Influence of Velocity Shear on the Rayleigh-Taylor Instability

P. N. GUZDAR
Science Applications, Inc.
McLean, Virginia 22102

P. SATYANARAYANA
Berkeley Scholars, Inc.
Springfield, Virginia 22150

J. D. HUBA AND S. L. OSSAKOW
Geophysical and Plasma Dynamics Branch
Plasma Physics Division

December 16, 1981

This research was sponsored partially by the Defense Nuclear Agency under Subtask S99QAXHC, work unit 00032, and work unit title, "Plasma Structure Evolution," and partially by the Office of Naval Research.
Influence of velocity shear on the Rayleigh-Taylor instability

P.N. Guzdar, P. Satyanarayana, J.D. Huba, and S.L. Ossakow

Naval Research Laboratory
Washington, DC 20375

Defense Nuclear Agency, Office of Naval Research
Washington, DC 20305, Arlington, VA 22217

Approved for public release; distribution unlimited.

Abstract

The influence of a transverse velocity shear on the Rayleigh-Taylor instability is investigated. It is found that a sheared velocity flow can substantially reduce the growth rate of the Rayleigh-Taylor instability in the short wavelength regime (i.e., \(kL > 1 \) where \(L \) is the scale length of the density inhomogeneity), and causes the growth rate to maximize at \(kL < 1.0 \). Applications of this result to ionospheric phenomena [equatorial spread F (ESF) and ionospheric plasma clouds] are discussed. In particular, the effect...
18. Supplementary Notes (Continued)

*Present address: Science Applications, Inc., McLean, VA 22102; permanent address: University of Maryland, College Park, MD 20742.
†Present address: Berkeley Scholars, Inc., Springfield, VA 22150.

20. Abstract (Continued)

If shear could account for, at times, the 100's of km modulation observed on the bottomside of the ESF ionosphere and the km scale size wavelengths observed in barium cloud prompt striation phenomena.
CONTENTS

I. INTRODUCTION .. 1

II. THEORY .. 2

III. RESULTS ... 4

 A. Rayleigh-Taylor Instability 4
 B. Kelvin-Helmholtz Instability 5
 C. Generalized Rayleigh-Taylor Instability

IV. DISCUSSION ... 8

ACKNOWLEDGMENTS .. 11

REFERENCES .. 12
INFLUENCE OF VELOCITY SHEAR ON THE RAYLEIGH-TAYLOR INSTABILITY

I. Introduction

An important instability in a variety of geophysical phenomena is the Rayleigh-Taylor instability. The instability is an interchange instability and is driven primarily by an opposing density gradient and gravitational force (e.g., a heavy fluid supported by a light fluid). In a magnetized plasma, the mode exists in both the collisionless and collisional regimes. However, in many regions of interest, such as the ionosphere, the plasma can also contain inhomogeneous velocity flows transverse to the magnetic field. In fact, in the absence of other effects (such as gravity, density gradients and collisions), this sheared flow can give rise to a transverse Kelvin-Helmholtz instability (Mikhailovskii, 1974). The purpose of this paper is to investigate the influence of velocity shear on the Rayleigh-Taylor instability (Drazin, 1958; Chandrasekhar, 1961).

We find that velocity shear can have a dramatic effect on the Rayleigh-Taylor instability. Namely, for a sufficiently strong velocity shear, the growth rates of the most unstable modes (i.e., those such that $kL > 1$ where L is the scale length of the inhomogeneity) are substantially reduced; leading to maximum growth in the regime $kL < 1$. Thus, velocity shear has the effect of preferentially exciting a long wavelength mode of the Rayleigh-Taylor instability which is in sharp contrast to the behavior of the mode in the absence of velocity shear. This result may explain the long wavelength oscillations (i.e., several hundred kms) of the bottomside F layer during equatorial spread F (Tsunoda, 1981a; Tsunoda and White, 1981; Kelley et al., 1981) and the early time structuring of injected barium clouds in the ionosphere (Simons et al., 1980; Wescott et al., 1980).

