."'

TYPE"......ENTER '2' FOR POLYNOMIAL REGRESSION CURVE."

ACCEPT"<NL>ENTER CHOICE: "', ITEST

IF(ITEST.EQ.1) MDP(1)=1
IF(ITEST.EQ.2) MDP(1)=4
IF(ITEST.NE.1.AND.ITEST.NE.2) GO TO 30

C DETERMINE MAXIMUM VOLUME (MAXVOL) AND MAXIMUM ABSORBANCE
C (MAXABS) OF STANDARD CURVE.

34 MAXABS=0.
MAXVOL=0.
DO 50 I=1,N-1
 IF(DAT(I+1,1).GT.YT(I,1)) MAXVOL=DAT(I+1,1)
 IF(DAT(I+1,2).GT.DAT(I,2)) MAXABS=DAT(I+1,2)
50 CONTINUE

C SET A=1 IF 'MAXABS' > 1.0

IF(MAXABS.GT.1.) A=1

C DIVIDE INPUT STANDARD VOLUME BY 'MAXVOL' TO SCALE RANGE OF
C STANDARD CURVE OVER INTERVAL 0.00 TO 1.00. TRANSFER STANDARD
C CURVE FROM ARRAY 'DAT' TO ARRAY 'XYW' FOR INPUT TO SUBROUTINE
C 'RLFOR'. SET 'XYW(I,3)' = 1.0 FOR UNWEIGHTED REGRESSION COEFFICIENTS.

DO 60 I=1,N
 DAT(I,3)=DAT(I,1)/MAXVOL
 XYW(I,1)=DAT(I,3)
 XYW(I,2)=DAT(I,2)
 XYW(I,3)=1.0
60 CONTINUE

C CALCULATE REGRESSION EQUATION USING IMSL SUBROUTINE 'RLFOR'.

70 TYPE"CALCULATING POLYNOMIAL REGRESSION EQUATION."

CALL RLFOR(XYW,IX,N,RSO,MDP,ALBP,ANOVA,B,PRED,TP,WK,IER)

C ABORT PROGRAM IF 'IER' GREATER THAN 100

IF(IER.GE.100) STOP "INADEQUATE NUMBER OF DATA POINTS"

C TRANSFER REGRESSION EQUATION COEFFICIENTS TO ARRAY 'COEFF'.

COEFF(1)=B(MDP(2)+1,2)
DO 80 I=1,MDP(2)
 COEFF(I+1)=B(I,2)
80 CONTINUE

C IF LINEAR REGRESSION EQUATION CALCULATED DO NOT DETERMINE
C MONOTINICITY OF EQUATION.

WRITE(10,1210) MDP(2)
IF(ITEM. EQ. 1) GO TO 100

C IF POLYNOMIAL REGRESSION EQUATION CALCULATED USE SUBROUTINE
C 'MONOT' TO DETERMINE IF EQUATION IS MONOTONIC.

CALL MONOT (COEFF, MDP(2), XHI, XLO, IERROR)

C IF REGRESSION EQUATION NOT MONOTONIC NOTIFY USER TO RECHECK
C STANDARD CURVE DATA FOR CORRECTNESS OR SUGGEST HE PREPARE NEW
C STANDARD CURVE.

IF(IERROR.EQ.0) GO TO 300

NTEST=1

TYPE
CAUTION: CALCULATED REGRESSION EQUATION IS NOT" MONOTONIC. SUGGEST USER RE-CHECK STANDARD CURVE DATA FOR"
"ACCURACY. IF STANDARD CURVE DATA ENTERED CORRECTLY USER"
"SHOULD CONSIDER PREPARING NEW STANDARD CURVE. UNKNOWN"
"SAMPLE DATA WILL NOT BE ACCEPTED BY THE PROGRAM. STATISTICAL"
"DATA AND PLOT OF REGRESSION EQUATION IS AVAILABLE TO USER"
"IN FILE NAMED 'ASSAYDATA'.

PAUSE "PRESS <RETURN> TO CONTINUE"

GO TO 302

C INPUT AT TERMINAL ASSAY INFORMATION (NAME, DATE OF ASSAY, TYPE,
C INVESTIGATOR AND INFORMATION REQUIRED FOR UNKNOWN CONCENTRATION
C CALCULATION.

100 WRITE(I,1230)
READ(I,1250) (HD1(I), I=1,4)
WRITE(I,1235)
READ(I,1250) (HD2(I), I=1,4)
WRITE(I,1240)
READ(I,1250) (HD3(I), I=1,4)
WRITE(I,1245)
READ(I,1250) (HD4(I), I=1,4)
WRITE(I,1255)
WRITE(I,1260)
READ FREE (I1) STAND
WRITE(I,1255)
READ(I1,1270) HD5
WRITE(I,1275)
READ FREE (I1) DILFAC

IF(DILFAC,GE.1000.) GO TO 130
GO TO 135
WRITE (10, 1276)
WRITE (10, 1277)
READ (11, 1270) HD6
DIV = 1000.

WRITE (10, 1280)
READ (11, 1285) NVOL

IF (NVOL .LT. 1. OR. NVOL .GT. 4) GO TO 135

DO 140 I = 1, NVOL
 WRITE (10, 1290) I
 READ FREE (11) SVOL
 SVOLUME (I) = SVOL
140 CONTINUE

C INITIALIZE ELEMENTS OF 'CONC' ARRAY TO ZERO.

DO 145 I = 1, 50
 DO 145 J = 1, 8
 CONC (I, J) = 0.
145 CONTINUE

TYPE "SAMPLE DATA ENTRY ROUTINE"<NL>

1.) ON PROMPT - ENTER SAMPLE NUMBER."

2.) ON PROMPT - ENTER 'ABSORBANCE' AT INDICATED DILUTION"\

3.) IF YOU ARE MISSING AN 'ABSORBANCE' AT INDICATED"\

DILUTION VOLUME, ENTER '0'.<NL><NL>

KT = 1
KT = KT + 1

WRITE (10, 1295) KT
WRITE (10, 1300)
READ FREE (11) SNUM
SNUMBER (KT) = SNUM

DO 180 I = 1, NVOL
 WRITE (10, 1305) I
 READ FREE (11) SABS
 ABSORBANCE (KT, I) = SABS
 IF (ABSORBANCE (KT, I) .GT. 0.) GO TO 160
 CONC (KT, I) = 0.0
 GO TO 180
160 CONTINUE

C USE SUBROUTINE 'BSECT' TO CALCULATE 'STANDARD EQUIVALENT VOLUME'
C FROM 'UNKNOWN' SAMPLE ABSORBANCE.

