Convective Heat Transfer for Ship Propulsion

Authors: M A Habib, D W McEligot

Date: April 81

Classification: Unclassified

Table 1

<table>
<thead>
<tr>
<th>q'</th>
<th>h</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
</tbody>
</table>

Notes

- The study examines the convective heat transfer for ship propulsion systems.
- The dataset provided includes heat flux (q'), convective heat transfer coefficient (h), temperature (T), and pressure (P) values for different scenarios.
- Additional analysis and conclusions are provided in the full report.
Sixth Annual Summary Report
Contract No. N00014-75-C-0694
Contract Authority NR-097-395

CONVECTIVE HEAT TRANSFER FOR SHIP PROPULSION

Prepared for
Office of Naval Research
Code 473
Arlington, Virginia

Prepared by
M. A. Habib and D. M. McEligot

1 April 1981

Approved for public release; Distribution Unlimited

ENGINEERING EXPERIMENT STATION
COLLEGE OF ENGINEERING
THE UNIVERSITY OF ARIZONA
TUCSON, ARIZONA 85721
Title: Convection Heat Transfer for Ship Propulsion

(Sixth Annual Summary Report)

Authors: M. A. Habib and D. M. McEligot

Performing Organization:

Engineering Experiment Station
University of Arizona
Tucson, Arizona 85721

Type of Report & Period Covered:

Annual Summary Report

Distribution Statement:

Unlimited

Abstract:

A common geometry recurring in compact Naval propulsion plants is a change in duct size in the primary fluid loop. As a consequence of the upstream plumbing, the fluid is often swirling about the axis in the piping. Heat losses from the primary fluid and thermal stresses in the component depend on the convective heat transfer from the fluid to the component as it undergoes this geometrical transition. The idealized problem is a study of heat transfer in a sudden expansion with swirl flow, the subject of the present report. The same situation also occurs at the entrance to some heat exchanger tubes.

Keywords:

Calculations of the flow and heat transfer of a swirling turbulent flow after a sudden pipe expansion are reported. The calculations were obtained by the numerical solution of the time-averaged forms of the continuity, momentum and thermal energy equations together with equations for the turbulence kinetic energy and its rate of dissipation. For a sudden expansion without swirl, the predictions produced satisfactory agreement with available data for the Nusselt number. In the swirling case, there were no heat transfer measurements available for comparison. However, existing measurements of a swirl flow at an expansion without heat transfer were used to test the validity of the flow field calculations.

The predicted effects of varying the swirl number from zero to 1.0 on the heat transfer behavior are presented for a range of Prandtl numbers from 0.7 to 10. The expected effects of the swirl on the velocity and temperature fields are also reported. The results predict, for example, that the maximum Nusselt number is increased as the swirl number increases and its position moves towards the inlet section. They also show an increase in the Nusselt number as the Prandtl number increases.
Sixth Annual Summary Report

CONVECTIVE HEAT TRANSFER FOR SHIP PROPULSION

By

M. A. Habib and D. M. McEligot
Aerospace and Mechanical Engineering Department
University of Arizona
Tucson, Arizona 85721

Research Sponsored by

Office of Naval Research
ONR Contract Number N00014-75-C-0694
ONR Contract Authority NR-097-395

1 April 1981

Approved for public release; distribution unlimited. Reproduction in whole or in part is permitted for any purpose of the United States Government.
Abstract

Calculations of the flow and heat transfer of a swirling turbulent flow after a sudden pipe expansion are reported. The calculations were obtained by the numerical solution of the time-averaged forms of the continuity, momentum and thermal energy equations together with equations for the turbulence kinetic energy and its rate of dissipation. For a sudden expansion without swirl, the predictions produced satisfactory agreement with available data for the Nusselt number. In the swirling case, there were no heat transfer measurements available for comparison. However, existing measurements of a swirl flow at an expansion without heat transfer were used to test the validity of the flow field calculations.

The predicted effects of varying the swirl number from zero to 1.0 on the heat transfer behavior are presented for a range of Prandtl numbers from 0.7 to 10. The expected effects of the swirl on the velocity and temperature fields are also reported. The results predict, for example, that the maximum Nusselt number is increased as the swirl number increases and its position moves towards the inlet section. They also show an increase in the Nusselt number as the Prandtl number increases.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>11</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF ILLUSTRATIONS</td>
<td>iv</td>
</tr>
<tr>
<td>NOMENCLATURE</td>
<td>v</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Previous work</td>
<td>4</td>
</tr>
<tr>
<td>1.3 Present work</td>
<td>5</td>
</tr>
<tr>
<td>2. ANALYSIS</td>
<td>7</td>
</tr>
<tr>
<td>3. PREDICTIONS</td>
<td>13</td>
</tr>
<tr>
<td>3.1 Zemanick and Dougall - heat transfer without swirl</td>
<td>13</td>
</tr>
<tr>
<td>3.2 Beltagui and MacCallum - swirl without heat transfer</td>
<td>15</td>
</tr>
<tr>
<td>3.3 Heat transfer with swirl at a sudden expansion</td>
<td>20</td>
</tr>
<tr>
<td>4. CONCLUSIONS</td>
<td>32</td>
</tr>
<tr>
<td>APPENDIX. Computer program TEACH-Y</td>
<td>A-1</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>R-1</td>
</tr>
<tr>
<td>DISTRIBUTION</td>
<td>D-1</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Idealized geometry</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Comparison for heat transfer at a sudden expansion without swirl</td>
<td>12</td>
</tr>
<tr>
<td>3(a)</td>
<td>Mean velocity distributions for swirl flow without heat transfer</td>
<td>16</td>
</tr>
<tr>
<td>3(b)</td>
<td>Mean velocity distributions for swirl flow without heat transfer (cont'd)</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>Development of mean velocity and temperature profiles for different swirl numbers</td>
<td>21</td>
</tr>
<tr>
<td>5</td>
<td>Development of wall shear stress for swirl flow</td>
<td>23</td>
</tr>
<tr>
<td>6</td>
<td>Effect of swirl on development of local Nusselt numbers</td>
<td>25</td>
</tr>
<tr>
<td>7</td>
<td>Effect of swirl on overall heating</td>
<td>27</td>
</tr>
<tr>
<td>8</td>
<td>Effect of Prandtl number on temperature distributions</td>
<td>29</td>
</tr>
<tr>
<td>9</td>
<td>Effect of Prandtl number on local Nusselt number</td>
<td>31</td>
</tr>
</tbody>
</table>
NOMENCLATURE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_R</td>
<td>Constant in turbulence model, for correction for streamline curvature, equation (11)</td>
</tr>
<tr>
<td>D</td>
<td>Diameter of pipe downstream of the expansion = $2R_o$</td>
</tr>
<tr>
<td>d</td>
<td>Diameter of the pipe upstream of the expansion = $2r$</td>
</tr>
<tr>
<td>G</td>
<td>Generation of turbulence kinetic energy K</td>
</tr>
<tr>
<td>H</td>
<td>Step height = $(D - d)/2$</td>
</tr>
<tr>
<td>H</td>
<td>Enthalpy</td>
</tr>
<tr>
<td>K</td>
<td>Turbulence kinetic energy $= \frac{1}{2} \overline{u_i u_i}$</td>
</tr>
<tr>
<td>Nu</td>
<td>Nusselt number</td>
</tr>
<tr>
<td>Nu_{fd}</td>
<td>Nusselt number of fully developed pipe flow</td>
</tr>
<tr>
<td>Pr_ε</td>
<td>Molecular Prandtl number</td>
</tr>
<tr>
<td>Pr_t</td>
<td>Turbulent Prandtl number</td>
</tr>
<tr>
<td>q_w</td>
<td>Wall heat flux</td>
</tr>
<tr>
<td>R</td>
<td>Radius of downstream pipe</td>
</tr>
<tr>
<td>r</td>
<td>Radial coordinate</td>
</tr>
<tr>
<td>Re</td>
<td>Reynolds number; Re_f, based on diameter upstream; Re_D, based on diameter downstream</td>
</tr>
<tr>
<td>R_f</td>
<td>Flux Richardson number</td>
</tr>
<tr>
<td>S</td>
<td>Swirl number, $\int_0^{R_0} \overline{u_\theta u_\theta} dr/r \int_0^{R_0} \overline{u^2} r dr$</td>
</tr>
<tr>
<td>T_b</td>
<td>Bulk temperature, $\frac{\int \overline{u^2} r dr}{\int \overline{u^2} r dr}$</td>
</tr>
<tr>
<td>T_{in}</td>
<td>Inlet temperature</td>
</tr>
</tbody>
</table>
NOMENCLATURE--Continued