The scheme of this paper is as follows. In the next section we present the basic equation which describes the influence of velocity shear on the Rayleigh-Taylor instability. In Section III, the various instabilities are discussed (i.e., Rayleigh-Taylor, Kelvin-Helmholtz and the generalized Rayleigh-Taylor). Finally, in the last section, we discuss the application of our results to ionospheric phenomena, i.e., equatorial spread F and plasma cloud striations.

II. Theory

The geometry of the plasma and field configuration used in the analysis are as follows. We consider \(R = R_0 \hat{e}_z \), \(\mathbf{\mathbf{R}} = R \hat{e}_x \), \(n = n_0(x) \) and \(v = -v_0(x) \hat{e}_y \). We also include ion-neutral collisions \(v = v_{in} \) in the theory so that both collisionless and collisional instabilities are considered.

The basic assumptions used in the analysis are as follows. We assume perturbed quantities vary as \(\delta p \sim \delta p(x) \exp(iky-i\omega t) \) with \(\omega \ll \Omega_i \) and \(kr_i \ll 1 \) where \(\Omega_i \) is the ion gyrofrequency and \(r_i \) is the mean ion Larmor radius. We neglect perturbations along the magnetic field \((k_\perp = 0) \) so that only two dimensional mode structure in the xy plane is obtained. We assume \(v_{in} \ll \Omega_i \) which is consistent with ionospheric F region conditions. Ion inertial effects are retained in the analysis, but electron inertial effects are neglected. We assume quasi-neutrality so that \(n_e = n_i = n \).

A key feature of our analysis is that a nonlocal theory is developed. That is, the mode structure of the potential in the x-direction is determined by a differential equation rather than an algebraic equation obtained by Fourier analysis. This technique allows one to study modes which have wavelengths larger than the scale size of the inhomogeneities (i.e., \(kL < 1 \) where \(L \) represents the scale length of the boundary layer). In fact, this is crucial to describing the Kelvin-Helmholtz instability produced by a transverse velocity shear (Mikhailovskii, 1974).

Based upon the assumptions discussed above, the fundamental equations used in the analysis are

\[
\frac{\partial n_\alpha}{\partial t} + \nabla \cdot (n \mathbf{v}_\alpha) = 0 \tag{1}
\]

\[
0 = \mathbf{F} + \frac{\mathbf{v}_e \times \mathbf{B}}{c} \tag{2}
\]

\[
m_i(\partial/\partial t + \mathbf{v}_i \cdot \nabla)\mathbf{v}_i = e\mathbf{F} + \frac{eV_i \times \mathbf{B}}{c} - m_i v_{in} \mathbf{v}_i + m_i \dot{\mathbf{R}} \tag{3}
\]

where \(\alpha \) denotes species (e, i: electron, ion). We substitute \(\mathbf{F} = -\nabla \phi \),
\(V = V_0(x) + \delta V \) and \(n = n_0(x) + \delta n \) into Eqs. (1)-(3). Here, \(\phi \) is the perturbed potential. We find the perturbed velocities to be

\[
\delta v_x = \left(c/R \right) \left[-i k x + \frac{\partial \phi}{\partial x} \right]
\]

and

\[
\delta v_y = \left(c/R \right) \left[-i \left(1 + \frac{1}{\Omega} \frac{\partial \phi}{\partial x} \right) k x + \frac{\omega + iv_{in}}{\Omega} \right] e_x
\]

\[
+ \left(c/R \right) \left[\frac{\partial \phi}{\partial x} - \frac{\omega + iv_{in}}{\Omega} k x \right] e_y
\]

where \(\Omega = \Omega_1 = eB/mc \) and \(\omega = \omega -(kv_0) \). Substituting Eqs. (4) and (5) into Eq. (1), we arrive at the following equation

\[
\frac{\partial^2 \phi}{\partial x^2} + p \frac{\partial \phi}{\partial x} + q \phi = 0
\]

where

\[
p = \frac{\partial n_0}{\partial x} \left(1 - \frac{iv_{in}}{\omega + iv_{in}} \frac{k v_0}{n_0} \right)
\]

\[
q = -k^2 - \frac{k v_0}{\omega + iv_{in}} \left[\frac{1}{\Omega} \frac{\partial^2 n_0}{\partial x^2} + \frac{\partial n_0}{\partial x} \frac{\partial n_0}{\partial x} + \frac{\partial v_0}{\partial x} \frac{\partial n_0}{\partial x} + \frac{\partial n_0}{\partial x} \frac{\partial v_0}{\partial x} \right]
\]

