MULTIPLE MODULATION FOR OPTICAL PUMP-PROBE SPECTROSCOPY, (U)

P BADO, S B WILSON, K R WILSON

N00014-78-C-0325

UNCLASSIFIED

TR-5
A system built largely from readily available amateur radio gear which uses radio frequency and audio modulation of pump and probe light beams allows the detection of very weak signals (rms noise ~ 3x10^-11 W for a 10-second time constant) even in the presence of a much larger (3.6x10^-2 W) background of pump and probe light.
MULTIPLE MODULATION FOR OPTICAL PUMP-PROBE SPECTROSCOPY

BY

Philippe Bado, Scott B. Wilson and Kent R. Wilson
Department of Chemistry
University of California, San Diego
La Jolla, CA 92039

Prepared for Publication

in

The Review of Scientific Instruments

Reproduction in whole or in part is permitted for any purposes of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.
MULTIPLE MODULATION FOR OPTICAL PUMP-PROBE SPECTROSCOPY

Philippe Bado, Scott B. Wilson and Kent R. Wilson

Department of Chemistry
University of California, San Diego
La Jolla, CA 92093

ABSTRACT

A system built largely from readily available amateur radio gear which uses radio frequency and audio modulation of pump and probe light beams allows the detection of very weak signals (rms noise $\sim 3 \times 10^{-11}$W for a 10 second time constant) even in the presence of a much larger $(3.6 \times 10^{-5}$W) background of pump and probe light.

Submitted to Rev. Sci. Instrum

PACS numbers 42.60.Fc, 78.40.-q, 78.30.-j

The authors provided phototypeset copy for this paper using NTEX/TeX on UNIX.
MULTIPLE MODULATION FOR OPTICAL PUMP-PROBE SPECTROSCOPY

Philippe Bado, Scott B. Wilson and Kent R. Wilson

Department of Chemistry
University of California, San Diego
La Jolla, CA 92093

A common type of spectroscopy involves pumping a sample with one light beam and probing the effect on the sample with a second beam, observing, for example, with a probe beam the change in absorption or scattering induced by a pump beam. An ideal experimental apparatus would discriminate against effects due to either the pump or probe beams acting alone. We point out in this note how this can be accomplished in a relatively simple manner using multiple modulation of the light beams. We demonstrate the technique with an example from picosecond transient electronic absorption using audio frequency (AF) amplitude-modulated (AM) radio-frequency (RF) modulation of the pump beam and RF modulation of the probe beam with observation at the difference frequency of the two RF signals, followed by synchronous AM demodulation. Performance near the noise limit which would be expected from a random photon arrival distribution (shot-noise limit) is achieved with relatively inexpensive and easily obtainable amateur radio equipment.

The instrumentation is shown schematically in Fig. 1. The pump and probe light beams are RF modulated by commercial electro-optical modulators (Coherent Model 28) followed by polarizers as suggested for single RF modulation by Heritage, Levine and Bethea who have demonstrated that the noise in synchronously-pumped dye lasers falls off dramatically on going from the AF to the RF region, approaching the shot noise limit. The RF voltages are supplied by commercial amateur radio transmitters (Drake Model TR-7). Impedance matched to the modulators through variable antenna couplers (Cubic Model ST-3B). The transmit inhibit line is cut on the TR-7 parent boards so they can operate anywhere from 1.5-30MHz so that the sum or difference frequency can be tuned to a minimum region in the laser noise spectrum. It is recommended that the modulators be well shielded inside copper boxes to insure against spurious radiation. While the present detection system is relatively immune to such radiation, one's neighbor's may not be. A 0-270 VDC bias is applied in parallel with the RF voltage, the DC voltage being blocked from the RF source by two 0.01 µF capacitors and the RF voltage blocked from the DC supply with two 5 mH RF chokes. The pump beam is, in addition, AF modulated, using a rotating sector mechanical chopper on a synchronous motor driven by an audio oscillator and amplifier. A reference signal for the later synchronous AF demodulation is derived from a photodiode viewing a helium-neon laser also chopped by the rotating sector. An alternative would be to audio modulate the RF driving the pump beam electro-optical modulator, using the amateur radio transmitter in AM mode.