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_w</td>
<td>Wall temperature</td>
</tr>
<tr>
<td>\bar{U}</td>
<td>Axial mean Velocity</td>
</tr>
<tr>
<td>\bar{U}_{av}</td>
<td>Bulk velocity $= \int p \bar{U} dr / \int p dr$</td>
</tr>
<tr>
<td>u</td>
<td>Fluctuations of axial velocity</td>
</tr>
<tr>
<td>\bar{V}</td>
<td>Radial mean velocity</td>
</tr>
<tr>
<td>v</td>
<td>Fluctuations of radial velocity</td>
</tr>
<tr>
<td>\bar{W}</td>
<td>Tangential mean velocity</td>
</tr>
<tr>
<td>w</td>
<td>Fluctuations of tangential velocity</td>
</tr>
<tr>
<td>x</td>
<td>Axial coordinate</td>
</tr>
<tr>
<td>X_o</td>
<td>Axial distance downstream from the expansion</td>
</tr>
<tr>
<td>y</td>
<td>Transverse coordinate measured from the wall</td>
</tr>
<tr>
<td>ε</td>
<td>Rate of dissipation of turbulence kinetic energy</td>
</tr>
<tr>
<td>κ</td>
<td>von Karman constant for turbulence model, equation (10)</td>
</tr>
<tr>
<td>τ_w</td>
<td>Wall shear stress in the axial direction, equation (9)</td>
</tr>
</tbody>
</table>

Subscripts

- o: Wall
- p: Node point nearest the wall
CHAPTER I

INTRODUCTION

1.1 Background

Current Naval propulsion plants are powered by variations of the Rankine cycle (steam) or the open gas turbine cycle (air and combustion products) plus some diesel engines in small ships. Alternative power systems suggested include the closed gas turbine cycle and cycles involving dissociation of the working fluid in either a Rankine or a gas cycle. These latter two are believed to offer the potential of substantial improvement in the power-to-weight ratio of the propulsion plant. The present and proposed studies consider basic problems in convective heat transfer and flow friction that are important in all of the above.

Convective heat transfer provides the dominant thermal resistance in several components of conventional steam power plants as well as in all heat transfer components in gaseous cycles. For example, heat transfer from the condensing steam to the cooling water in the main condenser of a Naval ship is via the condensation heat transfer coefficient which is high, then conduction conductance through thin tubing of high conductivity, and finally via the moderate heat transfer coefficient of the cooling water flowing through smooth circular tubes. Thus, the overall thermal resistance is dominated by the convective thermal resistance of the cooling water inside the tubes. One can expect significant reductions in tube
length and, therefore, size and weight of the condenser and overall plant if the convective heat transfer coefficient of the cooling water is increased appreciably.

A common geometry recurring in compact Naval propulsion plants is a change in duct size in the primary fluid loop. As a consequence of the upstream plumbing, the fluid is often swirling about the axis in the piping. Heat losses from the primary fluid and thermal stresses in the component depend on the convective heat transfer from the fluid to the component as it undergoes this geometrical transition. The idealized problem is a study of heat transfer in a sudden expansion with swirl flow, the subject of the present report. The same situation also occurs at the entrance to some heat exchanger tubes.

The flow downstream of a sudden expansion consists primarily of a central jet, with or without rotation due to swirl, surrounded by a recirculating donut-shaped vortex induced by the separation as the jet leaves the central tube. This jet gradually spreads as the flow proceeds downstream until it reattaches to the downstream wall and fills the larger tube. Eventually a fully developed velocity profile can be expected to be established if the tube length is sufficiently long. The centrifugal body forces induced by swirl modify the recirculating vortex, the development of the jet and the reattachment location.

Significant enhancement of heat transfer rates generally occurs when fluids are transported through sudden enlargements in pipes (Fig. 1) or duct cross-sections or when they are subjected to angular tangential
Figure 1. Idealized geometry.
momentum due to twisted tapes or the application of vane-generated swirl. In both cases, the levels of turbulence kinetic energy are increased and the heat transfer rate generally increases as well. High shearing rates created by both separation and swirling effects are associated with high generation rates for the kinetic energy of turbulence; in addition the rate of dissipation of turbulence kinetic energy decreases due to an increase in the length scales. The two effects lead to elevated magnitudes of the kinetic energy of turbulence. All these effects are expected to reduce the thickness of the viscous sublayer through which heat must pass largely by molecular diffusion and so will increase the heat transfer rate.

1.2 Previous work

The problem of heat transfer to separated and reattached subsonic turbulent flows downstream of abrupt pipe expansions has been studied experimentally by a number of investigators such as Ede, Hislop and Morris [1956], Krall and Sparrow [1966] and Zemanick and Dougall [1970]. Reviews of the heat transfer literature for separated and reattached flows are reported by Eckert et al. [1971] and by Fletcher, Briggs and Page [1974]. The experimental data of Krall and Sparrow [1965] for water, and of Zemanick and Dougall [1970] for air are for typical geometries representing axisymmetric abrupt enlargement of tubes. Both teams found a maximum in the local heat transfer coefficient at the assumed point of flow reattachment. Adequate descriptions of wall heat transfer at solid boundaries in regions of separated and
reattached flows have been limited by the lack of a complete solution for the fluid flow field. Spalding [1967] presented a power law relation between the Stanton and the Reynolds numbers for heat transfer from a wall adjacent to a region of separated flow; he employed a one-dimensional model of the flow near a wall. Recently, Chieng and Launder [1980], in calculations of the turbulent heat transfer downstream of an abrupt pipe expansion, found that the Nusselt number is overpredicted by 20% in flows with high Reynolds numbers and that its maximum value occurs about one step height upstream of the calculated reattachment point, relative to the data of Zemanick and Dougall.

For swirling flow, a number of studies have been done to investigate the effect of swirl on heat transfer parameters. Experiments performed by Thomas [Eckert et al., 1971], with swirling air flow in a tube indicated that, for turbulent flow and Reynolds numbers less than 10^5, the swirl flow transfers heat more efficiently than a non-swirling flow. Zaherdadeh and Jagadish [1975] concluded that an augmentation of up to 80% was obtained, with a constant wall temperature boundary condition, with the use of tangential vane type swirl generators.

1.3 Present work

Calculations of the effects of separation and swirl on heat transfer parameters have rarely been reported and the combined effects of both apparently have not been studied. Thus, we attempt the prediction of such cases in contrast to the "postdiction" usually employed in numerical studies. In the present paper, a calculation method is provided and
is applied for the prediction of flow and temperature fields in the swirling, separated and reattached flow in the vicinity of a sudden expansion of a pipe.

An idealized version of the geometry is shown as Figure 1. The expansion ratio is 2 and the Reynolds number upstream of the expansion is taken as 5×10^4 for the calculations. The effects of swirl on the heat transfer parameters are studied in the range of swirl number from 0.0 to 1.0 and of Prandtl number from 0.7 to 10. For confidence testing, the calculations are compared with the measurements of Zemanick and Dougall [1970] for zero swirl number and those with swirl, but without heat transfer, are compared to the data of Beltagui and MacCallum [1976].

The governing equations and boundary conditions are described in the following section which is ended by a description of the solution procedure. The results are then presented and discussed. The paper ends with a summary of conclusions.
CHAPTER 2

ANALYSIS

Equations representing conservation of mass, energy, turbulence kinetic energy and its dissipation rate plus the momentum equations were solved in axisymmetric coordinates with an extension of the TEACH computer program developed originally by Gosman and Pun [1974]. In the present study, the version of Habib and Whitelaw [1980], which treats double coaxial jet flows, was modified to give predictions of swirl flow downstream of an abrupt pipe expansion and to yield the temperature field and heat transfer parameters by adding the solution of the thermal energy equation.

The equations modeled and the turbulence model are as follows:

continuity,
\[\frac{\partial \overline{U}_j}{\partial x_j} = 0 \] \hspace{1cm} (1)

momentum,
\[\frac{\partial}{\partial x_j} \left(\rho \overline{U}_i \overline{U}_j + \rho \overline{u}_i \overline{u}_j \right) = -\frac{\partial P}{\partial x_i} \] \hspace{1cm} (2)

thermal energy,
\[\frac{\partial}{\partial x_j} \left(\rho \overline{U}_j H \right) = \frac{\partial}{\partial x_j} \left(\frac{\mu_{eff}}{\sigma_H} \frac{\partial H}{\partial x_j} \right) \] \hspace{1cm} (3)

turbulence kinetic energy,
\[\frac{\partial}{\partial x_j} \left(\rho \overline{U}_j k \right) = \frac{\partial}{\partial x_j} \left(\frac{\mu_{eff}}{\sigma_k} \frac{\partial k}{\partial x_j} \right) + G - \rho \varepsilon \] \hspace{1cm} (4)
and dissipation of turbulence kinetic energy

$$\frac{\partial}{\partial x_j} (\rho \bar{u}_j \epsilon) = \frac{\partial}{\partial x_j} \left(\frac{\mu_{\text{eff}}}{\sigma_\epsilon} \frac{\partial \epsilon}{\partial x_j} \right) + C_1 \frac{\epsilon}{\kappa} \gamma - C_2 \frac{\epsilon^2}{k}$$

(5)

with

$$\mu_{\text{eff}} = \mu_i + \frac{C_t \rho k^2}{\epsilon}$$

(6)

$$\gamma = -\rho \bar{u}_i \bar{u}_j \frac{\partial \bar{U}_i}{\partial x_j}, \quad k = \bar{u}_i \bar{u}_i / 2$$

and

$$-\rho \bar{u}_i \bar{u}_j = \mu_{\text{eff}} \left(\frac{\partial \bar{U}_i}{\partial x_j} + \frac{\partial \bar{U}_j}{\partial x_i} \right) - \frac{2}{3} \rho k \delta_{ij}$$

(7)

where $\delta_{ij} = 0$ if $i \neq j$ and $\delta_{ij} = 1$ if $i = j$.