In obtaining Eq. (6) we have made use of the quasi-neutrality condition, assumed \(\partial v_0/\partial x \ll \Omega_1 \) and have retained ion inertial terms to order \(v_{in}/\Omega_1 \).
III. Results

To highlight the influence of velocity shear on the Rayleigh-Taylor instability we first consider two limiting cases: (1) the Rayleigh-Taylor instability with no velocity shear and (2) the Kelvin-Helmholtz instability with no collisions, gravity or density gradient. Following this we discuss a general solution of Eq. (6).

A. Rayleigh-Taylor instability

We take \(V = 0 \) so that Eq. (6) becomes

\[
\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial}{\partial x} \left(\frac{\partial n_0}{\partial x} \right) - k^2 \left[1 - \frac{1}{\omega + i \nu} \frac{1}{\omega} \frac{\partial n_o}{\partial x} \right] \phi = 0
\]

(9)

Equation (9) can be easily solved in the local approximation (i.e., \(k^2 L^2 \gg k_x^2 L^2 \gg 1 \) where \(L = (\partial n_o/\partial x)^{-1} \) we have assumed \(\phi(x) = \exp(ikx) \)). We obtain the dispersion equation

\[
\omega^2 + i \nu \omega - g/L = 0
\]

(10)

which has the solution (Hudson and Kennel, 1975; Haerendel, 1974)

\[
\omega = -\frac{i \nu}{2} \left[1 \pm \sqrt{1 - 4g/L \nu^{-1}} \right]^{1/2}
\]

(11)

Instability can occur when \(g/L < 0 \) (i.e., \(g \) and \(L \) are oppositely directed). The collisionless and collisional solutions are

\[
\omega = \pm (g/L)^{1/2} \quad \nu \ll (4g/L)^{1/2}
\]

(12)

\[
\omega = -i (g/L)^{-1} \nu^{-1} \quad \nu \gg (4g/L)^{1/2}
\]

(13)

We now solve Eq. (9) numerically for a density profile

\[n = n_o \exp(-x^2/2L^2) + \Delta n. \]

The results are shown in Fig. 1 (curve A) which is a plot of \(\gamma/(g/L)^{1/2} \) vs. \(kL \) for \(\Delta n/n_o = 0.01 \) and

\[\nu/|g/L|^{1/2} = 0.5. \]

As expected, the growth rate maximizes in the regime \(kL \gg 1 \). However, note that the maximum growth rate \((\gamma/(g/L)^{1/2} = 1.1) \) is slightly larger than that predicted from local
theory \((\gamma/(g/L)^{1/2} = 1.0\) from Eq. (11)). This is due to the Gaussian-like density profile chosen for the numerical example.

B. Kelvin–Helmholtz instability

We assume \(V(x) \neq 0\) but take \(\nu_{in} = 0\), \(g = 0\) and \(n_o = \text{const.}\) Equation (6) becomes

\[
\frac{\partial^2 \phi}{\partial x^2} - \left(k^2 - \frac{k^2 V_o/\partial x^2}{\omega - k V_o} \right) \phi = 0 \tag{14}
\]

which is well-known (Mikhailovskii, 1974). Note that in the local approximation

\[
\omega = k V_o + k^{-1}(\partial^2 V_o/\partial x^2)_{x=x_o} \tag{15}
\]

so that the mode is stable. In general, an instability can occur only when \((\partial^2 V_o/\partial x^2)_{x=x_o} = 0\) where \(x_1 < x_o < x_2\), and \(x_1\) and \(x_2\) are the boundaries (Rayleigh's theorem). As an example, we assume an equilibrium velocity profile \(V_o = V_o \tanh(x/L) \hat{e}_y\). The solution to Eq. (14) is shown in curve B of Fig 1 where \(\gamma/(V_o/L)\) vs. \(kL\) is plotted. The instability is purely growing (i.e., \(\omega = 0\)) and only occurs in the regime \(0 < kL < 1\). Maximum growth occurs at \(kL = 0.5\) with \(\gamma = 0.18 \) \((V_o/L)\) (Michalke, 1964).

