THE EFFECTS OF CERTAIN BACKGROUND NOISES ON THE PERFORMANCE OF **ETC(U)**

SEP 80 R S ELSTER

UNCLASSIFIED NP554-80-010
The Effects of Certain Background Noises on the Performance of a Voice Recognition System

by

Richard S. Elster

September 1980

Approved for public release; distribution unlimited.

Prepared for:
Naval Postgraduate School, Monterey, CA 93940
This research was supported and funded by the Naval Electronic Systems Command.

Richard S. Elster, Professor

Reviewed by: Carl R. Jones, Chairman Dept. of Administrative Sciences

Released by: William M. Tolles, Dean of Research
This report describes an experiment concerning the influence of different levels of background noise on the performance of a voice recognition system. Three levels of noise were used: 38, 65, and 75dBA.

The results suggest that if the device is trained at 38, 65, or 75dBA, performance will be satisfactory in 38 or 65dBA environments, while to be used in a 75dBA environment, the device should...
be trained in a 65 or 75dBA environment.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. EXECUTIVE SUMMARY</td>
<td>4</td>
</tr>
<tr>
<td>II. INTRODUCTION</td>
<td>4</td>
</tr>
<tr>
<td>A. PROBLEM</td>
<td>4</td>
</tr>
<tr>
<td>B. OBJECTIVE</td>
<td>4</td>
</tr>
<tr>
<td>C. BACKGROUND</td>
<td>5</td>
</tr>
<tr>
<td>III. APPROACH</td>
<td>6</td>
</tr>
<tr>
<td>A. EXPERIMENTAL SETTING</td>
<td>6</td>
</tr>
<tr>
<td>B. INDEPENDENT VARIABLES</td>
<td>6</td>
</tr>
<tr>
<td>C. DEPENDENT VARIABLES</td>
<td>8</td>
</tr>
<tr>
<td>D. EXPERIMENTAL DESIGN</td>
<td>8</td>
</tr>
<tr>
<td>E. TRAINING AND TESTING</td>
<td>9</td>
</tr>
<tr>
<td>IV. RESULTS</td>
<td>11</td>
</tr>
<tr>
<td>A. NUMBER OF ERRORS</td>
<td>11</td>
</tr>
<tr>
<td>B. ANALYSIS OF VARIANCE</td>
<td>11</td>
</tr>
<tr>
<td>C. SUMMARY OF THE RESULTS OF THE ANALYSIS OF VARIANCE</td>
<td>18</td>
</tr>
<tr>
<td>V. DISCUSSION AND CONCLUSIONS</td>
<td>19</td>
</tr>
<tr>
<td>VI. POSSIBLE FUTURE RESEARCH</td>
<td>21</td>
</tr>
<tr>
<td>FOOTNOTES</td>
<td>23</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>25</td>
</tr>
<tr>
<td>APPENDIX I</td>
<td>26</td>
</tr>
<tr>
<td>APPENDIX II</td>
<td>27</td>
</tr>
<tr>
<td>APPENDIX III</td>
<td>29</td>
</tr>
<tr>
<td>APPENDIX IV</td>
<td>30</td>
</tr>
<tr>
<td>INITIAL DISTRIBUTION LIST</td>
<td>31</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

1. Conceptual Design of the Experiment-------------------------------10
2. Mean Number of Recognition Errors by Testing and Training Noise Levels in dBA-----------------------------16
3. Mean Number of Recognition Device Errors by Test and Training Noise Levels in Microbars-----------------------17

Accession For

NTIS CADA &I	✓
DTIC TAB	
Unannounced Justification	

By Distribution/ Availability Codes

<table>
<thead>
<tr>
<th>Dist</th>
<th>Avail and/or Special</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF TABLES

1. Errors by Training Level, Testing Level and by Subject——12
2. Summary of the Analysis of Variance of the Voice Recognition Errors——13
3. Scheffé's Confidence Intervals for Differences Between Pairs of Testing Condition Means——14
FOREWORD

This investigation was sponsored by Mr. C. C. Stout, NAVELEX, Code 330. The work was performed by the investigator at the Naval Postgraduate School, Monterey, California.

THE EFFECTS OF CERTAIN BACKGROUND NOISES
ON THE PERFORMANCE OF A VOICE RECOGNITION SYSTEM

I. EXECUTIVE SUMMARY

In this experiment the performance of a voice recognition device was examined as a function of background noise conditions. A subject trained the recognizer in one background noise condition and used it in three background noise conditions.

The most important findings were that if the voice recognition device is to be used in a 75dBA conversational noise environment, then training the system in a 65 or 75dBA conversational environment will yield fewer errors than when it is trained in a 38dBA white noise environment; while if one trains in a 38, 65, or 75dBA, performance will be satisfactory when used in 38 or 65dBA environments.

II. INTRODUCTION

A. Problem Voice recognition equipment is being considered for use in various military command and control functions. The effects, if any, of background noises upon the performance of a command and control system using voice recognition equipment are largely unknown. Before voice recognition equipment is used in operational command and control systems, the relationships between system performance and background noise must be understood.

B. Objective The objective of the experiment described in this report was to determine the effect of background noise,
including human conversation, on the performance of a voice recognition system.

C. **Background** Technology allowing the use of voice input to control machines has recently been developed. Although in relative infancy, this technology has yielded equipment that can be trained to recognize a set of utterances from nearly continuous speech. Applications and experiments using voice recognition equipment are burgeoning. Poock (1980), for instance, reported on the use of voice input to operate a distributed computer network. Also in 1980, the Department of Defense (DoD) sponsored a conference on voice interactive systems (Voice Interactive Systems: Applications and Payoffs, 1980). The DoD conference featured three days of presentations covering a number of ways in which voice technology can be used in man-machine systems. A presentation at the DoD conference by Thomas G. Drennen discussed the effect of attack/fighter cockpit noise on speech characteristics and on voice recognition system performance. Drennen reported that the voice recognition system he used performed more accurately under extremely high (106 or 114dB) noise levels when the training had been under similar noise levels (114dB) than when the training had been done at low (10dB) noise level. At testing levels of 10 or 101dB, however, recognition accuracy was higher if the training had been done in a 10 rather than a 114dB environment.
Drennen's noise environment represented cockpit conditions under different aircraft power settings. In many command and control applications, background voice messages and conversations are present and might influence the performance of voice recognition devices. It is important to determine if Drennen's findings extend to environments in which the background noise is human speech and to less extreme dB levels of background noise.