Fluid properties were idealized as constant except in some cases with air where the density was allowed to vary due to pressure variation.

In addition to the set of equations listed above, the following inlet and boundary conditions are considered. In the case of non-swirling flows, data for fully developed pipe flow were taken as initial values for mean velocity and turbulence kinetic energy. The inlet dissipation rate was then determined from its model,

$$\epsilon = C_\epsilon \frac{K^{3/2}}{\ell}$$

(8)

where ℓ is the length scale that characterizes the energy containing eddies, taken as $\ell = 0.03 \, r_o$.

For swirl, the initial axial and tangential mean velocities were interpolated from the data of Habib [1980]. The turbulence kinetic
energy was taken as a function of the total mean kinetic energy and the dissipation rate was determined via equation (8) with ε assumed to be given as $r_0 \left(0.03 + 0.075\right)$.

All axial gradients, $\partial/\partial x$, were presumed zero at the exit plane of the tube well downstream. Axial symmetry was specified so $V = 0$ and the radial gradients of all other quantities were zero at the centerline. No slip and impermeable wall conditions were specified on all solid surfaces.

Wall functions [Launder and Spalding, 1972] corresponding to the dependent variables were taken as

$$\tau_w = \frac{\mu \frac{U}{y_p}}{\frac{y_p}{U_p}} \frac{y^+}{\kappa}$$

(9)

where $U_p^+ = \frac{1}{\kappa} \ln E_y^+$ and $y_p^+ = \frac{C_1^{1/4} K^{1/2}}{\mu} y_p / \nu$

and

$$q_w = \frac{\mu \frac{U}{y_p}}{\frac{y_p}{U_p}} \frac{y^+}{\kappa}$$

(10)

where $P_f = C_f \left(\frac{Pr_{e}}{Pr_{t}} - 1\right) \left(\frac{Pr_{e}}{Pr_{t}}\right)^{1/4}$

The value of the kinetic energy of turbulence near the wall, K_p, is calculated from the transport equation for K with the flux of energy to the solid wall set to zero. The corresponding value of ε was calculated from equation (8) with $\varepsilon = C_\mu^{1/4} \kappa y_p$.
The constants used in the above equations are in accord with those of Khalil and Whitelaw [1974] and Pope and Whitelaw [1976]. They are summarized as follows:

\[
C_0 = 0.09, \quad \sigma_K = 1.0, \quad \sigma_c = 1.22, \quad \sigma_H = 0.9, \quad C_1 = 1.45,
\]

\[
C_2 = 1.9, \quad C_f = 9.24, \quad \kappa = 0.42, \quad E = 9.8
\]

Modification of \(C_1\) to account for streamline curvature is described in Section 3.2 later.

The solution procedure described by Patankar and Spalding [1972] was used to solve the above equations. From trial values of the pressure distribution, the momentum equations can be solved to obtain an estimate of the velocity field at the first iteration. However, there is no guarantee that the resultant velocity field will satisfy the continuity equation, therefore, after each calculation over the solution domain, adjustments are made to the pressure and velocity fields to satisfy continuity. The procedure is repeated until convergence is obtained. The energy equation is then solved and the temperature field is presented.

Most of the computations were done with a grid of 25 x 18 nodes with more points concentrated near the walls and regions of separation and high velocity gradients. The computer time (per iteration per grid node) using the CDC CYBER 175 was 9.5 x 10^{-4} Sec to solve the velocity field and 1.2 x 10^{-4} Sec to obtain the temperature field. (These time estimates typically corresponded to $24/run and $6/run, respectively, at University rates). The storage requirements of the program were 37,000 octal words.
A grid independence test was conducted during the comparisons to the data of Zemanick and Dougall [1970]. It showed that an increase in the number of nodes from 20×17 to 27×21 affects the predicted Nusselt number only in the region of its maximum (see Figure 2) and then less than three percent. The effect was negligible in the downstream region. For most of the predictions presented in the next section a grid of 25×18 nodes was employed so they are expected to have better numerical accuracy than the former case.
Figure 2. Comparison for heat transfer at a sudden expansion without swirl.
CHAPTER 3

PREDICTIONS

In this section results from the computer program are first compared to the available data to test its validity. Then, the predictions of the separated flow with both swirl and heat transfer are presented.

3.1 Zemanick and Dougall - heat transfer without swirl

The results are first compared with the experiment of Zemanick and Dougall [1970] for zero swirl. Since inlet velocity profiles were not presented, the initial conditions were taken as those of fully developed pipe flow in the smaller tube. In the run chosen for comparison, the expansion ratio was 0.43 and the Reynolds number calculated downstream from the expansion was 47,800. In the experiment resistive heating was employed so the appropriate thermal boundary condition would be a specified wall heat flux. To correspond with the procedure of the present program, the wall temperature distribution which was measured was entered as the thermal boundary condition and the wall heat flux was calculated via equation (10).

As noted by Zemanick and Dougall [1970] there were some difficulties with their experiment so it is not ideal for a close comparison, but it is one of the few with data readily available. Axial conduction in the tube was significant and the thickness of the copper electrode at the expansion extended about a step height in the downstream direction. In addition it may be noticed that their correlation of local
Nusselt numbers in the fully developed region downstream is about 15% higher than commonly accepted values [McEligot, Magee and Leppert, 1965]. Unfortunately, quantitative estimates of the experimental uncertainties [Kline and McClintock, 1953] were not presented. If one assumes an uncertainty of 1°C in measuring the wall temperature, typical of premium grade thermocouple wire, it can be shown that this effect alone would lead to an uncertainty of about twenty percent in the Nusselt number near the entry and approximately five percent downstream; these estimates are shown by brackets on Figure 2. Thus, it is best to restrict the comparison to trends rather than absolute magnitudes.

Figure 2 shows a comparison between the calculated and measured distributions of Nusselt numbers; the curves represent the numerical predictions. It is shown that the agreement is generally good in the upstream and downstream locations with the present calculations underpredicting the maximum Nusselt number by about 20%. The location of the maximum Nusselt number is found to be one step height upstream from the corresponding peak in the experiments. By examination of the predicted velocity distributions it may also be found that the calculated maximum Nusselt number occurs two step heights upstream from the calculated reattachment point. This direction was also indicated by Chieng and Launder [1980]; however, they indicate the difference in location to be one step height only.

The discrepancy between the calculations and the experiment may be attributed partly to the numerical accuracy in the calculation
procedure. Increasing the number of grid points to reduce effects of the numerical diffusion leads to a slight increase in Nusselt number in the entry region as shown on Figure 2. However, as noted earlier, the increase in the number of nodes from 20 x 17 to 27 x 21 gives a change of less than 3% which is essentially negligible for the present purposes.

3.2 Beltagui and MacCallum - adiabatic flow with swirl

For swirl, data with heat transfer are not available to compare to predictions; however, the adiabatic measurements of Beltagui and MacCallum [1976] were considered to test the flow field calculations and to provide guidance. It is expected that when the model provides predictions which are satisfactory for the flow field calculations, then the heat transfer calculations which depend on them will consequently be reasonable too.

Predictions were calculated for the conditions of the experiment by Beltagui and MacCallum [1976] with Re = 2 x 10^5, S = 0.67 and d/D = 0.413 as expansion ratio. Their measurements do not include inlet velocity profiles; therefore initial values for the present calculations were interpolated to S = 0.67 from the data of Habib [1980].

Results based on the standard K-ε model of Section 2 are shown as curves with centerline markings (dash-dot) in Figure 3(a) for axial mean velocity profiles and Figure 3(b) for circumferential mean velocity distributions. Dashed lines represent the experimental observations. It should be noticed that the ordinate scale changes as effects decay downstream.
Figure 3(a). Mean velocity distributions for swirl flow without heat transfer, $S \approx 0.67$, $Re = 2 \times 10^5$ and $d/D = 0.413$ as flow parameters.
Figure 3(b). Mean velocity distributions for swirl flow without heat transfer (cont'd).
One effect of this relatively high swirl is that the central jet rapidly takes the form of a circular sheet which moves radially outward and attaches to the wall of the outer tube in a short distance. Consequently, the surrounding vortex becomes significantly smaller in size than without swirl and is seen as a small reversed flow region at only the first axial location. Along the centerline of the larger tube a reversed flow also appears showing the existence of another recirculating vortex of size comparable to the diameter of the smaller tube. The qualitative trends are in agreement with the data. The axial velocity profiles agree well except near the centerline where the vortex is predicted to be shorter than measured (e.g., compare centerline velocities at $X/D = 2.63$). Also the tangential velocity in the central region is predicted to decay more quickly than observed.