C. Generalized Rayleigh–Taylor instability

We now consider the general case where both the standard Rayleigh–Taylor and the Kelvin–Helmholtz instabilities coexist (Drazin, 1958). Since the wavelength regimes of these two instabilities are distinct from one another (i.e., Rayleigh–Taylor favors \(kL > 1\) while Kelvin–Helmholtz favors \(kL < 1\)), one might think that these "modes" do not affect one another in the linear regime. However, this is not the case as is shown by curve C of Fig. 1. Here, we solve Eq. (6) for the following profiles:

\[
n = n_o \exp(-x^2/2L^2) + \Delta n
\]

and \(V_o = V_o \tanh[(x-x_o)/L] \hat{e}_y\) with \(v_{in}/(g/L)^{1/2} = 0.5\), \(V_o/(gL)^{1/2} = 1.0\), \(\Delta n/n_o = 0.01\) and \(x_o/L = -2.0\). Note that the scale lengths of the density and velocity gradients are assumed equal. The position of the sheared velocity flow is chosen to coincide with the
localization region of the Rayleigh-Taylor instability. As in curve A, we plot \(\gamma/\langle g/L \rangle^{1/2} \) vs. \(kL \) and it is found that the growth rate maximizes at \(\gamma = 0.4 \) \(\langle g/L \rangle^{1/2} \) for \(kL = 0.7 \) over the range considered (0 < \(kL < 10 \)). The most dramatic feature of including velocity shear in the analysis is the strong reduction in the growth rate of modes in the short wavelength regime (i.e., \(kL > 1 \)). Thus, the main influence of velocity shear on the Rayleigh-Taylor instability is to suppress the most unstable waves, those with \(kL > 1 \), and to maximize growth in the long wavelength regime (\(kL < 1 \)).

This effect of velocity shear on the Rayleigh-Taylor instability can be easily seen from local theory. For simplicity, we consider Eq. (6) in the limit \(k^2L^2 \gg k^2_x L^2 \gg 1 \) and \(v_{in} = 0 \). The dispersion equation becomes

\[
\hat{\omega}^2 - k^{-1} \left(\frac{\partial^2 \hat{V}_o}{\partial x^2} + \frac{\partial \ln n_0}{\partial x} \frac{\partial \hat{V}_o}{\partial x} \right) \hat{\omega} - \frac{\partial \ln n_0}{\partial x} = 0 \quad (16)
\]

where \(\frac{\partial^2 \hat{V}_o}{\partial x^2} \), \(\frac{\partial \hat{V}_o}{\partial x} \) and \(\frac{\partial \ln n_0}{\partial x} \) are defined locally at some point \(x = x_0 \). Writing \(\frac{\partial^2 \hat{V}_o}{\partial x^2} = \hat{V}_o'' \), \(\frac{\partial \hat{V}_o}{\partial x} = \hat{V}_o' \) and \(\frac{\partial \ln n_0}{\partial x} = 1/L \), the solution to Eq. (16) is

\[
\hat{\omega} = \frac{1}{2k} \left(\hat{V}_o'' + \hat{V}_o'/L \right) + \frac{1}{2} \left[(\hat{V}_o''/k + \hat{V}_o'/kL)^2 + 4\gamma/L \right]^{1/2} \quad (17)
\]

In the limit \(\hat{V}_o'' \to 0 \) and \(\hat{V}_o' \to 0 \), Eq. (11) is recovered. However, for \(\hat{V}_o'' \), \(\hat{V}_o' \neq 0 \) the velocity shear term is clearly stabilizing. Moreover, the stabilizing influence is \(k \) dependent and we expect that as \(k \) increases the influence of velocity shear becomes weaker.