III. APPROACH

A. Experimental Setting The experiment was conducted in a soundproof chamber. A model T600 Threshold Technology, Inc. voice recognition device was used with a Shure model SM10 microphone. With added memory modules, up to 256 two-second voice utterances could have been used. In this experiment, 50 utterances were used. A maximum utterance length of two seconds was a limitation imposed by the voice recognition device. For more details on the operation of voice recognition equipment, see Poock (1980).

B. Independent Variables Two independent variables were investigated in this experiment: first, the level of background noise during the training of the model T600 voice recognition device; second, the level of background noise during the testing of the voice recognition device. The training noise level and the testing noise level independent variables had the same three levels of noise: ambient noise (an average of about 15dBA), conversational noise at an average of 65dBA,
and conversational noise at an average of 75dBA. For both the 65dBA and 75dBA average noise levels, the sound levels varied from the average value by no more than ±7dBA. Sound levels were measured at the microphone connected to the voice recognition device.

The levels of background noise were measured using the dBA-weighting network. The A-weighting network is very good at giving a quick estimate of the interference of noise upon speech (MIL-HDBK-759, p. 358). When dBA levels of 90-95dBA and greater were tried, the voice recognizer tended to emit a nearly continuous string of extra outputs even though no one was speaking to it. Therefore, background noises of that level were not considered for use in this experiment. Speech interference levels (SIL) are often used to estimate maximum permissible levels of background noises (Bragdon, p. 79). The SIL can be determined from the dBA-weighted network (Bragdon, p. 79). Tables are available (see, for instance, the Human Engineering Guide to Equipment Design, p. 193) demonstrating the relationship between speech level (normal, raised, very loud, and shouting), distance between talker and listener, and level of background noise that barely permits reliable conversation. For example, for reliable conversation when the speaker is one foot from the listener, the background noise should not exceed 75dBA. A background noise of 65dBA or less should permit reliable conversation when the speaker and listener are three feet apart. Bragdon (1971, p. 79)
reports that when background noise approaches 80dBA, hearing accuracy declines. Bragdon (1971, p. 80) also describes a survey which found that 71dBA was a maximum acceptable level for background noise for voice communications. At noise levels greater than that, people reported their job performance was adversely impacted. In conclusion, the three levels of background sound used in this experiment (38dBA, 65dBA, and 75dBA) should have covered the range of background noise intensities likely to be found in many command and control environments.

C. Dependent Variables. Three types of voice recognition system errors were recorded and added together to form the error measure used in the analysis of results of the experiment.

- Wrong outputs: the recognizer gave the wrong response to the subject’s utterance.
- "Beeps": the Model T600 Threshold Technology, Inc. voice recognition device emitted an audible beep when it did not recognize an utterance.
- Extra outputs: the voice recognition device emitted a response when the subject had not emitted an utterance. These outputs could occur when the microphone was open either before or after an utterance.

The dependent variable used in the analysis was formed by summing together the number of errors made by the voice recognition device in each subject x test condition combination.

D. Experimental Design. This was a two-factor experiment with repeated measures on one factor (Winer, p. 300); Subjects were nested within one factor. Each subject trained the voice.
recognition device under one of the noise conditions and tested
the voice recognition device under each of the three noise con-
ditions. Six subjects were randomly assigned to each of the
three training conditions. The ordering of presentation of
the test conditions was done such that each test condition
appeared an equal number of times in first, second, and third
place for each training condition. Figure 1 portrays the de-
sign of the experiment.

E. Training and Testing. Each subject trained the voice
recognition device to the same list of 50 utterances. (A copy
of the list of utterances is provided in Appendix I).

During the training phase, the subject would repeat each
utterance 10 times. Following the 10 repetitions of an utter-
ance, the device was deemed to be trained if the utterance
was recognized correctly two out of three times. Training
with an utterance continued until the two-out-of three cri-
terion was satisfied.

During the testing phase of the experiment, the subject
was instructed to read each word only once (under each test
background noise condition). An error was counted if the voice
recognizer emitted the wrong output, "beeped", or emitted an
output when the subject had not spoken one of the utterances.

A copy of the instructions given to the subjects is
given in Appendix II. The instruction sheet also includes
prompts to be followed by the experimenter.
CONCEPTUAL DESIGN OF THE EXPERIMENT

<table>
<thead>
<tr>
<th>Subject #</th>
<th>Subject #</th>
<th>Subject #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Training Noise Level (dBA)</th>
<th>38</th>
<th>65</th>
<th>75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject #</td>
<td>1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Testing Noise Level (dBA)</td>
<td></td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EXAMPLE:
Recognition errors with subj #18 when device was trained at 75 dBA and tested at 75 dBA.

Each subject trained the device in one dBA level, but tested device in all three dBA levels.
IV RESULTS

A. Number of Errors. Table 1 presents the number of errors, and mean number of errors for the different experimental conditions. (Appendix III presents the data by type and number of errors, by subject.)

B. Analysis of Variance. An analysis of variance was made of the error data shown in Table 1. Table 2 presents the results of that analysis.

The only F-statistic significant in Table 2 is the one for test noise level. Because certain assumptions about the subjects' covariance matrices must be met or the sampling distribution of the F statistic will not be the F distribution, a conservative test was also applied to the Test Noise Level variable. Winer (pp. 305-306) describes a conservative test developed by Greenhouse and Geisser. For that test, the degrees of freedom to be used in this experiment for the critical value of the F statistic for the Test Noise Level are (1,15). Using those degrees of freedom, the F statistic for Test Noise Level is still statistically significant (p < .01).

