EVALUATION OF THE SURFACE CUTOFF MODEL IN THE USA CODE

C.L. Yen
T.L. Geers
J.A. DeRuntz

Lockheed Palo Alto Research Laboratory
3251 Hanover Street
Palo Alto, California 94304

15 September 1980

CONTRACT No. DNA 001-78-C-0029

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

THIS WORK SPONSORED BY THE DEFENSE NUCLEAR AGENCY
UNDER RDT&E RMSS CODE B344080464 V990AXSF50127 H2590D.

Prepared for
Director
DEFENSE NUCLEAR AGENCY
Washington, D. C. 20305
Destroy this report when it is no longer needed. Do not return to sender.

PLEASE NOTIFY THE DEFENSE NUCLEAR AGENCY, ATTN: STTI, WASHINGTON, D.C. 20305, IF YOUR ADDRESS IS INCORRECT, IF YOU WISH TO BE DELETED FROM THE DISTRIBUTION LIST, OR IF THE ADDRESSEE IS NO LONGER EMPLOYED BY YOUR ORGANIZATION.
This report documents a brief study performed to evaluate the incident-wave surface-cutoff model that is used in the Underwater Shock Analysis (USA) Code. Comparisons have been made between USA predictions of pressure and fluid-particle velocity and experimental results obtained with fluid-particle velocity meters and pressure transducers. For the time span encompassing shock-wave excitation, the correlations are good.
SUMMARY

This report documents a brief study performed to evaluate the incident-wave surface-cutoff model that is used in the Underwater Shock Analysis (USA) Code. Comparisons have been made between USA predictions of pressure and fluid-particle velocity and experimental results obtained with fluid-particle velocity meters and pressure transducers. For the time span encompassing shock-wave excitation, the correlations are good.
The authors express their appreciation to John Gordon of UERD for generously providing the experimental data for this study. The study was performed for the Strategic Structures Division of DNA, with Dr. Eugene Sevin as Chief.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>PREFACE</td>
<td>2</td>
</tr>
<tr>
<td>LIST OF ILLUSTRATIONS</td>
<td>4</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>5</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>17</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>Test configuration for UERD Shot 8459</td>
</tr>
<tr>
<td>2</td>
<td>Inferring infinite-fluid pressure history from experimental data at point 1</td>
</tr>
<tr>
<td>3</td>
<td>Calculated and measured pressure histories at point 1</td>
</tr>
<tr>
<td>4</td>
<td>Calculated and measured horizontal fluid-particle-velocity histories at point 1</td>
</tr>
<tr>
<td>5</td>
<td>Calculated and measured vertical fluid-particle-velocity histories at point 1</td>
</tr>
<tr>
<td>6</td>
<td>Calculated and measured pressure histories at point 2</td>
</tr>
<tr>
<td>7</td>
<td>Calculated and measured horizontal fluid-particle-velocity histories at point 2</td>
</tr>
<tr>
<td>8</td>
<td>Calculated and measured vertical fluid-particle-velocity histories at point 2</td>
</tr>
<tr>
<td>9</td>
<td>Calculated and measured pressure histories at point 3</td>
</tr>
<tr>
<td>10</td>
<td>Calculated and measured horizontal fluid-particle-velocity histories at point 3</td>
</tr>
<tr>
<td>11</td>
<td>Calculated and measured vertical fluid-particle-velocity histories at point 3</td>
</tr>
</tbody>
</table>
DISCUSSION

The fluid-structure interaction equations solved by the Underwater Shock Analysis (USA) Code [1] rely not only upon the incident-wave pressure history but the associated fluid-particle velocity as well. Hence, it is important that the change in direction of the fluid-particle-velocity vector that occurs for a near-surface shock wave is adequately treated in the code. To that end, an analytical model of the bulk cavitation has been constructed for USA that fully accounts for such direction changes [1]. The modest study described here compares the USA model predictions with test results that have been provided by the Underwater Explosions Research Division of DTNSRDC [2].

A test-configuration diagram for Shot 8459 under the UERD Project "Sub Shock Motions" is shown in Figure 1. The USA computations required an inferred infinite-fluid pressure history at Point 1 obtained from the measured pressure history; this is shown in Figure 2. With the infinite-fluid pressure history, the USA Code was used to calculate actual pressure and fluid-particle-velocity histories at Points 1, 2, and 3. These are compared with the corresponding measured histories in Figures 3-11.