The modulated pump and probe beams are focussed into the sample which acts as a "molecular mixer" in which the photons from the pump beam affect the sample (for example by exciting an electronic transition or by starting a chemical reaction) in such a way that the absorption or scattering of the probe beam is altered. Thus the RF frequencies of the pump and probe beams are mixed by the molecular interaction to produce sum and difference frequencies. Detection is by a photo-diode (EG & G Model DT 110) which is directly connected to the antenna input of a communications receiver (Drake Model R-7). A low pass filter (Allen Avionics Model VFL6P5) between detector and receiver is sometimes helpful. The receiver is set to the sum or difference frequency, and thus rejects the RF frequencies of both the pump and probe beams with the sharp discrimination characteristic of a good communications receiver in which filtering is carried out at a fixed intermediate frequency (IF). The
Fig. 1. Block diagram of multiple modulation and detection system.
Automaton gain control of the receiver is turned off to maintain linearity. AM detection is used, and the receiver headphone output is fed into an AF synchronous demodulator ("lock-in detector") (Princeton Applied Research Model 124 with Model 116 preamplifier). The reference signal for the demodulator is derived from the AF modulation of the pump beam. The commercial "lock-in detector" could be replaced with a simple phase-locked loop synchronous demodulator at a considerable savings in cost.

Given the success of frequency modulation (FM) in high-fidelity, low noise, commercial broadcasting, it might be thought that FM of the pump RF drive followed by FM instead of AM detection in the receiver might be advantageous. Unfortunately, under the low signal-to-noise conditions in which multiple modulation is needed, the advantages of FM disappear. A superior alternative would be to forego the AF modulation and to lock the local oscillators of two identical receivers together: receiver i) being fed by the detector viewing the "molecular mixer" and receiver ii) by an ordinary mixer generating the sum or difference of the two RF modulation frequencies. The output of the last IF stage of receiver i) (50 kHz for the Drake R-7) could then be synchronously demodulated using the output of the last IF stage of receiver ii) for example with a "lock-in detector".

The rms noise background, measured through calibrating the gain of the detection components, is close to the rms noise theoretically expected from randomly arriving photons (shot noise) and synchronous demodulation. The measurement was made using 3.6×10^{-2}W of 514.5nm light from a mode-locked Argon ion laser (certainly not a white noise source) which produced -3×10^{-11}W of rms noise with the synchronous demodulator running into a low-pass filter with a 10 second time constant (2.5$ \times 10^{-2}$ Hz equivalent noise bandwidth at 6dB/octave roll-off). The RF carriers of both the pump and probe beams are thus rejected, even with minimal shielding of the transmitters and with full illumination by the probe beam along with large scattering of the pump beam into the detector. This multiple modulation scheme, which combines the simplicity and high performance of low frequency synchronous detection with the low background noise of RF frequencies should be applicable to a variety of infrared, Raman (resonance and non-resonance), and electronic pump and probe experiments, as well as to auto- and cross-correlation measurements of pulse shapes in the time domain. It is particularly advantageous when pump and probe wavelengths are the same and optical spectral blocking of the pump beam is ruled out.