Qualitatively this result is shown in Fig. 1 (curve C); the most strongly suppressed modes have \(kL = 1 \) and growth increases as \(kL \) increases, albeit small. However, owing to the crude approximation made in obtaining Eq. (17), good quantitative agreement cannot be expected.
Figure 1

Plots of the growth rate (γ) vs. kL under various conditions. The profiles used are: $n = n_0 \exp(-x^2/2L^2) + \Delta n$ and $V = V_o \tanh[(x - x_0)/L]$. (A) Rayleigh-Taylor instability with no velocity shear. Here, $\gamma/(g/L)^{1/2}$ vs. kL is plotted and we have assumed $v_{in}/(g/L)^{1/2} = 0.5$ and $\Delta n/n_0 = 0.01$. (B) Kelvin-Helmholtz instability with no density gradient, collisions and gravity. Here, $\gamma/(V_o/L)$ vs. kL is plotted. (C) Generalized Rayleigh-Taylor instability including velocity shear. Here $\gamma/(g/L)^{1/2}$ vs. kL is plotted. We have assumed $v_{in}/(g/L)^{1/2} = 0.5$, $V_o/(g/L)^{1/2} = 1.0$, $\Delta n/n_0 = 0.01$ and $x_0/L = -2.0$.
IV. Discussion

We have investigated the influence of velocity shear on the Rayleigh-Taylor instability. Our analysis includes gravity, density and velocity inhomogeneities and ion-neutral collisions. In general, the Rayleigh-Taylor instability is most unstable in the regime $kL > 1$ where L characterizes the inhomogeneity scale length. On the other hand, the Kelvin-Helmholtz instability, driven by a sheared transverse velocity flow, is unstable for $kL < 1$. In the presence of a sufficiently strong velocity shear, the short wavelength spectrum ($kL > 1$) of the Rayleigh-Taylor instability is strongly suppressed and a maximum in growth occurs for $kL < 1$. Thus, velocity shear may cause a long wavelength mode to be preferentially excited; whereas in the absence of velocity shear the dominant wave mode usually has a shorter wavelength determined by initial conditions or nonlinear processes. We now discuss two possible applications of this theory to ionospheric phenomena: equatorial spread F and ionospheric plasma cloud striations.

It is believed that the Rayleigh-Taylor instability can play a major role in the onset of equatorial spread F (see for example Ossakow, 1979; Fejer and Kelley, 1980). After sunset, the density gradient on the bottomside of the F layer steepens which initiates the Rayleigh-Taylor instability. However, there are also observations of (1) velocity shears existing in the F region during spread F (Kudeki et al., 1981; Tsunoda et al., 1981) and (2) long wavelength (i.e., several hundred km) oscillations on the bottomside of the F layer (Tsunoda and White, 1981; Kelley et al., 1981). From our theory we expect velocity shear to preferentially excite the Rayleigh-Taylor instability at $kL = 0.7$. If we take $L = 25$ km for the bottomside of the F layer then the most unstable wavelength occurs at $\lambda \sim 250$ km which is comparable with observations ($\lambda_{obs} \sim 600$ km Kelley et al., 1981; $\lambda_{obs} \sim 400$ km Tsunoda and White, 1981; $\lambda_{obs} \sim$ tens of a few hundred kms, Tsunoda, 1981b). Also, the magnitude of the velocity shear necessary for this is $V_0/L = 2 \times 10^{-2}$ Hz which is somewhat larger than, although comparable with, observational values (Kudeki et al., 1981) which are $V_0/L \sim 2 \times 10^{-3}$ Hz. Thus, the influence of velocity shear on the Rayleigh-Taylor instability may explain the long wavelength...
oscillations of the bottomside of the F layer. We mention that gravity waves have also been proposed as a mechanism to generate these oscillations (Kelley et al., 1981).