CALL BSFCT (SABS,X,COEFF,MDP(2),XLO,XHI,XTOL,IERR)

C IF IERR=0, SET CONC(KT,I)=X. IF IERR=1, SET CONC(KT,I)=-111.
C IF IERR=2, SET CONC(KT,I)=-222.

IF(IERR.EQ.0) CONC(KT,I)=X
IF(IERR.EQ.1) CONC(KT,I)=-111.
IF(IERR.EQ.2) CONC(KT,I)=-222.

180 CONTINUE

IF(KT.EQ.50) GO TO 184
GO TO 186

184 TYPE"<NL><NL>CAUTION: YOU HAVE ENTERED ABSORBANCE DATA FOR 50" TYPE"SAMPLES. YOU MUST NOW ENTER '999' BELOW AND TERMINATE DATA" TYPE"ENTRY. TO ENTER MORE ABSORBANCE DATA USING SAME STANDARD" TYPE"CURVE USE PROGRAM CONTINUATION OPTION TO BE PRESENTED" TYPE"BELOW.<NL><NL>"

186 TYPE"<NL>EXAMINE ABOVE DATA. IF YOU WISH TO CORRECT" TYPE"ANY ENTRY, ALL DATA FOR SAMPLE ",,SNUM," MUST" TYPE"BE RE-ENTERED.<NL>" TYPE".....ENTER '1' TO CORRECT DATA ENTRY." TYPE".....ENTER '2' TO CONTINUE WITH DATA ENTRY." TYPE".....ENTER '999' TO TERMINATE DATA ENTRY."

190 ACCEPT"<NL>ENTER CHOICE: ",,I

IF(I.EQ.1) GO TO 155
IF(I.EQ.2) GO TO 150
IF(I.EQ.999) GO TO 205
GO TO 190

C CALCULATE SAMPLE 'UNKNOWN' CONCENTRATION FROM 'STANDARD VOLUME C EQUIVALENT' OF 'UNKNOWN' OBTAINED FROM 'BSFCT' SUBROUTINE.

205 DO 300 I=1,KT
 TMP1=0.
 K=0
 DO 240 J=1,NVOL
 IF(CONC(I,J).GT.0.) GO TO 210
 GO TO 240
 210 CONC(I,J)=(CONC(I,J)*MAXVOL*STAND*(1./SVOLUME(J))*DILFAC)
 CONC(I,J)=CONC(I,J)/DIV
 TMP1=TMP1+CONC(I,J)
 K=K+1
 240 CONTINUE
CONC(I,5) = TEMP1/K

C Calculate +/- (MEAN CONCENTRATION) * Q. If any individual 'UNKNOWN'
C CONCENTRATION exceeds +/- (MEAN CONC + (MEAN CONC) * Q) DO NOT INCLUDE
C THAT 'UNKNOWN' CONCENTRATION IN 'AVERAGE MEAN ADJUSTED CONCENTRATION'.

MCPLUS = CONC(I,5) + (CONC(I,5) * Q)
MCMINUS = CONC(I,5) - (CONC(I,5) * Q)

TEMP2 = 0.
K = 0
DO 270 L = 1, NVOL
 IF (CONC(I,L) .GT. 0) GO TO 260
 GO TO 270
260 IF ((CONC(I,L) .GT. MCPLUS) .OR. (CONC(I,L) .LT. MCMINUS)) GO TO 270
 TEMP2 = TEMP2 + CONC(I,L)
 K = K + 1
270 CONTINUE
M = NVOL - K
IF (K .EQ. 0) GO TO 275
 GO TO 280
275 CONC(I,7) = -333.
 GO TO 290
280 CONC(I,7) = TEMP2/K
290 CONC(I,6) = M
 CONC(I,8) = K
300 CONTINUE

C TEST TO DETERMINE IF 'MTEST' FLAG HAS BEEN CHANGED TO '2'. IF
C NOT, OPEN FILE FOR INITIAL DATA ENTRY. IF 'MTEST' = 2, BRANCH TO
C LINE 450 TO ADD NEW OUTPUT DATA TO FILE.

IF (MTEST .EQ. 1) GO TO 450

C OPEN CHANNEL '1' FOR USE IN CREATING DATA OUTPUT FILE.
302 OPEN 1, "ASSAY.DATA", ATT = "OP", LEM = 130

C CREATE FILE OF OUTPUT DATA NAMED 'ASSAY.DATA'.

WRITE(1, 1015)
WRITE(1, 1018)
WRITE(1, 1020) MDP(1)
WRITE(1, 1022) MDP(2)
WRITE(1, 1025)
WRITE (1,1030)
WRITE (1,1031)
WRITE (1,1035)
WRITE (1,1038)
WRITE (1,1040) ANOVA(1),ANOVA(4),ANOVA(7),ANOVA(9),ANOVA(10)
WRITE (1,1043) ANOVA(2),ANOVA(5),ANOVA(8)
WRITE (1,1045) ANOVA(3),ANOVA(6)
WRITE (1,1030)
WRITE (1,1047)
WRITE (1,1050)
WRITE (1,1053)
WRITE (1,1055)
WRITE (1,1057)
WRITE (1,1058)

DO 400 J=1,MDP(2)
 WRITE (1,1060) J,(B(J,I),I=1,8)
400 CONTINUE

WRITE (1,1063) (B(MDP(2)+1,I),I=1,8)

WRITE (1,1050)
WRITE (1,1065) ANOVA(11)
WRITE (1,1067) ANOVA(12)
WRITE (1,1070) IER
WRITE (1,1085)
WRITE (1,1090)
WRITE (1,1093)
WRITE (1,1097)
WRITE (1,1098)
WRITE (1,1100)
WRITE (1,1103)

DO 420 I=1,N
 RES=DAT(I,2)-PRED(I,1)
 WRITE (1,1105) I,DAT(I,1),DAT(I,2),PRED(I,1),RES
420 CONTINUE

WRITE (1,1030)
WRITE (1,1107)
WRITE (1,1110)

C CALL PLOT1 AND PLOT2 SUBROUTINES TO CREATE LOW RESOLUTION GRAPH
C OF INPUT STD CURVE DATA POINTS AND CALCULATED REGRESSION EQUATION.

