DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
National Program of Inspection of Non-Federal Dams Phase I Investigation Report

Tennessee, Marys Creek Dam No. 9 (inventory Number TN 15739) near Cross Roads, TN., Shelby County, TN., Wolf River Basin

Tennessee Department of Conservation Division of Water Resources
4721 Trousdale Dr., Nashville, TN 37220

U.S. Army Engineer District, Nashville
P.O. Box 1070
Nashville, TN 37202

Approved for public release; distribution unlimited

Dams
Dam Safety
National Dam Safety Program
Marys Creek Dam No. 9, TN
Cross Roads, TN

Shelby County, TN
Embarkments
Visual Inspection
Structural Analysis

The dam is a linear earthen structure 678 feet long and 23.7 feet high with a crest width of 10 feet. The upstream and downstream slopes are 1V:3.1H and 1V:3.0H respectively. The structure impounds a 10.5 acre lake at normal pool with 42 acre-feet of storage. At the top of the dam the pool area increases to 16 acres with an impoundage of 148 acre-feet. The drainage area is predominantly farmland, pasture, and woods. It has an average ground slope of approximately 5.7%. The embankment is well grassed and virtually free of undesirable vegetation. It has a relatively uniform cross-section with well
defined boundaries. Only minor erosion was observed on the embankment, along the upstream slope at the water surface and along the cattle trail traversing the dam. No rilling or significant loss of cover accompanies the condition. The embankment exhibits no signs of seepage or instability; no surface cracks, heaving, or localized slope failures. The principal spillway consists of a reinforced concrete riser and a 30 inch reinforced concrete pressure pipe. The riser appears in excellent condition with no noticeable weathering or spalling. The pipe outlet would indicate a similar condition for the conduit. The emergency spillway is an uncontrolled saddle type with a trapezoidal cross-section, located at the right end of the dam. It is well grassed with a uniform cross-section. No significant erosion was observed in the channel. OCE guidelines recommend that small, high hazard dams safely pass the one-half Probable Maximum Flood (1/2 PMF) to full PMF. Hydraulic and hydrologic analyses reveal that the PMF overtops the dam by a maximum of 2.0 feet for 3.5 hours. The 1/2 PMF overtops the dam by a maximum of 0.2 feet for 1.7 hours. The dam is given a condition classification of "deficient" due to marginal spillway inadequacy and minor erosion. It is recommended that cattle grazing on the dam be controlled to prevent excessive erosion and that a system be devised to warn downstream residents in the event a major problem develops with the structure.
Honorable Lamar Alexander
Governor of Tennessee
Nashville, TN 37219

Dear Governor Alexander:

Furnished herewith is the Phase I Investigation Report on Marys Creek Watershed Dam No. 9 near Crossroads, Tennessee. The report was prepared under the authority and provisions of PL 92-367, the National Dam Inspection Act, dated 8 August 1972.

The report presents details of the field inspection, background information, technical analyses, findings, and recommendations for improving the condition of the dam.

Based upon the inspection and subsequent evaluation, Marys Creek Watershed Dam No. 9 is classified as deficient due to insufficient storage and spillway capacity to pass the one-half probable maximum flood.

We do not consider this an emergency situation at this time, but the recommendation concerning project modifications to allow safe passage of the design flood and others contained in this report should be undertaken in the near future.

Public release of the report and initiation of public statements fall within your prerogative. However, under provisions of the Freedom of Information Act, the Corps of Engineers is required to respond fully to inquiries on information contained in the report and to make it accessible for review on request.

Your assistance in keeping me informed of any further developments will be appreciated.

Sincerely,

LEE W. TUCKER
As stated

CF:
Mr. Robert A. Hunt, Director
Division of Water Resources
4721 Trousdale Drive
Nashville, TN 37220
PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM
TENNESSEE

Name of Dam Mary's Creek Watershed Dam No. 9
County .. Shelby
Stream Unnamed Tributary of Mary's Creek
Date of Inspection March 11, 1981

This investigation and evaluation was prepared by the
Tennessee Department of Conservation, Division of Water
Resources.

PREPARED BY:

William Culbert, Jr.
Water Resources Engineer

APPROVED BY:

Edmond O'Neill
Chief Engineer
Safe Dams Section

Robert A. Hunt, P.E.
Director
Division of Water Resources
Tennessee Department of Conservation
This report is prepared under guidance contained in the Department of the Army, Office of the Chief of Engineers, Recommended Guidelines for Safety Inspection of Dams, for a Phase I investigation. The purpose of the Phase I investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In the review of this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. Additional data or data furnished containing incorrect information could alter the findings of this report. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structures and may obscure certain conditions which might be detectable if inspected under the normal operating environment of the structure.

The analyses and recommendations included in this report are related to the hazard classification of the structure at the time of the report. Changes in conditions downstream of the dam may change the hazard classification of the structure. A change in hazard classification may in turn change the design flood on which the hydraulic and hydrologic analyses are based and may have a significant impact on the assessment of the safety of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions and is evolutionary in nature. It would be incorrect to assume that the present conditions of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspections can there be any chance that unsafe conditions will be detected.
TABLE OF CONTENTS

Aerial Photograph

Abstract

SECTION 1 - GENERAL

1.1 Authority 1
1.2 Purpose and Scope 1
1.3 Past Inspections 1
1.4 Details of Inspection 1
1.5 Inspection Team Members 1

SECTION 2 - PROJECT DESCRIPTION

2.1 Location 2
2.2 History of Project 2
2.3 Size and Hazard Classification 2
2.4 Description of Dam and Appurtenances 2
2.5 Downstream Channel 4
2.6 Reservoir and Drainage Area 4

SECTION 3 - FINDINGS

3.1 Visual Inspection 5
3.2 Review of Data 5
3.3 Static and Seismic Stability Assessment 6
3.4 Hydraulic and Hydrologic Analysis 6
3.5 Conclusions and Recommendations 6

SECTION 4 - REVIEW BOARD FINDINGS 8
LIST OF APPENDICES

APPENDIX

A DATA SUMMARY
B SKETCHES AND LOCATION MAPS
C PHOTOGRAPHIC RECORD
D TECHNICAL CRITIQUE - CHECKLISTS FOR VISUAL INSPECTION, ENGINEERING DATA, SOIL TESTS
E DESIGN DRAWINGS
F HYDRAULIC AND HYDROLOGIC DATA
G CORRESPONDENCE
Mary's Creek Watershed Dam No. 9
Shelby County
March 27, 1981
PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM
TENNESSEE

Name of Dam Mary's Creek Watershed Dam No. 9
County Shelby
Stream Unnamed Tributary of Mary's Creek
Date of Inspection March 11, 1981

ABSTRACT

The dam is a linear earthen structure 678 feet long and 23.7 feet high with a crest width of 10 feet. The upstream and downstream slopes are 1V:3.1H and 1V:3.0H respectively. The structure impounds a 10.5 acre lake at normal pool with 42 acre-feet of storage. At the top of the dam the pool area increases to 18 acres with an impoundage of 148 acre-feet. The drainage area is predominantly farmland, pasture, and woods. It has an average ground slope of approximately 5.7%.