We thank Dr. J P Heritage for helpful discussions, and the National Science Foundation, Chemistry and the Office of Naval Research, Chemistry for the support which has made this work possible.
7. ibid. p. 244.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Code 472</td>
<td>2</td>
<td>Attn: CRD-AA-IP</td>
<td>1</td>
</tr>
<tr>
<td>800 North Quincy Street</td>
<td></td>
<td>P.O. Box 1211</td>
<td></td>
</tr>
<tr>
<td>Arlington, Virginia 22217</td>
<td></td>
<td>Research Triangle Park, N.C. 27709</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ONR Western Regional Office</th>
<th>No. Copies</th>
<th>Naval Ocean Systems Center</th>
<th>No. Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Dr. R. J. Marcus</td>
<td>1</td>
<td>Attn: Mr. Joe McCartney</td>
<td>1</td>
</tr>
<tr>
<td>1030 East Green Street</td>
<td></td>
<td>San Diego, California 92152</td>
<td></td>
</tr>
<tr>
<td>Pasadena, California 91106</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ONR Eastern Regional Office</th>
<th>No. Copies</th>
<th>Naval Weapons Center</th>
<th>No. Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Dr. L. H. Peebles</td>
<td>1</td>
<td>Attn: Dr. A. B. Amster, Chemistry Division</td>
<td>1</td>
</tr>
<tr>
<td>Building 114, Section D</td>
<td></td>
<td>China Lake, California 93555</td>
<td></td>
</tr>
<tr>
<td>666 Summer Street</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boston, Massachusetts 02210</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Director, Naval Research Laboratory</th>
<th>No. Copies</th>
<th>Naval Civil Engineering Laboratory</th>
<th>No. Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Code 6100</td>
<td>1</td>
<td>Attn: Dr. R. W. Drisko</td>
<td>1</td>
</tr>
<tr>
<td>Washington, D.C. 20390</td>
<td></td>
<td>Port Hueneme, California 93401</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The Assistant Secretary of the Navy (RE&S)</th>
<th>No. Copies</th>
<th>Department of Physics & Chemistry Naval Postgraduate School</th>
<th>No. Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department of the Navy</td>
<td>1</td>
<td>Attn: Dr. R. W. Drisko</td>
<td>1</td>
</tr>
<tr>
<td>Room 4E736, Pentagon</td>
<td></td>
<td>Fort Hueneme, California 93401</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20350</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commander, Naval Air Systems Command</th>
<th>No. Copies</th>
<th>Naval Ship Research and Development Center</th>
<th>No. Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Code 310C (H. Rosenwasser)</td>
<td>1</td>
<td>Attn: Dr. G. Bosmajian, Applied Chemistry Division</td>
<td>1</td>
</tr>
<tr>
<td>Department of the Navy</td>
<td></td>
<td>Annapolis, Maryland 21401</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20360</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Building 5, Cameron Station</td>
<td>12</td>
<td>Attn: Dr. S. Yamamoto, Marine Sciences Division</td>
<td>1</td>
</tr>
<tr>
<td>Alexandria, Virginia 22314</td>
<td></td>
<td>San Diego, California 91232</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dr. Fred Saalfeld</th>
<th>No. Copies</th>
<th>Mr. John Boyle</th>
<th>No. Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry Division, Code 6100</td>
<td>1</td>
<td>Materials Branch</td>
<td>1</td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td></td>
<td>Naval Ship Engineering Center</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20375</td>
<td></td>
<td>Philadelphia, Pennsylvania 19112</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Naval Civil Engineering Laboratory</th>
<th>No. Copies</th>
<th>Department of Physics & Chemistry Naval Postgraduate School</th>
<th>No. Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Dr. R. W. Drisko</td>
<td>1</td>
<td>Attn: Dr. R. W. Drisko</td>
<td>1</td>
</tr>
<tr>
<td>Port Hueneme, California 93401</td>
<td></td>
<td>Fort Hueneme, California 93401</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department of Physics & Chemistry Naval Postgraduate School</th>
<th>No. Copies</th>
<th>Scientific Advisor</th>
<th>No. Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Dr. R. W. Drisko</td>
<td>1</td>
<td>Commandant of the Marine Corps (Code RD-1)</td>
<td>1</td>
</tr>
<tr>
<td>Washington, D.C. 20380</td>
<td></td>
<td>Washington, D.C. 20380</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scientific Advisor</th>
<th>No. Copies</th>
<th>Mr. John Boyle</th>
<th>No. Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commandant of the Marine Corps (Code RD-1)</td>
<td>1</td>
<td>Mr. John Boyle</td>
<td>1</td>
</tr>
<tr>
<td>Washington, D.C. 20380</td>
<td></td>
<td>Naval Ship Engineering Center</td>
<td></td>
</tr>
<tr>
<td>Philadelphia, Pennsylvania 19112</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TECHNICAL REPORT DISTRIBUTION LIST, GEN