CALL PLOT1 (GRAPH)
CALL PLOT2 (GRAPH,N,DAT,MDP(2),COEFF,A)

26
WRITE (1,1085)
WRITE (1,1430)
WRITE (1,1432)
WRITE (1,1434)

J=50
I=1

430 WRITE (1,1435) LABEL1(I),LABE2(I),(GRAPH(J,K),K=0,100)
J=J+1
I=I+1
IF (J.GE.0) GO TO 430
CONTINUE

IF(A.EQ.0) GO TO 435
GO TO 440

435 WRITE (1,1440)
GO TO 445

440 WRITE (1,1442)

445 WRITE (1,1445)

C IF REGRESSION EQUATION NOT MONOTONIC DO NOT ADD UNKNOWN CONCENTRATION
C DATA TO OUTPUT DATA FILE.

IF(NTEST.EQ.1) GO TO 360

450 WRITE (1,1310)
WRITE (1,1315)
WRITE (1,1320) (HD1(I),I=1,4),STAND,HD5
WRITE (1,1325) (HD2(I),I=1,4),DILFAC
WRITE (1,1330) (HD3(I),I=1,6),NVOL

IF(DILFAC.GT.1000.) GO TO 304
GO TO 306

304 WRITE (1,1335) (HD4(I),I=1,4),HD6
GO TO 308

306 WRITE (1,1335) (HD4(I),I=1,4),HD5

308 DO 310 I=1,NVOL
WRITE (1,1340) I,SVOLUME(I)
CONTINUE

WRITE (1,1345)
WRITE (1,1350)
WRITE (1,1355)
WRITE (1,1360)
WRITE (1,1365)
WRITE (1,1370) 0
WRITE (1,1375)
DO 340 I=1,WT
 WRITE(*,1380) SNUMBER(I),(ABSORBANCE(I,J),J=I,4),
 (CONC(I,K),K=I,8)
340 CONTINUE
 WRITE(1,1350)
 WRITE(1,1385)
 WRITE(1,1395)
 WRITE(1,1400)
 WRITE(1,1415)
 WRITE(1,1420) 0
350 TYPE*<NL><NL><NL><NL>"""""""""""""""""""""""""""""""""""
 TYPE"DO YOU WISH TO ENTER MORE DATA USING SAME STANDARD CURVE?<
1NL>""
 TYPE".....ENTER '1' TO CONTINUE DATA ENTRY"
 TYPE".....ENTER '2' TO EXIT PROGRAM"
 ACCEPT"<NL>ENTER CHOICE: " , MTEST
 TYPE"<NL><NL><NL><NL>""
 IF(MTEST.EQ.1) GO TO 100
 IF(MTEST.EQ.2) GO TO 360
 IF(MTEST.NE.1.AND.MTEST.NE.2) GO TO 350
360 CLOSE 1
C TERMINAL DATA INPUT AND STATISTICAL OUTPUT FORMAT STATEMENTS.

1000 FORMAT(*,"DATA POINT NO.:",I3,/)
1005 FORMAT(*,"ENTER VOLUME OF STANDARD ('IND' VARIABLE): ")
1010 FORMAT(*,"ENTER MEASURED ABSORBANCE FOR ABOVE VOLUME ('DEP' VARIABLE)
1015 FORMAT(*,"*** STATISTICAL DATA --> CALCULATED POLYNOMIAL REGRESSION
1018 FORMAT(*,------------------------------
1020 FORMAT(*,"REQUESTED DEGREE OF REGRESSION EQUATION: " ,I1)
1022 FORMAT(*,"DEGREE OF CALCULATED REGRESSION EQUATION: " ,I1,/)
1025 FORMAT(*,"** ANALYSIS OF VARIANCE **")
1030 FORMAT(*,------------------------------
1038 FORMAT(*,"**",2X,"F-VALUE",6X,"F-DISTRIBUTION",3X,"**")
C FORMAT STATEMENTS FOR UNKNOWN SAMPLE DATA OUTPUT AND INPUT.

1230 FORMAT(2,"ENTER TYPE OF ASSAY: ")
1235 FORMAT(2,"ENTER DATE OF ASSAY: ")
1240 FORMAT(2,"ENTER TYPE OF SAMPLE: ")
1245 FORMAT(2,"ENTER NAME OF INVESTIGATOR: ")
1, F6.1, 2X, F6.1, 3X, F6.1, 1X, "(" , 9X, F2.0, 11X, F6.1, 4X, F2.0, 7X, ")")
1385 FORMAT(//)
1390 FORMAT(1X,"ERROR CODES - CONCENTRATION CALCULATION ROUTINE")
1395 FORMAT(1X,"--")
1400 FORMAT(1X," 1. - 111. IN CONCENTRATION COLUMNS INDICATES THAT
SAMPLE ABSORBANCES NOT IN RANGE OF STANDARD CURVE.")
1415 FORMAT(1X," 2. - 333. IN ADJUSTED CONCENTRATION COLUMNS INDICATES THAT
THE CONCENTRATION OF UNKNOWN AT ALL DILUTIONS")
1420 FORMAT(1X," EXCEEDED -> +/- (" , F3.2,"MC + MC).")
1430 FORMAT(1X,18X,"*** CALCULATED REGRESSION EQUATION - LOW RESOLUTION
PLOT - [X-AXIS VERTICAL; Y-AXIS HORIZONTAL] ***")
1432 FORMAT(1X,82X,"SYMBOL FOR INPUT DATA POINTS: -> 0")
1434 FORMAT(1X,82X,"SYMBOL FOR REGRESSION EQUATION: -> a")
1435 FORMAT(1X,10X,A1,2X,A3,IX,JOIAI)
1440 FORMAT(1X,16X,0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0")
1442 FORMAT(1X,16X,0.0 0.2 0.4 0.6 0.8 1.0")
1445 FORMAT(1X,57X,"ABSORPTION")
9000 STOP "OUTPUT DATA FILE 'ASSAY.DATa' CREATED. END OF PROGRAM"
9999 END
SUBROUTINE 'BSECT' - CALLING PROGRAM NAME: 'ASSAY'

* WRITTEN MAY 1981 - J. J. KNUDSEN, LAIR, DIV. OF RESEARCH SUPPORT
* ANALYTICAL CHEMISTRY GROUP.

