LEVEL II
MISSOURI-NEMAHA-NODAWAY BASIN

LOWELL PIERCE DAM
ATCHISON COUNTY, MISSOURI
MO. 11009

PHASE 1 INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

United States Army
Corps of Engineers
...Serving the Army
...Serving the Nation

St. Louis District

PREPARED BY: U.S. ARMY ENGINEER DISTRICT, ST. LOUIS
FOR: STATE OF MISSOURI
MAY, 1979

DISTRIBUTION STATEMENT A
Approved for public release
Distribution Unlimited
Phase I Dam Inspection Report

National Dam Safety Program
Lowell Pierce Dam (MO 11009)
Atchison County, Missouri

Author(s)
Hoskins-Western-Sonderegger, Inc.

Performing Organization Name and Address
U.S. Army Engineer District, St. Louis
Dam Inventory and Inspection Section, LMSED-PD
210 Tucker Blvd., North, St. Louis, Mo. 63101

Controlling Office Name and Address
U.S. Army Engineer District, St. Louis
Dam Inventory and Inspection Section, LMSED-PD
210 Tucker Blvd., North, St. Louis, Mo. 63101

Distribution Statement (of this report)
Approved for release; distribution unlimited.

Distribution Statement (of the abstract entered in Block 20, if different from Report)

Supplementary Notes

Key Words
Dam Safety, Lake, Dam Inspection, Private Dams

Abstract
This report was prepared under the National Program of Inspection of Non-Federal Dams. This report assesses the general condition of the dam with respect to safety, based on available data and on visual inspection, to determine if the dam poses hazards to human life or property.
LOWELL PIERCE DAM
ATCHISON COUNTY, MISSOURI
MO. 11009

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

PREPARED BY
HOSKINS-WESTERN-SONDEREGGER, INC.
CONSULTING ENGINEERS
LINCOLN, NEBRASKA

UNDER DIRECTION OF
ST. LOUIS DISTRICT, CORPS OF ENGINEERS
FOR
GOVERNOR OF MISSOURI

Accession For
NTIS GRA&I
DTIC TAB
Unannounced
Justification

By
Distribution/
Availability Codes
Avail and/or
Special

MAY, 1979

DTIC ELECTRONIC
D OCT 16 1981
SUBJECT: Lowell Pierce Dam Phase I Inspection Report

This report presents the results of field inspection and evaluation of the Lowell Pierce Dam:

It was prepared under the National Program of Inspection of Non-Federal Dams.

This dam has been classified as unsafe, non-emergency by the St. Louis District because of the following deficiencies:

1) Spillway will not pass the Probable Maximum Flood without overtopping. Overtopping could result in dam failure which would significantly increase the hazard to loss of life downstream.

2) Slope failure of a portion of the embankment. This decreases the stability of the dam which increases the likelihood of failure.

SUBMITTED BY: [Signature]
Chief, Engineering Division

13 DEC 1979
Date

APPROVED BY: [Signature]
Colonel, CE, District Engineer

13 DEC 1979
Date
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>PARAGRAPH NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Assessment Summary</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Overview Photograph</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>General</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Description of Project</td>
<td>1</td>
</tr>
<tr>
<td>1.3</td>
<td>Pertinent Data</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>SECTION 1 - PROJECT INFORMATION</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Design</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Construction</td>
<td>6</td>
</tr>
<tr>
<td>2.3</td>
<td>Operation</td>
<td>6</td>
</tr>
<tr>
<td>2.4</td>
<td>Evaluation</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>SECTION 2 - ENGINEERING DATA</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Findings</td>
<td>7</td>
</tr>
<tr>
<td>3.2</td>
<td>Evaluation</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>SECTION 3 - VISUAL INSPECTION</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Procedures</td>
<td>10</td>
</tr>
<tr>
<td>4.2</td>
<td>Maintenance of Dam</td>
<td>10</td>
</tr>
<tr>
<td>4.3</td>
<td>Maintenance of Operating Facilities</td>
<td>10</td>
</tr>
<tr>
<td>4.4</td>
<td>Description of Any Warning System in Effect</td>
<td>10</td>
</tr>
<tr>
<td>4.5</td>
<td>Evaluation</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>SECTION 4 - OPERATIONAL PROCEDURES</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Evaluation of Features</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>SECTION 5 - HYDRAULIC/HYDROLOGIC</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Evaluation of Structural Stability</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>SECTION 6 - STRUCTURAL STABILITY</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Dam Assessment</td>
<td>14</td>
</tr>
<tr>
<td>7.2</td>
<td>Remedial Measures</td>
<td>14</td>
</tr>
</tbody>
</table>
APPENDIX A - MAPS
Plate A-1 Vicinity Topography
Plate A-2 Location Map