Several aspects of the theory need further comment concerning this application to equatorial spread F. First, the velocity shear profile used in the calculation is based on observational data and not on a self-consistent equilibrium model. An equilibrium which provides the observed shear flows is beyond the scope of this paper. One possible mechanism to generate the velocity shear is via a neutral wind in the equatorial F region when the F layer is electrically coupled to a background F layer away from the equatorial region (Zalesak et al., 1981). It is interesting to note that when such a coupling occurs, the plume structures are tilted away from the vertical (Zalesak et al., 1981). Thus, the tilt of the plumes can be regarded as a measure of the coupling between the F and F regions, and therefore, as a measure of sheared velocity flows in the F region. Observationally, the largest amplitude, long wavelength oscillations occur when the plumes are strongly tilted (Kelley et al., 1981). This suggests that sheared velocity flows may play a role in their development. Second, the relative positions of the density and velocity profiles play a crucial part in the "interaction" of the velocity shear and the Rayleigh-Taylor instability. The strongest effect of shear occurs when the velocity shear is a maximum in the localization region of the Rayleigh-Taylor mode. Finally, collisions can destroy the local maximization of the growth rate in the long wavelength regime if they are sufficiently strong. This indicates that velocity shear will be more important at high altitudes (> 400 km) in affecting the Rayleigh-Taylor instability.

Artificial plasma clouds (e.g., barium releases) in the ionosphere are subject to a complex and dynamic evolution. One of the more notable characteristics is the striating of the clouds, i.e., "fingers" forming on one side of the cloud (Rosenberg, 1971; Davis et al., 1974). In many cases these striations can be explained by the \(E \times B\) gradient drift instability (Linson and Workman, 1970; Zabusky et al., 1973; Scannapieco et al., 1976). However, recent shaped charge releases develop striations very rapidly (Simons et al., 1980; Wescott et al., 1980) and these
initial striations cannot be explained by the $E \times B$ drift instability because of its relatively slow growth rate. Simons et al. (1980) have proposed a kinetic instability driven by an ion ring distribution to explain the prompt striations in the Ruaro release. However, it is unclear that a kinetic instability can produce the large density perturbations necessary to explain the structuring of the cloud. An alternative mechanism has been proposed by Phillip (1971) and Fedder (1980) which is based upon an interchange instability; this instability is similar to the Rayleigh-Taylor instability, but relies upon the deceleration of the cloud (Scholer, 1970) rather than gravitational acceleration. An inhomogeneous electric field can exist at the edges of the cloud due to polarization charges which produce a sheared transverse velocity flow (Sydora et al., 1981). Thus, our theory can be applied to the structuring of barium releases which are injected across the magnetic field. If the boundary layer is several hundred meters thick ($L \sim 100 - 300$ m) then from $kL \approx 0.7$ we obtain wavelengths $\lambda \sim 1 - 3$ km which are consistent with observations. Moreover such a layer thickness yields substantial growth rates according to Fedder's model ($\gamma \sim 10$ sec$^{-1}$). This final example is largely suggestive at this time, yet is sufficiently encouraging that further investigation is warranted.

In conclusion, we have shown that a sheared transverse velocity flow can have a pronounced effect on the Rayleigh-Taylor instability. For a sufficiently strong velocity shear, the short wavelength spectrum of the instability is suppressed and growth maximizes at $kL < 1.0$ where L is the scale length of the inhomogeneity. This result may explain the long wavelength oscillations of the bottomside of the F layer during equatorial spread F and the prompt structuring of injected barium clouds. We emphasize that this is a preliminary report and that a more detailed analysis (i.e., parametric variations) will be presented in a future paper.
Acknowledgments

We thank P. Chaturvedi for helpful discussions during the initial phase of this research and M. Schoeberl for pointing out the work of Drazin to us. This research has been supported by the Defense Nuclear Agency and the Office of Naval Research.
References

DISTRIBUTION LIST

DEPARTMENT OF DEFENSE

ASSISTANT SECRETARY OF DEFENSE
COMM, CMD, CONT 7 INTELL
WASHINGTON, D.C. 20301
01CY ATTN J. BABCOCK
01CY ATTN M. EPSTEIN

DIRECTOR
COMMAND CONTROL TECHNICAL CENTER
PENTAGON RM BM 685
WASHINGTON, D.C. 20301
01CY ATTN C-650
01CY ATTN C-312 R. MASON

