NATIONAL DAM SAFETY PROGRAM. MEAD RESERVOIR DAM (INVENTORY NUMB-ETC(U))
AUG 81 6 KOCH
DACW51-79-C-0001
UNCLASSIFIED
Phase I Inspection Report

Mead Reservoir Dam
Lake Champlain Basin, Clinton County, N.Y.

Inventory No. 237

Pertinent Information:

- **Type of Report & Period Covered:** Phase I Inspection Report
- **Performing Org. Report Number:**
- **Contract or Grant Number:** DACW51-79-C-0411
- **Program Element, Project, Task Area & Work Unit Numbers:** 46
- **Report Date:** 26 August 1981
- **Number of Pages:** 2
- **Security Class. (of This Report):** UNCLASSIFIED
- **Distribution Statement (of this Report):** Approved for public release; Distribution unlimited.
- **Supplementary Notes:** Original contains color plates: All DTIC reproductions will be in black and white.
- **Key Words:**
 - National Dam Safety Program
 - Visual Inspection
 - Hydrology, Structural Stability

Abstract:

This report provides information and analysis on the physical condition of the dam as of the report date. Information and analysis are based on visual inspection of the dam by the performing organization.

Visual inspection of this dam did not reveal conditions which constitute an immediate hazard to human life or property. However, the dam has some deficiencies which require further engineering investigations.
An area of concentrated seepage was noted at the downstream toe of the embankment. This area was approximately in line with the concrete gate house. Seepage was emerging at a rate estimated to be 10 to 20 gallons per minute, while only one area of concentrated seepage was noted, the entire area beyond the downstream toe was wet and swampy. Water was flowing out of the hillside in several areas immediately downstream of the embankment-right abutment contact.

The structural stability analysis performed for the spillway section indicates that safety factors are below recommended values for all conditions studied. The sliding safety factors for severe loading conditions, such as ice loading or flood flows, indicate that the section would be unstable if subjected to these loads.

It is recommended that within 3 months of the date of notification of the owner, investigations into the seepage and structural stability problems should be commenced. Remedial measures which are required based on these investigations should be completed within 18 months.

The hydrologic/hydraulic analyses performed indicate that the outflows from all storms exceeding 54% of the Probable Maximum Flood (PMF) will result in flow over the emergency relief weir segment of the embankment. The dam does have sufficient spillway capacity to pass one-half the PMF without the embankment being overtopped. Therefore, the spillway capacity is rated as inadequate.
LAKE CHAMPLAIN BASIN
MEAD RESERVOIR DAM
CLINTON COUNTY, NEW YORK
INVENTORY NO. N.Y. 237
PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

APPROVED FOR PUBLIC RELEASE:
DISTRIBUTION UNLIMITED

NEW YORK DISTRICT CORPS OF ENGINEERS
AUGUST, 1981
PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I Investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through frequent inspections can unsafe conditions be detected and only through continued care and maintenance can these conditions be prevented or corrected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the Spillway Test flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. Because of the magnitude and rarity of such a storm event, a finding that a spillway will not pass the test flood should not be interpreted as necessarily posing a highly inadequate condition. The test flood provides a measure of relative spillway capacity and serves as an aide in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.
PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM
MEAD RESERVOIR DAM
I.D. NO. NY-237
DEC NO. 2188-236
LAKE CHAMPLAIN BASIN
CLINTON COUNTY, NEW YORK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSESSMENT</td>
<td>-</td>
</tr>
<tr>
<td>OVERVIEW PHOTOGRAPH</td>
<td>-</td>
</tr>
<tr>
<td>1 PROJECT INFORMATION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 GENERAL</td>
<td>1</td>
</tr>
<tr>
<td>1.2 DESCRIPTION OF PROJECT</td>
<td>1</td>
</tr>
<tr>
<td>1.3 PERTINENT DATA</td>
<td>3</td>
</tr>
<tr>
<td>2 ENGINEERING DATA</td>
<td>6</td>
</tr>
<tr>
<td>2.1 GEOTECHNICAL DATA</td>
<td>6</td>
</tr>
<tr>
<td>2.2 DESIGN RECORDS</td>
<td>6</td>
</tr>
<tr>
<td>2.3 CONSTRUCTION RECORDS</td>
<td>6</td>
</tr>
<tr>
<td>2.4 OPERATION RECORDS</td>
<td>6</td>
</tr>
<tr>
<td>2.5 EVALUATION OF DATA</td>
<td>6</td>
</tr>
<tr>
<td>3 VISUAL INSPECTION</td>
<td>7</td>
</tr>
<tr>
<td>3.1 FINDINGS</td>
<td>7</td>
</tr>
<tr>
<td>3.2 EVALUATION OF OBSERVATIONS</td>
<td>8</td>
</tr>
<tr>
<td>4 OPERATION AND MAINTENANCE PROCEDURES</td>
<td>10</td>
</tr>
<tr>
<td>4.1 PROCEDURES</td>
<td>10</td>
</tr>
<tr>
<td>4.2 MAINTENANCE OF DAM</td>
<td>10</td>
</tr>
<tr>
<td>4.3 WARNING SYSTEM IN EFFECT</td>
<td>10</td>
</tr>
<tr>
<td>4.4 EVALUATION</td>
<td>10</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>5</td>
<td>HYDROLOGIC/HYDRAULIC</td>
</tr>
<tr>
<td>5.1</td>
<td>DRAINAGE AREA CHARACTERISTICS</td>
</tr>
<tr>
<td>5.2</td>
<td>ANALYSIS CRITERIA</td>
</tr>
<tr>
<td>5.3</td>
<td>SPILLWAY CAPACITY</td>
</tr>
<tr>
<td>5.4</td>
<td>RESERVOIR CAPACITY</td>
</tr>
<tr>
<td>5.5</td>
<td>FLOODS OF RECORD</td>
</tr>
<tr>
<td>5.6</td>
<td>OVERTOPPING POTENTIAL</td>
</tr>
<tr>
<td>5.7</td>
<td>EVALUATION</td>
</tr>
<tr>
<td>6</td>
<td>STRUCTURAL STABILITY</td>
</tr>
<tr>
<td>6.1</td>
<td>EVALUATION OF STRUCTURAL STABILITY</td>
</tr>
<tr>
<td>7</td>
<td>ASSESSMENT/RECOMMENDATIONS</td>
</tr>
<tr>
<td>7.1</td>
<td>ASSESSMENT</td>
</tr>
<tr>
<td>7.2</td>
<td>RECOMMENDED MEASURES</td>
</tr>
</tbody>
</table>

APPENDICES

A. PHOTOGRAPHS
B. VISUAL INSPECTION CHECKLIST
C. HYDROLOGIC/HYDRAULIC
D. STABILITY COMPUTATIONS
E. REFERENCES
F. DRAWINGS
Name of Dam: Mead Reservoir Dam
(I.D. No. NY-237)
State Located: New York
County: Clinton
Watershed: Lake Champlain Basin
Stream: Mead Brook
Date of Inspection: June 16, 1981

ASSESSMENT

Visual inspection of this dam did not reveal conditions which constitute an immediate hazard to human life or property. However, the dam has some deficiencies which require further engineering investigations.

An area of concentrated seepage was noted at the downstream toe of the embankment. This area was approximately in line with the concrete gate house. Seepage was emerging at a rate estimated to be 10 to 20 gallons per minute. While only one area of concentrated seepage was noted, the entire area beyond the downstream toe was wet and swampy. Water was flowing out of the hillside in several areas immediately downstream of the embankment-right abutment contact.

The structural stability analysis performed for the spillway section indicates that safety factors are below recommended values for all conditions studied. The sliding safety factors for severe loading conditions such as ice loading or flood flows indicate that the section would be unstable if subjected to these loads.

It is recommended that within 3 months of the date of notification of the owner, investigations into the seepage and structural stability problems should be commenced. Remedial measures which are required based on these investigations should be completed within 18 months.

The hydrologic/hydraulic analyses performed indicate that the outflows from all storms exceeding 54% of the Probable Maximum Flood (PMF) will result in flow over the emergency relief weir segment of the embankment. The dam does have sufficient spillway capacity to pass one-half the PMF without the embankment being overtopped. Therefore, the spillway capacity is rated as inadequate.
Several other deficiencies were noted on this structure. These deficiencies should be corrected within 12 months of the date of notification of the owner. Among the actions required are the following:

1. All trees and brush growing on the dam should be cut to permit a more detailed visual inspection of the embankment.

2. The minor leakage through the upper portion of the spillway gravity section should be eliminated.

3. Grass and weeds growing through the joints between concrete slabs on the spillway discharge exit channel should be removed.

4. The joints between the slabs on the exit channel should be sealed to stop the flow of water beneath the slabs.

5. Debris and sediment in the lower plunge pool should be removed and brush and trees growing immediately downstream of the end of the plunge pool should be cut.

6. An emergency action plan for the notification and evacuation of downstream resident should be developed.

Approved By:

George Koch
Chief, Dam Safety Section
New York State Department of Environmental Conservation
NY License No. 45937

Date: 26 Aug 89
SECTION 1: PROJECT INFORMATION

1.1 GENERAL

a. Authority
The Phase I inspection reported herein was authorized by the Department of the Army, New York District, Corps of Engineers, to fulfill the requirements of the National Dam Inspection Act, Public Law 92-237.

b. Purpose of Inspection
This inspection was conducted to evaluate the existing conditions of the dam, to identify deficiencies and hazardous conditions, to determine if these deficiencies constitute hazards to life and property, and to recommend remedial measures where required.

1.2 DESCRIPTION OF PROJECT

a. Description of Dam
The Mead Reservoir Dam is an earth dam with a concrete core wall. The dam has a concrete gravity overflow spillway section and two low level outlet pipes.

The dam is 673 feet long and a maximum of 65 feet high. The crest width is 12 feet. The upper portion of the upstream slope is 1 vertical on 2 horizontal. The lower portion of this slope is 1 vertical on 3 horizontal. The downstream slope varies from 1 vertical on 1.5 horizontal near the top of the slope to 1 vertical on 3 horizontal at the bottom. On the higher embankment section, there is an 8 foot wide berm near the middle of the downstream slope.