The discrepancies are partially explained by Khalil and Whitelaw [1974] and Habib and Whitelaw [1980], who showed that the standard K-ε model often yields underpredicted lengths for the central recirculation zones of swirling flows. The work of Pope and Whitelaw [1976] for flows behind a baffle and of Habib and Whitelaw [1981] for confined flows with a sudden expansion indicates that the dissipation equation is the weakest of the governing equations since its modelling is only based on assumptions. As shown by Bradshaw [1973], body forces due to streamline curvature can have a strong effect on turbulence and the equations of turbulence models should account for these effects. Recently, Rodi [1979] and Morse [1980] found that it is essential to
correct one of the empirical constants in the dissipation equation as a function of Richardson numbers to achieve agreement with experiments.

To improve the present calculations, we replaced \(C_1 \), the empirical constant in the dissipation equation, by \(C_1 (1 + C_R R_f) \) where \(R_f \) is the flux Richardson number [Bradshaw, 1973]

\[
R_f = \frac{2 \frac{\partial \bar{u}}{\partial r}}{\left(\frac{\partial \bar{u}}{\partial r} \right)^2 + \left(\frac{\partial \bar{v}}{\partial r} \right)^2}
\]

(11)

The use of \(C_R = 0.2 \) was found to increase the length of the recirculation zone from about 1.7D to 3.6D. This value was chosen to provide the best agreement with the measured size of the central recirculation zone.

Predictions with \(C_R = 0.2 \) are presented as solid curves in Figure 3. The axial velocity profiles show considerably better agreement with the data in the central recirculating region, as would be expected from the manner of adjustment, and slightly better agreement near the wall.

The predicted circumferential velocity distribution is also improved near the wall, the region with the greatest effect on the heat transfer, but as the centerline is approached the values appear to be underpredicted. Comparison of the predicted velocities with \(C_R = 0 \) and \(C_R = 0.2 \) shows that modifying \(C_1 \) with this functional dependence on \(R_f \) tends to decrease the rate of diffusion in the downstream sections and to suppress the development of the jet.
3.3 Heat transfer with swirl at a sudden expansion

Calculations of heat transfer to a swirling flow were made after an abrupt enlargement of $D/d = 2$ for an inlet Reynolds number (Re_d) of 50,000 and with constant wall temperature imposed after the expansion. It was idealized that there was no heat transfer through the annular step between the inner and outer tubes. For flows at the different swirl numbers studied the inlet distributions of velocities and kinetic energy of turbulence were interpolated from the data of Habib [1980]. The effects of varying swirl number and Prandtl number were examined separately.

Effects of swirl were studied with the Prandtl number taken as 0.7 as for common gases. Predictions are shown in Figures 4 through 7. Figure 4, presenting the development of velocity and temperature distributions, provides information which helps understanding the later figures. On these figures the solid curves represent the reference case: zero swirl.

In Figure 4 the velocity profiles show that at $S = 0.1$ the flow is only slightly modified, at $S = 0.4$ there are significant differences and for $S = 1$ the general pattern of the flow changes. These runs might be considered as showing low, medium and high swirl, respectively. As the swirl (or angular momentum) increases, the reattachment point of the separated region in the corner moves successively closer to the entrance and the central jet spreads more rapidly towards the wall. After a short distance the velocity profile for $S = 0.4$ resembles a
Figure 4. Development of mean velocity and temperature profiles for different swirl numbers.
plug flow. The velocity near the heated wall increases with S in this entry region.

At $S = 1$ the flow pattern resembles that of Beltagui and MacCallum [1976] shown earlier. For this high swirl number the flow exhibits a long central recirculation zone while the outer recirculation zone is decreased to $0.13H$. Flow development is delayed as the central jet becomes a wall jet with the reversed flow at the centerline persisting to beyond $X/H = 17$. These features are also demonstrated by Habib [1980].

The corresponding variation of the non-dimensional wall shear stress or friction factor is shown on Figure 5 (note the change of scale for $S = 1$). Negative values occur due to the reversed flow near the wall. The value of zero indicates the location of the reattachment point or position where the dividing mean streamline meets the wall. As S increases this point progresses upstream as noted from examination of the velocity distribution; the points of maximum shear stress likewise move upstream. The magnitudes of the extremes also increase with swirl; an effect of the centrifugal forces apparently is to drive the higher velocity central flow towards the wall, thus steepening the velocity gradient. For fully developed, turbulent flow in a tube at $Re_D = 25,000$ the friction factor is expected to be about 0.006 [Kays, 1966] so all the flows must go considerably further downstream before becoming fully developed.

The temperature profiles in Figure 4 show approximately isothermal zones across the recirculating regions, thereby demonstrating high trans-
Figure 5. Development of wall shear stress for swirl flow.
rates due to the turbulent mixing in these regions. For the range $S < 0.4$ there is only a slight change in temperature distributions as the swirl is increased.

The interesting case is for high swirl flow. Within 5 step heights (or 1.25 D) the central recirculating flow is approximately isothermal. By $X/H = 1$ this reversed flow has carried thermal energy forward from further downstream and, thereby, has raised the centerline temperature substantially. The small recirculating region near the wall has done the same for that region, giving the appearance of a cooled wake at an intermediate radius. However, before $X/H = 5$ the central region has expanded and has eliminated the wake appearance in the temperature distribution.

Predicted local Nusselt numbers are shown in Figure 6 normalized by

$$\text{Nu}_{fd} = 0.020 \text{ Re}^{0.8} \text{ Pr}^{0.4}$$

a correlation for fully developed turbulent flow with a constant wall temperature [Kays, 1966]. As for the wall shear stress, increasing swirl increases the maximum value and moves it upstream towards the entry. The higher velocity gradient corresponds to flow at a higher Reynolds number so the viscous layer, which dominates the thermal resistance, is thinner and the Nusselt number is increased. Comparison to Figure 5 shows that for each swirl number the maximum Nusselt number occurs near the point of reattachment, which was shown earlier to move upstream as swirl increases.
Figure 6. Effect of swirl on development of local Nusselt numbers.
For the high swirl case, the increase in \(\text{Nu}_{\text{max}} \) due to the combined effects of separation at the annular step and swirl is four times while for separation alone the improvement is 2.5, relative to fully developed flow. Thus, the major increase is due to the separation. Further downstream, the low and moderate swirl cases show a slight decrease in Nusselt number as swirl number increases. This result may be the consequence of swirl reducing the length of the outer separated zone so that the development of the normal tube flow has progressed further at a given location, i.e., for given \(X, X - X_{\text{reattachment}} \) increases with \(S \). For \(S = 1 \) the strong wall jet phenomenon continues to dominate the velocity profile and, apparently, maintains a slightly higher Nusselt number than for zero swirl.

For applications such as heat exchangers, the designer is interested in the resulting bulk temperature variation of the fluid as it is heated (or cooled). Figure 7 presents this information and it is seen that an effect of swirl is to increase the bulk temperature and its rate of increase slightly. After viewing the temperature profiles, it may seem surprising that the increase is not greater for high swirl. The difficulty is that, though the temperature is approximately uniform, the velocity changes sign in the large reversed flow in the central region. In calculating the bulk temperature via its definition \(\int \bar{U} tr dr / \int \bar{U} ur dr \) the enthalpy flow rate there is subtracted from the enthalpy flow rate in the positive direction giving a net value which is smaller than expected. Therefore, while local heat transfer rates are increased substantially by swirl the overall improvement is not proportionally as large.
Figure 7. Effect of swirl on overall heating.
Predictions of the effects of Prandtl number on heat transfer were calculated for $S = 0.7$, again at $Re_d = 50,000$ and $D/d = 2$. Examination of the expected velocity profiles in Figure 8 shows this situation to be a high swirl case with a substantial recirculating vortex in the central region. In comparison to the profile for $S = 1$ at $X/H = 1$ in Figure 4, one finds the same shape except the maximum does not fall as close to the wall in this case with lower swirl. Lower circumferential momentum at the entry causes the main streamlines of the annular jet to have less rapid divergence from the axis.

Temperature profiles were calculated for $Pr = 0.7$, 3 and 10, corresponding to common gases and liquid water at about 60°C and 10°C, respectively. Results are also shown on Figure 8. The general behavior is in agreement with the earlier predictions for $S = 1$.