Scheffé's confidence intervals (Winer, p. 85) were used to make a posteriori comparisons among the three testing noise condition means. The confidence intervals are presented in Table 3.

The results in Table 3 indicate (because zero is outside the intervals) that the number of errors made by the voice
TABLE 1

Errors by Training Level, Testing Level, and by Subject

<table>
<thead>
<tr>
<th>Noise Level in Training</th>
<th>Overall Mean for a Testing Noise Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>65dBA</td>
</tr>
<tr>
<td>SUBJECT</td>
<td>2</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>26dBA</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>$\bar{x}_{11} = 1.16$</td>
</tr>
<tr>
<td>65dBA</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>$\bar{x}_{21} = 1.0$</td>
</tr>
<tr>
<td>75dBA</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>$\bar{x}_{31} = 10.5$</td>
</tr>
</tbody>
</table>

Overall Mean
For a Training Noise Level

| Overall Mean | $\bar{x} = 4.22$ | $\bar{x} = 3.50$ | $\bar{x} = 2.83$ | $\bar{x} = 3.52$ | Grand Mean |
TABLE 2

Summary of the Analysis of Variance of the Voice Recognition Errors

<table>
<thead>
<tr>
<th>Source of Variance</th>
<th>df</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Subjects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Training Noise Level</td>
<td>2</td>
<td>8.68</td>
<td>.62</td>
</tr>
<tr>
<td>Subjects within Training Level</td>
<td>15</td>
<td>13.87</td>
<td></td>
</tr>
<tr>
<td>Within Subjects</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test Noise Level</td>
<td>2</td>
<td>253.68</td>
<td>17.51*</td>
</tr>
<tr>
<td>Test Level x Training Noise Level</td>
<td>4</td>
<td>15.52</td>
<td>1.07</td>
</tr>
<tr>
<td>Test Level x Subjects within training</td>
<td>30</td>
<td>14.48</td>
<td></td>
</tr>
<tr>
<td>level</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* p << .01.
TABLE 3
Scheffe’s Confidence Intervals for Differences Between Pairs of Testing Condition Means

<table>
<thead>
<tr>
<th>Contrast</th>
<th>Difference Between the Sample Means</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{\mu}{38} - \bar{\mu}{65}$</td>
<td>$1.72 - 1.00 = .72$</td>
<td>$C \ [-2.54 \leq \bar{\mu}{38} - \bar{\mu}{65} \leq 3.98] = .95$</td>
</tr>
<tr>
<td>$\bar{\mu}{75} - \bar{\mu}{38}$</td>
<td>$7.83 - 1.72 = 6.11$</td>
<td>$C \ [2.85 \leq \bar{\mu}{75} - \bar{\mu}{38} \leq 9.37] = .95$</td>
</tr>
<tr>
<td>$\bar{\mu}{75} - \bar{\mu}{65}$</td>
<td>$7.83 - 1.00 = 6.83$</td>
<td>$C \ [3.57 \leq \bar{\mu}{75} - \bar{\mu}{65} \leq 10.09] = .95$</td>
</tr>
</tbody>
</table>

14
recognition device under the 75dBA testing noise level was significantly greater than the number of errors made under either the 65dBA or the 38dBA testing levels. The confidence interval in Table 3 for the 38dBA vs. 65dBA contrast shows (because zero is inside the interval) that the numbers of errors made under those two testing conditions were not significantly different.

Figure 2 provides plots of the average number of errors made by the recognition device for each test noise level at each of the training noise levels. In Figure 2, the noise levels are reported in terms of decibels, while in Figure 3 the sound pressure levels are presented in terms of microbars. The average threshold for human hearing is .0002 microbars which equals .0002 dynes/cm² or 10⁻⁶ watts/cm² (Woodworth and Schlosberg, p. 325). The microbar levels were found by solving equation 1 for P when SPL (sound pressure level) was 38, 65, or 75dB, and $P₀=.0002$.

$$\text{Equation 1 } \text{SPL} = 20 \log_{10} \frac{P}{P₀}$$

The lines graphed on Figure 2 and 3 have rather different appearances because of the logarithmic relationship between the decibel scale and sound pressures.

Statistically significant ($p \leq .05$) differences between pairs of training x testing condition mean numbers of errors are indicated on Figure 2. Scheffé's confidence intervals were used with $α = .05$ to contrast pairs of test x training condition means.³,⁴,⁵
Figure 2.
MEAN NUMBER OF RECOGNITION DEVICE ERRORS BY TEST AND TRAINING NOISE LEVELS IN dBA.

Significant a posteriori
Contrasts (p ≤ .05):

\[a_1 \text{ vs. } a_2 \]
\[a_1 \text{ vs. } a_2 \]
\[a_1 \text{ vs. } a_3 \]
\[a_1 \text{ vs. } a_3 \]

Tested at 75 dBA

Overall 75 dBA
Test Condition Mean

Overall 38 dBA
Test Condition Mean

Overall 65 dBA
Test Condition Mean

Mean Number of Errors When Tested

Average Training dBA
Figure 3.
MEAN NUMBER OF RECOGNITION DEVICE ERRORS BY TEST AND TRAINING NOISE LEVELS IN MICROBARS.
(.0002 MICROBARS = THRESHOLD OF HEARING)

Average Sound Pressure (Microbars) During Training.
Summary of the Results of the Analysis of Variance.

The results in Table 2 showed that only the F-test for test noise level was statistically significant (p<.01). Scheffe's contrasts (Table 3) showed that the average number of recognition errors was different (p<.05) under the 75dBA testing condition from the average number of recognition errors under either the 80dBA or 65dBA testing condition. These significant differences are shown in Figure 2. Scheffe's contrasts were also used to contrast pairs of test means within and between training conditions. None of the contrasts between pairs of means from different training and different noise level conditions was statistically significant (α = .05). Within training conditions, the only pair of means that was significantly different (α = .05) was within the training at 75dBA condition: The means from testing at 75dBA and 65dBA (when trained at 80dBA) were significantly different. Additionally, within the 80dBA training condition, the overall average of the 80dBA and 65dBA average numbers of errors was significantly less than the average number of errors made under the 75dBA testing condition.