No. Copies

Mr. James Kelley
DTNSRDC Code 2803
Annapolis, Maryland 21402

1

Mr. A. M. Anzalone
Administrative Librarian
PLASTEC/ARRADCOM
Bldg 3401
Dover, New Jersey 07801

1
TECHNICAL REPORT DISTRIBUTION LIST, 051A

<table>
<thead>
<tr>
<th>No.</th>
<th>Copies</th>
<th>Name</th>
<th>Institution</th>
<th>Address</th>
<th>City, State</th>
<th>Zip Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Dr. M. A. El-Sayed</td>
<td>University of California</td>
<td>Los Angeles, California</td>
<td>90024</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Department of Chemistry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Dr. M. W. Windsor</td>
<td>Washington State University</td>
<td>Department of Chemistry</td>
<td>Pullman, Washington</td>
<td>99163</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Dr. E. R. Bernstein</td>
<td>Colorado State University</td>
<td>Department of Chemistry</td>
<td>Pullman, Washington</td>
<td>99163</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Dr. C. A. Heller</td>
<td>Naval Weapons Center</td>
<td>Code 059</td>
<td>China Lake, California</td>
<td>93555</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Dr. J. R. MacDonald</td>
<td>Naval Research Laboratory</td>
<td>Chemistry Division</td>
<td>Washington, D.C.</td>
<td>20375</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Code 6110</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Dr. C. B. Schuster</td>
<td>University of Illinois</td>
<td>Chemistry Department</td>
<td>Urbana, Illinois</td>
<td>61801</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Dr. E. M. Eyring</td>
<td>University of Utah</td>
<td>Department of Chemistry</td>
<td>Salt Lake City, Utah</td>
<td>84112</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Dr. A. Adamson</td>
<td>University of Southern California</td>
<td>Department of Chemistry</td>
<td>Los Angeles, California</td>
<td>90007</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Dr. Y. S. Wrighton</td>
<td>Massachusetts Institute of Technology</td>
<td>Department of Chemistry</td>
<td>Cambridge, Massachusetts</td>
<td>02139</td>
</tr>
<tr>
<td>Name</td>
<td>Institution</td>
<td>Copies</td>
<td>Name</td>
<td>Institution</td>
<td>Copies</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td>--------</td>
<td>-------------------------------</td>
<td>--</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>Professor R. Wilson</td>
<td>Department of Chemistry</td>
<td></td>
<td>Dr. S. Greer</td>
<td>Chemistry Department</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>University of California</td>
<td></td>
<td>Dr. S. Greer</td>
<td>University of Maryland</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>La Jolla, California 92034</td>
<td></td>
<td></td>
<td>College Park, Maryland 2072</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Professor C. A. Ansell</td>
<td>Department of Chemistry</td>
<td></td>
<td>Professor P. Delashav</td>
<td>New York University</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Purdue University</td>
<td></td>
<td></td>
<td>100 Washington Square East</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>West Lafayette, Indiana 47907</td>
<td></td>
<td>Dr. T. Ashworth</td>
<td>Department of Physics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>South Dakota School of Mines & Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rapid City, South Dakota 57701</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Professor P. Meijer</td>
<td>Department of Physics</td>
<td></td>
<td>Dr. G. Gross</td>
<td>New Mexico Institute of Mining & Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Catholic University of America</td>
<td></td>
<td></td>
<td>Socorro, New Mexico 87801</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Washington, D.C. 20054</td>
<td></td>
<td>Dr. J. Kassner</td>