Figure 3 shows excellent correlation between calculated and measured pressure histories at Point 1. The correlation between the corresponding horizontal fluid-particle-velocity histories in Figure 4 is almost as good, with the only discrepancies being caused by the delay in response of the fluid-particle-velocity meters due to their finite length. Much poorer correlation is observed in Figure 5, which pertains to vertical fluid-particle velocities. This is caused by the fact that the USA Code ignores the effects of gravity, which are small during the time spans of interest.

Figures 6-11, which pertain to Points 2 and 3, exhibit the same characteristics observed in Figures 3-5, with the exception that the direct-wave component of the vertical-velocity response at Point 3 is predicted quite accurately by the USA Code. Finally, note that the late time effects shown in the figures (i.e., those for $t > 105$ msec in Figures 3-5, those for $t > 120$ msec in Figures 6-8, and those for $t > 100$ msec in Figures 9-11) are not treated by the incident-wave cutoff model.

Based upon the agreement between the USA Code predictions and the UERD test results, we conclude that the incident-wave surface-cutoff model developed for the USA Code fully and accurately simulates the pressure and fluid-particle-velocity fields associated with shock waves generated by near-surface underwater explosions.
Figure 1. Test Configuration for UERD Shot 8459
Figure 2. Inferred Infinite-Fluid Pressure History from Experimental Data at Point 1
Figure 3. Calculated and Measured Pressure Histories at Point 1
Figure 4. Calculated and Measured Horizontal Fluid-Particle-Velocity Histories at Point 1
Figure 5. Calculated and Measured Vertical Fluid-Particle-Velocity Histories at Point 1
Figure 6. Calculated and Measured Pressure Histories at Point 2
Figure 7. Calculated and Measured Horizontal Fluid-Particle-Velocity Histories at Point 2
Figure 8. Calculated and Measured Vertical Fluid-Particle-Velocity Histories at Point 2
Figure 9. Calculated and Measured Pressure Histories at Point 3
Figure 10. Calculated and Measured Horizontal Fluid-Particle-Velocity Histories at Point 3
Figure 11. Calculated and Measured Vertical Fluid-Particle-Velocity Histories at Point 3
REFERENCES

2 J. Gordon, private communication.
DISTRIBUTION LIST

DEPARTMENT OF DEFENSE

Assistant to the Secretary of Defense
Atomic Energy
ATTN: Executive Asst

Defense Intelligence Agency
ATTN: DB-4C1
ATTN: DT-2
ATTN: DB-4C2
ATTN: DT-1C
ATTN: DB-4C
ATTN: ROS-3A
ATTN: DB-4C2, C. Wiehle
ATTN: DB-4C3

Defense Nuclear Agency
ATTN: STSP
2 cy ATTN: SPAS
2 cy ATTN: SPSS
4 cy ATTN: TTTL

Defense Technical Info Ctr
12 cy ATTN: DD

Field Command
Defense Nuclear Agency
ATTN: FCT
ATTN: FCP
ATTN: FCTMOF

Field Command Test Directorate
Defense Nuclear Agency
ATTN: FCTC

Interservice Nuclear Weapons Sch
ATTN: TV

Joint Strat Tgt Planning Staff
ATTN: ULTW, Carpenter
ATTN: JJPS
ATTN: DOAT
ATTN: NRI, STINFO Library
ATTN: JU
ATTN: UJW-2

NATO School (SHAPE)
ATTN: U.S. Documents Off

Under Secretary of Defense for Rsch & Engrg
ATTN: Strategic & Space Systems (OS)

DEPARTMENT OF THE ARMY

BMD Advanced Tech Ctr
Department of the Army
ATTN: ICRIHABH-X
ATTN: ATIC-T

Construction Engineering Rsch Lab
Department of the Army
ATTN: CER-501-L

DEPARTMENT OF THE ARMY [Continued]