A concrete core wall extends from the spillway section to 75 feet from the right end of the dam. The plans indicate that there is no core wall to the left of the spillway section. The core wall is about 18 inches wide at the base and tapers to 8 inches wide at the top. It is supported on a spread footing located a minimum of 4 feet into natural ground. One 30 foot long segment of the core wall near the spillway section is supported on sheet piling.

The spillway is a 20 foot high, Cyclopean concrete overflow section which is 40 feet long. At the downstream toe of the
gravity section, there is a 20 foot long plunge pool for energy dissipation. A 2 foot wide drainage channel extends from the downstream end of the plunge pool to a point on the outlet channel. This drainage channel is 66 feet long and a maximum of 8 feet deep. The spillway channel below the plunge pool proceeds down the natural slope. The channel is paved with concrete slabs for erosion protection. These slabs are placed on the slope of a trapezoidal cut to form the left side of the spillway channel. The plans indicate that there is an under-drain running down the entire slope beneath these slabs. The right side of the channel is formed by a reinforced concrete retaining wall.

There is another plunge pool at the base of the channel. A vertical concrete wall which is 5 feet high forms the downstream end of this plunge pool. There is a conduit which extends from the right wall in the lower plunge pool to the natural stream channel (a total of about 80 feet). This conduit drains the lower plunge pool during low flows.

There is a circular concrete gatehouse located on the crest of the dam to the right of the spillway section. This gatehouse contains the control mechanisms for three inlet pipes and two low level outlet pipes. There are two 20 inch pipes and one 24 inch pipe, each with a different invert elevation. The intakes to these pipes are concrete structures located in the reservoir. The two outlet pipes are a 24 inch pipe which is the main water supply line and another 24 inch pipe leading to a 42 inch concrete blow-off pipe. This 42 inch pipe extends for 175 feet to a headwall just beyond the downstream toe of the dam and outlets into the natural stream channel. There is a concrete box outlet structure at the end of this conduit.

There is an 18 inch conduit which enters the reservoir beyond the right end of the embankment. This pipe permits the diversion of water from the Saranac River into this reservoir.

b. Location
This dam is located off Rand Hill Road in the Town of Plattsburgh, New York. It is about 1 mile north-west of the intersection of Rand Hill Road and New York State Route 3 in the hamlet of West Plattsburgh.

c. Size Classification
This dam is 65 feet high and has a storage capacity of 2827 acre-feet. Therefore, the dam is in the intermediate size category as defined by the "Recommended Guidelines for Safety Inspection of Dams."
d. Hazard Classification
This dam is classified as a high hazard structure due to the presence of two state highway (NY Rte 374 and NY Rte 3) and five homes adjacent to the stream channel downstream of the dam.

e. Ownership
This dam is owned by the City of Plattsburgh, New York. Mr. George M. Miller is the City Engineer. His address is City Hall, Plattsburgh, New York 12901. His phone number is (518-563-7730.)

f. Purpose of Dam
This dam impounds a reservoir used for water supply by the City of Plattsburgh.

g. Design and Construction History
Available correspondence indicates that a dam has existed at this site since the mid-1800's. The original structure was a timber crib dam which partially failed in the early 1900's. This crib dam was completely removed and the dam which presently exists was constructed in 1923. The dam was designed by Metcalf and Eddy, Consulting Engineers of Boston, Massachusetts.

h. Normal Operating Procedures
There are no prescribed operating procedures for this structure. Water is withdrawn from the reservoir as required for water supply.

1.3 Pertinent Data

a. Drainage Area (sq. mi.) 6.39

b. Discharge at Dam (cfs)
 Spillway at Maximum High Water 2827
 24" Blow-off Pipe (water level at spillway crest) 101

C. Elevation (USGS Datum)*
 Top of Dam 541.5
 Crest of Emergency Relief Weir,
 (Embankment Section) 540.5
 Spillway Crest 533.0
 Invert of Bottom Low Level Inlet 465.0
* (USGS Datum = Plan Datum + 16.5)

d. Reservoir - Surface Area (acres)
 Top of Dam (Emergency Relief Weir Crest) 105
 Spillway Crest 74

e. Storage Capacity (acre-feet)
 Top of Dam (Emergency Relief Weir Crest) 1895
 Spillway Crest 1228
f. Embankment
Type: Compacted zoned earth embankment with concrete core wall; most impervious soil in section surrounding core wall; stone fill segments at both upstream and downstream toe.

- Embankment Length (ft) 550
- Slopes (V:H) Upstream- Upper Slope 1 on 2
 Lower Slope 1 on 3
 Downstream- Varies from 1 on 1.5 to 1 on 3
 (8 ft. Wide berm on higher section)
- Crest Width (ft) 12

\[...
\]

\[...
\]

h. Spillway
Type: Ungated Cyclopean concrete overflow section, with plunge pool at toe of gravity section, paved channel down the natural slope, and plunge pool at toe of slope. A conduit drain extends from lower plunge pool over to natural stream channel.

- Length of Weir (ft) 40

\[...
\]

\[...
\]

i. Low Level Inlets/Outlets

(1) Inlets - Two 20 inch pipes and one 24 inch pipe each with a different invert elevation lead from the reservoir to the gatehouse; there is a concrete intake structure in the reservoir for each pipe; flow through each pipe is controlled by valves in the gatehouse

(2) Outlets - Two 24 inch pipes; flow controlled by valves in the gatehouse; one pipe is the main water supply line while the other leads to a 42 inch concrete blow-off pipe; 42 inch conduit is 175 feet long and outlets through a concrete box structure.
j. Appurtenant Structures

(1) Gatehouse - Circular concrete structure located on crest of dam; contains control mechanisms for valves on all the inlet and outlet pipes; another 8 inch diameter pipe leads from sump in gatehouse to the 42 inch pipe; this pipe can drain the gatehouse.

(2) Diversion Inlet - 18 inch pipe outleting at a concrete headwall beyond right end of embankment; pipe allows diversion of water from Saranac River into the reservoir.
SECTION 2: ENGINEERING DATA

2.1 GEOTECHNICAL DATA

a. Geology

The Mead Reservoir Dam is located in the Champlain lowlands physiographic province of New York State. The Champlain Lake Plain is a low, relatively flat area underlain with marine clays and limestone. Drift deposits and peat bogs are common in the northeast portion of the plain. Bedrock in the area is from the Ordovician era (435 to 500 million years ago). A review of the "Brittle Structures Map of New York" indicates that there is a normal fault which runs through the reservoir, approximately 1500 feet to the west of the dam.

Surficial soils in the area are the result of glacial deposits during the Cenozoic Era, the last of which was the Wisconsin glaciation.

b. Subsurface Investigations

There was some subsurface information available for this dam. Logs from 11 test pits were shown on the 1923 plans. These logs indicated that the foundation consists of muck and loam underlain by clay. At the right end of the dam, there was up to 30 feet of sand overlying the clay.

2.2 DESIGN RECORDS

The present dam was designed by Metcalf and Eddy, Consulting Engineers of Boston, Massachusetts. A complete set of plans as well as other design information is available at the City Engineer's office in Plattsburgh. Selected sheets from these plans have been included in Appendix F.

2.3 CONSTRUCTION RECORDS

The dam was constructed in 1923 by the Bluff Point Stone Company. Metcalf and Eddy performed the construction inspection. The available plans are record plans and therefore, represent the as-built condition of the structure.

2.4 OPERATION RECORDS

No operation records are maintained on this structure.

2.5 EVALUATION OF DATA

Information used for the preparation of this report was obtained from the Department of Environmental Conservation files and from the City of Plattsburgh's files. The information available appeared to present reasonably accurate data concerning the structure.
SECTION 3: VISUAL INSPECTION

3.1 FINDINGS

a. General
Visual inspection of the Mead Reservoir Dam was conducted on June 16, 1981. The weather was sunny with the temperature in the eighties. The water level at the time of the inspection was about 6 inches below the spillway crest.

b. Embankment
Visual inspection was hampered by trees, brush and weeds growing on the embankment. The problem was most severe on the lower portion of the downstream slope to the right of the spillway section. A bamboo-like weed completely covered this portion of the slope, making a close inspection impossible. Trees and brush covered the upper portion of this slope and most of the remainder of the embankment as well.

The crest of the embankment was slightly uneven with several minor irregularities noted. At the left end of the dam, the crest of the embankment slopes gradually downward. This segment of the embankment with a lower crest level is called an emergency relief weir on the plans.

Several deficiencies were noted on the downstream slope. The entire area along the downstream toe of the high embankment section (to the right of the spillway section) was wet and swampy. One area of concentrated clear seepage was noted at the toe of the slope approximately in line with the concrete gatehouse. Seepage was emerging at a rate estimated to be 10 to 20 gallons per minute and was forming a small pool of water beyond the toe. The City Engineer was aware of the existence of this seepage and stated that it had been occurring for a long period of time.

There was also water emerging at several points along the natural slope immediately downstream of the contact between the embankment and the right abutment. These points were all below the berm which is located near the middle of the downstream slope. Water was also flowing off the adjacent hillside and into the downstream channel near the concrete headwall at the end of the 42 inch blow-off pipe. It could not be determined whether these flows were the result of seepage through the dam or hillside groundwater.

c. Spillway
The spillway was in satisfactory condition. There were some small cracks in the abutment walls and some spalling on the downstream face of the gravity section. Minor leakage through the gravity section was also noted. This leakage was exiting about 2 feet below the spillway crest. There was some localized erosion on the upstream embankment slope for about 20 feet from the spillway's right abutment. This erosion was believed to be the result of wave action.
A small amount of water was flowing out of the concrete channel which drains the upper plunge pool. This water flowed over the concrete slabs which line the exit channel and then disappeared beneath the slabs. The water then reappeared approximately 50 feet downstream and flowed over the remainder of the slabs. There was grass and weeds growing through the joints between several of the slabs at the lower end of the channel. Some minor cracking was noted on the channel walls. The lower plunge pool was partially filled with sediment and debris. Brush and weeds were growing in this plunge pool as well. There was some debris around the inlet to the lower plunge pool drain conduit. A spring was observed bubbling up through the bottom of the lower plunge pool. This spring was probably related to the underdrain pipes beneath the spillway channel.

d. **Low Level Inlets/Outlets**

These pipes were unobservable at the time of inspection. The valves which control flow through these pipes are located in the gatehouse on the crest of the dam. These valves are reported to be operational. Mr. St. Clair of the Water and Sewer Department said that all of the valves were operated approximately one month before the Phase 1 inspection.