At each axial location the temperature profiles have the same general shape for all Prandtl numbers. Only the magnitudes change significantly. Thus, the total thermal energy transferred to the flow is greater as the Prandtl number decreases. The similarity of the shapes may be taken as an indication that convection dominates the thermal energy transfer processes in these regions despite the increased thermal conductivity implied by lower Prandtl numbers. The levels of the curves then depend on the heat fluxes at the wall where the thermal conductivity does dominate the thermal resistance. Thus, accurate prediction of heat transfer parameters requires accurate knowledge of the behavior of the viscous layer in this flow as well as in simpler ones.
Figure 8. Effect of Prandtl number on temperature distributions.
The axial distribution of local Nusselt numbers is presented as Figure 9; the curve for Pr = 0.7 is consistent with the trends of Figure 6 earlier. Again, as with the temperature profiles, the shape of the Nusselt number distribution is primarily dependent on the flow parameters—Re, S and D/d—and is relatively independent of the Prandtl number. However, the level or magnitude of the results increases as the Prandtl number increases so, as a general conclusion, one may note that the local Nusselt numbers increase with the Prandtl number as in most flows.
Figure 9. Effect of Prandtl number on local Nusselt number.
CHAPTER 4

CONCLUSIONS

The following important conclusions can be extracted from the preceding results:

1) For heat transfer without swirl, generally good agreement is obtained between measured and calculated Nusselt numbers.

2) For an adiabatic flow with swirl, predictions could be obtained in agreement with available data by modifying the turbulence model to account for effects of streamline curvature.

3) For swirl flow with heat transfer, (a) the maximum local Nusselt number is predicted to increase and its location moves towards the entry as the swirl number increases, and (b) the local Nusselt number increases as the Prandtl number increases.
APPENDIX. COMPUTER PROGRAM*

1. Comments concerning parameters used in Block data of Teach T.CDC

IGET: This parameter indicates continuation of calculations from previous output saved on magnetic tape

=1 Does not read or write any output
>1 Writes data on tape 8
>2 Reads from Tape 7 and writes on Tape 8

IHT Parameter controls heat transfer calculations

=1 There is a heat transfer calculation (the thermal energy equation is solved)
=0 No heat transfer calculations

ICP Parameter used to restrict the program to calculations for a constant property fluid

=0 Flow field calculations only
=1 Energy equation is solved alone provided that the flow is known from a previous set of iterations. In this case (i.e., ICP = 1) IHT should be set to 1 also.

The program may consider changes in density when the fluid is air. For this case set IHT = 1 and ICP = 0.

IABN Defines North wall (i.e., larger tube) as adiabatic

=0 There is heat transfer through the North wall
=1 There is no heat transfer through the North wall

IABW Sidewall (end wall) boundary situation

=0 There is heat transfer through the side wall. (This option was not tested.)
=1 There is no heat transfer through the side wall

*Questions concerning the details of the program should be directed to Dr. M. A. Habib, Power Section, Mechanical Engineering Department, Cairo University, Cairo, Egypt.

A-1
CRF Constant C_R used with equation (11) for streamline curvature correction. (It is only useful in the swirl cases.)

- $=0$ There is no correction
- $=0.2$ There is a correction (with $C_R = 0.2$

MAXIT Maximum iterations allowed. (It will write the results if IGET>2)

INDPRI Defines the number of iterations after which the program shows a sample of the calculations

PO Atmospheric pressure, N/m2

CP1 Specific heat, J/Kg C°

GASCON Universal gas constant = 8314 J/Kgmole C°

WFLUID Molecular weight, Kg/Kgmole

COND Thermal conductivity, Watt/m C°

NOTAIR

- $=0$ The fluid is air or a comparable gas
- $=1$ The fluid is not air and the properties for the fluid must be inserted. These are identified as CPFL, CONDFL, VISFL, DENFL

PRLAM, PRH Laminar and turbulent Prandtl numbers

DENFL

CPFL The properties of the fluid to be used if it is not considered to be air. (NOTAIR should be equal to 1 to consider these.)

VISFL

CONDFL

ICHF Indicates whether there is a constant heat flux boundary condition along the larger tube.

- $=0$ Not constant heat flux; the program needs a specified wall temperature distribution
- $=1$ Constant heat flux boundary condition
QADD: Wall heat flux in the case of a constant heat flux boundary condition, J/m²s. (To be used only if ICHF = 1)

TIN: Inlet temperature, K

SWNO: Swirl number, defined as the axial flow of tangential momentum divided by the axial momentum rate,
\[\frac{\int_0^R \bar{U} \bar{W} r^2 dr}{R^2 \int_0^R \bar{U} r^2 dr}, \] where R is the nozzle radius.

-0: No swirl
-any value: Magnitude of swirl number

UFUIN: The maximum inlet velocity (on the centerline); important only if SWNO = 0. The program then treats the inlet as fully developed pipe flow and UFUIN is the value at the centerline.

RLARGE: Geometry

DNOZLE: \(D/2 \)

IDATA: Parameters specify if the input velocities, turbulence kinetic energy and dissipation will be supplied via READ statements or will be calculated by the program as fully developed pipe flow.

-0: For swirl number = 0 (SWNO = 0)
-1: For others. In this case, at the University of Arizona Computer Center, the program Teach.Vel should be run first; its output should be saved on Tape 4; then the present program is run and it will automatically read \(\bar{U}, \bar{W}, K, \epsilon \) from Tape 4.

NI, NJ: Number of nodes in x and y directions, respectively

JNOZLE: Number of radial nodes in inlet tube.

X: Locations of nodes in the x-direction

Y: Location of nodes in the radial direction (starts from centerline)
TWALN \hspace{1cm} \text{North wall temperature, K}

TWALW \hspace{1cm} \text{Side wall temperature, K}

2. Program listing (following pages)
DATA N1, N2, N3, N4

DATA X1, X2, X3, X4, X5, X6, X7, X8, X9

DATA 1.0, 0.2, 0.4, 0.6, 0.8, 1.0

DATA 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0

DATA 1.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

DATA 1314, 1315, 1316, 1317, 1318, 1319, 1320, 1321, 1322, 1323

END
Program Main

74/12007

Main

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

113

115

117

119

121

123

125

127

129

131

133

135

137

Constants

C

D:

E:

F:

G:

H:

I:

J:

K:

L:

M:

N:

O:

P:

Q:

R:

S:

T:

U:

V:

W:

X:

Y:

Z:
```
PROGRAM MAIN
24/12  OPT-0 TRACE
FIN 4.0528
05/13/81  12:05:45

STOP

C----- FORMAT STATEMENTS
310 FORMAT(1X,13X,*7N10,9X,9X,E5.2,9X,3X,2FW15.9,2FW15.9,2FW15.9,2FW15.9,2FW15.9,2FW15.9,2FW15.9,9X,9X,E5.2)
311 FORMAT(1X,7X,1P7E10.1,1X,1P7E10.1)
312 FORMAT(1X,7X,1P7E10.1,1X,1P7E10.1)
313 FORMAT(1X,7X,1P7E10.1,1X,1P7E10.1)
314 FORMAT(1X,7X,1P7E10.1,1X,1P7E10.1)
403 FORMAT(1X,1P7E10.1)
404 FORMAT(1X,1P7E10.1)
405 FORMAT(1X,1P7E10.1)
406 FORMAT(1X,1P7E10.1)
407 FORMAT(1X,1P7E10.1)
408 FORMAT(1X,1P7E10.1)
409 FORMAT(1X,1P7E10.1)
410 FORMAT(1X,1P7E10.1)
411 FORMAT(1X,1P7E10.1)
412 FORMAT(1X,1P7E10.1)
413 FORMAT(1X,1P7E10.1)
414 FORMAT(1X,1P7E10.1)
415 FORMAT(1X,1P7E10.1)
416 FORMAT(1X,1P7E10.1)
417 FORMAT(1X,1P7E10.1)
418 FORMAT(1X,1P7E10.1)
419 FORMAT(1X,1P7E10.1)
420 FORMAT(1X,1P7E10.1)
421 FORMAT(1X,1P7E10.1)
422 FORMAT(1X,1P7E10.1)
423 FORMAT(1X,1P7E10.1)
424 FORMAT(1X,1P7E10.1)
425 FORMAT(1X,1P7E10.1)
426 FORMAT(1X,1P7E10.1)
427 FORMAT(1X,1P7E10.1)
428 FORMAT(1X,1P7E10.1)
429 FORMAT(1X,1P7E10.1)
430 FORMAT(1X,1P7E10.1)
431 FORMAT(1X,1P7E10.1)
432 FORMAT(1X,1P7E10.1)
433 FORMAT(1X,1P7E10.1)
434 FORMAT(1X,1P7E10.1)
435 FORMAT(1X,1P7E10.1)
436 FORMAT(1X,1P7E10.1)
437 FORMAT(1X,1P7E10.1)
438 FORMAT(1X,1P7E10.1)
439 FORMAT(1X,1P7E10.1)
440 FORMAT(1X,1P7E10.1)
441 FORMAT(1X,1P7E10.1)
442 FORMAT(1X,1P7E10.1)
443 FORMAT(1X,1P7E10.1)
444 FORMAT(1X,1P7E10.1)
445 FORMAT(1X,1P7E10.1)
446 FORMAT(1X,1P7E10.1)
447 FORMAT(1X,1P7E10.1)
448 FORMAT(1X,1P7E10.1)
449 FORMAT(1X,1P7E10.1)
450 FORMAT(1X,1P7E10.1)
451 FORMAT(1X,1P7E10.1)
452 FORMAT(1X,1P7E10.1)
453 FORMAT(1X,1P7E10.1)
454 FORMAT(1X,1P7E10.1)
455 FORMAT(1X,1P7E10.1)
456 FORMAT(1X,1P7E10.1)
457 FORMAT(1X,1P7E10.1)
458 FORMAT(1X,1P7E10.1)
459 FORMAT(1X,1P7E10.1)
460 FORMAT(1X,1P7E10.1)
461 FORMAT(1X,1P7E10.1)
462 FORMAT(1X,1P7E10.1)
463 FORMAT(1X,1P7E10.1)
464 FORMAT(1X,1P7E10.1)
465 FORMAT(1X,1P7E10.1)
466 FORMAT(1X,1P7E10.1)
467 FORMAT(1X,1P7E10.1)
468 FORMAT(1X,1P7E10.1)
469 FORMAT(1X,1P7E10.1)
470 FORMAT(1X,1P7E10.1)
```
SUBROUTINE CALCUL