APPENDIX B - PHOTOGRAPHS
Plate B-1 Photo Index
Plate B-2 Photo No. 2 Upstream Face From Left Abutment.
Photo No. 3 Crest Taken From Left End.
Plate B-3 Photo No. 4 Downstream Face From Left Abutment
Showing Slide Near Right Abutment.
Photo No. 5 Principal Spillway Riser.
Plate B-4 Photo No. 6 Looking Upstream In Emergency
Spillway.
Photo No. 7 Looking Downstream In Emergency
Spillway.
Plate B-5 Photo No. 8 Exit Channel Of Emergency Spillway.
15 Foot Vertical Drop-off & Serious
Erosion.
Photo No. 9 Looking Upstream In Exit Channel.
Showing Head Cut.
Plate B-6 Photo No. 10 Downstream Slope From Right Abutment.
Photo No. 11 Seepage Spot At Downstream Toe In
Left Abutment.
Plate B-7 Photo No. 12 Seepage At Toe In Left Abutment.
Photo No. 13 Slide And Eroded Area In Right
Abutment Trough Downstream.
Plate B-8 Photo No. 14 Seepage From Slide Area In Right
Abutment Trough.
Photo No. 15 Principal Spillway Pipe At Lower
Right Corner. Outlet End Completely
Submerged.
Plate B-9 Photo No. 16 Principal Spillway Outlet. Pipe
Submerged.
Plate B-10 Photo No. 17 Upstream From Crest Of Dam.
Photo No. 18 Downstream From Sta. 2 + 50.

APPENDIX C - PROJECT PLATES
Plate C-1 Phase I - Plan and Centerline Profile of Dam
Plate C-2 Phase I - Section of Dam, Profile and Section of
Spillway

APPENDIX D - HYDRAULIC AND HYDROLOGIC DATA
Plates D-1 and D-2 Hydrologic Computations
Plate D-3 Emergency Spillway Rating Curve
Plate D-4 Combined Dam Rating Curve
Plate D-5 Ratio-Discharge Curve
Plates D-6 to D-18 Computer Input and Output for PMF
PHASE I REPORT
NATIONAL DAM SAFETY PROGRAM

Name of Dam Lowell Pierce Dam
State Located Missouri
County Located Atchison County
Stream Tributary Mill Creek
Date of Inspection May 16, 1979

Lowell Pierce Dam was inspected by an interdisciplinary team of engineers from Hoskins-Western-Sonderegger, Inc. The purpose of the inspection was to make an assessment of the general condition of the dam with respect to safety, based upon available data and visual inspection, in order to determine if the dam poses hazards to human life or property.

The guidelines used in the assessment were furnished by the Department of the Army, Office of the Chief of Engineers, and developed with the help of several Federal and State agencies, professional engineering organizations, and private engineers. Based on these guidelines, this dam is classified as an intermediate size dam with a high downstream hazard potential. Failure would threaten life and property. The estimated damage zone extends approximately 1.6 miles downstream of the dam. Within the damage zone are County Road "Z", one dwelling and Interstate Highway 29.