The concrete box outlet structure at the outlet end of the 42 inch conduit was visible at the downstream toe of the embankment. This outlet structure and the downstream pool appear to be in satisfactory condition. There was a small stream of water off the hillside which was flowing over the concrete structure and into the pool.

e. **Appurtenant Structures - Gatehouse and Diversion Pipe**

Both the gatehouse and diversion inlet pipe appeared to be in good condition. Some small cracks were noted in the gatehouse concrete walls.

f. **Reservoir**

There were no indications of soil instability in the reservoir area.

g. **Downstream Channel**

The channel below the outlet to the 42 inch blow-off pipe was covered with brush and trees. It was about 15 feet wide and had side slopes of 1 vertical on 1 horizontal.

3.2 **EVALUATION OF OBSERVATIONS**

Visual inspection revealed several deficiencies on this structure. The following items were noted:

1. Trees, brush and weeds covering most of the embankment, especially the lower portion of the downstream slope to the right of the spillway, making a detailed inspection impossible.
2. One area of concentrated seepage at the downstream toe of the slope approximately in line with the concrete gate house;

3. The overall wet and swampy conditions along the entire downstream toe of the higher embankment section;

4. Several points near the embankment - right abutment contact where water was emerging and flowing off the slope;

5. Minor leakage through the upper portion of the concrete spillway section;

6. Water flowing beneath the concrete slabs on the spillway discharge channel;

7. Grass and weeds growing through some of the joints between slabs on the exit channel;

8. Debris and sediment in the lower plunge pool.
SECTION 4: OPERATION AND MAINTENANCE PROCEDURES

4.1 PROCEDURES

There are no formal operating procedures for this dam. Water is withdrawn from the reservoir as required. Water can be diverted from the Saranac River into a small pond and then into Mead Reservoir by means of an 18 inch conduit which outlets through a concrete headwall located beyond the right end of the embankment.

4.2 MAINTENANCE OF DAM

Normal maintenance of the dam is performed by the City of Plattsburgh's Water and Sewer Department. The gates are operated regularly and minor repairs are performed as required.

4.3 WARNING SYSTEM IN EFFECT

No apparent warning system for evacuation of downstream residents is in effect.

4.4 EVALUATION

The operation procedures for this dam are satisfactory. Increased maintenance efforts are needed to repair the deficiencies noted in Section 3.
SECTION 5: HYDROLOGIC/HYDRAULIC

5.1 DRAINAGE AREA CHARACTERISTICS

Delineation of the watershed for this reservoir was made using the USGS 7.5 minute quadrangle sheets for Morrisonville and West Chazy, New York. The 6.39 square mile drainage area consists of forested lands. The City owns or controls much of the watershed. Relief in the drainage area ranges from steep (slopes of 12%-20%) in the upper reaches to moderate (4%-7.5%) in the vicinity of the reservoir. Hilltops within the watershed rise as much as 1000 feet above the normal reservoir level.

5.2 ANALYSIS CRITERIA

The analysis of the floodwater retarding capability of the dam was performed using the Corps of Engineers HEC-1 computer program, Dam Safety version. This program uses the Snyder Synthetic Unit hydrograph and the "Modified Puls" flood routing procedure. The spillway design flood selected for analysis was the Probable Maximum Flood (PMF) in accordance with the recommended guidelines of the U.S. Army Corps of Engineers. The PMF event is that hypothetical storm event resulting from the most critical combination of rainfall, minimum soil retention and direct runoff that is considered reasonably possible for a particular watershed.

5.3 SPILLWAY CAPACITY

The dam has an ungated spillway section. For the purposes of this analysis, it was assumed that there was no flow through the low level inlet/outlet pipes. The spillway is 40 feet long with concrete abutment walls at either end. The spillway was analyzed as a weir with a discharge coefficient C, which varied from 3.2 to 3.72. The effective length of the spillway was reduced to account for the turbulence caused by the abutments. The computed spillway capacity for the water surface at the top of the dam is 2827 cfs.

5.4 RESERVOIR CAPACITY

The normal water surface in the reservoir is at or near the spillway crest elevation. The impounded capacity for this elevation is 1228 acre-feet. Surcharge storage capacity between the spillway crest (elev. 533) and the top of the emergency relief weir (elev. 540.5) is 667 acre-feet which is equivalent to a direct runoff depth of 1.96 inches over the drainage area. The total storage capacity is 1895 acre-feet.

5.5 FLOODS OF RECORD

No information was available regarding the maximum known flood.

-11-
5.6 OVERTOPPING POTENTIAL

Analysis indicates that the dam does not have sufficient spillway capacity to adequately discharge the outflows from the PMF. For this storm, the peak inflow is 6580 cfs and the peak outflow is 6136 cfs. The analysis indicates that the emergency relief weir segment of the embankment would be overtopped by all storms exceeding 54% of the PMF. The higher main embankment section would be overtopped by all storms exceeding 67% of the PMF.

For one-half of the PMF, the peak outflow is 2606 cfs. The maximum water surface would be 0.42 feet below the crest of the emergency relief weir.

5.7 EVALUATION

The dam does not have sufficient spillway capacity to discharge the peak outflow from the PMF. The outflows from one-half the PMF will not result in the dam or the emergency relief weir segment being overtopped. Therefore, the spillway capacity of this dam is rated as inadequate.
SECTION 6: STRUCTURAL STABILITY

6.1 EVALUATION OF STRUCTURAL STABILITY

a. Visual Observations
Visual inspection of this structure revealed several deficiencies which affect the stability of this structure. Trees and brush covering most of the embankment hampered the inspection. The area along the entire downstream toe was wet and swampy. One area of concentrated seepage was noted. This seep was approximately in-line with the concrete gate house. Water was flowing out of the nearby hillside in several areas immediately downstream of the embankment - right abutment contact.

b. Data Review and Stability Evaluation
No design information concerning the stability of either the earth embankment section or the concrete spillway section was available. The construction plans included cross sections of both segments as well as limited foundation information.

A stability analysis of the spillway section was performed for this report in accordance with the "Recommended Guidelines for Safety Inspection of Dams". The results of the stability analysis are as follows:

<table>
<thead>
<tr>
<th>Case</th>
<th>Overturning Safety Factor</th>
<th>Resultant in Middle Third</th>
<th>Sliding Safety Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Normal conditions, water surface at spillway crest</td>
<td>1.58</td>
<td>No</td>
<td>1.12</td>
</tr>
<tr>
<td>b. Case a. plus ice load of 5,000 lb/ft</td>
<td>1.14</td>
<td>No</td>
<td>0.81</td>
</tr>
<tr>
<td>c. 1/2 PMF Flow; Water surface 7.1 feet over spillway</td>
<td>1.16</td>
<td>No</td>
<td>0.65</td>
</tr>
<tr>
<td>d. Water surface at top of relief weir embankment section</td>
<td>1.14</td>
<td>No</td>
<td>0.64</td>
</tr>
<tr>
<td>e. Normal conditions with seismic coefficient of 0.10</td>
<td>1.52</td>
<td>No</td>
<td>0.82</td>
</tr>
</tbody>
</table>

These analyses indicate that the spillway section is marginally stable under normal conditions. The sliding safety factor for severe loading condition such as ice loading or flood flows falls below 1.0, indicating that the section would be unstable if subjected to these loads.

Further investigations are required to better assess the stability of the spillway section. Subsurface explorations and concrete cores are
required to obtain information about the structure, the foundation conditions, and the effectiveness of the cutoff wall beneath the spillway section. Stability analyses should then be performed using this data. Based on the results of these analyses, the need for and extent of modifications to the structure should be determined.

c. Seismic Stability

This structure is located in Seismic Zone 3. A seismic stability analysis was performed assuming a seismic coefficient of 0.1. The results of this analysis (shown on page 13) indicate that the safety factors against sliding are below 1.0 when seismic considerations are included. Therefore, when modifications to the structure are made, seismic stability criteria should also be met.
7.1 ASSESSMENT

a. Safety
The Phase I inspection of the Mead Reservoir Dam revealed several deficiencies on the structure. One area of concentrated seepage was noted at the downstream toe of the embankment. In addition, the entire area beyond the downstream toe was wet and swampy. Water was flowing out of the hillside in several areas immediately downstream of the embankment -right abutment contact. Visual inspection was hampered by trees and brush which cover the entire embankment.

The structural stability analysis performed for the spillway section of this dam indicates that safety factors are below recommended values for all conditions studied. The sliding safety factor for severe loading conditions such as ice loading and flood flows indicates that the section would be unstable if subjected to these loads.

The dam does not have sufficient spillway capacity to pass the Probable Maximum Flood (PMF). The outflows from one-half the PMF will not overtop the dam or the emergency relief weir segment of the embankment. Therefore, the spillway capacity has been rated as inadequate.

b. Adequacy of Information
The information available for the preparation of this report was fairly complete and appeared to be reasonably accurate.

c. Need for Additional Investigations
Further investigation of the structural stability and seepage problems on this dam are required. The structural stability investigations should include subsurface explorations and concrete cores to obtain information about the structure, its foundation conditions, and the effectiveness of the cutoff wall beneath the spillway section. This data should then be incorporated into a detailed stability evaluation and, if necessary, modifications to the structure should then be designed.