<td>Space Science Research Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>University of Missouri - Rolla</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rolla, Missouri 65401</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Rank Loom</td>
<td>Laguna Research Laboratory</td>
<td></td>
<td>Dr. John Latham</td>
<td>University of Manchester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21421 Stans Lane</td>
<td></td>
<td></td>
<td>Institute of Science & Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Laguna Beach, California 92651</td>
<td></td>
<td></td>
<td>P.O. Box 88</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Manchester, England M601CP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. P. Meier</td>
<td>Department of Physics</td>
<td></td>
<td>Dr. J. Telford</td>
<td>Desert Research Institute</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Catholic University of America</td>
<td></td>
<td></td>
<td>Lab of Atmospheric Physics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Washington, D.C. 20054</td>
<td></td>
<td></td>
<td>Reno, Nevada 89507</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. B. Vonnegut</td>
<td>State University of New York</td>
<td></td>
<td>Dr. J. Telford</td>
<td>Desert Research Institute</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Earth Sciences Building</td>
<td></td>
<td></td>
<td>Lab of Atmospheric Physics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1400 Washington Avenue</td>
<td></td>
<td></td>
<td>Reno, Nevada 89507</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Albany, New York 12203</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Copies</td>
<td>No.</td>
<td>Copies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>-----</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 1 | Dr. M. B. Denton
Department of Chemistry
University of Arizona
Tucson, Arizona 85721 | 1 | Dr. John Duffin
United States Naval Postgraduate School
Monterey, California 93940 |
| 1 | Dr. R. A. Osteryoung
Department of Chemistry
State University of New York at Buffalo
Buffalo, New York 14214 | 1 | Dr. G. M. Hieftje
Department of Chemistry
Indiana University
Bloomington, Indiana 47401 |
| 1 | Dr. B. R. Kowalski
Department of Chemistry
University of Washington
Seattle, Washington 98105 | 1 | Dr. Victor L. Rehn
Naval Weapons Center
Code 3813
China Lake, California 93555 |
| 1 | Dr. S. P. Perone
Department of Chemistry
Purdue University
Lafayette, Indiana 47907 | 1 | Dr. Christie G. Enke
Michigan State University
Department of Chemistry
East Lansing, Michigan 48824 |
| 1 | Dr. D. L. Venezy
Naval Research Laboratory
Code 6130
Washington, D.C. 20375 | 1 | Dr. Kent Eisenbraut, NET
Air Force Materials Laboratory
Wright-Patterson AFB, Ohio 45433 |
| 1 | Dr. R. Freiser
Department of Chemistry
University of Arizona
Tucson, Arizona 85721 | 1 | Walter G. Cox, Code 3632
Naval Underwater Systems Center
Building 148
Newport, Rhode Island 02840 |
| 1 | Dr. Fred Saalfeld
Naval Research Laboratory
Code 6110
Washington, D.C. 20375 | 1 | Professor Isiah M. Warner
Texas A&M University
Department of Chemistry
College Station, Texas 77840 |
| 1 | Dr. H. Chernoff
Department of Mathematics
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139 | 1 | Professor George H. Morrison
Cornell University
Department of Chemistry
Ithaca, New York 14853 |
| 1 | Dr. K. Wilson
Department of Chemistry
University of California, San Diego
La Jolla, California | 1 | Professor J. Janata
Department of Bioengineering
University of Utah
Salt Lake City, Utah 84112 |
| 1 | Dr. A. Zirino
Naval Undersea Center
San Diego, California 92132 | 1 | Dr. Carl Heller
Naval Weapons Center
China Lake, California 93555 |
<table>
<thead>
<tr>
<th>No.</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dr. L. Jarvis
Code 6100
Naval Research Laboratory
Washington, D.C. 20375

1