The embankment is well grassed and virtually free of undesirable vegetation. It has a relatively uniform cross-section with well defined boundaries. Only minor erosion was observed on the embankment, along the upstream slope at the water surface and along the cattle trail traversing the dam. No rilling or significant loss of cover accompanies the condition.

The embankment exhibits no signs of seepage or instability; no surface cracks, heaving, or localized slope failures.

The principal spillway consists of a reinforced concrete riser and a 30 inch reinforced concrete pressure pipe. The riser appears in excellent condition with no noticeable weathering or spalling. The pipe outlet would indicate a similar condition for the conduit.

The emergency spillway is an uncontrolled saddle type with a trapezoidal cross-section, located at the right end of the dam. It is well grassed with a uniform cross-section. No significant erosion was observed in the channel.
OCE guidelines recommend that small, high hazard dams safely pass the one-half Probable Maximum Flood (1/2PMF) to full PMF. Hydraulic and hydrologic analyses reveal that the PMF overtops the dam by a maximum of 2.0 feet for 3.5 hours. The 1/2PMF overtops the dam by a maximum of 0.2 feet for 1.7 hours.

The dam is given a condition classification of "deficient" due to marginal spillway inadequacy and minor erosion. It is recommended that cattle grazing on the dam be controlled to prevent excessive erosion and that a system be devised to warn downstream residents in the event a major problem develops with the structure.
PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

SECTION 1 - GENERAL

1.1 Authority - The Phase I inspection of this dam was carried out under the authority of Tennessee Code Annotated, Sections 70-2501 to 70-2530, The Safe Dams Act of 1973, and in cooperation with the U. S. Army Corps of Engineers under the authority of Public Law 92-367, The National Dam Inspection Act.

1.2 Purpose and Scope - The purpose of a Phase I investigation is to develop an engineering assessment of the general condition of a dam with respect to safety and stability. This is accomplished by conducting a visual inspection, reviewing any available design and construction data, and performing appropriate hydraulic, hydrologic, and other analyses. A comprehensive description of the Phase I investigation program is given in Recommended Guidelines for Safety Inspection of Dams, Department of the Army, Chief of Engineers, Washington, D. C. 20314.

1.3 Past Inspections - The dam was originally surveyed by State personnel as part of the 1973 inventory.

1.4 Details of Inspection - Mary's Creek Dam #9 was surveyed and photographed by State personnel as part of the Phase I inspection on March 11, 1981. The weather was sunny and breezy with a temperature of approximately 70°F.

1.5 Inspection Team Members - The field inspection was conducted by the following State personnel:

Edmond O'Neill, Chief Engineer
George Moore, Regional Engineer
William Culbert, Regional Engineer
SECTION 2 - PROJECT DESCRIPTION

2.1 Location - The dam is located in Shelby County, Tennessee, 4,600 feet southeast of the town of Fisherville at mile 1 of an unnamed tributary of Mary's Creek, 4.8 miles upstream of its confluence with Gray's Creek. It can be found on the USGS Eads Quadrangle map at latitude 35°08'54" and longitude 89°39'18" (location maps are provided in Appendix B of this report.)

2.2 History of Project - The dam was built as a flood retarding structure in 1962 under authority of the pilot watershed program (an act predating the Watershed Protection and Flood Prevention Act - PL 566). Land encompassing the dam site was purchased by Dr. R. E. Patterson in 1968 from the L. E. Bryan properties. The remaining property bordering the lake is held by Cedar Hill Farms. The dam was designed by the SCS and construction was probably performed by McComic of Covington, Tennessee (no longer in existence) or by Mr. Tolly Murff (principal shareholder in Cedar Hill Farms). Dr. Patterson has had no contact with representatives of the Shelby County Soil Conservation District concerning operation and maintenance of the dam, but he reports that he does mow the embankment regularly. He uses the lake for stock watering.

2.3 Size and Hazard Classification - Based on a structural height of 23.7 feet and a maximum storage capacity of 148 acre-feet, the dam is given a size classification of "small". A federal hazard potential classification of "high" was chosen for the dam because a sudden failure of the structure could result in the loss of life of an estimated 10 persons occupying 2 homes and working at a large horse stable and track 4,000 feet downstream.

2.4 Description of Dam and Appurtenances

2.4.1 Geology - The West Tennessee regional geologic map and geologic quadrangle maps indicate that the area is overlain predominantly with Memphis and Grenada soils derived from deep Loess brown loam. Collins and Falaya are the principal bottom soils. (Loess soils consist of clayey and sandy silt, gray to brown, with a maximum thickness of from 20 to 35 feet in the Wolf River tributaries area).
wind blown material, the Loess lays in about equal thickness through extensive changes in elevation, so deeper formations cannot be identified without borings.

2.4.2 Embankment - The dam is a linear earthen structure 678 feet long and 23.7 feet high with a 10 foot crest width. The upstream and downstream slopes are 1V:3.1H and 1V:3.0H respectively. The upstream slope is broken by a 5 to 10 foot wave berm at the water surface. The elevation of the dam crest varies between 363.7 and 365.

A cutoff trench with a 10 foot base width and 1V:1.5H side slopes is located along the centerline of the dam, excavated to a maximum depth of 338 feet msl. A 260' X 4' X 4' foundation drain is located approximately 44 feet upstream of the toe and extends to normal pool elevation at its ends. The intercepted water is drained from the embankment by two 8 inch diameter CMP's.

Analysis of a soil sample taken from the embankment at about 1 foot of depth indicates that the fill is an inorganic clay of low to medium plasticity, slightly sandy and silty; a typical CL material (see Appendix D).

2.4.3 Service Spillway and Drawdown Facilities - The service spillway consists of a rectangular reinforced concrete riser 12 feet tall from drawdown invert to high stage inlet with inside dimensions of 2.5' X 7.5'. The riser feeds a 30 inch reinforced concrete pressure pipe 138 feet long on a 5.4% slope. The culvert is surrounded by four anti-seep collars on 20 foot centers. The spillway discharges into an impact basin 28 feet long and 6 feet deep.

2.4.4 Emergency Spillway - The emergency spillway is an uncontrolled saddle type channel with a trapezoidal cross-section. It has a base width of 26 feet and side slopes of 1V:6.7H and 1V:2.8H at the control section. It has a crest elevation of 361.5 with the control section located along the dam centerline. The entrance and exit channels are sloped at 1.9% and 3.8% respectively.
2.5 Downstream Channel - The downstream channel is excavated with a trapezoidal cross-section on a 1% slope. It has a 30 foot top width, 4 foot base width, and 1V:1.3H side slopes.

2.6 Reservoir and Drainage Area - At normal pool elevation 356, the 10.5 acre lake impounds 42 acre-feet of water. The pool area increased to 18 acres at the top of the dam with an impoundage of 148 acre-feet. The drainage area for the lake is 212 acres. It is predominantly occupied in row crops, hay, pasture, and woods. The top soils are Memphis, Grenada, and Loring silt loams. The average ground slope is approximately 5.7%.
SECTION 3 - FINDINGS

3.1 Visual Inspection

3.1.1 Embankment - The dam is well grassed and virtually free of undesirable vegetation. It has a uniform cross-section and well defined boundaries. There were no indications of seepage or structural instabilities observed; no cracking, heaving, or slides. Erosion is minor with some loss of cover along the principal cattle trail traversing the dam.