The large slide and seepage on the right side of the downstream section indicate that this dam is not structurally stable from the standpoint of shear strength and seepage pressures. Seepage and stability analyses including earthquake loadings, comparable to the requirements of the "Recommended Guidelines for Safety Inspections of Dams" should be performed as soon as possible. These analyses are required to design the remedial measures necessary to reconstruct and stabilize the downstream section of the dam and the principal spillway (pipe) outlet.
Our inspection and evaluation indicates that the spillway does not meet the criteria set forth in the recommended guidelines for an intermediate size dam having a high hazard potential. The full Probable Maximum Flood is the appropriate spillway design flood. The spillways will pass the 100-year flood (flood having a one percent chance of being exceeded in any year) without overtopping the dam. The spillways will pass 16% of the Probable Maximum Flood without overtopping the dam. The Probable Maximum Flood (PMF) is defined as the flood that may be expected from the most severe combination of critical meteorologic and hydrologic conditions that are reasonably possible in the region.

The materials in the embankment and in the emergency spillway are highly erosive under low velocity flows. This induces a very high potential of failure of the dam if it overtops and of breaching the reservoir by erosional headcutting through the emergency spillway if the spillway operates under prolonged flows. It is recommended that actions necessary to minimize or eliminate the potentials of failure by overtopping the dam or by spillway breaching be pursued on a high priority basis. Such actions should consider but not be limited to, increasing the height of the dam and the crest of the emergency spillway to temporarily impound the PMF without spillway discharges or to construct an erosion resistant spillway.

Other deficiencies observed during the inspection that should be corrected are: erosional gullies in the left upstream abutment trough; erosion of the upstream face of the dam; seepage in the left downstream abutment trough along the toe and downstream from the dam; and clogging of the channel downstream from the dam by trees and brush.

A program of regular inspection and maintenance should be initiated as soon as the above deficiencies have been corrected.

Rey A. Decker
E-3703

Gordon J. Jamison

Garold Ulmer
E-4777

Harold P. Hoskins
Chairman of Board
Hoskins-Western-Sonderegger, Inc.
E-8696
PHOTO NO. 1 - OVERVIEW TAKEN FROM UPSTREAM ON RIGHT.
PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM
LOWELL PIERCE DAM - MO 11009
ATCHISON COUNTY, MISSOURI

SECTION 1 - PROJECT INFORMATION

1.1 GENERAL

a. Authority. The National Dam Inspection Act, Public Law 92-367, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a program of safety inspection of dams throughout the United States. Pursuant to the above, the St. Louis District, Corps of Engineers, District Engineer directed that a safety inspection of Lowell Pierce Dam be made.

b. Purpose of Inspection. The purpose of the inspection was to make an assessment of the general condition of the dam with respect to safety, based upon available data and visual inspection, in order to determine if the dam poses hazards to human life or property.

c. Evaluation Criteria. Criteria used to evaluate the dam were furnished by the Department of the Army, Office of the Chief of Engineers, in "Recommended Guidelines for Safety Inspection of Dams", Appendix D to "Report of the Chief of Engineers on the National Program of Inspection of Dams", dated May, 1975, and published by the Department of the Army, Office of the Chief of Engineers.

1.2 DESCRIPTION OF PROJECT

a. Description of Dam and Appurtenances.

(1) The dam is an earthfill, approximately 310 feet in length and about 45 feet in height. It is constructed in a nearly vertical walled channel, deeply incised through loess and loessal alluvium, which is the typical erosional pattern in deep loessal areas.

(2) The principal spillway consists of a 48-inch diameter corrugated metal pipe (CMP) riser about 4 feet high connected with a 12-inch diameter welded steel pipe outlet conduit passing through the dam. A low-level inlet notch 1 ft. deep and 1.7 ft. wide is cut into the riser crest.
(3) A poorly vegetated earth emergency spillway is cut into the right abutment.