Using the semiparadigm of Table 1, the joint mean of cells 31 and 22 was not significantly different from the mean of cell 31. In other words, the average of the two high points on the 75dBA testing line in Figure 2 does not differ significantly (α = .01) from the low point on the 65dBA line.
A second analysis of variance was conducted using a slightly different dependent variable from the one used in the analysis reported in the preceding paragraph. In the second analysis of variance, the type of error labeled extra outputs was excluded from the data, leaving only wrong outputs and "beeps" in the dependent variable. This was done because different microphone utilization practices, or use of a better sound cancelling microphone, might reduce or eliminate extra outputs. The data and the analysis of variance table for this dependent variable excluding extra outputs are given in Appendix IV. Suffice it to say, removing the extra output errors did not change the results of the analysis of variance.

V DISCUSSION AND CONCLUSIONS

The results from the experiment reported here indicate that only the noise condition during testing influenced the number of errors made by the Model T600 Threshold Technology, Inc. voice recognition device. Unlike the results obtained by Drennen, no interaction was found between testing and training background noise levels and number of errors made by the voice recognition device. It should be noted that the sound pressure levels used in this experiment (38, 65, or 75dBA) did not approach the sound intensity levels used by Drennen (10, 101, 106, or 114dB). Drennen (reference note 2) does not consider the results of this experiment to be in conflict with the results he obtained, because he believes the interaction between testing and training background noises...
will not be evident until dB levels of around 100 or more are used.

The results of this experiment indicate that care must be exercised if the Model T600 Threshold Technology, Inc. voice recognition device and Shure SM10 microphone are used in an environment with an average conversational background of 75dBA. Overall, (averaged over the three training noise levels) this experiment indicates a higher error in a 75dBA background noise environment than in either the 38 or 65dBA levels. However, a posteriori tests of the mean numbers of errors showed the only significant difference between the 75dBA test condition line and the other two lines in Figure 2 was at the 38dBA training condition. The null hypothesis of no difference in testing performance at 38, 65 or 75dBA cannot be rejected if the device is trained in either a 65, or 75dBA environment. In brief, the results from this experiment indicate that if the Model T600 Threshold Technology, Inc. voice recognition device and Shure SM10 microphone are to be used in a 75dBA conversational background noise environment, then training in a 65 or 75dBA conversational noise environment will yield fewer errors than will training in a 38dBA white noise environment.

There was no significant difference between the average number of errors made in the 65dBA testing condition versus the 38dBA testing condition. The 38 and 65dBA lines in Figures 2 and 9 represent the mean number of errors obtained from the
experiment, but the difference between pairs of 38 and 65dBA means are not statistically significant — despite what might be concluded from casually viewing those lines in Figures 2 and 3.

VI POSSIBLE FUTURE RESEARCH

Many other possible experiments were suggested during the course of the experiment described in this report. The following are suggestions for future experiments.

- The effects of more extreme dB levels of background noise on performance of the speech recognizer should be determined.
- The effects of background sounds that include utterances to which the recognizer has been trained should be examined.
- The effects of different kinds of background noises, e.g., impact sounds, should be studied.
- The effects of different background noise levels when different noise cancelling microphones are used, and the effects of different adjustments to the recognizer should be determined.
- The effects of differences among users should be studied. (It was noted during this experiment that one subject had difficulty raising his voice to a level comparable to, or above that of, the 75dBA background noise.)
- The effects of training of users should be ascertained. Can users be trained to perform in ways that will maintain system performance under different background noise conditions?
- Experiments should be conducted in typical command and control types of rooms, compartments, etc., as sound reverberations in such locations may influence the performance of a voice recognition system. (The experiment described in this report was conducted in a soundproof room, which also allowed few sound reflections within the room.)

- An experiment should be conducted to determine if training in a low dBA (e.g., 38dBA) conversational environment (if such a low dBA conversational environment can be developed) has the same effect on performance of the recognizer as does training in a low intensity white noise environment.
Speech recognition devices are "trained" to recognize selected utterances made by a person. The device is put in a learning mode, and the person repeats the particular utterance a number of times. The device can then be tested to determine if it recognizes the utterance.

The conversational noises were recorded as about twenty people in a room talked informally. They were unaware they were being recorded. For purposes of the experiment, a several minute segment of the original recording was re-recorded to yield a thirty minute length tape. The result of this process was a fairly constant hub-bub of voices, with recognizable words, but no recognizable conversations. The desired level was attained by adjusting gain on an amplifier.

Within the same training noise level, the confidence interval for contrasts between a pair of mean was:

\[C = \sqrt{\left(\frac{(I-1)}{(F_{(2,5)}/(I(I-1)(K-1)))} \times \frac{2MS_{(test level \times Subs \times (Train. Level))}}{K} \right)} \]

\[C = \sqrt{8 \times 2.27 \times \frac{2}{6} \times 14.48} = 9.35. \]

The confidence interval for contrasting pairs of means from different training and different testing conditions was:

\[C = \sqrt{\left(\frac{(I-1)}{(F_{(1,45)}/(I-1))} \times 2 \left\{ \frac{(J-1)MS_{(BC(A))} + MS_{(C(A))}}{JK} \right\} \right)} \]

\[C = \sqrt{(9-1) \times 4.06 \times 2 \left(\frac{2 \times 14.48 + 13.87}{3 \times 6} \right)} = 10.11 \]

FOOTNOTES

1. Speech recognition devices are "trained" to recognize selected utterances made by a person. The device is put in a learning mode, and the person repeats the particular utterance a number of times. The device can then be tested to determine if it recognizes the utterance.