3.1.2 Service Spillway - The spillway riser appears to be in excellent condition with no notable weathering or spalling. The pipe outlet would indicate that the culvert is also in good condition. It exhibits no indication of seepage around the outlet.

3.1.3 Emergency Spillway - The emergency spillway has a uniform cross-section and a full grass cover. It exhibits no signs of serious erosion or other problems.

3.1.4 Downstream Channel - The downstream channel has an adequate natural grass cover and it hosts a loose sprawl of trees along its banks for at least 500 feet downstream of the dam. Its cross-section then flattens as it emerges into clear, well grassed pastureland.

3.1.5 Other Features - At the upstream end of Mary's Creek Lake # 9 is a smaller reservoir impounded by the fill of Bryant Road. It empties into the main lake through a 66 inch corrugated metal pipe (see Appendix A for reservoir statistics and Appendix B for a sketch of the road embankment cross-section).

3.2 Review of Data - The data available for review includes a copy of the dam design drawings, a sheet of hydrology calculations, and a copy of the Wolf River Tributaries Watershed Work Plan. "As Built" drawings are available at the SCS field office in Memphis.
3.3 Static and Seismic Stability Assessment - Determination of the actual margin of safety for static or dynamic stability is beyond the scope of the Phase I investigation, but an assessment of the embankment stability based on visual evidence and engineering judgment would indicate a stable structure.

The dam is located in Seismic Zone 3, indicating that major structural damage could be expected in the event of seismic activity.

3.4 Hydraulic and Hydrologic Analysis - According to OCE guidelines, it is recommended that small, high hazard dams safely pass a design storm of the one-half Probable Maximum Flood (½ PMF) to the full PMF. Hydraulic and hydrologic analyses reveal that runoff from the PMF overtops the dam by a maximum of 2.0 feet for 3.5 hours. The ½ PMF overtops the dam by a maximum of 0.2 feet for 1.7 hours.

3.5 Conclusions and Recommendations

3.5.1 Conclusions - The dam is in Seismic Zone 3, indicating that there is a risk of major damage in the event of seismic activity.

There appears to be no seepage, erosion, or stability problems with the dam.

Hydraulic and hydrologic analyses of the dam and drainage area indicate that the structure will be marginally overtopped by the minimum design storm. This overtopping will probably not cause failure of the dam.

Mary's Creek # 9 is given a condition classification of "deficient" because of the minor erosion accompanying the cattle traffic and because the spillway cannot pass the ½ PMF without overtopping the dam.

3.5.2 Recommendations - The Shelby County Soil Conservation District should:

1) engage the services of a qualified engineer to assess the stability of the embankment under seismic loading conditions, and to make recommendations for allowing safe passage of the design storm.
2) develop an emergency action plan to warn downstream residents in the event a serious problem develops with the dam.

3) control cattle grazing to minimize damage to the embankment.
The Interagency Review Board for the National Program of Inspection of Non-Federal Dams met in Nashville on 27 August 1981 to examine the technical data contained in the Phase I investigation report on Mary's Creek Watershed Dam No. 9. The Review Board considered the information and recommended that (1) the conclusions should state that the marginal overtopping of the dam will not cause failure, (2) cattle grazing should be controlled to minimize the damage to the embankment, and (3) all references and recommendations should be made to the Shelby County Soil Conservation Service. They agreed with other report conclusions and recommendations. A copy of the letter report presented by the Review Board is included in Appendix C.
APPENDIX A
DATA SUMMARY

A.1 Dam
A.1.1 Type – Earthfill
A.1.2 Dimensions and Elevations
a. Crest length - 678 feet
b. Crest width - 10 feet
c. Height - 23.7 feet
d. Crest elevation (low point) - 363.7' msl
e. Upstream slope (above normal pool) - 1V:3.1H
f. Downstream slope - 1V:3.0H
g. Size classification - Small

A.1.3 Zones, Cutoffs, Grout Curtains – The "as built" drawings specify a cutoff trench with a 10 foot base width and 1V:1.5H side slopes to run along the centerline of the dam and reach a maximum depth at elevation 338' msl.

A.1.4 Instrumentation - None

A.2 Reservoir and Drainage Area
A.2.1 Reservoir
a. Normal Pool

1) Elevation - Main lake - 356' msl
 Small lake - 363.2' msl

2) Surface area - Main lake - 10.5 acres
 Small lake - 2.3 acres

3) Capacity - Main lake - 42 acre-feet
 Small lake - 8 acre-feet

4) Length of reservoir - Main lake - 1,250'
 Small lake - 450'
b. Maximum Pool (Top of Dam)

1) Elevation - Main lake - 363.7' msl
 Small lake - 369.6' msl

2) Surface area - Main lake - 18 acres
 Small lake - 7.2 acres

3) Capacity - Main lake - 148 acre-feet
 Small lake - 38 acre-feet

A.2.2 Drainage Area

a. Size - 212 acres (main lake - 83 acres,
 small lake - 129 acres)

b. Average ground slope - Approximately 5.7%

c. Soils - Memphis, Grenada, and Loring silt loams

d. Land use - Predominantly row crops, hay,
 pasture, and woods.

e. Runoff (AMC II)
 1) PMF - 26 inches
 2) ½ PMF - 13 inches
 3) 100 year - 2.9 inches

A.3 Outlet Structures

A.3.1 Service Spillway

a. Type - Reinforced concrete with steel ring joints

b. Size - 30 inch inside diameter

c. Pipe gradient - 5.4%

d. Drawdown - 24 inches formed opening controlled
 by 24 inch sliding headgate

e. Capacity - 99 cfs

A.3.2 Emergency Spillway

a. Type - Uncontrolled saddle, trapezoidal cross-
 section

b. Crest elevation - 361.5' msl
c. Size - Base - 26'; right side slope - 2.8H:1V; left side slope - 6.7H:1V; head - 2.2'
d. Maximum capacity - 265 cfs

A.4 Historical Data
A.4.1 Construction Date - 1962
A.4.2 Design - SCS
A.4.3 Builder - Believed to be McComic of Covington (no longer in existence) or Cedar Hill Farms (owner of adjacent property)
A.4.4 Owner - Dr. R. E. Patterson (owner of actual dam site); Cedar Hill Farms owns most of eastern lake front property
A.4.5 Previous Inspection - The dam was originally surveyed by State personnel as part of the 1973 inventory
A.4.6 Seismic Zone - 3
A.4.7 Operation and Maintenance - The Shelby County Soil Conservation District is responsible for operation and maintenance of the structure by open market purchase with limited funds provided by Shelby and Fayette County courts.