Chief of Engineers
Department of the Army
ATTN: DACEN-RDL
ATTN: DACEN-RME-C

Deputy Chief of Staff for Ops & Plans
Department of the Army
ATTN: DAMO-NC

Deputy Chief of Staff for Rsch Dev & Acq
Department of the Army
ATTN: DAMA

Engineer Studies Ctr
Department of the Army
ATTN: DBRN-UES, LTC Hatch

Harry Diamond Labs
Department of the Army
ATTN: DELHD-I-TL
ATTN: DELHD-N-P

U.S. Army Concepts Analysis Agency
ATTN: CSSA-ADL

U.S. Army Engineer Ctr
ATTN: ATZA

U.S. Army Engineer Sch
ATTN: ATZA-OTE-ADM
ATTN: ATZA-CDC

U.S. Army Engr Waterways Exper Sta
ATTN: F. Brown
ATTN: J. Zelasko
ATTN: WESSO, J. Jackson
ATTN: J. Strange
ATTN: WESSS, J. Ballard
ATTN: WESSE, L. Ingram
ATTN: Lib
ATTN: WESSA, W. Flathau
ATTN: R. Whalin

U.S. Army Foreign Science & Tech Ctr
ATTN: DRKST-SD

U.S. Army Mat Cmd Proj Mnger for Nuc Munitions
ATTN: DRCPM-NUC

U.S. Army Mat & Mech Rsch Ctr
ATTN: DRXMS-TE, R. Shea
ATTN: Tech Lib

U.S. Army Materiel Dev & Readiness Cmd
ATTN: DRDCE-D. L. Flynn
ATTN: DRXAM-TL

U.S. Army Missile Cmd
ATTN: DRDMMI-REX
ATTN: RSIC

U.S. Army Nuc & Cml Agcy
ATTN: Lib
DEPARTMENT OF THE ARMY (Continued)

U.S. Army War College
ATTN: Lib

U.S. Military Academy
Department of the Army
ATTN: Doc Lib

DEPARTMENT OF THE NAVY

David Taylor Naval Ship R&D Ctr
ATTN: Code 174
ATTN: Code 1700, W. Murray
ATTN: Code 1844
ATTN: Code L42-3
ATTN: Code 172
ATTN: Code 2740
ATTN: Code 11
ATTN: Code 173
ATTN: Code 1740.4
ATTN: Code 1770.1
ATTN: Code 1740.1
ATTN: Code 1740.5
ATTN: Code 1740.6

Marine Corps
Department of the Navy
ATTN: POM

Marine Corp Dev & Ed Cmd
Department of the Navy
ATTN: D091, J. Hartmeady

Naval Civil Engrg Lab
ATTN: Code L51, J. Crawford

Naval Coastal Systems Lab
ATTN: Code 741

Naval Electronic Systems Cmd
ATTN: PME 117-21

Naval Electronics Systems Cmd
ATTN: Commander

Naval Explosive Ord Disposal Fac
ATTN: Code 504, J. Petrousky

Naval Facilities Engrg Cmd
ATTN: Code 048

Naval Material Cmd
ATTN: MAT 087-22

Naval Ocean Systems Ctr
ATTN: Code 4471
ATTN: Code 013, E. Cooper

Naval Postgraduate Sch
ATTN: Code 69NE
ATTN: Code 1424, Lib

Naval Surface Weapons Ctr
ATTN: W. Wishard
ATTN: Tech Lib & Info Svcs Br

DEPARTMENT OF THE NAVY (Continued)

Naval Research Lab
ATTN: Code 8440, G. D'Hara
ATTN: Code 8445
ATTN: Code 8401
ATTN: Code 8403, R. Belsham
ATTN: Code 6380
ATTN: Code 8100
ATTN: Code 8406
ATTN: Code 8404, H. Pusey
ATTN: Code 2627

Naval Sea Systems Ctr
ATTN: SEA-3221
ATTN: SEA-09653
ATTN: SEA-033
ATTN: SEA-062, R. Lane
ATTN: SEA-0351
ATTN: SEA-323
ATTN: SEA-99216
ATTN: SEA-08

Naval Surface Weapons Ctr
ATTN: Code R13
ATTN: Code U401, M. Kleinerman
ATTN: Code F74
ATTN: Code 210
ATTN: Code F31
ATTN: Code R14
ATTN: Code R10

Naval War College
ATTN: Code E-11, Tech Svcs

Naval Weapons Ctr
ATTN: Code 766, C. Austin
ATTN: Code 233
ATTN: 3263, J. Bowen

Naval Weapons Evaluation Fac
ATTN: R. Hughes
ATTN: Code 10
ATTN: G. Binns
ATTN: Code 210