2. The conversational noises were recorded as about twenty people in a room talked informally. They were unaware they were being recorded. For purposes of the experiment, a several minute segment of the original recording was re-recorded to yield a thirty minute length tape. The result of this process was a fairly constant hub-bub of voices, with recognizable words, but no recognizable conversations. The desired level was attained by adjusting gain on an amplifier.

3. Within the same training noise level, the confidence interval for contrasts between a pair of mean was:

\[C = \sqrt{(I-1) \times \left\{ \frac{F_{(2,5)}}{(I(I-1)(K-1))} \right\} \times \frac{2MS_{(test level \times Subs \times (Train. Level))}}{K} } \]

\[C = \sqrt{8 \times 2.27 \times \frac{2}{6} \times 14.48} = 9.35. \]

4. The confidence interval for contrasting pairs of means from different training and different testing conditions was:

\[C = \sqrt{(I-1) \times \left\{ \frac{F_{(1,45)}}{(I-1)} \times 2 \left\{ \frac{(J-1)MS_{(BC(A))} + MS_{(C(A))}}{J} \right\} \right\} } \]

\[C = \sqrt{(9-1) \times 4.06 \times 2 \left(\frac{2 \times 14.48 + 13.87}{3 \times 6} \right)} = 10.11 \]
The degrees of freedom for the denominator of the F statistic were computed (Reference note 1.) from:

\[
DF_D = \left\{ \frac{2(J-1)}{JK} \times MS_{BC(A)} + \frac{2MS_{C(A)}}{JK} \right\}^2
\]

\[
\left[\frac{2(J-1)}{JK} \times MS_{BC(A)} \right]^2 + \frac{2}{JK} \times MS_{C(A)} \right\}^2
\]

\[
DF_D = 44.9 \rightarrow 45
\]

The confidence interval for contrasting the combined average of the number of errors in cell 11 (see Table 1) and cell 12 with the average number of errors in cell 13 was:

\[
C = \sqrt{(IJ-1) \left\{ F_{.95} \left[(IJ-1), I(J-1)(K-1) \right]\right\} \times MS_{BC(A)} \left[\frac{(2)}{K} \times \frac{(-1)}{K} \times \frac{(-1)}{K} \right]}
\]

\[
C = 16.62
\]
REFERENCES

REFERENCE NOTES

1. Collier, Raymond O. Lecture notes from Educational Psychology 218 and 219, University of Minnesota, spring and fall academic quarters, 1964.

APPENDIX I

The 50 Utterances Used in the Experiment

<table>
<thead>
<tr>
<th>Word #</th>
<th>Utterance</th>
<th>Word #</th>
<th>Utterance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>GRID</td>
<td>25</td>
<td>FIRE</td>
</tr>
<tr>
<td>1</td>
<td>LAUNCH</td>
<td>26</td>
<td>TIME</td>
</tr>
<tr>
<td>2</td>
<td>COURSE</td>
<td>27</td>
<td>MAP</td>
</tr>
<tr>
<td>3</td>
<td>GOLF</td>
<td>28</td>
<td>SCOPE</td>
</tr>
<tr>
<td>4</td>
<td>SPEED</td>
<td>29</td>
<td>MAINE</td>
</tr>
<tr>
<td>5</td>
<td>MESSAGE</td>
<td>30</td>
<td>NEUTRAL</td>
</tr>
<tr>
<td>6</td>
<td>ORDERS</td>
<td>31</td>
<td>REFUEL</td>
</tr>
<tr>
<td>7</td>
<td>PLATFORM</td>
<td>32</td>
<td>WHISKEY</td>
</tr>
<tr>
<td>8</td>
<td>SENIOR</td>
<td>33</td>
<td>LIMA</td>
</tr>
<tr>
<td>9</td>
<td>MISSILE</td>
<td>34</td>
<td>LOGOUT</td>
</tr>
<tr>
<td>10</td>
<td>SATELLITE</td>
<td>35</td>
<td>TRACK UNKNOWN</td>
</tr>
<tr>
<td>11</td>
<td>NEGATIVE</td>
<td>36</td>
<td>LONGITUDE</td>
</tr>
<tr>
<td>12</td>
<td>SUBMARINE</td>
<td>37</td>
<td>TORPEDO</td>
</tr>
<tr>
<td>13</td>
<td>ENEMY</td>
<td>38</td>
<td>BLUE FORCE ONE</td>
</tr>
<tr>
<td>14</td>
<td>EXECUTE</td>
<td>39</td>
<td>ROMEO</td>
</tr>
<tr>
<td>15</td>
<td>SAN FRANCISCO</td>
<td>40</td>
<td>FLIGHT CONTROLLER</td>
</tr>
<tr>
<td>16</td>
<td>HUMAN FACTORS</td>
<td>41</td>
<td>SEA OF JAPAN</td>
</tr>
<tr>
<td>17</td>
<td>UNITED STATES</td>
<td>42</td>
<td>HONOLULU</td>
</tr>
<tr>
<td>18</td>
<td>CLOSE OUT CHARLIE</td>
<td>43</td>
<td>ADVANTAGES</td>
</tr>
<tr>
<td>19</td>
<td>COLORADO</td>
<td>44</td>
<td>CONTINUOUS</td>
</tr>
<tr>
<td>20</td>
<td>CONNECT TO CHARLIE</td>
<td>45</td>
<td>TASK FORCE COMMANDER</td>
</tr>
<tr>
<td>21</td>
<td>NORTH ATLANTIC MAP</td>
<td>46</td>
<td>NORTH CAROLINA</td>
</tr>
<tr>
<td>22</td>
<td>COMMAND AND CONTROL</td>
<td>47</td>
<td>BEARING AND DISTANCE</td>
</tr>
<tr>
<td>23</td>
<td>CONTINUOUS SPEECH</td>
<td>48</td>
<td>PLOT ALL SUBMARINES</td>
</tr>
<tr>
<td>24</td>
<td>VOICE TECHNOLOGY</td>
<td>49</td>
<td>UNITED AIR LINES</td>
</tr>
</tbody>
</table>
APPENDIX II

EXPERIMENTAL PROTOCOL AND SUBJECTS' INSTRUCTIONS

THIS IS AN EXPERIMENT DESIGNED TO EVALUATE SOME VOICE RECOGNITION EQUIPMENT. I WISH TO EMPHASIZE THAT YOU ARE NOT BEING EVALUATED — IT IS THE EQUIPMENT THAT IS BEING EVALUATED.