DIRECTOR
DEFENSE ADVANCED RSCH PROJ AGENCY
ARCHITECT BUILDING
1400 WILSON BLVD.
ARLINGTON, VA. 22209
01CY ATTN NUCLEAR MONITORING RESEARCH
01CY ATTN STRATEGIC TECH OFFICE

DEFENSE COMMUNICATION ENGINEER CENTER
1860 WIEHLE AVENUE
RESTON, VA. 22090
01CY ATTN CODE R820
01CY ATTN CODE R410 JAMES W. MCLEAN
01CY ATTN CODE R720 J. WORTHINGTON

DIRECTOR
DEFENSE COMMUNICATIONS AGENCY
WASHINGTON, D.C. 20305
(ADR CNVDI: ATTN CODE 240 FOR)
01CY ATTN CODE 101B

DEFENSE TECHNICAL INFORMATION CENTER
CAMERON STATION
ALEXANDRIA, VA. 22314
(12 COPIES IF OPEN PUBLICATION,
OTHERWISE 2 COPIES)
12CY ATTN TC

DIRECTOR
DEFENSE INTELLIGENCE AGENCY
WASHINGTON, D.C. 20301
01CY ATTN DT-1B
01CY ATTN DB-4C E. O'FARRELL
01CY ATTN DIAAP A. WISE
01CY ATTN DIAST-5
01CY ATTN DT-1BZ R. MORTON
01CY ATTN RO-TR J. STEWART
01CY ATTN W. WITTIG DC-7D

DIRECTOR
DEFENSE NUCLEAR AGENCY
WASHINGTON, D.C. 20305
01CY ATTN STYL
04CY ATTN TITL
01CY ATTN DOST
03CY ATTN RAAE

COMMANDER
FIELD COMMAND
DEFENSE NUCLEAR AGENCY
KIRTLAND, AFR, NM 87115
01CY ATTN FCPR

DIRECTOR
INTERSERVICE NUCLEAR WEAPONS SCHOOL
KIRTLAND AFR, NM 87115
01CY ATTN DOCUMENT CONTROL

JOINT CHIEFS OF STAFF
WASHINGTON, D.C. 20301
01CY ATTN J-3 WMCCS EVALUATION OFFICE

DIRECTOR
JOINT STRAT TGT PLANNING STAFF
OFFUTT AFB
OMAHA, NE 68113
01CY ATTN JLTw-2
01CY ATTN JPST G. GOETZ

CHIEF
LIVERMORE DIVISION FLD COMMAND DNA
DEPARTMENT OF DEFENSE
LAWRENCE LIVERMORE LABORATORY
P.O. BOX 808
LIVERMORE, CA 94550
01CY ATTN FCPR

DIRECTOR
NATIONAL SECURITY AGENCY
DEPARTMENT OF DEFENSE
FT. "GEORGE G. MEADE, MD 20755
01CY ATTN JOHN SKILLMAN R52
01CY ATTN FRNK LEONARD
01CY ATTN W14 PAT CLARK
01CY ATTN OLIVER H. BARTLETT W32
01CY ATTN R5

COMMANDANT
NATO SCHOOL (SHAPE)
APO NEW YORK 09172
01CY ATTN U.S. DOCUMENTS OFFICER
IONOSPHERIC MODELING DISTRIBUTION LIST
(UNCLASSIFIED ONLY)

PLEASE DISTRIBUTE ONE COPY TO EACH OF THE FOLLOWING PEOPLE:

NAVAL RESEARCH LABORATORY
WASHINGTON, D.C. 20375
DR. P. MANGE - CODE 4101
DR. R. MEIER - CODE 4141
DR. E. SZUSZCZEWICZ - CODE 4187
DR. J. GOODMAN - CODE 4180
DR. R. RODRIGUEZ - CODE 4187