(4) Pertinent physical data are given in paragraph 1.3 below.

b. Location. The dam is located in the southwestern portion of Atchison County, Missouri, as shown on Plate A-2. The dam is shown on Plate A-1 in the NW ¼ of Section 36, T64N, R41W. The lake formed behind the dam is shown in the NW ¼ of Section 36, T64N, R41W, the NE ¼ of Section 35, T64N, R41W, and the SE ¼ of Section 26, T64N, R41W.

c. Size Classification. Criteria for determining the size classification of dams and impoundments are presented in the guidelines referenced in paragraph 1.1c above. Based on these criteria, this dam and impoundment is in the intermediate size category.

d. Hazard Classification. Guidelines for determining hazard classification are presented in the same guidelines as referenced in paragraph 1.1c above. Based on referenced guidelines, this dam is in the High Hazard Classification. The estimated damage zone extends approximately 1.6 miles downstream of the dam. Within the damage zone are county road "Z" and one dwelling. The subject drainageway enters the much larger Mill Creek at the county road. One mile below this confluence Mill Creek crosses under Interstate 29.

e. Ownership. The dam is owned by Lowell Pierce, Rockport, Missouri 64482.

f. Purpose of Dam. The dam was constructed as an erosion control and grade stabilization structure to reduce the gulley and head cutting erosion of tributary drainageways.

g. Design and Construction History. The owner reported that the dam was constructed in 1968 or 1969 as part of the Agricultural Stabilization and Conservation Service (ASCS) program. However, this structure was not cost shared by ASCS due to insufficient funds. No design information was available.

h. Normal Operating Procedure. All spillways are uncontrolled and there are no operating procedures for this dam. The pool level is controlled by rainfall, infiltration, evaporation, and the capacity of the uncontrolled spillways.
1.3 PERTINENT DATA

a. **Drainage Area.** 694 acres (1.084 square miles).

b. **Discharge at Damsite.**

 (1) All discharges at the damsite are through a principal spillway consisting of a 48-inch diameter corrugated metal pipe riser connected with a 12-inch diameter welded steel pipe outlet and a grassed earth channel ungated emergency spillway.

 (2) Estimated maximum flood. The estimated maximum spillway discharge during the maximum flood as described by the owner was approximately 18 c.f.s. This implies that the maximum flood must have been less than the 100-year (1 percent) flood.

 (3) The principal spillway capacity varies from 0 c.f.s. at elevation 960.0 feet to 20 c.f.s. at the crest of the emergency spillway (elevation 967.2) to 20 c.f.s. at the minimum top of dam (elevation 969.7).

 (4) The emergency spillway capacity varies from 0 c.f.s. at its crest elevation 967.2 to 357 c.f.s. at elevation 969.7 (minimum top of dam).

 (5) Total spillway capacity at the minimum top of dam is 377 c.f.s. ±

c. **Elevations.** (Feet above M.S.L.)

 (1) Top of dam - 970 ±

 (2) Principal spillway crest - 961 ±

 (3) Emergency spillway crest - 967 ±

 (4) Streambed at centerline - 925 ±

 (5) Maximum tailwater - unknown

d. **Reservoir.** Length (feet) of maximum pool - 8,300 ±.

e. **Storage** (Acre-feet).

 (1) Top of dam - 193 ±

 (2) Principal spillway crest - 0 ±
f. Reservoir Surface (Acres).

(1) Top of dam. 25 ±
(2) Principal spillway crest - 13 ±

g. Dam.

(1) Type - Earthfill
(2) Length - 310 ft. ±
(3) Height - 45 ft. ±
(4) Top Width - 16 ft. ±
(5) Side slopes.
 (a) Downstream 2.2H on 1V (measured)
 (b) Upstream 3H on 1V (measured on exposed section)
(6) Zoning - unknown
(7) Impervious core - unknown
(8) Cutoff - unknown
(9) Grout curtain - unknown
(10) Wave protection - none

h. Diversion Channel and Regulating Tunnel. None

i. Spillway.