THERE ARE TWO DISTINCT PHASES TO THIS EXPERIMENT. IN THE FIRST PHASE, YOU WILL TRAIN THE EQUIPMENT TO RECOGNIZE 50 UTTERANCES — AN UTTERANCE BEING A SINGLE WORD OR SEVERAL WORDS. THE TRAINING MAY BE DONE UNDER A BACKGROUND NOISE CONDITION. IN THE SECOND PHASE OF THIS EXPERIMENT, WE WILL TEST THE MACHINE TO SEE IF IT RECOGNIZES YOUR VOICE. THE TEST WILL BE CONDUCTED UNDER THREE DIFFERENT BACKGROUND NOISE CONDITIONS. TO SUMMARIZE, WE ARE EVALUATING THE VOICE RECOGNITION EQUIPMENT BY HAVING YOU TRAIN IT TO RECOGNIZE 50 UTTERANCES. THE TRAINING WILL BE DONE UNDER ONE BACKGROUND NOISE CONDITION, AND THE TESTING WILL BE DONE UNDER THREE BACKGROUND NOISE CONDITIONS.

DURING THE TRAINING PHASE, THE UTTERANCES WILL APPEAR ONE AT A TIME ON THE SCREEN. THE UTTERANCES ARE ALSO ON THIS PAPER. YOU WILL BE DIRECTED TO REPEAT EACH UTTERANCE 10 TIMES. ATTEMPT TO VARY THE WAY YOU PRONOUNCE AND GIVE EMPHASIS TO DIFFERENT PARTS OF EACH UTTERANCE. BECAUSE YOU ARE TO REPEAT EACH UTTERANCE 10 TIMES, YOU MAY FIND IT USEFUL TO COUNT THE REPITITIONS ON YOUR FINGERS, OR TO USE CLUSTERS OF, SAY, 3 UTTERANCES TO ALLOW YOU TO KEEP TRACK OF THE NUMBER OF TIMES YOU HAVE MADE AN UTTERANCE.

TRY TO KEEP THE MICROPHONE IMMEDIATELY IN FRONT OF YOUR LIPS AND CLOSE TO YOUR LIPS. THERE IS AN ON-OFF SWITCH FOR THE MICROPHONE. WHEN YOU ARE NOT TRAINING THE MACHINE, THE SWITCH SHOULD BE OFF. REMEMBER TO VARY THE WAY YOU PRONOUNCE AND PHRASE THE UTTERANCES.
APPENDIX II

The 50 utterances are on this list. We'll simply train them in the order they appear on the list. We'll check them off as we go along.

We'll now have you train the utterances. (First I'll turn on some background noise.)

Train utterances (Test following the training of each word. Requires two-out-of-three recognition accuracy.)

You have now finished the most time consuming segment of the experiment. The remainder of the experiment will go rather quickly.

We'll now test the machine's ability to recognize your utterances. You'll be asked to read out-loud the 50 utterances three times — each time under a different background noise condition.

After the background noise begins, make sure you have the microphone switch turned on, and then read through the list of 50 utterances. Pause several seconds after each utterance, and I may ask you to pause even longer if I get behind in recording errors made by the equipment.

First test

Please read the 50 utterances.

We'll now repeat the procedure under a different background noise condition.

Second test

Please read the 50 utterances.

We're now ready for the last test.

Third test

Please read the 50 utterances.
APPENDIX III

Recognition Errors by Training and Testing Conditions, and by Subject

<table>
<thead>
<tr>
<th>Training Noise Level</th>
<th>38dB</th>
<th>38dB</th>
<th>38dB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>38dB</td>
<td>38dB</td>
<td>38dB</td>
</tr>
<tr>
<td>Subject</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38dB</td>
<td>ØE</td>
<td>ØE</td>
<td>2E</td>
</tr>
<tr>
<td>38dB</td>
<td>ØB</td>
<td>ØB</td>
<td>ØB</td>
</tr>
<tr>
<td>38dB</td>
<td>ØE</td>
<td>ØE</td>
<td>ØE</td>
</tr>
<tr>
<td>38dB</td>
<td>ØB</td>
<td>ØB</td>
<td>ØB</td>
</tr>
<tr>
<td>38dB</td>
<td>ØE</td>
<td>ØE</td>
<td>ØE</td>
</tr>
<tr>
<td>38dB</td>
<td>1B</td>
<td>1E</td>
<td>2E</td>
</tr>
<tr>
<td>38dB</td>
<td>7E</td>
<td>2E</td>
<td>3E</td>
</tr>
<tr>
<td>38dB</td>
<td>ØE</td>
<td>8B</td>
<td>ØB</td>
</tr>
<tr>
<td>38dB</td>
<td>1B</td>
<td>1B</td>
<td>ØB</td>
</tr>
<tr>
<td>38dB</td>
<td>3+</td>
<td>1+</td>
<td>4+</td>
</tr>
<tr>
<td>38dB</td>
<td>5+</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

E = Wrong Output
R = Reep
+ = Extra Output
APPENDIX IV
Errors (wrong outputs & "beeps") by Training Level, Testing Level, and by Subject

<table>
<thead>
<tr>
<th>Training Noise Level (dBA)</th>
<th>38</th>
<th>65</th>
<th>75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject 1</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>38</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>65</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>75</td>
<td>6</td>
<td>24</td>
<td>4</td>
</tr>
<tr>
<td>Overall Mean For a Training Noise Level</td>
<td>4.05</td>
<td>3.22</td>
<td>2.44</td>
</tr>
</tbody>
</table>