115
C------UPPER-RELAXATION
AP(J,J)*AP(J,J/UPF)
B(J,J)*B(J,J+1)+B(J+1,J)
C(J,J)=C(J,J+1)+C(J+1,J)
331 CONTINUE
390 CONTINUE

120
C
CHAPTER 4 4 4 SOLUTION OF DIFFERENCE EQUATION 4 4 4 4 4
ON 400 N=1,15SWP4

125
400 CALL L1(SULV13,2,U)
R10PF
ENF
SUBROUTINE CALC

C------ CALCULATE DIFFUSION COEFFICIENTS

VISL = 0.5 * [VISL + VISL + VISL + VISL + VISL]
DS = VISL / (N + 0.5)
DV = VISL / N
GMPL = 0.5 * [VISL + VISL] / (N + 1)
RGMP = [VISL / (1. + 1.) + VISL + VISL] / (N + 1)
DRYP = [VISL / (1. + 1.) + VISL + VISL + VISL] / (N + 1)
DURYM = [VISL / (1. + 1.) + VISL + VISL + VISL] / (N + 1)
FMIC = VISL / (1. + 1.)
SUTJ = [VISL / (1. + 1.) + VISL + VISL] / (N + 1)
FHDP = FDYN + 0.5

102 CONTINUE

C------ ASSEMBLE MAIN COEFFICIENTS

CITED = AMAX1(DM,WFC1)*KNI11.0-WFNC11.0*CN
DS = AMAX1(DM,WFC11.0-WFNC11.0)*CS
AMTJ = NS/1.0-WFNC11.0
ASII = JS/1.0-WFNC11.0
AMTI = AMAX1(DM,0.5)*KNI11.0*CS
AMTI = AMAX1(DM,0.5)*KNI11.0*CS