Investigations into the causes of the wet areas beyond the downstream toe, with special emphasis on the one area of concentrated seepage, are required. As a result of these investigations, methods of treatment should be devised and implemented.

d. Urgency
Investigations of the structural stability and seepage problems should be commenced within 3 months of the date of notification of the owner. Remedial measures deemed necessary as a result of these investigations should be completed within 18 months. Other deficiencies noted on the structures should be corrected within 12 months.
7.2 RECOMMENDED MEASURES

1. Cut all trees and brush growing on the dam to permit a more detailed visual inspection of the embankment.

2. Design and implement a method of treatment of the wet areas near the downstream toe, especially the one area of concentrated seepage.

3. Modify the spillway structure as necessary based on the structural stability analysis.

4. Eliminate the minor leakage through the upper portion of the concrete gravity section.

5. Remove grass and weeds growing through the joints between slabs on the exit channel.

6. Remove debris and sediment in lower plunge pool on the exit channel, also clear brush and trees growing immediately downstream of the end of the plunge pool.

7. Seal the concrete slabs on the spillway channel to prevent water from flowing between cracks and under the slabs.

8. Develop an emergency action plan for the notification and evacuation of downstream residents.
Bamboo type help closures
on the downstream side.

Area of concentrated surface
at downstream toe of embankment.
SPILLWAY SECTION
NOTE LEAKAGE THROUGH GABIONS NEAR CREST

DRAINAGE CHANNEL FROM UPPER
PLUNGE POOL TO EXIT CHANNEL
CONCRETE GATEHOUSE ON CREST OF EMBANKMENT

OUTLET STRUCTURE FOR 42 INCH BLOW-OFF LINE
APPENDIX B

VISUAL INSPECTION CHECKLIST
VISUAL INSPECTION CHECKLIST

1) Basic Data
 a. General
 Name of Dam MEAD RESERVOIR DAM
 Fed. I.D. # 237 DEC Dam No. 2188-236
 River Basin LAKE CHAMPLAIN
 Location: Town Plattsburgh County Clinton
 Stream Name MEAD BROOK
 Tributary of SARANAC RIVER
 Latitude (N) 44°43'6" Longitude (W) 73°30'6"
 Type of Dam EARTH WITH CONCRETE CORE WALL
 Hazard Category C
 Date(s) of Inspection 6/16/81
 Weather Conditions 80° Sunny
 Reservoir Level at Time of Inspection ± 6" BELOW SPILL CREST

 b. Inspection Personnel R. Warrender, W. Lynch

 c. Persons Contacted (Including Address & Phone No.)
 George Miller, City Engineer
 City Hall
 Plattsburgh, N.Y. 12901
 (518) 563-7730
 Gary St. Clair
 Water & Sewer Dept.
 Plattsburgh, N.Y. 12901
 (518) 563-1120

 d. History:
 Date Constructed 1923 Date(s) Reconstructed
 Designer Metcalf & Eddy, Boston, Mass.
 Constructed By Bluff Point Stone Co.
 Owner City of Plattsburgh
2) Embankment
 a. Characteristics
 (1) Embankment Material GLACIAL TILL - IMPERVIOUS SOIL NEAREST CENTER
 (2) Cutoff Type CONCRETE WALL
 (3) Impervious Core CONCRETE CORE WALL
 (4) Internal Drainage System NONE
 (5) Miscellaneous

 b. Crest
 (1) Vertical Alignment SLIGHTLY IRREGULAR ON RIGHT END - ON LEFT END CREST DROPS GRADUALLY TO FORM RELIEF WIER - ON FILL
 (2) Horizontal Alignment SATISFACTORY - CREST IS SOMEWHAT NARROW
 (3) Surface Cracks NONE
 (4) Miscellaneous TREES & BRUSH AT LEFT END - AT RIGHT END ROOTS FROM LARGE PINE TREES WERE GROWING OVER THE TOP OF THE CORE WALL

 c. Upstream Slope
 (1) Slope (Estimate) (V:H) 1 ON 2 1/2
 (2) Undesirable Growth or Debris, Animal Burrows TREES & BRUSH GROWING ON SLOPE
 (3) Sloughing, Subsidence or Depressions SLIGHT SCOUR PROBLEM FOR 20' BEYOND RIGHT END OF SPILLWAY, PROBABLY CAUSED BY WAVE ACTION - LACKS EMBANKMENT MATERIAL BELOW ABUTMENT WALLS - ABOUT 2' DOWN ON EITHER SIDE OF SPILLWAY
(4) Slope Protection

6"-(8" Riprap to about 1' to 2' below the crest

(3) Surface Cracks or Movement at Toe

UNOBSERVABLE

d. Downstream Slope

(1) Slope (Estimate - V:H) FAIRLY STEEP, ESPECIALLY UPPER PART

(2) Undesirable Growth or Debris, Animal Burrows SUBSTANTIAL TREE & BRUSH GROWTH; LOWER PART OF SLOPE IS COVERED WITH KNEE HIGH BAMBOO LIFE GRASS - MAKES DETACHED INSPECTION IMPOSSIBLE.

(3) Sloughing, Subsidence or Depressions

ON SLOPE ARE RELATIVELY STRAIGHT - NO SIGNS OF SLOPE MOVEMENT.

(4) Surface Cracks or Movement at Toe

NONE NOTED

(5) Seepage

COMPLETE ONE POINT OF CONCENTRATED SEEPAGE NOTED AT DOWNSTREAM TOE IMMEDIATELY BELOW GATEHOUSE

SUBSTANTIAL CLEAR SEEPAGE EXITING IN ONE SPOT RATE ESTIMATED TO BE 10-20 GPM/IN

(5) External Drainage System (Ditches, Trenches; Blanket)

NONE

(7) Condition Around Outlet Structure

SOME SEEPAGE INTO POOL - MOSTLY WATER COMING OFF HILL SIDE

(8) Seepage Beyond Toe

ENTIRE AREA BEYOND TOE IS WET AND SWAMPY

e. Abutments - Embankment Contact

STEEP CONTACT AT RIGHT ABUTMENT - OUTLET STRUCTURE IS AT THE TOE IN THIS AREA
(1) Erosion at Contact **NONE NOTED**

(2) Seepage Along Contact **SEEPAGE OR GROUND WATER OUT OF HILLSIDE EXITING AT SEVERAL POINTS BELOW THE BERM ELEVATION. ONE POINT IS AT BASE OF SLOPE & WATER FLOWS INTO PLUNGE POOL.**

3) **Drainage System**
 a. Description of System **NONE**

 b. Condition of System

 c. Discharge from Drainage System

4) **Instrumentation** (Monumentation/Surveys, Observation Wells, Weirs, Piezometers, Etc.) **NONE**
5) Reservoir
 a. Slopes **TREED TO EDGE OF RESERVOIR - CITY CONTROLS**
 LAND TO EDGE OF RESERVOIR-LAKE PRIMARILY SPRING FED-LITTLE STREAM FLOW.
 b. Sedimentation **NOT APPARENT**
 c. Unusual Conditions Which Affect Dam **NONE - USED TO BE A BRIDGE ACROSS TOP OF SPILLWAY BUT IT NO LONGER EXISTS**

6) Area Downstream of Dam
 a. Downstream Hazard (No. of Homes, Highways, etc.) **NY RTE 374; NY RTE 3**
 SEVERAL HOMES BELOW RTE 3 **ONE HOME JUST DOWNSTREAM OF DAM**
 b. Seepage, Unusual Growth **ENTIRE AREA BEYOND TOE IS WET**
 c. Evidence of Movement Beyond Toe of Dam **NONE**
 d. Condition of Downstream Channel **6'-10' DEEP 10'-20' WIDE**
 SIDE SLOPES OF 1:4 **LINED WITH BRUSH & TREES**

7) Spillway(s) (Including Discharge Conveyance Channel)
 CONCRETE GRAVITY SPILLWAY SECTION - PAVED CONCRETE DISCHARGE CHANNEL - 2 PLUNGE POOLS FOR ENERGY DISSIPATION
 a. General Gravity Section - Satisfactory - Minor Cracks on Abutment Walls - Minor Spalling on D.S. Face - Some Minor Seepage thru Concrete Exiting on Downstream Face 2 Feet Above Crest.
 b. Condition of **Spillway - PAVED DISCHARGE CHANNEL - SOME WEEDS & GRASS GROWING THROUGH JOINTS BETWEEN SLABS - MINOR CRACKING ON CHANNEL WALLS**
 FLOW FROM UPPER PLUNGE POOL DRAIN CHANNEL FLOWING UNDER SLABS & RE APPEARING ABOUT 50' DOWN SLOPE
c. Condition of Discharge Conveyance Channel

GENERALLY SATISFACTORY

PLUNGE POOL AT END OF CHANNEL PARTIALLY FILLED WITH SEDIMENT & DEBRIS. BEYOND END OF PLUNGE POOL THE GROUND IS BRUSH & TREES

d. Structural Condition of Spillway Components

SOME CRACKS & MINOR SPALLING OF CONCRETE ON SPILLWAY SECTION & DISCHARGE CHANNEL

8) LOW LEVEL INLETS/OUTLETS

a. General

3 INLET PIPES & 2 OUTLET PIPES - ALL LEAD TO OR FROM GATE HOUSE VALVES IN GATE HOUSE

b. Condition of Inlets

UNOBSERVABLE

c. Condition of Outlets

MOSTLY UNOBSERVABLE - ONLY CONCRETE OUTLET STRUCTURE VISIBLE - APPEARED TO BE IN SATISFACTORY CONDITION - SOME SEEPAGE OR WATER OFF HILLSIDE FLOWING ALONG OUTLET STRUCTURE

9) STRUCTURAL - COVERED IN SPILLWAY SECTION
10) Appurtenant Structures (Power House, Lock, Gatehouse, Other)
 a. Description and Condition
 Gatehouse - Contains control mechanism for
 Inlet & Outlet Pipes - Concrete on both
 Interior & Exterior appears to be satisfactory
 with only minor surface cracks

 18 inch diversion pipe (inflow) - Head wall for pipe
 Located at right end of embankment - Concrete
 in good condition - Pipe diverts water
 from Saranac River to a small pond and then
 to Mead Reservoir.