(1) Principal
 (a) Type - drop inlet with 48-inch diameter riser and
 12-inch diameter conduit. 1 ft. x 1.7 ft. notch
 cut into crest of riser.
 (b) Crest (invert) elevation - 961 ft., notch = 960 ft.
 Outlet - submerged, estimated at 925 ±
 (c) Length - 150 ft. ±

(2) Emergency
 (a) Type - vegetated earth located on the right end of
 the dam.
 (b) Control section - trapezoidal section with bottom
 width of 30 ft. ± and side slopes of 4H on 1V and
 1.5 to 2H on 1V.
 (c) Crest elevation 967 ft. ±
 (d) Upstream Channel - open, excavated earth, with
 slope of 12% ±
(e) Downstream Channel - the spillway outlets over a vertical gulley headcut about 15 feet deep in the loessal alluvium of the old channel bank.

j. Regulating Outlets. None.
SECTION 2 - ENGINEERING DATA

2.1 DESIGN

No design data were available for this dam.

2.2 CONSTRUCTION

No construction data were available. It was reported by Lowell Pierce that the dam was constructed in 1968 or 1969, and that sheepsfoot rollers were used on the embankment.

2.3 OPERATION

No data were available on spillway operation. It was reported by Lowell Pierce that water has never passed through the emergency spillway. It was reported that the highest reservoir level occurred in 1973 or 1974 when the water raised about two feet over the crest of the principal spillway, and that there has been only one year that the lake level dropped below the inlet to the pipe spillway.

2.4 EVALUATION

a. Availability. No data were available.

b. Adequacy. The field surveys and visual observation presented herein are considered adequate to support the conclusion of this report. Seepage and stability analyses comparable to the requirements of the "Recommended Guidelines for Safety Inspection of Dams" were not available, which is considered a deficiency. These seepage and stability analyses should be performed for appropriate loading conditions (including earthquake loads) and made a matter of record.

c. Validity. Not applicable.
SECTION 3 - VISUAL INSPECTION

3.1 FINDINGS

a. General. A visual inspection of the Lowell Pierce Dam was made on May 16, 1979. Engineers from Hoskins-Western-Sonderegger, Inc. Lincoln, Nebraska making the inspection were: R.S. Decker, Geotechnical; Gordon Jamison, Hydrology; and Garold Ulmer, Civil Engineer. Mr. Lowell Pierce, Owner, was present during the inspection.

b. Dam.

(1) Geology & Soils (Abutment & Embankment). The dam is located in the deep loess hills of northwestern Missouri. The old channel is deeply and almost vertically incised through loess and loessal alluvium. These loessal deposits of the old channel banks form the abutments for the dam. Materials in the abutments and the embankment are low plasticity CL-ML soils. Fine grained glacial till appeared to outcrop near the valley bottom on the right abutment.

(2) Upstream Slope. The upstream slope is fairly well vegetated with adapted grasses. Surface drainage into the reservoir from the left abutment has cut several gullies and rills up to 2 feet in depth. Photo No. 2 shows the gullies and rills. Some erosion was noted along the waterline. No cracks, settlements, sink holes, rodent holes or abnormal deformations were noted.

(3) Crest. The crest serves as an access road across the dam. The right end of the crest is about 1 ft. higher than the left end. No cracks, deformations or significant erosion were noted on the crest. Photo No. 3 shows the crest of the dam.