A.5 Downstream Hazard Data
A.5.1 Downstream Hazard Classification - High
A.5.2 Persons in Likely Flood Path - 10 (est.)
A.5.3 Downstream Property - 2 homes, 1 large horse stable and track approximately 4,000 feet downstream, and several county roads.
A.5.4 Warning Systems - None
APPENDIX B

SKETCHES AND LOCATION MAPS
MAXIMUM SECTION AT STA. 3+35R

SCALE: 1" = 20'

NOTE: ALL ELEVATIONS ARE REFERENCED
TO APPROX. NORMAL POOL. EL. 356 MSL
ON U.S. G.S. QUADRANGLE

MARYS CREEK*9
DRAWN BY: W.C.
DATE: 6-11-81
SHEET: 20 OF 5
SPILLWAY PROFILE SECTIONAL VIEW
SCALE: 1" = 10'

1' x 1' IRREGULAR HOLE AT BOTTOM

0.5'

5.5'

6.5'

SECT A-A
CONC. INLET STRUCTURE
SCALE: 1" = 5'

ROAD EMBANKMENT
UPSTREAM
MARYS CREEK DAM 49

DRAWN BY: ADP
DATE: 23 JUNE 81
APPENDIX C

PHOTOGRAPHIC RECORD
Photographic Record

Photo No. 1 - Lake and dam from upstream left.
Photo No. 2 - Upstream slope of dam left of center.
Photo No. 3 - Upstream slope from right end of dam.
Photo No. 4 - Downstream slope of dam from emergency spillway exit channel.
Photo No. 5 - Minor erosion along upstream slope of dam right of center.
Photo No. 6 - Riser from dam crest.
Photo No. 7 - Emergency spillway entrance channel from dam centerline.
Photo No. 8 - Principal spillway outlet.
Photo No. 9 - Downstream channel and plunge pool.
Photo No. 10 - Dam crest showing location of soil sample hole and emergency spillway in background.
Photo No. 11 - Aerial view of lake and dam showing small upstream lake.
Photo No. 12 - Aerial view of dam showing cattle on embankment.
APPENDIX D

TECHNICAL CRITIQUE
CHECKLISTS FOR VISUAL INSPECTION
ENGINEERING DATA
SOIL TESTS
Check List
Visual Inspection of Earth Dams
Department of Conservation
Division of Water Resources

Name of Dam: Mary's Creek Watershed Dam No. 9
County: Shelby
Date of Inspection: March 11, 1981
ID #: State 79-7039 Federal TN 15739
Type of Dam: Earth
Hazard Category: Federal 1 State High
Weather: Sunny, breezy
Temperature: 70°F
Pool at Time of Inspection: App. NPL (distance from crest)
Tailwater at Time of Inspection: 0 (distance from stream bed)
Design/As Built Drawings Available: Yes X No __
Location: SCS Engineering Office - Nashville
Copy Obtained: Yes X No __
Reviewed: Yes X No __
Construction History Available: Yes ___ No X
Location: _________________
Copy Obtained: Yes ___ No __
Reviewed: Yes ___ No __
Other Records and Reports Available: Yes X No __
Location: Wolf River Tributaries Watershed Work Plan
Copy Obtained: Yes X No __
Reviewed: Yes X No __
Prior Incidents or Failures: Yes ___ No X
Inspection Personnel and Affiliation:
Ed O'Neill - TDWR
George Moore - TDWR
Bill Culbert - TDWR

CN-0385
I. Embankment

A. Crest

Description (1st inspection) Straight, well grassed, reasonably flat.

1. Longitudinal Alignment Straight

2. Longitudinal Surface Cracks None seen

3. Transverse Surface Cracks None seen

4. General Condition of Surface Good, minor erosion near fence at center.

5. Miscellaneous

B. Upstream Slope

1. Undesirable Growth or Debris None seen
2. Sloughing, Subsidence, or Depressions
Minor erosion
at watersurface and along cow paths. Possibly vehicular
traffic on upstream slope.

3. Slope Protection
Grass only.

 a. Condition of Riprap None

 b. Durability of Individual Stones N/A

 c. Adequacy of Slope Protection Against Waves
 and Runoff Adequate

 d. Gradation of Slope Protection - Localized Areas
 of Fine Material N/A

4. Surface Cracks None seen

C. Downstream Slope

1. Undesirable Growth or Debris NONE
2. Sloughing, Subsidence, or Depressions; Abnormal Bulges or Non-Uniformity

Minor erosion - cattle paths.

3. Surface Cracks on Face of Slope

None seen

4. Surface Cracks or Evidence of Heaving at Embankment Toe

None seen

5. Wet or Saturated Areas or Other Evidence of Seepage on Face of Slope; Evidence of "Piping" or "Boils"

None seen

6. Drainage System

Okay. No flow.

7. Fill Contact with Outlet Structure

Good

8. Condition of Grass Slope Protection

Good.
D. **Abutments**

1. **Erosion of Contact of Embankment with Abutment from Surface Water Runoff, Upstream or Downstream**
 - Insignificant.

2. **Springs or Indications of Seepage Along Contact of Embankment with the Abutments**
 - None seen.

3. **Springs or Indications of Seepage in Areas a Short Distance Downstream of Embankment - Abutment Tie-in**
 - None seen.
II. Area Downstream of Embankment, Including Channel

A. Localized Subsidence, Depressions, Sinkholes, Etc. None seen.

B. Evidence of "Piping", "Boils", or "Seepage" None seen.

C. Unusual Presence of Lush Growth, such as Swamp Grass, etc. None.

D. Unusual Muddy Water in Downstream Channel No.

E. Sloughing or Erosion Insignificant.

F. Surface Cracks or Evidence of Heaving Beyond Embankment Toe None seen.

G. Stability of Channel Sideslopes Okay.

H. Condition of Channel Slope Protection Okay. Natural cover only.
I. Adequacy of Slope Protection Against Waves, Currents, and Surface Runoff Good.

J. Miscellaneous None seen.

K. Condition of Relief Wells, Drains, and Other Appurtenances N/A

L. Unusual Increase or Decrease in Discharge from Relief Wells
III. Instrumentation

None seen.

A. Monumentation/Surveys

B. Observation Wells

C. Weirs

D. Piezometers

E. Other
IV. Spillways

A. Service Spillway (Service/Emergency Combination Yes _ No X_)

1. Intake Structure Condition ___________ Good as observed from ___________

2. Outlet Structure Condition ___________ Good, some loss of fill material beneath pipe, but nothing significant.

3. Pipe Condition ___________ Good at outlet.

4. Evidence of Leakage or Piping ___________ None seen.

5. General Remarks ___________

B. Emergency Spillway

2. Entrance Channel ___________ Same. Crossed by fence. Some minor debris.

3. Control Section ___________ Good.
3. Exit Channel Good.

4. Vegetative/Woody Cover Good. Grass only.

5. Other Observations Has apparently never carried flow other than its own surface runoff.
V. Emergency Drawdown Facilities (if part of service spillway so state) __Valve on service spillway riser. Hand wheel in place.__

Are Facilities Operable: Yes ___ No ___
Were Facilities Operated During Inspection: Yes ___ No X
Date Facilities Were Last Used ___Unknown___
VI. Reservoir

A. Slopes Good. Gradual.

B. Sedimentation Low to moderate.

C. Turbidity Greenish brown. Approximately 1 foot visibility.

VII. Drainage Area

Description (for hydrologic analysis) Farmland, pasture, and woods.

A. Changes in Land Use Some increase in residential.
VIII. Downstream Area (Stream)

A. Condition (obstructions, debris, etc.) Good. Spattering of trees along channel banks for several hundred feet downstream, then open pasture.