11) Operation Procedures (Lake Level Regulation):
 Gravity fed 24" supply line from gate house to
 Treatment plant - Water is withdrawn as required
 Normal reservoir fluctuation is 2'-3' during a
 very dry summer
 Maximum known flood is about 1' over the crest
 of spillway
 Water treatment plant manned 18 hours per day
 Treatment Plant - (518) 563-1188
APPENDIX C

HYDROLOGIC/HYDRAULIC
ENGINEERING DATA AND COMPUTATIONS
CHECK LIST FOR DAMS
HYDROLOGIC AND HYDRAULIC ENGINEERING DATA

AREA-CAPACITY DATA:

<table>
<thead>
<tr>
<th>Elevation (ft.)</th>
<th>Surface Area (acres)</th>
<th>Storage Capacity (acre-ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Top of Dam</td>
<td>541.5</td>
<td></td>
</tr>
<tr>
<td>2) Top of Emergency Relief Design High Water Weir (Max. Design Pool)</td>
<td>540.5</td>
<td>105</td>
</tr>
<tr>
<td>3) Auxiliary Spillway Crest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4) Pool Level with Flashboards</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5) Service Spillway Crest</td>
<td>533.0</td>
<td>74</td>
</tr>
</tbody>
</table>

USGS Datum = Plan Datum + 16.5'

DISCHARGES

<table>
<thead>
<tr>
<th>Volume (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Average Daily</td>
</tr>
<tr>
<td>2) Spillway @ Maximum High Water - Top of Dam</td>
</tr>
<tr>
<td>3) Spillway @ Design High Water - Top of Relief Weir</td>
</tr>
<tr>
<td>4) Spillway @ Auxiliary Spillway Crest Elevation</td>
</tr>
<tr>
<td>5) Low Level Outlet - 24" Blow off Pipe</td>
</tr>
<tr>
<td>6) Total (of all facilities) @ Maximum High Water - Top of Relief Weir</td>
</tr>
<tr>
<td>7) Maximum Known Flood</td>
</tr>
<tr>
<td>8) At Time of Inspection</td>
</tr>
</tbody>
</table>
CREST:
ELEVATION: 540.5

Type: EARTH WITH CONCRETE CORE WALL

Width: 12 FT Length: 673 FT

Spillover CONCRETE Ogee SECTION

Location NEAR RIGHT END OF EMBANKMENT

SPILLWAY:

SERVICE

AUXILIARY

Elevation None

CONCRETE - MASS

Type EMERGENCY RELIEF WEIR EMBANKMENT

Width SECTION WOULD PROBABLY FAIL IF SUBJECTED TO OVERTOPPING

Type of Control

✓ Uncontrolled

Controlled:

Type (Flashboards; gate)

Number

Size/Length

Invert Material

Anticipated Length of operating service

Chute Length

Height Between Spillway Crest & Approach Channel Invert (Weir Flow)
HYDROMETEROLOGICAL GAGES:

Type: None

Location: __

Records:

Date - None

Max. Reading - ______________________________________

FLOOD WATER CONTROL SYSTEM:

Warning System: None

Method of Controlled Releases (mechanisms):

Low Level Outlets - 24" Pipe Leading To

Blow Off + 24" Water Supply Line
DRAINAGE AREA: 6.39 Sq Mi 4090 Acres

DRAINAGE BASIN RUNOFF CHARACTERISTICS:

Land Use - Type: Forest - City owns most of drainage area
Terrain - Relief: Steep to Moderate
Surface - Soil: Glacial Till

Runoff Potential (existing or planned extensive alterations to existing (surface or subsurface conditions)

NONE

Potential Sedimentation problem areas (natural or man-made; present or future)

NONE

Potential Backwater problem areas for levels at maximum storage capacity including surcharge storage:

NONE

Dikes - Floodwalls (overflow & non-overflow) - Low reaches along the Reservoir perimeter:

Location: NONE
Elevation: ________________

Reservoir:

Length @ Maximum Pool ____________________________ (Miles)
Length of Shoreline (@ Spillway Crest) ________________ (Miles)
PROJECT GRID

JOB
Mead Reservoir Dam NY 237

WATERSHED PARAMETERS

SNYDER SYNTHETIC UNIT HYDROGRAPH PARAMETERS

\[L = 14 \text{ in} = 5.4 \text{ m} \]

\[L_{ca} = 6.7 \text{ in} = 2.1 \text{ m} \]

USE \[C_T = 2.0 \]

LAG TIME (HRS): \[t_p = C_L (L \times L_{ca})^{0.3} \]

\[= 2.0 (5.4 \times 2.1)^{0.3} = 4.42 \text{ hours} \]

UNIT RAINFALL DURATION (HRS): \[t_r = \frac{t_p}{3.5} \]

\[t_r = \frac{4.42}{3.5} = 1.28 \text{ hrs} \]

ADJUSTED LAG TIME (HRS): \[T_P = t_p + 0.25 (T_r - t_r) \]

\[= 4.42 + 0.25 (1.28 - 1.28) \]

\[T_P = 4.42 \]

PERKINS COEFFICIENT

USE \[C_p = 0.625 \]

RAINFALL - PMF

REF: HMR #33

<table>
<thead>
<tr>
<th>Zone 1</th>
<th>INDEX PMF = 15" (200.50 M / 24 HR)</th>
</tr>
</thead>
</table>

ADJUSTMENT FOR

<table>
<thead>
<tr>
<th>Duration</th>
<th>6</th>
<th>12</th>
<th>24</th>
<th>48 - HRS</th>
</tr>
</thead>
</table>

| Time & DA | % of NOEX | 111 | 123 | 132 | 142 |
Project Grid

Job: Mead Reservoir Dam
State: NY
No.: 237
Subject: Watershed Parameters

<table>
<thead>
<tr>
<th>Sheet No.</th>
<th>Checked By</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>RLW</td>
<td>7/9/81</td>
</tr>
</tbody>
</table>

Drainage Area:
- Taken from 2 USGS 7.5-minute quad sheets: Morrisonville - West Chazy.
- Planimetered areas: Morrisonville Quad 19.28 ft², West Chazy Quad 25.26 ft², 24.51 ft².

\[
\frac{(44.54 \text{ ft}^2)(19.28 \text{ ft}^2)}{24.51 \text{ ft}^2} = 4090 \text{ acres} = 6.37 \text{ sq. mi.}
\]

Basal Flow:
- Initial at 1 GCF = 6 CFS
- QRCFSN = 0.1 (10% of peak Q)
- RTOR = 1.5

Losses (Soil Infiltration):
- Initial 1.0
- Constant 0.1
PROJECT GRID

JOB
Mead Reservoir Dam
NY 23Z

SHEET NO.
3

CHECKED BY
RLW
7/9/81

SUBJECT
Stage-Storage Data

ELEVATION

<table>
<thead>
<tr>
<th>Elevation</th>
<th>Planimetrered Area (ft²)</th>
<th>Surface Area (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>491.5</td>
<td>3.7</td>
<td>3.4</td>
</tr>
<tr>
<td>506.5</td>
<td>18.6</td>
<td>17.1</td>
</tr>
<tr>
<td>521.5</td>
<td>45.8</td>
<td>42.1</td>
</tr>
<tr>
<td>533</td>
<td>80.2</td>
<td>73.6</td>
</tr>
<tr>
<td>540.5</td>
<td>114.8</td>
<td>105.4</td>
</tr>
</tbody>
</table>

*Elevations converted from Plan Datum to USGS Datum

USGS Datum = Plan Datum + 16.5'

Top of Emergency Relief Weir which is part of embankment

Reservoir area shown on USGS Quad Sheet 69.8 Acres
PROJECT GRID

JOB
Mead Reservoir Dam

NY 232

SHEET NO.
4

CHECKED BY

DATE

COMPUTED BY
RLW

DATE
7/10/81

SUBJECT
Spillway Discharges

Spillway Crest

<table>
<thead>
<tr>
<th>ELEV</th>
<th>H</th>
<th>L</th>
<th>C</th>
<th>Q (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>533</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>39.8</td>
<td>3.20</td>
<td>45.0</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>39.6</td>
<td>3.40</td>
<td>134.6</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>39.4</td>
<td>3.60</td>
<td>220.6</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>39.2</td>
<td>3.67</td>
<td>496.9</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>39.0</td>
<td>3.70</td>
<td>570.4</td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>38.8</td>
<td>3.72</td>
<td>750.0</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>38.4</td>
<td>3.72</td>
<td>1192.8</td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td>38.0</td>
<td>3.72</td>
<td>1550.4</td>
</tr>
<tr>
<td></td>
<td>6.0</td>
<td>37.6</td>
<td>3.72</td>
<td>2055.7</td>
</tr>
<tr>
<td></td>
<td>7.0</td>
<td>37.2</td>
<td>3.72</td>
<td>2562.9</td>
</tr>
</tbody>
</table>

Top of Dam (Relief weir)

<table>
<thead>
<tr>
<th>H</th>
<th>C</th>
<th>Q (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>540.5</td>
<td>7.5</td>
<td>37.2</td>
</tr>
<tr>
<td>541.5</td>
<td>8.5</td>
<td>36.6</td>
</tr>
<tr>
<td>10.0</td>
<td>36.0</td>
<td>372</td>
</tr>
</tbody>
</table>

The coefficients for these low heads have been reduced to account for the effect of the flat upward face of the gate.
PROJECT GRID

<table>
<thead>
<tr>
<th>JOB</th>
<th>MEAD RESERVOIR DAM NY 237</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHEET NO.</td>
<td>5</td>
</tr>
<tr>
<td>CHECKED BY</td>
<td>RLW</td>
</tr>
<tr>
<td>DATE</td>
<td>7/10/31</td>
</tr>
</tbody>
</table>

SUBJECT
Low Level Inlet/Outlet Capacities

CALCULATE FLOW THROUGH EACH OF THE INLET PIPES WITH WATER SURFACE AT SPILLWAY CREST (USGS DURIUM 533)