* LANGUAGE - DATA GENERAL FORTRAN V

* PURPOSE OF SUBROUTINE
* -----------
* POLY(X) IS A POLYNOMIAL IN X OF DEGREE 'NDEG'.
* POLY(X) = COEFF('ZERO') + SUM COEFF(I)*X**I
* WHERE: I = 1 TO NDEG
* POLY(X) IS DEFINED FOR 'X' BETWEEN 'XLO' AND 'XHI'. GIVEN A
* PARTICULAR NUMBER 'Y', THIS SUBROUTINE FINDS THE VALUE OF 'X'
* FOR WHICH 'Y' = POLY(X). IN OTHER WORDS IT NUMERICALLY SOLVES THE
* EQUATION
* F(X) = POLY(X) - 'Y' = 0
* FOR A UNIQUE SOLUTION TO EXIST, POLY(X) MUST BE MONOTONIC AND 'Y'
* MUST LIE BETWEEN POLY('XLO') AND POLY('XHI').

* DESCRIPTION OF ALGORITHM
* ---------------
* THE ROOT OF THE POLYNOMIAL LIES ON THE INTERVAL (A,B) = (XLO,XHI).
* THIS MEANS THAT 'F' CHANGES SIGN ONCE ON THE INTERVAL, SO THAT
* F(A)*F(B) < 0. PICK A POINT MIDWAY BETWEEN A AND B (CALL IT X).
* IF F(A)*F(X) < 0, THE ROOT IS BETWEEN A AND X; B IS THEN ASSIGNED
* THE VALUE OF X. IF F(A)*F(X) > 0, THE ROOT IS BETWEEN X AND B;
* A IS THEN ASSIGNED THE VALUE OF X. AT THIS POINT WE KNOW THAT THE
* ROOT IS BETWEEN A AND B, BUT THE INTERVAL OF UNCERTAINTY, (B-A),
* IS HALF AS LARGE AS IT WAS INITIALLY. THE BEST GUESS FOR THE ROOT
* IS (A+B)/2, AND THE MAXIMUM ERROR IN THIS ESTIMATE IS (B-A)/2.
* KEEP REPEATING THE ABOVE UNTIL THE ERROR IS SMALLER THAN 'XTOL',
* WHICH HAS BEEN SUPPLIED TO THE SUBROUTINE AS A FORMAL PARAMETER.

* IN SUMMARY, EACH ITERATION HALFS THE MAXIMUM ERROR IN THE ESTIMATE
* OF THE ROOT. THIS ALGORITHM DOES NOT CONVERGE AS FAST AS SOME
* MORE SOPHISTICATED METHODS (E.G., NEWTON'S METHOD OR MODIFIED
* REGULA FALSI), BUT IT IS GUARANTEED TO FIND THE ROOT. OTHER ALGOR-
* ITHMS ARE SOMETIMES TEMPERAMENTAL.

* SUBROUTINE FORMAL PARAMETERS
* ---------
INTEGER

C - IERR - SUBROUTINE ERROR PARAMETER

1. SET = 0 IF NO ERRORS ENCOUNTERED
2. SET = 1 IF NO SOLUTION EXISTS TO EQUATION OVER INTERVAL 'XLO' = 0.0 TO 'XHI' = 1.0
3. SET = 2 IF NO SOLUTION FOUND TO EQUATION IN MAXIMUM NUMBER OF ITERATIONS ('MAXITR')

C - NDEG - DEGREE OF REGRESSION EQUATION GENERATED BY CALLING PROGRAM 'ASSAY'

DOUBLE PRECISION

Y - INPUT 'UNKNOWN' SAMPLE ABSORBANCE
X - OUTPUT 'STANDARD VOLUME EQUIVALENT' (ESTIMATE OF ROOT OF EQUATION AT INPUT 'UNKNOWN' ABSORBANCE).
COEFF - VECTOR OF LENGTH 6 CONTAINING REGRESSION COEFFICIENTS
XLO - LOWER LIMIT OF 'STANDARD VOLUME EQUIVALENT'
SET = TO 0.0
XHI - UPPER LIMIT OF 'STANDARD VOLUME EQUIVALENT'
SET = TO 1.0
XTOL - TOLERANCE VALUE FOR MAXIMUM ALLOWED ERROR IN CALCULATED ROOT. SET = TO 1.0E-5

INTEGER VARIABLES

NDEGP1 - DEGREE OF REGRESSION EQUATION + 1 (LOOP CONTROL)
MAXITR - MAXIMUM NUMBER OF ITERATIONS ALLOWED TO SOLVE EQUATION WITHIN GIVEN ERROR TOLERANCE
IPR - VARIABLE CONTAINING COUNT OF NUMBER OF ITERATIONS COMPLETED BY ROUTINE

DOUBLE PRECISION VARIABLES

XERROR - VARIABLE SET = TO XERROR/2 DURING EACH ITERATION OF SOLUTION ROUTINE. INITIAL VALUE = ABS('XHI'-'XLO').
A - TEMP STORAGE VARIABLE. INITIAL VALUE = 'XHI'
B - TEMP STORAGE VARIABLE. INITIAL VALUE = 'XLO'
POLYA - VARIABLE SET = TO SOLUTION OF POLYNOMIAL AT 'XLO'
POLYB - VARIABLE SET = TO SOLUTION OF POLYNOMIAL AT 'XHI'
POLYX - VARIABLE SET = TO SOLUTION OF POLYNOMIAL AT ROOT EST 'X'
FA - VARIABLE SET = TO 'POLYA - Y'
FB - VARIABLE SET = TO 'POLYB - Y'
FX - VARIABLE SET = TO 'POLYX - Y'

SUBROUTINE BSECT (Y,X,COEFF,NDEG,XLO,XHI,XTOL,IERR)
C SUBROUTINE DATA TYPE STATEMENTS

INTEGER NDEG, NDEGP1, IERR, MAXITR, ITR

DOUBLE PRECISION Y, X, COEFF(6), XLO, XHI, XTOL, XERROR, A, B, FA, FB,
 FX, POLYA, POLYB, POLYX

C SUBROUTINE SYMBOL INITIALIZATION STATEMENTS

ITH=0
IERR=0
MAXITR=20
A=XLO
B=XHI
XERROR=DABS(B-A)
NDEGP1=NDEG+1

C EVALUATE POLYNOMIAL GENERATED BY 'ASSAY' USING HORNERS METHOD
C AT 'XLO' AND 'XHI'.