B. Slopes Approximately 1% channel. Good condition. Well grassed.

C. Approximate No. Homes, Population, and Distance D/S
 2 homes approximately 4,000 feet downstream.

D. Other Hazards 1 large horse stable and track 4,000 feet downstream.
IX. Miscellaneous

Incidents/Failures: None

Observed Geology of Area: See geology section 2.4.1 of report.

X. Conclusions

The dam is in good condition with no indication of seepage or instability.

Hydraulic and hydrologic analysis impending.

XI. Recommendations

1) Prevent cattle from walking on embankment.

2) Develop an emergency action plan to warn downstream residents in the event a serious problem develops with the dam.

[Signatures]

Regional Engineer

Chief Engineer
<table>
<thead>
<tr>
<th>SAMPLE NO.</th>
<th>DEPTH OF SAMPLE</th>
<th>LABORATORY CLASSIFICATION</th>
<th>NAT-WATER CONT.</th>
<th>ATTERBERG LIMITS</th>
<th>MECHANICAL ANAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0-1.5'</td>
<td>MOTTLED RED, YELLOW AND BROWN SLIGHTLY SILTY, SLIGHTLY SANDY CLAY, SLIGHTLY DAMP, MEDIUM TO STIFF, TRACE MICA, OCCASIONAL COARSE GRAVEL, FEW SMALL ROULETS (CL)</td>
<td>14.0</td>
<td>35.0</td>
<td>13.7</td>
</tr>
</tbody>
</table>
APPENDIX E

DESIGN DRAWINGS
APPENDIX F

HYDRAULIC AND HYDROLOGIC DATA
HYDRAULIC AND HYDROLOGIC ANALYSIS

According to OCE guidelines, Mary's Creek Dam No. 9 must be able to safely pass a minimum of the one-half Probak Maximum Flood (1/2 PMF). Six hour rainfall depths for the Probable Maximum Precipitation and the 100 year rainfall were obtained from the U. S. Weather Service's Technical Paper 40. Flood routings were performed using the HEC-1-CB computer program. The program uses the dimensionless hydrograph technique described in Section 4 of the Soil Conservation Service National Engineering Handbook and the modified Puls method of reservoir routing.

The peak outflow from the PMF (AMC II) is 2614 cfs. This flood overtops the dam by a maximum of 2.0 feet for 3.5 hours.
HYDRAULIC AND HYDROLOGIC ANALYSIS

CONTENTS: Following are stage vs. storage curves for both reservoirs, plus rating curves and calculations for the spillway structures of the dam and road fill upstream of the dam.

PROCEDURE: The assessment of spillway adequacy for Mary's Creek Dam # 9 was accomplished on the basis of two separate routings for each antecedent moisture condition. An inflow hydrograph from the area upstream of Bryant Road was routed through the 66 inch culvert under the road. A separate inflow hydrograph was generated for the remainder of the drainage area downstream of Bryant Road. This later hydrograph was combined with the outflow hydrograph generated from the first routing (through the upstream dam) and the composite hydrograph was routed through Mary's Creek Dam # 9.
SUMMARY OF ROUTINGS

<table>
<thead>
<tr>
<th>EVENT</th>
<th>ANTECEDENT MOISTURE CONDITION</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMF</td>
<td>Dam overtops 2.0 feet for 3.5 hours</td>
<td>Dam overtops 2.2 feet for 3.7 hours</td>
<td></td>
</tr>
<tr>
<td>1/2 PMF</td>
<td>Dam overtops 0.2 feet for 1.7 hours</td>
<td>Dam overtops 0.6 feet for 2.2 hours</td>
<td></td>
</tr>
<tr>
<td>100-YEAR</td>
<td>Dam maintains 4.6 feet of freeboard</td>
<td>Dam maintains 3.2 feet of freeboard</td>
<td></td>
</tr>
</tbody>
</table>
MARYS CREEK #9
PRINCIPAL SPILLWAY RATING
LAKE EL. ('MSL') vs. Q (cfs)

CHANGE FROM WEIR TO ORIFICE FLOW

○ - LOW STAGE ORIFICE
★ - HIGH STAGE WEIR
□ - HIGH STAGE ORIFICE
★ - PIPE FLOW
RATING CURVE FOR CULVERT
U/S OF MARYS CK #9
LAKE EL. ("MSL") VS. Q (CF3)

- WEIR FLOW
- ORIFICE FLOW
- INLET CONTROLLED PIPE FLOW

LAKE EL.
("MSL")
COMPOSITE RATING CURVE FOR CULVERT U/S OF MARYS CK. #9.
LAKE EL. (MSL) VS. Q (CFS)

<table>
<thead>
<tr>
<th>LAKE EL. (MSL)</th>
<th>FLOW (CFS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>363.2</td>
<td>0</td>
</tr>
<tr>
<td>364.2</td>
<td>5</td>
</tr>
<tr>
<td>365.9</td>
<td>8</td>
</tr>
<tr>
<td>366.9</td>
<td>66</td>
</tr>
<tr>
<td>367.4</td>
<td>110</td>
</tr>
<tr>
<td>368.2</td>
<td>140</td>
</tr>
<tr>
<td>370.2</td>
<td>200</td>
</tr>
<tr>
<td>373.2</td>
<td>300</td>
</tr>
</tbody>
</table>

Q (CFS)
CURVE NUMBER + LAG TIME DETERMINATION:

CN: THE CURVE # DETERMINED BY THE SOS WAS COMPARE D TO THE
FROM 72 TO 75 CONSIDERING A SLIGHT INCREASE IN DEEPFLOW
OF THE DRAINAGE AREA. SINCE THE BEG. OF THE DAM - CONSIDER
ING THE RISE AREA AS HAVING 130 M RUNOFF, THE LAG WAS
NOT CONSIDERED AS A RESULT OF THE DRAINAGE AREA IN
THE ORIGINAL CALCULATION.

LAG TIME: THE SON CURVE # METHOD WAS USED IN LIEU OF THE
ORIGINAL AREA, Volume METHOD, ETC., AS IT WAS LESS
MORE ACCURATE (ALTHOUGH TYPICALLY HAVING A LARGER VALUE).
IT WAS NECESSARY TO PERFORM THE LAG TIME
BECAUSE THE IMPERVIOUS AREA IS CONSIDERED TO BE 100% IN
THE ANALYSIS AS OPPOSED TO THE DRAM AREA OF
THE ORIGINAL DESIGN.

\[\text{AUC II} = \frac{0.6}{1.00 \times 0.7} = \frac{1000 - 10}{3.7} \]

\[= \frac{1000}{1900 \times 5.7^{0.5}} \]

\[= 0.45 \text{ hrs. FOR BEAC HILL AREA} \]

\[\text{AUC I} = \frac{0.8}{1.00 \times 0.6} = \frac{1000 - 10}{3.7} \]

\[= \frac{1000}{1900 \times 5.7^{0.5}} \]

\[= 0.45 \text{ hrs. FOR ALL OTHER AREAS} \]
WATERSHED STORM DATA

Drainage Area = 212 Acres = 0.332 Sq. Miles
L = Maximum Length of Watercourse = 1,280 Feet
V = Average Velocity = 4.88 Feet Per Second
Tc = Time Of Concentration = \(\frac{L}{3600V} \) Hours
Tc = \(\frac{1,280}{3600 \times 4.88} \) = 0.30 Hours