UPPER PIPE - 20" DIAMETER CAST IRON PIPE - 35' LONG INVERT 50.0

Pipe Flow

\[
Z = Z_0 + \frac{P_0}{g} + \frac{\alpha}{2g} \frac{V^2}{2} = Z_0 + \frac{P_0}{g} + \frac{\alpha}{2g} \frac{V^2}{2} + \frac{K}{2}
\]

\[
P_0 = 0, \quad V = 0, \quad Z_0 = 0, \quad h = k \frac{V^2}{2g}
\]

\[
Z = 533, \quad Z_0 = (501.0 + 32.3) = 533.3
\]

\[
Z - Z_0 = \frac{V^2}{2g} + \frac{K}{2g}
\]

\[
533 - 501.3 = \frac{V^2}{2g} + \frac{K}{2g}
\]

\[
V = \sqrt{\frac{533 - 501.3}{2g}} = 30.10 \text{ FPS}
\]

\[
Q = VA = (30.10 \text{ FPS}) (2.84 ft) = 85.6 \text{ cfs}
\]

MIDDLE PIPE - 20" DIAMETER CAST IRON PIPE - 75' LONG INVERT 485.0

\[
533 - 485.0 = \frac{V^2}{2g} + \frac{0.5}{2} + 1.25 + 0.4 \sqrt{\frac{V^2}{2g}}
\]

\[
V = \sqrt{\frac{533 - 485.0}{2g}} = 32.8 \text{ FPS}
\]

\[
Q = VA = (32.8 \text{ FPS}) (6.84 ft) = 71.5 \text{ cfs}
\]
<table>
<thead>
<tr>
<th>Subject</th>
<th>Sheet No.</th>
<th>Checked By</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Level Inlet/Outlet Capacities</td>
<td>6</td>
<td>RLW</td>
<td>7/10/81</td>
</tr>
</tbody>
</table>

Lower 24" Pipe - This pipe is connected to Outlet Pipe Invert 45.0

Pipe is 135' long from Intake to Gate House
3.5 Between Valves
8' Wide Being to Outlet Into 42" Pipe

\[
533 - 466 = \frac{V^2}{2g} + 2.025 + 0.19 + 0.053 + 0.09 + 0.12 + 0.08
\]

\[
V = \sqrt{\frac{67.0(2)(32.0)}{4.158}} = 32.2 \text{ fps}
\]

\[
Q = VA = (32.2 \text{ fps})(3.14) = 101.1 \text{ cfs}
\]
<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A1 MLAU RESERVOIR DAM NY 237</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A2 PHASE 1 REPORT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>A3 PRELIMINARY REPORT WITH RATIOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>U 150 30 0 0 0 0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>d1 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>J 1 6 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>JI 0.50 0.54 0.55 0.67 0.68 1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>K 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>A1 INFLOW HYDROGRAPH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>M 1 1 6.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>P 15 111 123 132 142</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>T 1.0 0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>W 4.35 0.625</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>X 6 1.1 1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>K 1 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>K1 ROUTED OUTFLOW SPILLWAY CREST ELEV 533 USGS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Y 1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Y1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>T4 533 534 535 536 537 539 540 540.5 541.5 543</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>T5 0 134.6 406.9 756.0 1142.8 2055.7 2562.9 2827.0 3374.0 4234.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>SA 3.4 17.1 42.1 73.6 105.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>$E 491.5 508.5 521.5 535.0 540.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>$S 533</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>$D 540.5 3.1 1.5 150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>K 99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RUN DATE 07/10/81
HEAD RESERVOIR DAM NY 237
PHASE 1 REPORT
PREFERENCE ANALYSIS WITH RATIOS

JOIN SPECIFICATION

<table>
<thead>
<tr>
<th>NO</th>
<th>NHR</th>
<th>NMIN</th>
<th>IDAY</th>
<th>IMR</th>
<th>IAIN</th>
<th>METRC</th>
<th>IPLT</th>
<th>IPRT</th>
<th>NSTAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>0</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

JOPER, NWT, LHOP, TAPE

JOPER 2 0 0 0
NWT 0 0 0
LHOP 0 0 0
TAPE 0 0 0

MULTI-PLAN ANALYSES TO BE PERFORMED
NPLAN = 1 NRTIQ = 6 LRTIO = 1
RTIos = 0.50 0.54 0.55 0.67 1.68 1.00

SUB-AREA RUNOFF COMPUTATION

INFLOW HYDROGRAPH
ISTAQ ICOMP IECOL ITAPE JPLT JPRT INAME ISTAGE IAUTO

| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

HYDROGRAPH DATA

IHYD IUHG TAREA SNAP TRSQA 'RSPE RATIO ISNOW : ISAME LOCAL

| 0 | 1 | 6.39 | 0. | 6.39 | 0. | 0. | 0 | 1 | 0 |

PRECIP DATA

SPCE PBS R6 R12 R24 R48 R72 R96

| 0. | 15.00 | 111.00 | 123.00 | 152.00 | 142.00 | 0. | 0. |

TRSQA COMPUTED BY THE PROGRAM IS 0.000

LOSS DATA

LHOP STRKR DLKR RTIOE ERAIN STRK RSRTK STSL CNSTL ALSMX RTIMP

| 0 | 0. | 0. | 1.00 | 0. | 1.00 | 0.00 | 0. |

UNIT HYDROGRAPH DATA

TP = 4.35 CP = 0.63 MTA = 0

RECESSION DATA

STRTQ = 6.00 QMCST = -0.10 RTIOR = 1.50

APPROXIMATE CLARK COEFFICIENTS FROM GIVEN SYNER CP AND TP ARE TC = 9.79 AND R = 8.04 INTERVALS

UNIT HYDROGRAPH 4 HR END-OF-PERIOD ORDINATES, LAG = 4.35 HOURS, CP = 0.63 VOl = 1.00

 53% 372. 417. 368. 325. 287. 253. 224. 197. 179.
 25% 136. 120. 166. 95. 85. 75. 64. 57. 50.
 10% 11. 10. 9. 8. 7. 6. 5. 5. 5.

END-OF-PERIOD FLOW
<table>
<thead>
<tr>
<th>Time</th>
<th>CFS</th>
<th>6HR</th>
<th>24HR</th>
<th>72HR</th>
<th>Total Volums</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:00</td>
<td>650</td>
<td>5402</td>
<td>2324</td>
<td>836</td>
<td>1204946</td>
</tr>
<tr>
<td>0:15</td>
<td>166</td>
<td>155</td>
<td>66</td>
<td>24</td>
<td>3911</td>
</tr>
<tr>
<td>0:30</td>
<td>7.98</td>
<td>13.53</td>
<td>11.86</td>
<td>4977</td>
<td>6139</td>
</tr>
<tr>
<td>0:45</td>
<td>202.78</td>
<td>343.78</td>
<td>371.86</td>
<td>4977</td>
<td>6139</td>
</tr>
<tr>
<td>1:00</td>
<td>371.18</td>
<td>4610</td>
<td>4976</td>
<td>4977</td>
<td>6139</td>
</tr>
<tr>
<td>1:15</td>
<td>3353</td>
<td>5687</td>
<td>6138</td>
<td>6139</td>
<td>6139</td>
</tr>
</tbody>
</table>

Hydrograph at Sta 1 for Plan 1, RTD 1

<table>
<thead>
<tr>
<th>Time</th>
<th>CFS</th>
<th>6HR</th>
<th>24HR</th>
<th>72HR</th>
<th>Total Volums</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:00</td>
<td>3290</td>
<td>2741</td>
<td>1162</td>
<td>418</td>
<td>66223</td>
</tr>
<tr>
<td>0:15</td>
<td>93</td>
<td>79.6</td>
<td>53.8</td>
<td>12.2</td>
<td>1705</td>
</tr>
<tr>
<td>0:30</td>
<td>3.94</td>
<td>6.77</td>
<td>7.30</td>
<td>7.51</td>
<td>7.51</td>
</tr>
<tr>
<td>0:45</td>
<td>101.59</td>
<td>171.89</td>
<td>185.53</td>
<td>185.57</td>
<td>185.57</td>
</tr>
<tr>
<td>1:00</td>
<td>1359</td>
<td>2395</td>
<td>2498</td>
<td>2498</td>
<td>2498</td>
</tr>
<tr>
<td>1:15</td>
<td>1617</td>
<td>2843</td>
<td>3069</td>
<td>3070</td>
<td>3070</td>
</tr>
</tbody>
</table>

Hydrograph at Sta 1 for Plan 1, RTD 2

<table>
<thead>
<tr>
<th>Time</th>
<th>CFS</th>
<th>6HR</th>
<th>24HR</th>
<th>72HR</th>
<th>Total Volums</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:00</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0:15</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0:30</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0:45</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1:00</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>1:15</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

SUM 17.04 13.63 3.91 120515

4.53% 346.11 87.11 3412.60
<table>
<thead>
<tr>
<th>PEAK</th>
<th>6-HOUR</th>
<th>24-HOUR</th>
<th>72-HOUR</th>
<th>TOTAL VOLUME</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMS</td>
<td>127.0</td>
<td>186.0</td>
<td>5.43</td>
<td>2280.0</td>
</tr>
<tr>
<td>INCHES</td>
<td>5.43</td>
<td>9.20</td>
<td>9.94</td>
<td></td>
</tr>
<tr>
<td>AC-FT</td>
<td>184.8</td>
<td>3135.7</td>
<td>338.4</td>
<td></td>
</tr>
<tr>
<td>THOUS CU M</td>
<td>2280.0</td>
<td>3867.0</td>
<td>4174.0</td>
<td></td>
</tr>
</tbody>
</table>