Naval Weapons Support Ctr
ATTN: Code 70553, D. Moore

Naval Underwater Systems Ctr
ATTN: Code 401, J. Kalinowski
ATTN: Code 401, J. Patel

Naval Underwater Systems Ctr
ATTN: Code 363, P. Paranzino
ATTN: Code EM

Office of Naval Research
ATTN: Code 474, N. Perrone

Strategic Systems Proj Ofc
Department of the Navy
ATTN: NSP-272
ATTN: NSP-273
ATTN: NSP-43
DEPARTMENT OF THE NAVY
Office of the Chief of Naval Ops
ATTN: OP 982
ATTN: OP 93G
ATTN: OP 65
ATTN: OP 654C1, R. Placesi
ATTN: OP 981N1
ATTN: OP 981
ATTN: OP 21
ATTN: OP 957E
ATTN: OP 987
ATTN: OP 37
ATTN: OP 982E, M. Lenzini
ATTN: OP 951
ATTN: OP 225
ATTN: OP 600DS
ATTN: OP 953
ATTN: OP 09078
ATTN: OP 223

DEPARTMENT OF THE AIR FORCE
Air Force Institute of Technology
ATTN: Commander
ATTN: Lib

Air Force Ofc of Scientific Rsch
ATTN: NA, B. Wolfson

Air Force Systems Cmd
ATTN: DLI
ATTN: R. Cross

Air Force Weapons Lab
Air Force Systems Command
ATTN: NTED
ATTN: SUL
ATTN: NTE, M. Plamondon
ATTN: NTED-G, R. Henny
ATTN: NTED-G, S. Melzer

Assistant Chief of Staff
Intelligence
Department of the Air Force
ATTN: IN

Ballistic Missile Ofc
Air Force Systems Cmd
ATTN: DEB

Deputy Chief of Staff
Research, Development & Acq
Department of the Air Force
ATTN: R. Steere
ATTN: AFROQI

Deputy Chief of Staff
Logistics & Energy
Department of the Air Force
ATTN: LEVE

Foreign Technology Div
Air Force Systems Command
ATTN: TTD
ATTN: NIIS, Lib
ATTN: SDBG
ATTN: SDBF, S. Spring

DEPARTMENT OF THE AIR FORCE (Continued)

Rome Air Development Ctr, Air Force Sys Cmd
ATTN: Commander
ATTN: RBEES, R. Mair
ATTN: TSLL

Strategic Air Command
Department of the Air Force
ATTN: NRI, STINFO Lib

United States Air Force Academy
ATTN: DFSEM, W. Fluhr

DEPARTMENT OF ENERGY
Department of Energy
Department of Energy
Nevada Ops Ofc
ATTN: CTID

Department of Energy
ATTN: OMA/RB&T

Department of Energy
ATTN: Mail & Recs for Tech Lib

OTHER GOVERNMENT AGENCIES
Central Intelligence Agency
ATTN: OSWR/NED
ATTN: OSR/SE/F

Department of the Interior
U. S. Geological Survey
ATTN: D. Roddy

Federal Emergency Mgt Agency
National Sec Ofc Mitigation & Rsch
ATTN: Mitigation & Rsch Div

NASA
Ames Research Ctr
ATTN: R. Jackson
ATTN: F. Nichols

U. S. Nuclear Regulatory Com
ATTN: R. Whipp for Div Sec, L. Shao

DEPARTMENT OF ENERGY CONTRACTORS
Los Alamos National Lab
ATTN: R. Sanford
ATTN: G. Spellman
ATTN: R. Whitaker
ATTN: A. Davis
ATTN: MS 364
ATTN: M/S63A, T. Dowler
ATTN: MS 670, J. Hopkins

Oak Ridge National Lab
ATTN: Civil Def Res Proj
ATTN: Central Rsch Proj

Sandia Labs
Livermore Lab
ATTN: Lib & Scty Class Div
ATTN: Lib & Scty Class Div

21
DEPARTMENT OF DEFENSE CONTRACTORS (Continued)

TRW Defense & Space Sys Group
ATTN: P. Bhutta
ATTN: W. Lipner
ATTN: A. Narevsky
ATTN: B. Jortner
ATTN: B. Sussman
ATTN: A. Feldman
ATTN: Tech Info Ctr

Weidlinger Assoc. Consulting Engrs
ATTN: J. McCormick
ATTN: M. Baron
ATTN: J. Isenberg

ATTN: A. Narevsky