 POLYA=0.
 POLYB=0.
 DO 20 I=1,NDEG
 POLYA=(POLYA+COEFF(NDEGP1-I+1))*A
 POLYB=(POLYB+COEFF(NDEGP1-I+1))*B
 20 CONTINUE

 POLYA=POLYA+COEFF(1)
 POLYB=POLYB+COEFF(1)
 FA=POLYA-Y
 FB=POLYB-Y

C CHECK FOR THE EXISTANCE OF A SOLUTION BETWEEN 'XHI' AND
C 'XLO'. IF NO SOLUTION EXISTS SET 'IERR' TO '1' AND RETURN
C TO 'ASSAY'.

 IF(FA*FB.LE.0.) GO TO 30
 IERR=1
 RETURN

30 CONTINUE

C CALCULATE NEW ESTIMATE OF ROOT

 X=(A+B)/2.
 ITR=ITR+1

C CHECK TO SEE IF MAXIMUM NUMBER OF ITERATIONS EXCEEDED.
IF(ITR.LE.MAXITR) GO TO 40
IERR=2
RETURN

40 CONTINUE

C DIVIDE MAXIMUM ERROR BY 'TWO'.

XERROR=XERROR/2.

C CHECK TO SEE IF MAXIMUM ERROR IS WITHIN TOLERANCE.

IF(XERROR.LT.XTOL) RETURN

C EVALUATE POLYNOMIAL AT NEW VALUE OF 'X'.

POLYX=0.
DO 50 I=1,NDEG
 POLYX=(POLYX+COEFF(NDEG+I-I+1))*X
50 CONTINUE

POLYX=POLYX*COEFF(1)
FX=POLYX-Y

IF(FA*FX.LE.0.) GO TO 60
 A=X
 FA=FX
 GO TO 30

60 CONTINUE

B=X
GO TO 30

END
SUBROUTINE 'MONOT' - CALLING PROGRAM NAME: 'ASSAY'

WRITTEN MAY 1981 - J.J.KNUDSEN, LAIR, D IV.OF RESEARCH SUPPORT,
ANALYTICAL CHEMISTRY GROUP.

LANGUAGE - DATA GENERAL FORTRAN V

PURPOSE OF SUBROUTINE

THIS SUBROUTINE CHECKS THAT THE REGRESSION POLYNOMIAL IS MONOTONIC
ON (XLO,XHI) BY MAKING SURE THAT THE DERIVATIVE DOES NOT CHANGE
SIGN FOR 100 POINTS SPACED EVENLY ON THE INTERVAL. THIS SUB-
ROUTINE NOT USED IF GENERATED REGRESSION EQUATION IS LINEAR.

SUBROUTINE FORMAL PARAMETERS

INTEGER

NDEG - DEGREE OF REGRESSION EQUATION GENERATED BY CALLING
PROGRAM

IERROR - SUBROUTINE ERROR PARAMETER

SET = TO 0 IF 1ST DERIVATIVE OF REGRESSION EQUATION
IS MONOTONIC

SET = TO 1 IF 1ST DERIVATIVE OF REGRESSION EQUATION
IS NOT MONOTONIC OVER RANGE 'X'=0.0 TO 1.0

DOUBLE PRECISION

COEFF - VECTOR OF LENGTH 6 CONTAINING REGRESSION COEFFICIENTS

XLO - LOWER LIMIT OF 'STANDARD VOLUME EQUIVALENT'

XHI - UPPER LIMIT OF 'STANDARD VOLUME EQUIVALENT'

SUBROUTINE SYMBOL DEFINITIONS (EXCLUDING FORMAL PARAMETERS)

INTEGER VARIABLES

NDEGM1 - DEGREE OF REGRESSION EQUATION - 1 (LOOP CONTROL)

DOUBLE PRECISION VARIABLES

DCOEFF - VECTOR OF LENGTH 6 CONTAINING COEFFICIENTS OF 1ST
DERIVATIVE OF REGRESSION EQUATION

X - VARIABLE SET = TO VALUE BETWEEN 0.0 AND 1.0 AT 100 EQUALLY
SPACED POINTS. 1ST DERIVATIVE EVALUATED AT EACH POINT

DRVX - VALUE OF DERIVATIVE AT 'X'

DRVXLO - VALUE OF DERIVATIVE AT 'XLO'

TEST - VARIABLE SET = TO 'DRVX*DRVXLO' TO CHECK IF SIGN OF
SUBROUTINE MONOT (COEFF,NDEGXHI,XLO,IERROR)

INTEGER NDEG,NDEGMI,IERROR

DOUBLE PRECISION COEFF(6),DCOEFF(6),XLO,XHI,X,DRVX,
 DRVXLO, TEST

C CALCULATE COEFFICIENTS OF 1ST DERIVATIVE OF POLYNOMIAL
C REGRESSION EQUATION GENERATED BY 'ASSAY'

 DO 10 I=1,NDEG
 DCOEFF(I)=COEFF(I)*DBLE(FLOAT(I))
 10 CONTINUE

C CALCULATE VALUE OF 1ST DERIVATIVE OF REGRESSION EQUATION AT
C 'XLO' USING HOREN'S METHOD.

 NDEGMI=NDEG-1
 DRVXLO=0.
 DO 20 I=1,NDEGMI
 DRVXLO=(DRVXLO+DCOEFF(NDEG-I+1))*XLO
 20 CONTINUE
 DRVXLO=DRVXLO+DCOEFF(1)

C CALCULATE VALUE OF 1ST DERIVATIVE OVER RANGE 'XLO' TO 'XHI' AT
C 100 EQUALLY SPACED POINTS. AFTER DERIVATIVE FOR EACH POINT
C CALCULATED, TEST TO DETERMINE IF DERIVATIVE IS POSITIVE
C IF POSITIVE CALCULATE DERIVATIVE AT NEXT POINT.
C IF NEGATIVE SET 'IERROR' TO 1 AND RETURN TO CALLING PROGRAM.

 DO 40 I=1,100
 X=XLO+0.01*I*(XHI-XLO)
 DRVX=0.
 DO 30 J=1,NDEGMI
 DRVX=(DRVX+DCOEFF(NDEG-J+1))*X
 30 CONTINUE
 DRVX=DRVX+DCOEFF(1)
 TEST=DRVXLO*DRVX
 IF (TEST.GT.0) GO TO 40
IERROR = 1
RETURN

40 CONTINUE
IERROR = 0
RETURN

END
SUBROUTINE PLOT1 (GRAPH)

INTEGER W,H,GRAPH(0:50,0:100),BLANK,PLUS,MINUS,DOT,i,J

BLANK=' '
PLUS=' +'

...
MINUS='-'
DPLT='.'