Determination of Runoff Curve Number for Soil Moisture Condition II

<table>
<thead>
<tr>
<th>Land Use or Cover</th>
<th>Treatment or Practice</th>
<th>Hydrologic Condition</th>
<th>Soil Name</th>
<th>Soil Group</th>
<th>Acres</th>
<th>Curve No.</th>
<th>Curve No. x Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row Crops</td>
<td>St. Rows</td>
<td>G</td>
<td>B</td>
<td>20</td>
<td>78</td>
<td>1,560</td>
<td></td>
</tr>
<tr>
<td></td>
<td>St. Rows</td>
<td>P</td>
<td>B</td>
<td>20</td>
<td>81</td>
<td>1,620</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contours</td>
<td>G</td>
<td>P</td>
<td>12</td>
<td>75</td>
<td>900</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contours</td>
<td>P</td>
<td>B</td>
<td>12</td>
<td>70</td>
<td>840</td>
<td></td>
</tr>
<tr>
<td>Hay</td>
<td></td>
<td>G</td>
<td>B</td>
<td>14</td>
<td>72</td>
<td>1,008</td>
<td></td>
</tr>
<tr>
<td>Hay</td>
<td></td>
<td>P</td>
<td>B</td>
<td>19</td>
<td>77</td>
<td>1,463</td>
<td></td>
</tr>
<tr>
<td>Woods</td>
<td></td>
<td>F</td>
<td>B</td>
<td>23</td>
<td>60</td>
<td>1,380</td>
<td></td>
</tr>
<tr>
<td>Woods</td>
<td></td>
<td>P</td>
<td>B</td>
<td>20</td>
<td>64</td>
<td>1,320</td>
<td></td>
</tr>
<tr>
<td>Farmsteads</td>
<td></td>
<td>B</td>
<td>5</td>
<td>74</td>
<td>370</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roads</td>
<td></td>
<td>E</td>
<td>5</td>
<td>33</td>
<td>415</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pastures</td>
<td></td>
<td>G</td>
<td>B</td>
<td>32</td>
<td>60</td>
<td>1,920</td>
<td></td>
</tr>
<tr>
<td>Pastures</td>
<td></td>
<td>P</td>
<td>B</td>
<td>30</td>
<td>70</td>
<td>2,370</td>
<td></td>
</tr>
</tbody>
</table>

Total No. 212 \(\Sigma \) 15,274

Weighted Curve No. = \(\frac{\Sigma \text{Curve No.} \times \text{Acres}}{\text{Total No. Acres}} \)

Weighted Curve No. = \(\frac{15,274}{212} \) = 72.047; Use 72

Corresponding Soil Moisture Condition III Curve No. 89
MARYS CREEK #9
SPILLWAY RATING CALCULATIONS:
PRINCIPAL SPILLWAY -

1. LOW STAGE ORIFICE:
 APPROX. ORIFICE DIMENSIONS: L = 2.3',
 H = 6''
 A = 1.50''

 DISCHARGE COEFFICIENT C = 0.61
 Q = C V_t A
 = 0.7 V_t

<table>
<thead>
<tr>
<th>H</th>
<th>LAKE FL</th>
<th>V_t (fps)</th>
<th>Q (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>357.5</td>
<td>8.0</td>
<td>5.6</td>
</tr>
<tr>
<td>2</td>
<td>359.5</td>
<td>13.9</td>
<td>9.7</td>
</tr>
<tr>
<td>3</td>
<td>361.3</td>
<td>17.9</td>
<td>12.6</td>
</tr>
<tr>
<td>4</td>
<td>362.7</td>
<td>22.3</td>
<td>15.6</td>
</tr>
<tr>
<td>5</td>
<td>365.5</td>
<td>24.1</td>
<td>16.9</td>
</tr>
</tbody>
</table>

2. HIGH STAGE WEIR:
 WEIR DIMENSIONS: 2 x 7.5'
 Q = C L H^{1/2}
 C = 3.1 (since it approaches short crested weir, use C = 3.0 to 3.1)
 Q = 46.5 H^{1/2}

<table>
<thead>
<tr>
<th>H</th>
<th>LAKE FL</th>
<th>Q (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>359.5</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>360.5</td>
<td>46</td>
</tr>
</tbody>
</table>

3. HIGH STAGE ORIFICE:
 ORIFICE DIMENSIONS: L = 2 x 7.5'
 H = 1'
 C = 0.63

 Q = C A V_t
 = 9.45 V_t

<table>
<thead>
<tr>
<th>H</th>
<th>LAKE ELEV</th>
<th>V_t (fps)</th>
<th>Q (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>362.0</td>
<td>11.3</td>
<td>107</td>
</tr>
<tr>
<td>4</td>
<td>364.0</td>
<td>16.0</td>
<td>152</td>
</tr>
<tr>
<td>6</td>
<td>366.0</td>
<td>19.6</td>
<td>186</td>
</tr>
<tr>
<td>7</td>
<td>367.0</td>
<td>21.2</td>
<td>200</td>
</tr>
</tbody>
</table>
MARYS CREEK #9
SPILLWAY RATING (CONTINUED)

4) PIPE FLOW:

USING BERNOULLI EQU.

\[Q = A \sqrt{\frac{2gH}{1 + K_e + K_t + K_p}} \]

\[K_p = \frac{5}{100} \frac{H}{D^{4/5}} = \frac{5/100 (0.012)}{30^{4/5}} = 7.87(10)^{-3} \]

\[= 4.91 \sqrt{\frac{2gH}{1 + 0.5 + 0.79(10)^{-3}}} \]

\[= 24.5 \sqrt{H} \]

<table>
<thead>
<tr>
<th>(H')</th>
<th>WATER SURFACE EL.</th>
<th>Q (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>347.5</td>
<td>0</td>
</tr>
<tr>
<td>8.5</td>
<td>356</td>
<td>71</td>
</tr>
<tr>
<td>16.2</td>
<td>363.7</td>
<td>99</td>
</tr>
<tr>
<td>18.5</td>
<td>366</td>
<td>105</td>
</tr>
</tbody>
</table>

RATING CALCULATIONS FOR CULVERT U/S OF MARYS CR #9:

ORIFICE FLOW FOR THE IRREGULAR OPENING IN THE DROP INLET BOX.

\[Q = 0.61 \sqrt{2gH} \]

\[= 4.89 \sqrt{H} \quad A = 1.5 \]

<table>
<thead>
<tr>
<th>(H')</th>
<th>LAKE EL</th>
<th>Q (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>363.2</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>364.2</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>365.2</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>368.2</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>369.2</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>370.2</td>
<td>13</td>
</tr>
</tbody>
</table>

WEIR FLOW OVER INLET STRUCTURE:

\[Q = CL H^{3/4} \quad \text{USE MAX. BROOK CRESTED WEIR} \quad Q \text{ of } 3.1 \]

\[Q = 5.1 (18.5) H^{3/4} \]

\[Q = 57.25 H^{3/4} \]