HYDROGRAPH AT STA 1 FOR PLAN 1, RTIO 6

<table>
<thead>
<tr>
<th>PEAK</th>
<th>6-HOUR</th>
<th>24-HOUR</th>
<th>72-HOUR</th>
<th>TOTAL VOLUME</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMS</td>
<td>186.0</td>
<td>235.32</td>
<td>252.32</td>
<td>257.37</td>
</tr>
<tr>
<td>INCHES</td>
<td>9.20</td>
<td>9.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC-FT</td>
<td>3135.7</td>
<td>338.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THOUS CU M</td>
<td>2280.0</td>
<td>3867.0</td>
<td>4174.0</td>
<td></td>
</tr>
</tbody>
</table>
HydraGraph Routing

ROUTED OUTFLOW SPILLWAY CHEST FLEY 533 USES

<table>
<thead>
<tr>
<th>STAGE</th>
<th>533.00</th>
<th>534.00</th>
<th>535.00</th>
<th>536.00</th>
<th>537.00</th>
<th>538.00</th>
<th>540.00</th>
<th>540.50</th>
<th>541.50</th>
<th>543.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLOW</td>
<td>0.00</td>
<td>134.60</td>
<td>406.90</td>
<td>750.00</td>
<td>1142.90</td>
<td>2055.70</td>
<td>2562.90</td>
<td>2827.00</td>
<td>3374.00</td>
<td>4234.90</td>
</tr>
<tr>
<td>AREA</td>
<td>5.00</td>
<td>17.00</td>
<td>42.00</td>
<td>74.00</td>
<td>105.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAPACITY</td>
<td>0.00</td>
<td>141.00</td>
<td>571.00</td>
<td>1228.00</td>
<td>1893.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELEVATION</td>
<td>402.00</td>
<td>507.00</td>
<td>522.00</td>
<td>533.00</td>
<td>541.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DAY DATA

<table>
<thead>
<tr>
<th>DATE</th>
<th>JUL</th>
<th>COOG</th>
<th>EWP</th>
<th>EVEL</th>
<th>COOL</th>
<th>AREA</th>
<th>EXPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

END-OF-PERIOD HYDROGRAPH ORDINATES

<table>
<thead>
<tr>
<th>STATION</th>
<th>1</th>
<th>PLAN</th>
<th>1</th>
<th>RATIO</th>
<th>1</th>
</tr>
</thead>
</table>

OUTFLOW

<table>
<thead>
<tr>
<th>STATION</th>
<th>1296</th>
<th>1295</th>
<th>1294</th>
<th>1293</th>
<th>1292</th>
<th>1291</th>
<th>1290</th>
</tr>
</thead>
<tbody>
<tr>
<td>STORAGE</td>
<td>1278</td>
<td>1277</td>
<td>1276</td>
<td>1275</td>
<td>1274</td>
<td>1273</td>
<td>1272</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STATION</th>
<th>1229</th>
<th>1228</th>
<th>1227</th>
<th>1226</th>
<th>1225</th>
<th>1224</th>
<th>1223</th>
</tr>
</thead>
<tbody>
<tr>
<td>STORAGE</td>
<td>1220</td>
<td>1219</td>
<td>1218</td>
<td>1217</td>
<td>1216</td>
<td>1215</td>
<td>1214</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STATION</th>
<th>1222</th>
<th>1221</th>
<th>1220</th>
<th>1219</th>
<th>1218</th>
<th>1217</th>
<th>1216</th>
</tr>
</thead>
<tbody>
<tr>
<td>STORAGE</td>
<td>1223</td>
<td>1222</td>
<td>1221</td>
<td>1220</td>
<td>1219</td>
<td>1218</td>
<td>1217</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STATION</th>
<th>1224</th>
<th>1223</th>
<th>1222</th>
<th>1221</th>
<th>1220</th>
<th>1219</th>
<th>1218</th>
</tr>
</thead>
<tbody>
<tr>
<td>STORAGE</td>
<td>1225</td>
<td>1224</td>
<td>1223</td>
<td>1222</td>
<td>1221</td>
<td>1220</td>
<td>1219</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STATION</th>
<th>1226</th>
<th>1225</th>
<th>1224</th>
<th>1223</th>
<th>1222</th>
<th>1221</th>
<th>1220</th>
</tr>
</thead>
<tbody>
<tr>
<td>STORAGE</td>
<td>1227</td>
<td>1226</td>
<td>1225</td>
<td>1224</td>
<td>1223</td>
<td>1222</td>
<td>1221</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STATION</th>
<th>1228</th>
<th>1227</th>
<th>1226</th>
<th>1225</th>
<th>1224</th>
<th>1223</th>
<th>1222</th>
</tr>
</thead>
<tbody>
<tr>
<td>STORAGE</td>
<td>1229</td>
<td>1228</td>
<td>1227</td>
<td>1226</td>
<td>1225</td>
<td>1224</td>
<td>1223</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STATION</th>
<th>1230</th>
<th>1229</th>
<th>1228</th>
<th>1227</th>
<th>1226</th>
<th>1225</th>
<th>1224</th>
</tr>
</thead>
<tbody>
<tr>
<td>STORAGE</td>
<td>1231</td>
<td>1230</td>
<td>1229</td>
<td>1228</td>
<td>1227</td>
<td>1226</td>
<td>1225</td>
</tr>
<tr>
<td>Time</td>
<td>CFS</td>
<td>6-Hour</td>
<td>24-Hour</td>
<td>72-Hour</td>
<td>Total Volume</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
<td>--------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1230</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1230</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1230</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1230</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1230</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1230</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1230</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1230</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1230</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1230</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1230</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1230</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1230</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1230</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1230</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1230</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1230</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1230</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1230</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1230</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1230</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1230</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1230</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1230</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td>533.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Peak Flow: 260.6 at time 46.00 hours
<table>
<thead>
<tr>
<th>STATION</th>
<th>PLAN 1</th>
<th>RATIO 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>END-OF-PERIOD HYDROGRAPH ORDINATES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OUTFLOW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>1.2</td>
<td>1.3</td>
</tr>
<tr>
<td>3.1</td>
<td>3.2</td>
<td>3.3</td>
</tr>
<tr>
<td>4.1</td>
<td>4.2</td>
<td>4.3</td>
</tr>
<tr>
<td>5.1</td>
<td>5.2</td>
<td>5.3</td>
</tr>
<tr>
<td>6.1</td>
<td>6.2</td>
<td>6.3</td>
</tr>
<tr>
<td>7.1</td>
<td>7.2</td>
<td>7.3</td>
</tr>
<tr>
<td>8.1</td>
<td>8.2</td>
<td>8.3</td>
</tr>
<tr>
<td>9.1</td>
<td>9.2</td>
<td>9.3</td>
</tr>
</tbody>
</table>

| STORAGE |
|---------|-------|--------|
| 1228.1 | 1228.2 | 1228.3 | 1228.4 | 1228.5 | 1228.6 | 1228.7 | 1228.8 | 1228.9 | 1228.10 |
| 1228.11 | 1228.12 | 1228.13 | 1228.14 | 1228.15 | 1228.16 | 1228.17 | 1228.18 | 1228.19 | 1228.20 |
| 1228.21 | 1228.22 | 1228.23 | 1228.24 | 1228.25 | 1228.26 | 1228.27 | 1228.28 | 1228.29 | 1228.30 |
| 1228.31 | 1228.32 | 1228.33 | 1228.34 | 1228.35 | 1228.36 | 1228.37 | 1228.38 | 1228.39 | 1228.40 |
| 1228.41 | 1228.42 | 1228.43 | 1228.44 | 1228.45 | 1228.46 | 1228.47 | 1228.48 | 1228.49 | 1228.50 |
| 1228.51 | 1228.52 | 1228.53 | 1228.54 | 1228.55 | 1228.56 | 1228.57 | 1228.58 | 1228.59 | 1228.60 |

| STAGE |
|-------|-------|--------|
| 533.0 | 533.0 | 533.0 | 533.0 | 533.0 | 533.0 | 533.0 | 533.0 | 533.0 | 533.0 |
| 533.0 | 533.0 | 533.0 | 533.0 | 533.0 | 533.0 | 533.0 | 533.0 | 533.0 | 533.0 |
| 533.0 | 533.0 | 533.0 | 533.0 | 533.0 | 533.0 | 533.0 | 533.0 | 533.0 | 533.0 |
| 533.0 | 533.0 | 533.0 | 533.0 | 533.0 | 533.0 | 533.0 | 533.0 | 533.0 | 533.0 |
| 533.0 | 533.0 | 533.0 | 533.0 | 533.0 | 533.0 | 533.0 | 533.0 | 533.0 | 533.0 |
| 533.0 | 533.0 | 533.0 | 533.0 | 533.0 | 533.0 | 533.0 | 533.0 | 533.0 | 533.0 |
| 533.0 | 533.0 | 533.0 | 533.0 | 533.0 | 533.0 | 533.0 | 533.0 | 533.0 | 533.0 |
| 533.0 | 533.0 | 533.0 | 533.0 | 533.0 | 533.0 | 533.0 | 533.0 | 533.0 | 533.0 |
| 533.0 | 533.0 | 533.0 | 533.0 | 533.0 | 533.0 | 533.0 | 533.0 | 533.0 | 533.0 |

PEAK OUTFLOW IS 6136. AT TIME 45.00 HOURS

PEAK 6-HOUR 24-HOUR 72-HOUR TOTAL VOLUME

| CFS | 6136 | 6538 | 23.86 | 82.2 | 118380 |
Peak Flow and Storage (End of Period) Summary for Multiple Plan-Ratio Economic Computations

Flows in Cubic Feet per Second (Cubic Meters per Second)

Area in Square Miles (Square Kilometers)