105 CONTINUE

110 CONTINUE

CALL end

C------ PROBLEM MODIFICATIONS 2 2 2 2 2 2 2

CHAPTER 2 2 2 2 2 2 2 2 2 2 2

CALL end

CHAPTER 3 3 3 3 3 3 3 3 3 3 3

VISLVP=0.0 0
A-26

 CHAPTER 4.4.4 SOLUTION OF DIFFERENCE EQUATION 4.4.4.4.4.4

 110 DEF, J=1,N-1,450

 120 V(J+1,J), V(J+1,J+1), V(J+1,J+2) = V(J), V(J+1), V(J+2)

 130 CONTINUE

 300 CONTINUE
SUBROUTINE CALCIE 74/174 07/0 8210 12/0 65

110
CALL MODE1

120
RESOPK=0.0

125
APM(J,J)=APM(J,J)+T(I,J)*AE(I,J)+AE(I,J)*TE(I+1,J)

130
VOL=SUB1(J)*SHF(J)
SURFL=0.0
RESOR=RESOR+APM(J,J)*SURFL

135
C--------UNDERRELAXATION
APM(J,J)=APM(J,J)*MFK
SUB1(J,J)=SUB1(J,J)*MFK

140
300 CONTINUE
390 CONTINUE

C--------CHAPTEK 4 4 4 4 SOLUTION OF DIFFERENCE EQUATIONS 4 4 4 4

145
DIU 460 J=1,NSWPK

150
400 CALL LISOLVE(I,J,TE)
RETURN
END
CHAPTER 4 4 4 4 4 4
SOLUTION OF DIFFERENCE EQUATIONS 4 4 4 4 4

115
C
DO 4040 U+1,IVUPD
400 CALL LGSOL(77.5,FD)
RETURN
END

CALCFS 77
CALCFC 70
CALCFS 80
CALCFC 80
CALCFC 89
SUBROUTINE LSOLV 7/175 OPT 0 TRACE F1H 4.01528 05/19/81 12:05:45

C-----CALCULATE COEFFICIENTS OF RECURRANCE FORMULA
C
60 DO(I=1,3)DO(J=1,I)+AE(I,J)*PHI(I,J-1)+SU(I,J)
 LSOLV 21
C
60 C-----CALCULATE COEFFICIENTS OF RECURRENCE FORMULA
DO(I=1,3)DO(J=1,I)+AE(I,J)*PHI(I,J-1)+SU(I,J)
 LSOLV 22
C
60 C-----CALCULATE COEFFICIENTS OF RECURRENCE FORMULA
DO(I=1,3)DO(J=1,I)+AE(I,J)*PHI(I,J-1)+SU(I,J)
 LSOLV 23
C
60 C-----CALCULATE COEFFICIENTS OF RECURRENCE FORMULA
DO(I=1,3)DO(J=1,I)+AE(I,J)*PHI(I,J-1)+SU(I,J)
 LSOLV 24
C
60 C-----CALCULATE COEFFICIENTS OF RECURRENCE FORMULA
DO(I=1,3)DO(J=1,I)+AE(I,J)*PHI(I,J-1)+SU(I,J)
 LSOLV 25
C
60 C-----CALCULATE COEFFICIENTS OF RECURRENCE FORMULA
DO(I=1,3)DO(J=1,I)+AE(I,J)*PHI(I,J-1)+SU(I,J)
 LSOLV 26
C
60 C-----CALCULATE COEFFICIENTS OF RECURRENCE FORMULA
DO(I=1,3)DO(J=1,I)+AE(I,J)*PHI(I,J-1)+SU(I,J)
 LSOLV 27
C
60 C-----CALCULATE COEFFICIENTS OF RECURRENCE FORMULA
DO(I=1,3)DO(J=1,I)+AE(I,J)*PHI(I,J-1)+SU(I,J)
 LSOLV 28
C
60 C-----CALCULATE COEFFICIENTS OF RECURRENCE FORMULA
DO(I=1,3)DO(J=1,I)+AE(I,J)*PHI(I,J-1)+SU(I,J)
 LSOLV 29
C
60 C-----CALCULATE COEFFICIENTS OF RECURRENCE FORMULA
DO(I=1,3)DO(J=1,I)+AE(I,J)*PHI(I,J-1)+SU(I,J)
 LSOLV 30
C
60 C-----CALCULATE COEFFICIENTS OF RECURRENCE FORMULA
DO(I=1,3)DO(J=1,I)+AE(I,J)*PHI(I,J-1)+SU(I,J)
 LSOLV 31
C
60 C-----CALCULATE COEFFICIENTS OF RECURRENCE FORMULA
DO(I=1,3)DO(J=1,I)+AE(I,J)*PHI(I,J-1)+SU(I,J)
 LSOLV 32
C
60 C-----CALCULATE COEFFICIENTS OF RECURRENCE FORMULA
DO(I=1,3)DO(J=1,I)+AE(I,J)*PHI(I,J-1)+SU(I,J)
 LSOLV 33
C
60 C-----CALCULATE COEFFICIENTS OF RECURRENCE FORMULA
DO(I=1,3)DO(J=1,I)+AE(I,J)*PHI(I,J-1)+SU(I,J)
 LSOLV 34
C
60 C-----CALCULATE COEFFICIENTS OF RECURRENCE FORMULA
DO(I=1,3)DO(J=1,I)+AE(I,J)*PHI(I,J-1)+SU(I,J)
 LSOLV 35
C
60 C-----CALCULATE COEFFICIENTS OF RECURRENCE FORMULA
DO(I=1,3)DO(J=1,I)+AE(I,J)*PHI(I,J-1)+SU(I,J)
 LSOLV 36
C
60 C-----CALCULATE COEFFICIENTS OF RECURRENCE FORMULA
DO(I=1,3)DO(J=1,I)+AE(I,J)*PHI(I,J-1)+SU(I,J)
 LSOLV 37
C
60 C-----CALCULATE COEFFICIENTS OF RECURRENCE FORMULA
DO(I=1,3)DO(J=1,I)+AE(I,J)*PHI(I,J-1)+SU(I,J)
 LSOLV 38
C
60 C-----CALCULATE COEFFICIENTS OF RECURRENCE FORMULA
DO(I=1,3)DO(J=1,I)+AE(I,J)*PHI(I,J-1)+SU(I,J)
 LSOLV 39
C
60 C-----CALCULATE COEFFICIENTS OF RECURRENCE FORMULA
DO(I=1,3)DO(J=1,I)+AE(I,J)*PHI(I,J-1)+SU(I,J)
 LSOLV 40
C
60 C-----CALCULATE COEFFICIENTS OF RECURRENCE FORMULA
DO(I=1,3)DO(J=1,I)+AE(I,J)*PHI(I,J-1)+SU(I,J)
 LSOLV 41
C
60 C-----CALCULATE COEFFICIENTS OF RECURRENCE FORMULA
DO(I=1,3)DO(J=1,I)+AE(I,J)*PHI(I,J-1)+SU(I,J)
 LSOLV 42
C
60 C-----CALCULATE COEFFICIENTS OF RECURRENCE FORMULA
DO(I=1,3)DO(J=1,I)+AE(I,J)*PHI(I,J-1)+SU(I,J)
 LSOLV 43
C
60 C-----CALCULATE COEFFICIENTS OF RECURRENCE FORMULA
DO(I=1,3)DO(J=1,I)+AE(I,J)*PHI(I,J-1)+SU(I,J)
 LSOLV 44
C
60 C-----CALCULATE COEFFICIENTS OF RECURRENCE FORMULA
DO(I=1,3)DO(J=1,I)+AE(I,J)*PHI(I,J-1)+SU(I,J)
 LSOLV 45
C
60 C-----CALCULATE COEFFICIENTS OF RECURRENCE FORMULA
DO(I=1,3)DO(J=1,I)+AE(I,J)*PHI(I,J-1)+SU(I,J)
 LSOLV 46
C
60 C-----CALCULATE COEFFICIENTS OF RECURRENCE FORMULA
DO(I=1,3)DO(J=1,I)+AE(I,J)*PHI(I,J-1)+SU(I,J)
 LSOLV 47
C
60 C-----CALCULATE COEFFICIENTS OF RECURRENCE FORMULA
DO(I=1,3)DO(J=1,I)+AE(I,J)*PHI(I,J-1)+SU(I,J)
 LSOLV 48
C
60 C-----CALCULATE COEFFICIENTS OF RECURRENCE FORMULA
DO(I=1,3)DO(J=1,I)+AE(I,J)*PHI(I,J-1)+SU(I,J)
 LSOLV 49
C
60 C-----CALCULATE COEFFICIENTS OF RECURRENCE FORMULA
DO(I=1,3)DO(J=1,I)+AE(I,J)*PHI(I,J-1)+SU(I,J)
 LSOLV 50
C
60 C-----CALCULATE COEFFICIENTS OF RECURRENCE FORMULA
DO(I=1,3)DO(J=1,I)+AE(I,J)*PHI(I,J-1)+SU(I,J)
 LSOLV 51
C
60 C-----CALCULATE COEFFICIENTS OF RECURRENCE FORMULA
DO(I=1,3)DO(J=1,I)+AE(I,J)*PHI(I,J-1)+SU(I,J)
 LSOLV 52
C
60 C-----CALCULATE COEFFICIENTS OF RECURRENCE FORMULA
DO(I=1,3)DO(J=1,I)+AE(I,J)*PHI(I,J-1)+SU(I,J)
 LSOLV 53
C
60 C-----CALCULATE COEFFICIENTS OF RECURRENCE FORMULA
DO(I=1,3)DO(J=1,I)+AE(I,J)*PHI(I,J-1)+SU(I,J)
 LSOLV 54
C
60 C-----CALCULATE COEFFICIENTS OF RECURRENCE FORMULA
DO(I=1,3)DO(J=1,I)+AE(I,J)*PHI(I,J-1)+SU(I,J)
 LSOLV 55
C
60 C-----CALCULATE COEFFICIENTS OF RECURRENCE FORMULA
DO(I=1,3)DO(J=1,I)+AE(I,J)*PHI(I,J-1)+SU(I,J)
 LSOLV 56
C
60 C-----CALCULATE COEFFICIENTS OF RECURRENCE FORMULA
DO(I=1,3)DO(J=1,I)+AE(I,J)*PHI(I,J-1)+SU(I,J)
 LSOLV 57
C
60 C-----CALCULATE COEFFICIENTS OF RECURRENCE FORMULA
DO(I=1,3)DO(J=1,I)+AE(I,J)*PHI(I,J-1)+SU(I,J)
 LSOLV 58
C
60 C-----CALCULATE COEFFICIENTS OF RECURRENCE FORMULA
DO(I=1,3)DO(J=1,I)+AE(I,J)*PHI(I,J-1)+SU(I,J)
 LSOLV 59
C
60 C-----CALCULATE COEFFICIENTS OF RECURRENCE FORMULA
DO(I=1,3)DO(J=1,I)+AE(I,J)*PHI(I,J-1)+SU(I,J)
 LSOLV 60
C
60 C-----CALCULATE COEFFICIENTS OF RECURRENCE FORMULA
DO(I=1,3)DO(J=1,I)+AE(I,J)*PHI(I,J-1)+SU(I,J)
 LSOLV 61
C
60 C-----CALCULATE COEFFICIENTS OF RECURRENCE FORMULA
DO(I=1,3)DO(J=1,I)+AE(I,J)*PHI(I,J-1)+SU(I,J)
 LSOLV 62
CHAPTER 0 0 0 0 0 0 PRELIMINARIES 0 0 0 0 0 0

<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>410</td>
<td>CONTINUE</td>
</tr>
<tr>
<td>411</td>
<td>IF (J+1)/4 .EQ. 1 .AND. P THEN</td>
</tr>
<tr>
<td>412</td>
<td>J = J + 1</td>
</tr>
<tr>
<td>413</td>
<td>GOTO 410</td>
</tr>
</tbody>
</table>

Note: The code snippet appears to be a FORTRAN program segment, which seems to be dealing with array manipulations and conditional checks. The exact purpose of the program is not clear from the snippet alone.
<table>
<thead>
<tr>
<th>X</th>
<th>1.11E+05</th>
<th>3.11E+05</th>
<th>1.11E+05</th>
<th>3.11E+05</th>
<th>1.11E+05</th>
<th>3.11E+05</th>
<th>1.11E+05</th>
<th>3.11E+05</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4</td>
<td>1.11E-01</td>
<td>3.11E-01</td>
<td>1.11E-01</td>
<td>3.11E-01</td>
<td>1.11E-01</td>
<td>3.11E-01</td>
<td>1.11E-01</td>
<td>3.11E-01</td>
</tr>
<tr>
<td>1/2</td>
<td>1.11E-02</td>
<td>3.11E-02</td>
<td>1.11E-02</td>
<td>3.11E-02</td>
<td>1.11E-02</td>
<td>3.11E-02</td>
<td>1.11E-02</td>
<td>3.11E-02</td>
</tr>
<tr>
<td>3/4</td>
<td>1.11E-03</td>
<td>3.11E-03</td>
<td>1.11E-03</td>
<td>3.11E-03</td>
<td>1.11E-03</td>
<td>3.11E-03</td>
<td>1.11E-03</td>
<td>3.11E-03</td>
</tr>
</tbody>
</table>

E N T H A L P Y

<table>
<thead>
<tr>
<th>X</th>
<th>3.11E+05</th>
<th>3.11E+05</th>
<th>3.11E+05</th>
<th>3.11E+05</th>
<th>3.11E+05</th>
<th>3.11E+05</th>
<th>3.11E+05</th>
<th>3.11E+05</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4</td>
<td>1.11E+05</td>
<td>3.11E+05</td>
<td>1.11E+05</td>
<td>3.11E+05</td>
<td>1.11E+05</td>
<td>3.11E+05</td>
<td>1.11E+05</td>
<td>3.11E+05</td>
</tr>
<tr>
<td>1/2</td>
<td>1.11E+05</td>
<td>3.11E+05</td>
<td>1.11E+05</td>
<td>3.11E+05</td>
<td>1.11E+05</td>
<td>3.11E+05</td>
<td>1.11E+05</td>
<td>3.11E+05</td>
</tr>
<tr>
<td>3/4</td>
<td>1.11E+05</td>
<td>3.11E+05</td>
<td>1.11E+05</td>
<td>3.11E+05</td>
<td>1.11E+05</td>
<td>3.11E+05</td>
<td>1.11E+05</td>
<td>3.11E+05</td>
</tr>
</tbody>
</table>