W=100
I=50

J=H
100 I=0
200 GRAPH(J,I)=BLANK
 I=I+1
 IF(I.LE.W) GO TO 200
 J=J-1
 IF(J.GE.0) GO TO 100
 CONTINUE

 J=H
250 K=0
300 I=0
400 GRAPH(J,I+K)=PLUS
 IF(K.EQ.W) GO TO 600
 I=I+1
500 X IF(J.EQ.50.OR.J.EQ.O) GO TO 530
 X GO TO 540
530 GRAPH(J,I+K)=MINUS
540 IF(I.LT.9) GO TO 500
 K=K+10
 GO TO 300
600 IF(J.EQ.0) GO TO 1000
 L=1
620 J=J-1
 K=0
640 I=0

645 CONTINUE

X IF(I*K.EQ.0.OR.I*K.EQ.100) GO TO 650
X GO TO 660
650 GRAPH(J,J*K)=DOT
660 IF(I.EQ.10) GO TO 800
 I=I+1
 K=10
 GO TO 645
800 L=L+1
 IF(L.LT.5) GO TO 620
 J=J-1
 IF(J.GE.0) GO TO 250

1000 RETURN
END
SUBROUTINE 'PLOT2' - CALLING PROGRAM NAME: 'ASSAY'

WRITTEN MAY 1981 - J.J. KNUDSEN, LAIR, DIV. OF RESEARCH SUPPORT, ANALYTICAL CHEMISTRY GROUP.

LANGUAGE - DATA GENERAL FORTRAN V

PURPOSE OF SUBROUTINE

THIS SUBROUTINE PUTS 'SYMBOL' INTO PLOTTING ARRAY 'GRAPH' CREATED BY SUBROUTINE 'PLOT2' AT A POINT CORRESPONDING TO (X,Y) IN THE IMAGE PLANE FOR BOTH INPUT RAW DATA FOR STANDARD CURVE AND GENERATED REGRESSION EQUATION. THE RANGE OF COORDINATES IS ASSUMED TO BE (XMIN TO XMAX, YMIN TO YMAX) AS DEFINED BELOW. THE PAIR OF REAL COORDINATES (X,Y) IN THE IMAGE PLANE ARE CONVERTED TO A PAIR OF INTEGER SUBSCRIPTS (I,J) USING THE DISCRETIZATION FORMULA:

I = (X - XMIN/XMAX - XMIN) * N
J = (Y - YMIN/YMAX - YMIN) * N

WHERE: N = DESIRED NUMBER OF DISCRETIZATION INTERVALS

SUBROUTINE FORMAL PARAMETERS

INTEGER

GRAPH - TWO DIMENSIONAL ARRAY SET UP BY 'PLOT1'. VALUES OF INPUT STANDARD CURVE DATA POINTS INSERTED IN THIS ARRAY AS WELL AS 50 EQUALLY SPACED POINTS OF REGRESSION EQUATION GENERATED BY 'ASSAY'.

N - NUMBER OF STANDARD CURVE DATA POINTS ENTERED IN MAIN PROGRAM

NDEG - DEGREE OF REGRESSION EQUATION GENERATED BY 'ASSAY'

A - VARIABLE SET = TO 0 IF 'MAXABS' IN MAIN PROGRAM <= 1.0

SET = TO 1 IF 'MAXABS' IN MAIN PROGRAM > 1.0

REAL

DAT - TWO DIMENSIONAL ARRAY CONTAINING STANDARD CURVE DATA POINTS

DOUBLE PRECISION

COEFF - VECTOR OF LENGTH 6 CONTAINING REGRESSION COEFFICIENTS

SUBROUTINE SYMBOL DEFINITIONS (EXCLUDING FORMAL PARAMETERS)

INTEGER VARIABLES

SYMBOL - VARIABLE CONTAINING SYMBOL TO BE USED IN PLOTTING INPUT

41
SUBROUTINE PLOT2 (GRAPH,N,DAT,NDEG,COEFF,A)

INTEGER GRAPH(0:50,O:100),SYMBOL,I,J,W,H,NDEG,NDEGPI,N,A
REAL DAT(30,3)
DOUBLE PRECISION XHI,XLO,COEFF(6),X,Y,XMIN,XMAX,YMIN,YMAX
IF(A.EQ.0) GO TO 20
 YMAX=2.0
 GO TO 50
20 YMAX=1.0
30 XMAX=1.0
 YMIN=0.0
 XMIN=0.0
 XLO=0.0
 XHI=1.0
 H=51
 W=100
 SYMBOL='0'
DO 100 K=1,N
 I=INT(DAT(K,3)*DBLE(FLOAT(H)))
 J=INT(((DAT(K,2)-YMIN)/(YMAX-YMIN))*(YMAX-YMIN)*DBLE(FLOAT(W)))
I=50-I

IF((I.GE.0).AND.
(I.LE.H).AND.
(J.GE.O).AND.
(J.LE.W)) GO TO 75

GO TO 100

75 GRAPH (I,J)=SYMBOL

100 CONTINUE

SYMBOL='@
NDEGP1=NDEG+1
DO 200 K=0,50
X=XLO+0.02*K*(XHI-XLO)

Y=0.
DO 150 L=1,NDEG
Y=(Y+COEFF(NDEGP1-L+1))*X

150 CONTINUE

Y=Y+COEFF(1)

I=INT(X*(DBLE(FLOAT(H))))
J=INT(((Y-YMIN)/(YMAX-YMIN))*(DBLE(FLOAT(W))))
I=50-I

IF((I.GE.0).AND.
(I.LE.H).AND.
(J.GE.O).AND.
(J.LE.W)) GO TO 175

GO TO 200

175 GRAPH (I,J)=SYMBOL

200 CONTINUE

RETURN

END
Statistical Data -> Calculated Polynomial Regression Equation

Requested Degree of Regression Equation: 1
Degree of Calculated Regression Equation: 1

Analysis of Variance

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>Degrees of Freedom</th>
<th>Sum of Squares</th>
<th>Mean Squares</th>
<th>F-Value</th>
<th>Tail Area *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>1</td>
<td>1,07912</td>
<td>1,07912</td>
<td>21072.054</td>
<td>0.00000060</td>
</tr>
<tr>
<td>Residual</td>
<td>4</td>
<td>0.0020</td>
<td>0.0005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>5</td>
<td>1.07913</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Regression Coefficients