<table>
<thead>
<tr>
<th>(H')</th>
<th>LAKE EL</th>
<th>Q (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>365.9</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>366.9</td>
<td>57</td>
</tr>
<tr>
<td>2</td>
<td>367.9</td>
<td>162</td>
</tr>
<tr>
<td>3</td>
<td>369.9</td>
<td>459</td>
</tr>
<tr>
<td>4</td>
<td>370.9</td>
<td>641</td>
</tr>
<tr>
<td>V1</td>
<td>1</td>
<td>356</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>-----</td>
</tr>
<tr>
<td>V4</td>
<td>0</td>
<td>345</td>
</tr>
<tr>
<td>V5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V11</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V13</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V14</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V16</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V17</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V18</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V19</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V21</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V22</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V23</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V24</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V25</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V26</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V27</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V28</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V29</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V30</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V31</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V32</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V33</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V34</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V35</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V36</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V37</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V38</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V39</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V40</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: The table above contains data related to Marvs Creek Watershed, including inflow hydrograph computations and routing through small U/S lake.
PREVIEW OF SEQUENCE OF STREAM NETWORK CALCULATIONS
RACOFT HYDROGRAPH AT 1
ROLVE HYDROGRAPH TO 2
RUNOFF HYDROGRAPH AT 3
COPINE 2 HYDROGRAPHS AT 4
ROLVE HYDROGRAPH TO 5
END OF NETWORK

FLOOD HYDROGRAPH PACKAGE (MEC-1)
DAM SAFETY VERSION JULY 1978
LAST MODIFICATION 01 APR 88

RUN DATE: 01/07/15.
TIME: 09.20.54.

MARK'S CREEK LAKESHED DAM 93
SHELBY COUNTY
AMC II

JOE SPECIFICATION

<table>
<thead>
<tr>
<th>NO</th>
<th>NR</th>
<th>MIN</th>
<th>ID</th>
<th>IN</th>
<th>METOC</th>
<th>IPR</th>
<th>NSTAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

MULTI-PLAN ANALYSES TO BE PERFORMED
NPLAN= 1 RATIO= 3 LAT0= 1

RTIO= .11 .50 1.00

SUB-AREA RUNOFF COMPUTATION

INFLOW HYDROGRAPH COMPUTATIONS FOR U/S LAKE
ISTAQ ICOME ICOM IATE JPLT JPRF INANE ISTAGE IAUTO
1 0 0 0 0 0 0 1 0 0

HYDROGRAPH DATA
IMHYQ IUMQ TAREA SNAP TREDA TRSFC RATIO ISNOW ISBANE LOCAL
1 2 .50 .00 .20 1.00 .000 0 1 0

PRECIP DATA
SPFE PPS RS R12 R24 R48 RT2 R26
0.00 30.76 106.00 101.00 102.00 0.00 0.00 0.00
HYDROGRAPH ROUTING

ROLLING THROUGH SMALL U/S LAKE

<table>
<thead>
<tr>
<th>STAGE</th>
<th>FLOW</th>
<th>CAPACITY</th>
<th>ELEVATION</th>
<th>CRREL</th>
<th>SPWID</th>
<th>CQW</th>
<th>EXPW</th>
<th>ELEUL</th>
<th>COOL</th>
<th>CAREA</th>
<th>EXPL</th>
<th>TPEL</th>
<th>COOD</th>
<th>EXPD</th>
<th>DAMWID</th>
</tr>
</thead>
<tbody>
<tr>
<td>363.20</td>
<td>0.00</td>
<td>0.00</td>
<td>361.00</td>
<td></td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>363.20</td>
<td>3.1</td>
<td>1.5</td>
<td>500.00</td>
</tr>
</tbody>
</table>
PEAK OUTFLOW IS 844. AT TIME 16.10 HOURS
PEAK OUTFLOW IS 1796. AT TIME 16.00 HOURS

************** ************** ************** **************
SLB-AREA RUNOFF COMPUTATION
INFLOW HYDROGRAPH COMPUTATIONS FOR MARVS CREEK 99
ISTAG ICMP ICEN ITAPE JPLT JPRT INAME ISTAGE IAUTO
9 0 0 0 1 1 0 0 0

HYDROGRAPH DATA
IHVG IUNE TAREA SNAP TRSBA TRSFC RATIO ISNOW ISAME LOCAL
1 2 1.13 0.00 0.13 1.00 0.000 0 1 0

PRECIP DATA
SPFE PMS RE R12 R24 R48 R72 R96
0.00 29.70 100.00 101.00 102.00 0.00 0.00 0.00

LOSS DATA
LROPT STKR DLTR RLING ERAIN STMLS RTOLK STRNL CNSTL ALSMX RTIMP
0 0.00 0.00 1.00 0.00 0.00 1.00 -1.00 -75.00 0.00 0.00

CURVE NO = -75.00 WETNESS = -1.00 EFFECT CM = 75.00

UNIT HYDROGRAPH DATA
TC = 0.00 LAG = 0.45

RECESSION DATA
STRTO = 0.00 QRCNM = 1.00 RTIOR = 1.50

END-OF-PERIOD FLOW
NO.DE HR.MM PERIOD RAIN EXCS LOSS COMP Q

SUM 38.29 28.63 3.86 00000
(768.)(876.)(93.)(831.62)

************** ************** ************** **************
COMBINE HYDROGRAPHS
HYDROGRAPHS COMBINED AT THI JINT
ISTAG ICMP ICEN ITAPE JPLT JPRT INAME ISTAGE IAUTO

E)
HYDROGRAPH ROUTING

ROUTING THROUGH MARYS CREEK 89

ISTAG ICCO IECON ITAPE JPLT JPRAT INAME ISTAG I.AUTO
4 2 0 0 0 1 0 0 0

********** ********** ********** ********** **********

STAGE 356.00 357.30 359.50 360.20 360.50 361.50 362.50 364.40 365.00
FLOW 1558.00 0.00 6.00 10.00 36.00 56.00 93.00 149.00 554.00 963.00
ELEVATION 345. 351. 352. 356. 361. 370.
CREST LENGTH 0. 80. 320. 430. 678.
AT OR BELOW ELEVATION 363.7 364.7 364.9 365.0 365.1

PEAK OUTFLOW IS 9. AT TIME 20.00 HOURS

PEAK OUTFLOW IS 454. AT TIME 17.30 HOURS

PEAK OUTFLOW IS 2614. AT TIME 16.20 HOURS

********** ********** ********** ********** **********

PEAK FLOW AND STORAGE (END OF PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS
PEAK FLOW AND STORE (END OF PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS

FLOWS IN CUBIC FEET PER SECOND (CUBIC METERS PER SECOND)
AREA IN SQUARE MILES (SQUARE KILOMETERS)

<table>
<thead>
<tr>
<th>OPERATION</th>
<th>STATION</th>
<th>AREA</th>
<th>PLAN RATIO 1</th>
<th>RATIO 2</th>
<th>RATIO 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>HYDROGRAPH AT</td>
<td>1</td>
<td>.20</td>
<td>1</td>
<td>.53</td>
<td>.86</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>2</td>
<td>.20</td>
<td>.52</td>
<td>1</td>
<td>.84</td>
</tr>
<tr>
<td>HYDROGRAPH AT</td>
<td>3</td>
<td>.13</td>
<td>.34</td>
<td>1</td>
<td>.85</td>
</tr>
<tr>
<td>2 Combined</td>
<td>4</td>
<td>.66</td>
<td>.88</td>
<td>1</td>
<td>.39</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>5</td>
<td>.33</td>
<td>.58</td>
<td>1</td>
<td>.45</td>
</tr>
</tbody>
</table>