Note: The table and text are not clearly visible due to the image quality. The content seems to be related to thermodynamic properties, possibly enthalpy or similar calculations, but the exact values and context are unclear from the image.
<table>
<thead>
<tr>
<th>NO.</th>
<th>X/H</th>
<th>HEAT FLUX</th>
<th>HEAT TRANSFER COLF.</th>
<th>HUSTEF 'NUMER'</th>
<th>NORM. VOL. NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.743E-01</td>
<td>1.130E+03</td>
<td>0.343E+02</td>
<td>0.693E+02</td>
<td>0.528E+00</td>
</tr>
<tr>
<td>3</td>
<td>0.223E+00</td>
<td>1.170E+03</td>
<td>0.690E+02</td>
<td>0.690E+02</td>
<td>0.670E+00</td>
</tr>
<tr>
<td>4</td>
<td>0.331E+00</td>
<td>2.91E+03</td>
<td>0.101E+03</td>
<td>0.922E+02</td>
<td>0.993E+00</td>
</tr>
<tr>
<td>5</td>
<td>0.594E+00</td>
<td>0.726E+03</td>
<td>0.133E+03</td>
<td>0.121E+03</td>
<td>0.129E+01</td>
</tr>
<tr>
<td>6</td>
<td>0.911E+00</td>
<td>0.579E+03</td>
<td>0.169E+03</td>
<td>0.154E+03</td>
<td>0.164E+01</td>
</tr>
<tr>
<td>7</td>
<td>0.119E+01</td>
<td>1.173E+03</td>
<td>0.206E+03</td>
<td>0.184E+03</td>
<td>0.206E+01</td>
</tr>
<tr>
<td>8</td>
<td>0.163E+01</td>
<td>1.101E+04</td>
<td>0.249E+03</td>
<td>0.277E+03</td>
<td>0.242E+01</td>
</tr>
<tr>
<td>9</td>
<td>0.223E+01</td>
<td>1.130E+04</td>
<td>0.294E+04</td>
<td>0.266E+03</td>
<td>0.326E+01</td>
</tr>
<tr>
<td>10</td>
<td>0.297E+01</td>
<td>0.167E+04</td>
<td>0.337E+03</td>
<td>0.307E+03</td>
<td>0.328E+01</td>
</tr>
<tr>
<td>11</td>
<td>0.386E+01</td>
<td>1.189E+04</td>
<td>0.365E+03</td>
<td>0.334E+03</td>
<td>0.355E+01</td>
</tr>
<tr>
<td>12</td>
<td>0.505E+01</td>
<td>1.192E+04</td>
<td>0.379E+03</td>
<td>0.345E+03</td>
<td>0.366E+01</td>
</tr>
<tr>
<td>13</td>
<td>0.654E+01</td>
<td>1.186E+04</td>
<td>0.377E+03</td>
<td>0.343E+03</td>
<td>0.366E+01</td>
</tr>
<tr>
<td>14</td>
<td>0.832E+01</td>
<td>0.199E+04</td>
<td>0.355E+03</td>
<td>0.334E+03</td>
<td>0.355E+01</td>
</tr>
<tr>
<td>15</td>
<td>0.104E+02</td>
<td>1.178E+04</td>
<td>0.317E+03</td>
<td>0.280E+03</td>
<td>0.308E+01</td>
</tr>
<tr>
<td>16</td>
<td>0.129E+02</td>
<td>1.172E+04</td>
<td>0.277E+03</td>
<td>0.239E+03</td>
<td>0.269E+01</td>
</tr>
<tr>
<td>17</td>
<td>0.159E+02</td>
<td>2.101E+04</td>
<td>0.245E+03</td>
<td>0.221E+03</td>
<td>0.240E+01</td>
</tr>
<tr>
<td>18</td>
<td>0.193E+02</td>
<td>0.242E+04</td>
<td>0.223E+03</td>
<td>0.203E+03</td>
<td>0.217E+01</td>
</tr>
<tr>
<td>19</td>
<td>0.230E+02</td>
<td>0.254E+04</td>
<td>0.206E+03</td>
<td>0.188E+03</td>
<td>0.200E+01</td>
</tr>
<tr>
<td>20</td>
<td>0.275E+02</td>
<td>0.319E+04</td>
<td>0.192E+03</td>
<td>0.175E+03</td>
<td>0.187E+01</td>
</tr>
<tr>
<td>21</td>
<td>0.322E+02</td>
<td>0.330E+04</td>
<td>0.178E+03</td>
<td>0.162E+03</td>
<td>0.173E+01</td>
</tr>
<tr>
<td>22</td>
<td>0.371E+02</td>
<td>0.328E+04</td>
<td>0.163E+03</td>
<td>0.146E+03</td>
<td>0.158E+01</td>
</tr>
<tr>
<td>23</td>
<td>0.431E+02</td>
<td>0.366E+04</td>
<td>0.146E+03</td>
<td>0.139E+03</td>
<td>0.144E+01</td>
</tr>
<tr>
<td>24</td>
<td>0.505E+02</td>
<td>0.287E+04</td>
<td>0.137E+03</td>
<td>0.125E+03</td>
<td>0.133E+01</td>
</tr>
<tr>
<td>25</td>
<td>0.594E+02</td>
<td>0.275E+04</td>
<td>0.129E+03</td>
<td>0.118E+03</td>
<td>0.126E+01</td>
</tr>
<tr>
<td>26</td>
<td>0.683E+02</td>
<td>0.273E+04</td>
<td>0.126E+03</td>
<td>0.119E+03</td>
<td>0.127E+01</td>
</tr>
<tr>
<td>27</td>
<td>0.743E+02</td>
<td>0.271E+04</td>
<td>0.126E+03</td>
<td>0.119E+03</td>
<td>0.122E+01</td>
</tr>
</tbody>
</table>
REFERENCES

One copy except as noted

Mr. M. Keith Ellingsworth
Materials and Mechanics Programs
Office of Naval Research
800 N. Quincy Street
Arlington, VA 22203

Defense Documentation Center
Building 5, Cameron Station
Alexandria, VA 22314

Technical Information Division
Naval Research Laboratory
4555 Overlook Avenue SW
Washington, DC 20375

Professor Paul Marto
Department of Mechanical Engineering
US Naval Post Graduate School
Monterey, CA 93940

Professor Bruce Rankin
Naval Systems Engineering
US Naval Academy
Annapolis, MD 21402

Office of Naval Research Eastern/
Central Regional Office
Bldg 114, Section D
666 Summer Street
Boston, Massachusetts 02210

Office of Naval Research Branch Office
536 South Clark Street
Chicago, IL 60605

Office of Naval Research
Western Regional Office
1030 East Green Street
Pasadena, CA 91106

Mr. Charles Miller, Code 05R13
Crystal Plaza #6
Naval Sea Systems Command
Washington DC 20362
Professor Arthur E. Bergles
Mechanical Engineering Department
Iowa State University
Ames, Iowa 50011

Professor Kenneth J. Bell
School of Chemical Engineering
Oklahoma State University
Stillwater, Oklahoma 74074

Dr. James Lorenz
Component Technology Division
Argonne National Laboratory
9700 South Cass Avenue
Argonne, Illinois 60439

Dr. David M. Eissenberg
Oak Ridge National Laboratory
P.O. Box Y, Bldg. 9204-1, MS-O
Oak Ridge, Tennessee 37830

Dr. Jerry Taborek
Technical Director
Heat Transfer Research Institute
1000 South Fremont Avenue
Alhambra, CA 91802

Dr. Simion Kuo
Chief, Energy Systems
Energy Research Laboratory
United Technology Research Center
East Hartford, Connecticut 06108

Mr. Jack Yampolsky
General Atomic Company
P.O. Box 81508
San Diego, CA 92138

Mr. Ted Carnavos
Noranda Metal Industries, Inc.
Prospect Drive
Newtown, Connecticut 06470

Dr. Ramesh K. Shah
Harrison Radiator Division
General Motors Corporation
Lockport, New York 14094

Dr. Ravi K. Sakhuja
Manager, Advanced Programs
Thermo Electron Corporation
101 First Avenue
Waltham, Massachusetts 02154
Mr. Robert W. Perkins
Turbotec Products, Inc.
533 Downey Drive
New Britain, Connecticut 06051

Dr. Keith E. Starner
York Division, Borg-Warner Corp.
P.O. Box 1592
York, PA 17405

Mr. Peter Wishart
C-E Power Systems
Combustion Engineering, Inc.
Windsor, Connecticut 06095

Mr. Henry W. Braum
Manager, Condenser Engineering Department
Delaval
Front Street
Florence, New Jersey 08518

Dr. Thomas Rabas
Steam Turbine-Generator Technical Operations Division
Westinghouse Electric Corporation
Lester Branch
P.O. Box 9175 N2
Philadelphia, PA 19113

Dr. Al Wood
Director, Mechanics Program
Office of Naval Research
800 N. Quincy Street
Arlington, VA 22203

Mr. Walter Ritz
Code 033C
Naval Ships Systems Engineering Station
Philadelphia, Pa 19112

Mr. Richard F. Wyvill
Code 5232
NAV #4
Naval Sea Systems Command
Washington, DC 20362

Mr. Doug Marron
Code 5231
NAV #4
Naval Sea Systems Command
Washington, DC 20362
Mr. T. M. Herder
Bldg. 46462
General Electric Co.
1100 Western Avenue
Lynn, MA 01910

Mr. Ed Strain
AlResearch of Arizona
Dept. 76, Mail Stop 301-2
P. O. Box 5217
Phoenix, AZ 85010
(Tel. 602-267-2797)

Mr. Norm McIntire
Solar Turbines International
2200 Pacific Highway
San Diego, CA 92101

Prof. Daryl Metzger
Chairman, Mechanical and Energy Systems Engineering
Arizona State University
Tempe, AZ 85281