A.F. GEOPHYSICS LABORATORY
L.G. RANSOM FIELD
BEDFORD, MA 01730
DR. T. ELKINS
DR. W. SWIDER
MRS. R. SAGALYN
DR. J.M. FORBES
DR. T.J. KENESHEA
DR. J. AARONS
DR. R. CARLSON
DR. J. JASPERSE

CORNELL UNIVERSITY
ITHACA, NY 14850
DR. W.E. SWARTZ
DR. R. SUDAN
DR. D. FARLEY
DR. M. KELLEY

HARVARD UNIVERSITY
HARVARD SQUARE
CAMBRIDGE, MA 02138
DR. M.R. McELROY
DR. R. LINDZEN

INSTITUTE FOR DEFENSE ANALYSIS
400 ARMY/NAVY DRIVE
ARLINGTON, VA 22202
DR. E. BAUER

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PLASMA FUSION CENTER
LIBRARY, NW16-262
CAMBRIDGE, MA 02139

NASA
GODDARD SPACE FLIGHT CENTER
GREENBELT, MD 20771
DR. S. CHANDRA
DR. K. MAEDA
DR. R.F. BENSON

NATIONAL TECHNICAL INFORMATION CENTER
CAMERON STATION
ALEXANDRIA, VA 22314
12CY ATTN TC

COMMANDER
NAVAL AIR SYSTEMS COMMAND
DEPARTMENT OF THE NAVY
WASHINGTON, D.C. 20360
DR. T. CZUBA

COMMANDER
NAVAL OCEAN SYSTEMS CENTER
SAN DIEGO, CA 92132
MR. R. ROSE - CODE 5321

NOAA
DIRECTOR OF SPACE AND ENVIRONMENTAL LABORATORY
BOULDER, CO 80302
DR. A. GLENN JEAN
DR. C.W. ADAMS
DR. D.N. ANDERSON
DR. K. DAVIES
DR. R.F. DONNELLY

OFFICE OF NAVAL RESEARCH
800 NORTH QUINCY STREET
ARLINGTON, VA 22217
DR. R. MULLANBY

PENNSYLVANIA STATE UNIVERSITY
UNIVERSITY PARK, PA 16802
DR. J.S. NISBET
DR. P.R. RORBAUGH
DR. L.A. CARPENTER
DR. M. LEE
DR. R. DIVANY
DR. P. BENNETT
DR. F. KLEVANS

PRINCETON UNIVERSITY
PLASMA PHYSICS LABORATORY
PRINCETON, NJ 08540
DR. F. PERKINS
SCIENCE APPLICATIONS, INC.
1150 PROSPECT PLAZA
LA JOLLA, CA 92037
DR. D.A. HAMLIN
DR. L. LINSON
DR. E. FRIEMAN

UTAH STATE UNIVERSITY
4TH AND 5TH STREETS
LOGAN, UTAH 84322
DR. R. HARRIS
DR. K. BAKER
DR. R. SCHUNK

STANFORD UNIVERSITY
STANFORD, CA 94305
DR. P.M. BANKS

U.S. ARMY ABERDEEN RESEARCH
AND DEVELOPMENT CENTER
BALLISTIC RESEARCH LABORATORY
ABERDEEN, MD
DR. J. HEIMERL

UNIVERSITY OF CALIFORNIA,
BERKELEY
BERKELEY, CA 94720
DR. M. HUDSON

UNIVERSITY OF CALIFORNIA
LOS ALAMOS SCIENTIFIC LABORATORY
J-10, MS-664
LOS ALAMOS, NM 87545
M. PONGRATZ
D. SIMONS
G. BARASCH
L. DUNCAN
P. BERNHARDT

UNIVERSITY OF CALIFORNIA,
LOS ANGELES
405 HILLGARD AVENUE
LOS ANGELES, CA 90024
DR. F.V. CORONITI
DR. C. KENNEL
DR. A.Y. WONG

UNIVERSITY OF MARYLAND
COLLEGE PARK, MD 20740
DR. K. PAPADOPOULOS
DR. E. OTT

UNIVERSITY OF PITTSBURGH
PITTSBURGH, PA 15213
DR. N. ZABUSKY
DR. M. BIONDI
DR. E. OVERMAN