<table>
<thead>
<tr>
<th>Degree of Term</th>
<th>Variable</th>
<th>Regression Coefficients</th>
<th>Standard Error</th>
<th>Confidence Limit</th>
<th>Confidence Limit</th>
<th>Adjusted Sums of Squares</th>
<th>Partial Sums of Squares</th>
<th>F-Test</th>
<th>Tail Area *</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>Intercept</td>
<td>0.5040</td>
<td>1.24161456</td>
<td>0.0055</td>
<td>1.2179</td>
<td>1.2858</td>
<td>1.07912</td>
<td></td>
<td>0.00000060</td>
</tr>
</tbody>
</table>

Percentage of Variation Explained by Estimated Model: 99.481021
Standard Deviation of Residuals: 0.0715A
Polynomial Calculation Satisfying From Parameters: 0
Input Data & Predicted Values

<table>
<thead>
<tr>
<th>DATA POINT NUMBER</th>
<th>X VALUE</th>
<th>SCALING VALUE</th>
<th>Y VALUE</th>
<th>PREDICTED VALUE</th>
<th>RESIDUAL VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0184</td>
<td>0.0135</td>
<td>0.00529</td>
</tr>
<tr>
<td>2</td>
<td>1.0000</td>
<td>1.0000</td>
<td>2.400</td>
<td>2.418</td>
<td>-0.0093</td>
</tr>
<tr>
<td>3</td>
<td>2.0000</td>
<td>2.0000</td>
<td>5.043</td>
<td>5.102</td>
<td>-0.0096</td>
</tr>
<tr>
<td>4</td>
<td>3.0000</td>
<td>3.0000</td>
<td>7.401</td>
<td>7.545</td>
<td>-0.0042</td>
</tr>
<tr>
<td>5</td>
<td>4.0000</td>
<td>4.0000</td>
<td>9.004</td>
<td>9.004</td>
<td>-0.0040</td>
</tr>
<tr>
<td>6</td>
<td>5.0000</td>
<td>5.0000</td>
<td>1.2444</td>
<td>1.2551</td>
<td>0.00428</td>
</tr>
</tbody>
</table>

X => Independent Variable

Y => Dependent Variable
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Dil 1</th>
<th>Dil 2</th>
<th>Dil 3</th>
<th>Dil 4</th>
<th>Dil 1</th>
<th>Dil 2</th>
<th>Dil 3</th>
<th>Dil 4</th>
<th>Mean</th>
<th>Conc Exceeding</th>
<th>Adjusted Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>191</td>
<td>1.174</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>54.3 (0)</td>
<td>54.3 (0)</td>
</tr>
<tr>
<td>192</td>
<td>1.142</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>55.5 (0)</td>
<td>55.5 (0)</td>
</tr>
<tr>
<td>193</td>
<td>1.900</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>49.9 (0)</td>
<td>49.9 (0)</td>
</tr>
<tr>
<td>194</td>
<td>0.422</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>29.4 (0)</td>
<td>29.4 (0)</td>
</tr>
<tr>
<td>195</td>
<td>0.019</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.0 (1)</td>
<td>-335.0 (0)</td>
</tr>
</tbody>
</table>

Error Codes = Calculation Check:

1. -111. In concentration column indicates that sample absorbance not in range of standard curve.
2. -311. In adjusted concentration column indicates that the concentration of unknown at all dilutions exceeds 1.0x10^6 units.
Statistical Data — Calculated Polynomial Regression Equation

Requested Degree of Regression Equation: 4
Degree of Calculated Regression Equation: 2

Analysis of Variance

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>Degrees of Freedom</th>
<th>Sums of Squares</th>
<th>Mean Square</th>
<th>Computed F-Value</th>
<th>Tail Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>2</td>
<td>41241</td>
<td>20621</td>
<td>20621</td>
<td>0.95276</td>
</tr>
<tr>
<td>Residual</td>
<td>15</td>
<td>0.0035</td>
<td>0.0035</td>
<td>0.0035</td>
<td>0.95276</td>
</tr>
<tr>
<td>Corrected Total</td>
<td>17</td>
<td>41245</td>
<td>24608</td>
<td>24608</td>
<td>0.95276</td>
</tr>
</tbody>
</table>

Regression Coefficients

<table>
<thead>
<tr>
<th>Degree of Term</th>
<th>Variable</th>
<th>Regression Coefficients</th>
<th>Standard Error</th>
<th>Lower Confidence Limit</th>
<th>Upper Confidence Limit</th>
<th>Adjusted Sums of Squares</th>
<th>F-Test Values</th>
<th>Tail Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>X**1</td>
<td>1</td>
<td>52331</td>
<td>13277</td>
<td>3229</td>
<td>7235</td>
<td>24608</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X**2</td>
<td>1</td>
<td>-0.00113</td>
<td>0.00027</td>
<td>-0.00125</td>
<td>-0.00100</td>
<td>0.00000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>1</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Percentage of Variation Explained by Estimated Model: 99.720199
Standard Deviation of Residual: 0.912529