Summary of the Analysis of Variance

<table>
<thead>
<tr>
<th>Source of Variance</th>
<th>dF</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Subjects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Training Noise Level</td>
<td>17</td>
<td>11.69</td>
<td>1.17</td>
</tr>
<tr>
<td>Subjects within Training Level</td>
<td>15</td>
<td>9.96</td>
<td>-</td>
</tr>
<tr>
<td>Within Subjects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test Noise Level</td>
<td>36</td>
<td>193.05</td>
<td>17.37*</td>
</tr>
<tr>
<td>Test Level x Training Noise Level</td>
<td>4</td>
<td>19.39</td>
<td>1.74</td>
</tr>
<tr>
<td>Test Level x Subjects within Training Level</td>
<td>30</td>
<td>11.11</td>
<td>-</td>
</tr>
</tbody>
</table>

* p << .01.
<table>
<thead>
<tr>
<th>No.</th>
<th>Copies</th>
<th>Initial Distribution List</th>
</tr>
</thead>
</table>
| 1. | 2 | Defense Technical Information Center
 Cameron Station
 Alexandria, VA 22314 |
| 2. | 2 | Library, Code 0142
 Naval Postgraduate School
 Monterey, CA 93940 |
| 3. | 1 | Library, Code 55
 Naval Postgraduate School
 Monterey, CA 93940 |
| 4. | 1 | Office of Research Admin.
 Code 012A
 Naval Postgraduate School
 Monterey, CA 93940 |
| 5. | 50 | Naval Postgraduate School
 Monterey, CA 93940
 ATTN: J. Arima, Code 54AA
 R. Elster, Code 54EA
 W. Moroney, Code 55MP
 D. Neil, Code 55NI
 G. Poock, Code 55PK |
| 6. | 1 | Thomas Brendgord
 American Sterilizer Company
 2424 West 23rd St.
 Erie, PA 16152 |
| 7. | 1 | Donald L. Parks
 Crew Systems Technology
 Boeing Commercial Airplane Co.
 P.O. Box 3707
 MS 47-08
 Seattle, WA 98124 |
| 8. | 1 | DIPL. Ing. Hartmut Mutschler
 Wissenschaftl. Mitarbeiter
 Fraunhofer-Institute Fur
 Informations-Und Datenverarbeitung
 Rintheimer Strasse 19
 D-7500 Karlsruhe 1
 West Germany |
9. J. Mike Byrd
General Dynamics
Mail Zone 8227-I
P.O. Box 85106
San Diego, CA 92138

10. Robert L. Starky
Nuclear Power Generation Division
Babcock and Wilcox
P.O. Box 1260
Lynchburg, VA 24505

11. Barry Drake
Human Factors
ITT
Great Eastern House
Edinburgh Way
Harlow, Essex
England

12. Kenneth C. Bice
Texas Instruments
P.O. Box 2909
MS 2201
Austin, TX 78769

13. Walt Goede
Consultant
31051 Hawksmoor Drive
Rancho Palos Verdes, CA 90274

14. H. Rudy Ramsey
ITT
1000 Oronoque Lane
Stratford, CT 06497

15. Ivan Belyea
Lear Siegler, Inc.
4141 Eastern Avenue S.E.
MS 128
Grand Rapids, MI 49508

16. C.E. (Ned) Wilkins
MTS-MAN-MACHINE INTERFACE
System Design Dept.
TRW
One Space Park
Redondo Beach, CA 90278
17. Matthew F. Carroll
TRW
Systems Analysis Dept.
MS: 75-1900
One Space Park
Redondo Beach, CA 90278

18. R. H. Cochrane
Eng. Mgr-Human Factors
AT&T Long Lines
Room 4C154
Bedminster, N.J. 07921

19. Roger L. Kuhn
Director-Ergonomics
Health Services
Industrial Relations Staff
General Motors Corp.
3044 West Grand Blvd.
Detroit, MI 48202

20. Jeffrey E. Miller
Northrop Corp.
Electronics Div.
2301 West 120th St.
Hawthorne, CA 90250

21. Michael L. Schneider
Sperry UNIVAC
Computer Scientist
P.O. Box 500
Blue Bell, PA 19424

22. Richard N. Armstrong
U.S. Army Human Eng. Lab
Box 476
Fort Rucker, AL 36362

23. Gayle L. Berry
Industrial and Systems Eng
Ohio State University
1971 Neil Avenue
Columbus, OH 43210

24. David J. Cochran
Industrial Engineering
University of Nebraska-Lincoln
Lincoln, NE 68588

25. Chris Hale
SRL-Human Factors Eng
2800 Indian Ripple Road
Dayton, OH 45440
26. Aaron Marcus
Comp Sci and Appl Math Dept
Lawrence Berkely Lab
University of California
Bldg 50B Room 2238
Berkeley, CA 94720

27. Larry C. Lamb
Harris Corp
MS 22/2419
P.O. Box 37
Melbourne, FL 32901

28. Rodney Elden
Mgmt Consultant
5 Middle Road
Bronxville, N.Y. 10708

29. Ing. L. Van Breda
Defence and Civil Inst.
of Environ. Medicine
P.O. Box 2000
1133 Sheppard Avenue West
Downsview, Ontario
Canada M3M 3B9