<table>
<thead>
<tr>
<th>Operation</th>
<th>Station</th>
<th>Area</th>
<th>Plan Ratio</th>
<th>Ratio 1</th>
<th>Ratio 2</th>
<th>Ratio 3</th>
<th>Ratio 4</th>
<th>Ratio 5</th>
<th>Ratio 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrograph At</td>
<td>1 6.39</td>
<td>(15891.55)</td>
<td>1</td>
<td>5290.</td>
<td>3555.</td>
<td>3619.</td>
<td>4400.</td>
<td>4474.</td>
<td>6580.</td>
</tr>
<tr>
<td>Routed To</td>
<td>1 6.39</td>
<td>(15891.55)</td>
<td>1</td>
<td>260.</td>
<td>2871.</td>
<td>2888.</td>
<td>3797.</td>
<td>3869.</td>
<td>6136.</td>
</tr>
<tr>
<td>PLAN 1</td>
<td>ELEVATION</td>
<td>INITIAL VALUE</td>
<td>SPILLWAY CREST</td>
<td>TOP OF DAM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>---------------</td>
<td>----------------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>535.00</td>
<td>535.00</td>
<td>1228.0</td>
<td>1228.0</td>
<td>1895.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RATIO</th>
<th>MAXIMUM OF RESERVOIR</th>
<th>MAXIMUM DEPTH OVER DAM</th>
<th>MAXIMUM STORAGE</th>
<th>MAXIMUM OUTFLOW</th>
<th>DURATION OVER TOP</th>
<th>MAX OUTFLOW</th>
<th>TIME OF FAILURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>440.09</td>
<td>0.0</td>
<td>1662.0</td>
<td>2606.0</td>
<td>0.0</td>
<td>46.00</td>
<td>0.0</td>
</tr>
<tr>
<td>0.55</td>
<td>440.09</td>
<td>0.09</td>
<td>1915.0</td>
<td>2888.0</td>
<td>1.00</td>
<td>45.50</td>
<td>0.0</td>
</tr>
<tr>
<td>0.67</td>
<td>441.47</td>
<td>0.97</td>
<td>1979.0</td>
<td>3197.0</td>
<td>4.00</td>
<td>45.50</td>
<td>0.0</td>
</tr>
<tr>
<td>0.88</td>
<td>441.52</td>
<td>1.82</td>
<td>2066.0</td>
<td>5669.0</td>
<td>4.50</td>
<td>45.50</td>
<td>0.0</td>
</tr>
<tr>
<td>1.00</td>
<td>443.04</td>
<td>2.54</td>
<td>2178.0</td>
<td>6136.0</td>
<td>7.50</td>
<td>45.00</td>
<td>0.0</td>
</tr>
</tbody>
</table>
STRUCTURAL STABILITY ANALYSIS

This analysis was based on a cross section of the spillway segment shown on the plans. A normal analysis was performed including both overturning and sliding analysis. Since the foundation conditions and the effectiveness of the cutoff wall was unknown, full uplift was assumed at the upstream toe, decreasing to the tailwater pressure at the downstream toe.

ANALYSIS CONDITIONS

1. Normal conditions; water surface at spillway crest
2. Same as #1 plus ice load of 5,000 pounds per linear foot.
3. 1/2 PMF; water surface 7.1 feet over the spillway crest
4. Flood flows; water surface 7.5 feet over the spillway crest (at top of relief weir embankment segment)
5. Seismic conditions - water at spillway crest with seismic coefficient of 0.1.
STABILITY ANALYSIS PROGRAM - WORK SHEET

INPUT ENTRY

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit Weight of Dam (K/ft³)</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>Area of Segment No. 1 (ft²)</td>
<td>1.35</td>
<td>1.35</td>
<td>1.35</td>
<td>1.35</td>
<td>1.35</td>
</tr>
<tr>
<td>Distance from Center of Gravity of Segment No. 1 to Downstream Toe (ft)</td>
<td>17.33</td>
<td>17.33</td>
<td>17.33</td>
<td>17.33</td>
<td>17.33</td>
</tr>
<tr>
<td>Area of Segment No. 2 (ft²)</td>
<td>50.25</td>
<td>50.25</td>
<td>50.25</td>
<td>50.25</td>
<td>50.25</td>
</tr>
<tr>
<td>Distance from Center of Gravity of Segment No. 2 to Downstream Toe (ft)</td>
<td>14.5</td>
<td>14.5</td>
<td>14.5</td>
<td>14.5</td>
<td>14.5</td>
</tr>
<tr>
<td>Area of Segment No. 3 (ft²)</td>
<td>5.7</td>
<td>5.7</td>
<td>5.7</td>
<td>5.7</td>
<td>5.7</td>
</tr>
<tr>
<td>Distance from Center of Gravity of Segment No. 3 to Downstream Toe (ft)</td>
<td>11.5</td>
<td>11.5</td>
<td>11.5</td>
<td>11.5</td>
<td>11.5</td>
</tr>
<tr>
<td>Base Width of Dam (Total) (ft)</td>
<td>7.20</td>
<td>7.20</td>
<td>7.20</td>
<td>7.20</td>
<td>7.20</td>
</tr>
<tr>
<td>Height of Dam (ft)</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Ice Loading (K/L ft.)</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>Coefficient of Sliding</td>
<td>10.65</td>
<td>10.65</td>
<td>10.65</td>
<td>10.65</td>
<td>10.65</td>
</tr>
<tr>
<td>Unit Weight of Soil (K/ft³)</td>
<td>0.055</td>
<td>0.055</td>
<td>0.055</td>
<td>0.055</td>
<td>0.055</td>
</tr>
<tr>
<td>Active Soil Coefficient - Ka</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>Passive Soil Coefficient - Kp</td>
<td>4.11</td>
<td>4.11</td>
<td>4.11</td>
<td>4.11</td>
<td>4.11</td>
</tr>
<tr>
<td>Height of Water over Top of Dam or Spillway (ft)</td>
<td>7.1</td>
<td>7.1</td>
<td>7.1</td>
<td>7.1</td>
<td>7.1</td>
</tr>
<tr>
<td>Height of Soil for Active Pressure (ft)</td>
<td>16.0</td>
<td>16.0</td>
<td>16.0</td>
<td>16.0</td>
<td>16.0</td>
</tr>
<tr>
<td>Height of Soil for Passive Pressure (ft)</td>
<td>16.0</td>
<td>16.0</td>
<td>16.0</td>
<td>16.0</td>
<td>16.0</td>
</tr>
<tr>
<td>Height of Water in Tailrace Channel (ft)</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Weight of Water (K/ft³)</td>
<td>0.0624</td>
<td>0.0624</td>
<td>0.0624</td>
<td>0.0624</td>
<td>0.0624</td>
</tr>
<tr>
<td>Area of Segment No. 4 (ft²)</td>
<td>92.5</td>
<td>92.5</td>
<td>92.5</td>
<td>92.5</td>
<td>92.5</td>
</tr>
<tr>
<td>Distance from Center of Gravity of Segment No. 4 to Downstream Toe (ft)</td>
<td>6.67</td>
<td>6.67</td>
<td>6.67</td>
<td>6.67</td>
<td>6.67</td>
</tr>
<tr>
<td>Height of Ice Load or Active Water (ft)</td>
<td>46.0</td>
<td>46.0</td>
<td>46.0</td>
<td>46.0</td>
<td>46.0</td>
</tr>
<tr>
<td>Seismic Coefficient (g)</td>
<td>50.0</td>
<td>50.0</td>
<td>50.0</td>
<td>50.0</td>
<td>50.0</td>
</tr>
</tbody>
</table>

ANALYSIS CONDITION

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESULTS OF ANALYSIS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Factor of Safety vs. Overturning</td>
<td>1.18</td>
<td>1.14</td>
<td>1.16</td>
<td>1.14</td>
<td>1.52</td>
</tr>
<tr>
<td>Distance From Toe to Resultant</td>
<td>6.53</td>
<td>3.24</td>
<td>2.63</td>
<td>2.41</td>
<td>6.37</td>
</tr>
<tr>
<td>Factor of Safety vs. Sliding</td>
<td>1.12</td>
<td>0.81</td>
<td>0.65</td>
<td>0.64</td>
<td>0.82</td>
</tr>
</tbody>
</table>
APPENDIX E

REFERENCES

1) U.S. Department of Commerce; Weather Bureau; Hydrometeorological Report No. 33 - Seasonal Variation of the Probable Maximum Precipitation East of the 105th Meridian for Areas from 10 to 1,000 Square Miles and Durations of 6, 12, 24, and 48 Hours, April 1956.

APPENDIX F

DRAWINGS
TOPOGRAPHIC MAP
MEAD RESERVOIR DAM
I.D. NO. NY 237
PLATTSBURGH, N.Y.
MEAD BROOK RESERVOIR

PLAN OF DAM

Scales 40 to 1

Record Plan

For details of Spillway and Abutments see Sheet 4 & 5.
For details of Spillway Channel see Sheet 6.
For details of Gate House see Sheets 7 & 8.
For details of Chlorination House see Sheet 11.
For X-Sections of Dam see Sheet 3.

Meadbrook Reservoir

Consulting Engineers
Booth and Lewis
Sectional Plan Q-Q
Local Beam A

1/2 in. spacers 5:0 0" center
1/2 in. 8 in. centers at columns

2 in. 0.60"
6 in. 0.60"
3/4 in. 2.00" 10 in.
1/2 in. spacers 3:50"
1/2 in. bent 6 in. 10 in.

Section 1-1
Reinforcement in back of Wall
Longitudinal Section on C or B
(looking upstream)
Scale 20' to 1"
Elevation

East End of Wall at Sta. 7 + 021
Scale 1" = 1'-0"

Section D-D

1'-0" x 12" cs both ways, both races

6" recess in wall to top steel

1'-0" x 8" cs 10'-0" long

5" vit. pipe camp joints

Graded crushed

Elevation

Details of Drain Head
Scale 1" = 1'-0"
E-E Manhole at Sta. 2+60
Scale 1/4 to 1'
Plan Scale 1:400

Note: For detailed construction plans and sections, see details below.
Section E-E Scale 1" to 1

Profile of Cones

Elevation of East End of Wall at 819' 3" 501
West end similar dimensions
1/8" Plate washers

1/8" Copper Strip

1/8" Copper Strip

Cut-off Grooves

Bulkhead
Fill with concrete

Section "G-6"
Scale 1/0

Floor El 464.0 at circumference pitched to El 463.0 at center.
Section "D-D"
Scale 1"=10'

Adjustable Stem Guides

Stop Planks