Polynomial Calculation Summarizing Error Parameters: 0
<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
<th>Y Predicted</th>
<th>Residual Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0550</td>
<td>0.0662</td>
</tr>
<tr>
<td>2</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0550</td>
<td>0.0662</td>
</tr>
<tr>
<td>3</td>
<td>2.0000</td>
<td>0.0000</td>
<td>0.0550</td>
<td>0.0662</td>
</tr>
<tr>
<td>4</td>
<td>3.0000</td>
<td>0.0000</td>
<td>0.0550</td>
<td>0.0662</td>
</tr>
<tr>
<td>5</td>
<td>4.0000</td>
<td>0.0000</td>
<td>0.0550</td>
<td>0.0662</td>
</tr>
<tr>
<td>6</td>
<td>5.0000</td>
<td>0.0000</td>
<td>0.0550</td>
<td>0.0662</td>
</tr>
<tr>
<td>7</td>
<td>6.0000</td>
<td>0.0000</td>
<td>0.0550</td>
<td>0.0662</td>
</tr>
<tr>
<td>8</td>
<td>7.0000</td>
<td>0.0000</td>
<td>0.0550</td>
<td>0.0662</td>
</tr>
<tr>
<td>9</td>
<td>8.0000</td>
<td>0.0000</td>
<td>0.0550</td>
<td>0.0662</td>
</tr>
<tr>
<td>10</td>
<td>9.0000</td>
<td>0.0000</td>
<td>0.0550</td>
<td>0.0662</td>
</tr>
<tr>
<td>11</td>
<td>10.000</td>
<td>0.0000</td>
<td>0.0550</td>
<td>0.0662</td>
</tr>
<tr>
<td>12</td>
<td>11.000</td>
<td>0.0000</td>
<td>0.0550</td>
<td>0.0662</td>
</tr>
<tr>
<td>13</td>
<td>12.000</td>
<td>0.0000</td>
<td>0.0550</td>
<td>0.0662</td>
</tr>
<tr>
<td>14</td>
<td>13.000</td>
<td>0.0000</td>
<td>0.0550</td>
<td>0.0662</td>
</tr>
<tr>
<td>15</td>
<td>14.000</td>
<td>0.0000</td>
<td>0.0550</td>
<td>0.0662</td>
</tr>
<tr>
<td>16</td>
<td>15.000</td>
<td>0.0000</td>
<td>0.0550</td>
<td>0.0662</td>
</tr>
<tr>
<td>17</td>
<td>16.000</td>
<td>0.0000</td>
<td>0.0550</td>
<td>0.0662</td>
</tr>
</tbody>
</table>

Note:
- **X** -> Independent Variable
- **Y** -> Dependent Variable
<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>A bsorb ance</th>
<th>C oncentration</th>
<th>M ean</th>
<th>No. of Dil Vols</th>
<th>Adj. Conc</th>
<th>Conc Exceeding</th>
<th>% Exceed</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIL 1</td>
<td>0.094</td>
<td>0.137</td>
<td>0.212</td>
<td>0.329</td>
<td>0.905</td>
<td>1409.8</td>
<td>2.151</td>
</tr>
<tr>
<td>DIL 2</td>
<td>0.092</td>
<td>0.145</td>
<td>0.256</td>
<td>0.386</td>
<td>0.917</td>
<td>1485.7</td>
<td>2.139</td>
</tr>
<tr>
<td>DIL 3</td>
<td>0.117</td>
<td>0.140</td>
<td>0.263</td>
<td>0.408</td>
<td>1.023</td>
<td>1485.0</td>
<td>2.215</td>
</tr>
<tr>
<td>DIL 4</td>
<td>0.115</td>
<td>0.146</td>
<td>0.273</td>
<td>0.418</td>
<td>1.126</td>
<td>1226.3</td>
<td>2.245</td>
</tr>
<tr>
<td>DIL 5</td>
<td>0.105</td>
<td>0.141</td>
<td>0.268</td>
<td>0.407</td>
<td>1.038</td>
<td>1226.8</td>
<td>2.321</td>
</tr>
<tr>
<td>DIL 6</td>
<td>0.102</td>
<td>0.143</td>
<td>0.274</td>
<td>0.407</td>
<td>1.124</td>
<td>1226.3</td>
<td>2.245</td>
</tr>
<tr>
<td>DIL 7</td>
<td>0.124</td>
<td>0.152</td>
<td>0.294</td>
<td>0.471</td>
<td>1.167</td>
<td>1529.4</td>
<td>2.339</td>
</tr>
<tr>
<td>DIL 8</td>
<td>0.127</td>
<td>0.149</td>
<td>0.280</td>
<td>0.471</td>
<td>1.167</td>
<td>1529.4</td>
<td>2.339</td>
</tr>
<tr>
<td>DIL 9</td>
<td>0.118</td>
<td>0.147</td>
<td>0.276</td>
<td>0.471</td>
<td>1.167</td>
<td>1529.4</td>
<td>2.339</td>
</tr>
<tr>
<td>DIL 10</td>
<td>0.100</td>
<td>0.140</td>
<td>0.262</td>
<td>0.418</td>
<td>1.023</td>
<td>1485.0</td>
<td>2.215</td>
</tr>
</tbody>
</table>

Error Codes - Concentration Calculation Routine

1.1 = 111. If concentration columns indicates that sample absorbances not in range of standard curve.

2.1 = 333. If adjusted concentration column indicates that the concentration of unknown at all dilutions exceeds ||(-1,103, MC).
OFFICIAL DISTRIBUTION LIST

Commander
US Army Medical Research and Development Command
ATTN: SGRD-SI/ Mrs. Madigan
Fort Detrick, Frederick MD 21701

Defense Technical Information Center
ATTN: DTIC-DDA (12 copies)
Cameron Station
Alexandria VA 22314

Director of Defense Research and Engineering
ATTN: Assistant Director, Environmental and Life Sciences
Washington DC 20301

The Surgeon General
ATTN: DASG-TLO
Washington DC 20314

HQ DA (DASG-ZXA)
WASH DC 20310

Superintendent
Academy of Health Sciences
ATTN: AHS-COM
Fort Sam Houston TX 78234

Assistant Dean
Institute and Research Support
Uniformed Services University of Health Sciences
6917 Arlington Road
Bethesda MD 20014

Commander
US Army Environmental Hygiene Agency
Aberdeen Proving Ground MD 21070

US Army Research Office
ATTN: Chemical and Biological Sciences Division
P.O. Box 1221
Research Triangle Park NC 27709

Biological Sciences Division
Office of Naval Research
Arlington VA 22217

Director of Life Sciences
USAF Office of Scientific Research (AFSC)
Bolling AFB
Washington DC 20332

Director
Walter Reed Army Institute of Research
Washington DC 20012

Commander
US Army Medical Research Institute of Infectious Diseases
Fort Detrick, Frederick MD 21701

Commander
US Army Research Institute of Environmental Medicine
Natick MA 01760

Commander
US Army Institute of Surgical Research
Brooke Army Medical Center
Fort Sam Houston TX 78234

Commander
US Army Institute of Dental Research
Washington DC 20012

Commander
US Army Medical Bioengineering Research and Development Laboratory
Fort Detrick, Frederick MD 21701

Commander
US Army Aeromedical Research Laboratory
Fort Rucker AL 36362

Commander
US Army Biomedical Laboratory
Aberdeen Proving Ground
Edgewood Arsenal MD 21010

Commander
Naval Medical Research Institute
National Naval Medical Center
Bethesda MD 20014

Commander
USAF School of Aerospace Medicine
Aerospace Medical Division
Brooks Air Force Base TX 78235