30. Carl Rosengrant
Code 8141
NOSC
San Diego, CA 92152

31. Nancy Woo
R 84-17
Merck and Co.
Box 2000
Rahway, NJ 07065

32. E. L. Wiener
239-3
NASA
Moffett Field, CA 94035

33. Anthony Bessacini
Code 3522
NUSC
Newport, RI 02840

34. Bruno Beek
RADC/IRAA
Griffiss AFB
Rome, NY 13441
35. John F. Boehm
DIRNSA ATTN: R542
Fort Meade, MD 20755

36. R. Breaux
Code N-711
NAVTRAEDOUTPCEN
Orlando, FL 32813

37. CDR Paul Chatelier
OUSD R&E
Room 3D129
Pentagon
Washington, D.C. 20301

38. Ralph Cleveland
NFMSO
Code 9333
Mechanicsburg, PA 17055

39. Clay Coler
Mail Stop 23902
NASA
Moffett Field, CA 94035

40. Dianne Davis
NUSC
Code 3522
Newport, RI 02840

41. Edward DeGregario
NUSC
Code 3522
Newport, RI 02840

42. Tice DeYoung
U.S. Army Engineer Topographic
Lab Research Institute
Fort Belvoir, CA 22060

43. Joe Dickinson
U.S. Army Applied Tech Lab
Fort Eustis, VA 23662

44. Harold C. Glass
U.S. Postal Lab
11711 Parklawn Drive
Rockville, MD 29852
45. Henry Halff
Code 458
Office of Naval Research
Arlington, VA 22217

46. Lt. Steve Harris
6C21
NADC
Warminster, PA 18974

47. Warren G. Lewis
NOSC
Code 8231
San Diego, CA 92152

48. John T. Masterson
U.S. Postal Lab
Rockville, MD 20852

49. Don McKechnie
AFAMRL
Wright Patterson AFB, OH 45433

50. Thomas J. Moore
AFAMRL/BBA
Wright Patterson AFB, OH 45433

51. CAPT. Vince Mortimer
AFAMRL/BBM
Wright Patterson AFB, OH 45433

52. James Mosko
Acoustical Sciences Div.
NAMRL
NAS
Pensacola, FL 32504

53. CAPT. Leslie K. Scofield
Directorate of Training
U.S. Army Signal Center
Fort Gordon, GA 30905

54. C. Skriver
6021
NADC
Warminster, PA 18974

55. S. Nils Straatveit
NUSC
Code 317
New London, CT 06320
56. Leahmond Tyre
PLTMATSUPOFFICE
Code 9333
Mechanicsburg, PA 17055

57. Eric Werkowitz
AFFDL/PGR
Wright Patterson AFB, OH 45433

58. T. Weiner
Code 4043
NADFC
Warminster, PA 18974

59. Lt. Jeff Woodard
FADC/IRAA
Griffiss AFB
Rome, NY 13441

60. Irv Alderman
ART
5001 Eisenhower Avenue
Alexandria, VA 22333

61. John Phillips
Code 7232
NOSC
San Diego, CA 92152

62. Wayne Lea
889 Sanford Court
Santa Barbara, CA 93111

63. Frank Deckelman
Code 330
NAVELEX
2511 Jefferson Davis Highway
Arlington, VA 20360

64. Bruno Witte
Code 8302
NOSC
San Diego, CA 92152

65. William Dejka
Code 8302
NOSC
San Diego, CA 92152

66. LCDR J. Dietzler
ARPA-IPTO
1400 Wilson Blvd.
Arlington, VA 22209
<table>
<thead>
<tr>
<th></th>
<th>Name</th>
<th>Address</th>
<th>City, State, ZIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>67.</td>
<td>Richard Pew</td>
<td>BBN 50 Moulton Street</td>
<td>Cambridge, MA 20138</td>
</tr>
<tr>
<td>68.</td>
<td>Tom Imperato</td>
<td>5325 Wilshire Blvd. Suite 205</td>
<td>Los Angeles, CA 90036</td>
</tr>
<tr>
<td>70.</td>
<td>M. Tolcott</td>
<td>Office of Naval Research, Code 455</td>
<td>800 North Quincy Street, Arlington, VA 22217</td>
</tr>
<tr>
<td>71.</td>
<td>G. Malecki</td>
<td>Office of Naval Research, Code 455</td>
<td>800 North Quincy Street, Arlington, VA 22217</td>
</tr>
<tr>
<td>72.</td>
<td>N. Greenfield</td>
<td>BBN 50 Moulton Street</td>
<td>Cambridge, MA 20138</td>
</tr>
<tr>
<td>73.</td>
<td>R. Bisbey</td>
<td>USC-ISI Information Sciences Inst., 4676 Admiralty Way</td>
<td>Marina Del Rey, CA 90291</td>
</tr>
<tr>
<td>74.</td>
<td>R. Kolb</td>
<td>NOSC Code 824</td>
<td>San Diego, CA 92152</td>
</tr>
<tr>
<td>75.</td>
<td>CDR R. Meinhold</td>
<td>CINCPACFLT Box 6</td>
<td>Pearl Harbor, HI 96860</td>
</tr>
<tr>
<td>76.</td>
<td>Daniel Sagalowicz</td>
<td>SPI AI Center 39 Ravenswood Avenue</td>
<td>Menlo Park, CA 94025</td>
</tr>
</tbody>
</table>
77. Russ Hammond
SAI
1911 N. Fort Myer Drive
Suite 1200
Arlington, VA 22209

78. Stu Parsons
19740 Via Escuela Drive
Saratoga, CA 95070

79. Don Chaffin
Industrial Eng. Dept.
University of Michigan
Ann Arbor, MI 48104

80. Walt Hancock
Industrial Eng. Dept.
University of Michigan
Ann Arbor, MI 48104

81. Dennis McCall
NOSC
Code 8242
San Diego, CA 92152

82. Marvin Denicoff
Office of Naval Research
Code 437
800 N. Quincy Street
Arlington, VA 22217

83. John Schill
NOSC
Code 8123
San Diego, CA 92152

84. H. Morgan
Wharton School
University of Pennsylvania
Room W-83
Dietrich Hall
Philadelphia, PA 19104

85. Dan Schutzer
NAVELEX
PME 108
2511 Jefferson Davis Highway
Washington, D.C. 20360

86. R. Kahn
ARPA-IPTO
1400 Wilson Blvd.
Arlington, VA 22209