SUMMARY OF DAM SAFETY ANALYSIS

<table>
<thead>
<tr>
<th>PLAN 1</th>
<th>ELEVATION</th>
<th>INITIAL VALUE</th>
<th>SPILLWAY CREST</th>
<th>TOP OF DAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>STORAGE</td>
<td>363.20</td>
<td>363.20</td>
<td>369.80</td>
<td></td>
</tr>
<tr>
<td>OUTFLOW</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RATIO</th>
<th>MAXIMUM REDUCTION</th>
<th>MAXIMUM DEPTH</th>
<th>MAXIMUM STORAGE</th>
<th>MAXIMUM OUTFLOW</th>
<th>DURATION</th>
<th>MAX OUTFLOW TIME</th>
<th>TIME OF FAILURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWF</td>
<td>U.S. ELEVATION</td>
<td>OVER DAM</td>
<td>AC-FT</td>
<td>CFS</td>
<td>HOURS</td>
<td>HOURS</td>
<td></td>
</tr>
<tr>
<td>.11</td>
<td>367.54</td>
<td>0.00</td>
<td>23.7</td>
<td>118</td>
<td>16.6</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>.85</td>
<td>376.16</td>
<td>0.96</td>
<td>48.6</td>
<td>642</td>
<td>16.1</td>
<td>9.9</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>379.58</td>
<td>0.90</td>
<td>45.0</td>
<td>1786</td>
<td>16.0</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>

SUMMARY OF DAM SAFETY ANALYSIS

<table>
<thead>
<tr>
<th>PLAN 1</th>
<th>ELEVATION</th>
<th>INITIAL VALUE</th>
<th>SPILLWAY CREST</th>
<th>TOP OF DAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>STORAGE</td>
<td>356.80</td>
<td>356.80</td>
<td>363.70</td>
<td></td>
</tr>
<tr>
<td>OUTFLOW</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RATIO</th>
<th>MAXIMUM REDUCTION</th>
<th>MAXIMUM DEPTH</th>
<th>MAXIMUM STORAGE</th>
<th>MAXIMUM OUTFLOW</th>
<th>DURATION</th>
<th>MAX OUTFLOW TIME</th>
<th>TIME OF FAILURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWF</td>
<td>U.S. ELEVATION</td>
<td>OVER DAM</td>
<td>AC-FT</td>
<td>CFS</td>
<td>HOURS</td>
<td>HOURS</td>
<td></td>
</tr>
<tr>
<td>.11</td>
<td>359.11</td>
<td>2.30</td>
<td>82.5</td>
<td>9.00</td>
<td>20.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>.50</td>
<td>363.33</td>
<td>2.33</td>
<td>166.0</td>
<td>454.0</td>
<td>17.30</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>365.67</td>
<td>1.97</td>
<td>261.0</td>
<td>2614.0</td>
<td>16.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>29.7</td>
<td>100 101 102</td>
<td>-1</td>
<td>-88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>------------</td>
<td>----</td>
<td>----</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U₂</td>
<td>0.30</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K₁</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V₁</td>
<td>363.2</td>
<td>364.2</td>
<td>365.9</td>
<td>366.9</td>
<td>367.1</td>
<td>368.2</td>
<td>368.6</td>
</tr>
<tr>
<td>V₂</td>
<td>351</td>
<td>353</td>
<td>367.5</td>
<td>370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V₃</td>
<td>363.6</td>
<td>369.6</td>
<td>3.1</td>
<td>1.5</td>
<td>500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V₄</td>
<td>356</td>
<td>357.3</td>
<td>359.5</td>
<td>360.2</td>
<td>360.5</td>
<td>361.5</td>
<td>362.5</td>
</tr>
<tr>
<td>V₅</td>
<td>358</td>
<td>359</td>
<td>362</td>
<td>365</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V₆</td>
<td>363.7</td>
<td>3.1</td>
<td>1.5</td>
<td>670</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V₇</td>
<td>363.7</td>
<td>364.7</td>
<td>364.9</td>
<td>365.0</td>
<td>365.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Routing Through Small U/S Lake

Inflow Hydrograph Computations for U/S Lake

Routing Through Marys Creek #8

Hydrographs Combined at This Point
APPENDIX G

CORRESPONDENCE
Dr. Rushton E. Patterson
61 Cherokee Drive
Memphis, TN 38118

Dear Dam Owner:

As provided by the State Safe Dams Act, Tennessee Code Annotated, Sections 70-2501 to 70-2530, non-federal dams in Tennessee must be inspected and certified for safety by our agency. According to our records, you are identified as the owner of Mary's Creek Dam, located in Shelby County, Tennessee.

Enclosed for your information and review is a copy of our inventory record on the structure along with a copy of the Act and adopted rules and regulations.

Tentative plans are to schedule a safety inspection of your dam within the next few months. A staff engineer will very shortly be in further communication with you to discuss the pending inspection and your responsibilities under the Safe Dams Act. Your immediate attention, however, is called to the matter of maintaining the earthen dam with a good grass cover and clear of all brush, undergrowth and tree growth. If these conditions do not presently exist, please make plans to remove the brush, undergrowth and all trees less than two inches in diameter as soon as possible. Larger trees may have to be removed at a later date but must be done so under the direction of an experienced engineer.

Please let me, or our Chief Engineer, Mr. Ed O'Neill, know of any assistance we might be.

Very truly yours,

Robert A. Hunt, P.E.
Director, Division of Water Resources

RAH:lt

Enclosures
1. The Interagency Review Board, appointed by the Commander on 19 June 1981, presents the following recommendations after meeting on 27 August 1981, to consider the Phase I investigation report on Mary's Creek Watershed Dam No. 9, inspected by the Tennessee Department of Conservation.

2. The conclusions should state that the marginal overtopping of the dam will not cause failure.

3. It should not be recommended to prohibit cattle from the dam; however, the cattle grazing should be controlled to minimize the damage to the embankment.

4. The operation and maintenance of the dam is with the Shelby County Soil Conservation Service. All references and recommendations should be made to this agency.

5. A qualified engineer should be engaged to recommend project modifications to allow safe passage of the design storm.
ORNED-G
Commander, Nashville District
US Army Corps of Engineers

6. The Board is in agreement with other report conclusions and recommendations following minor revisions.

FRANK B. COUCH, JR.
Chief, Geotechnical Branch
Chairman

BOBBY G. MOORE
Assistant State Conservation Engineer
Alternate, Soil Conservation Service

EDMOND B. O'NEILL
Alternate, Division of Water Resources
State of Tennessee

THOMAS N. PORTER
Hydraulic Engineer
Alternate, Hydrology and Hydraulics Branch

EDWARD B. BOYD
Hydrologic Technician
Alternate, US Geological Survey

JAMES GUNNELS
Structural Engineer
Alternate, Design Branch
END
DATE
FILMED
1-82
DTIC