(4) Downstream Slope. The downstream slope is well vegetated except for the slide area in the right abutment trough. The slide or slump in the right abutment trough (see Photos 4 and 13) has removed a section of the dam about 60 feet wide extending from about one-half way down the slope from the crest to the toe. The owner reported that this slide occurred the first winter after the dam was constructed and hasn't progressed very much since then. The slide covered the outlet end of the principal spillway pipe, which is still submerged. Seepage outcrops in the slide or slump area at about elevation 938 feet which would be about one-third of the way up from the toe, as normally expected. Seepage from the right
abutment and slide area is estimated to be 0.25 gal./min. Seepage outcrops on the left abutment at about elevation 944 ft. some 5 or 6 feet higher than the outcrops on the right end. Seepage on the left end extends from the abutment trough along the toe of the dam to about Sta. 0+80 and downstream from the toe for some distance. Seepage from the left abutment and toe area was estimated at about 0.5 to 0.75 gal./min. All seepage was clear and no boils were observed. No deformations were noted in the left and center sections of the downstream slope. However, the near vertical left valley (old gulley) bank is sluffing for some distance downstream from the dam.

(5) Miscellaneous. The nature of materials in this dam and present conditions indicate that any significant overtopping would probably cause considerable damage and possible failure of the structure.

c. Appurtenant Structures.

(1) The principal spillway consists of a 48-inch CMP riser with notch as described previously with 12-inch steel outlet pipe passing through the embankment. No deterioration was noted in the metal riser or pipe. The trash rack consisted of a cage of woven wire. The inlet was reasonably free of trash.

The outlet end of the pipe is submerged and was not located. Water was flowing through the notch in the riser at an estimated rate of 5 gal./min.

(2) The emergency spillway is cut through the right abutment. The vegetative cover in the spillway is only fair and surface runoff into the spillway has caused some erosion. Materials in the spillway are CL-ML soils. The exit channel drops off into the valley over a 15-foot deep headcut which is badly eroded.

(3) Drawdown Facilities. There are no drawdown facilities for this dam.

d. Reservoir Area. The reservoir extends several thousand feet upstream and consists largely of deep channel storage. The old channel banks were near vertical and some sloughing and erosion must result around the edge of the reservoir, as observed near the dam. However, the water in the reservoir is very clear.
e. **Downstream Channel.** The downstream channel is badly overgrown with trees and shrubs.

3.2 **EVALUATION**

It would appear that any increase in seepage pressures caused by higher reservoir levels would result in serious potential of failure in the slide area on the right end of the dam. Such increased pressures could also cause slides in the left abutment area. It would also appear that any significant flow through the emergency spillway would result in advancing the outlet headcut toward the reservoir. However, the headcut would have to advance some 150 feet to cause drawdown of the reservoir. Significant overtopping would probably result in potential of failure.
SECTION 4 - OPERATIONAL PROCEDURES

4.1 PROCEDURES
There are no controlled outlet works for this dam. The pool level is controlled by rainfall, infiltration, evaporation, and the capacity of the uncontrolled spillways.

4.2 MAINTENANCE OF DAM
There are no regular maintenance procedures for this dam as evidenced by erosion on the upstream slope and lack of repair of the slide area in the right abutment downstream section.

4.3 MAINTENANCE OF OPERATING FACILITIES
No operating facilities exist at this dam.

4.4 DESCRIPTION OF ANY WARNING SYSTEM IN EFFECT
There is no warning system in effect for this dam.

4.5 EVALUATION
There appears to be a potential of failure of this structure.
SECTION 5 - HYDRAULIC/HYDROLOGIC

5.1 EVALUATION OF FEATURES

a. Design Data. No design data were found for this dam. Therefore, all computations are based on the field inspection and survey performed by the consultant. The plans, profiles, and cross sections from the survey are attached in Appendix C.

b. Experience Data. The drainage area, reservoir surface area, and elevation-storage data were developed from the USGS Tarkio, Missouri 15 minute topographic quadrangle map. The hydraulic computations for the spillway and dam overtopping discharge ratings were based on data collected in the field at the time of the field inspection.

(1) The principal spillway inlet was encaged with a woven-wire fabric fence for a trash rack. The inlet was reasonably clear of debris.

(2) The slide in the right abutment trough had completely buried the principal spillway outlet. The spillway, however, was discharging at a rate of about 5 gallons per minute. We could not locate the actual location of the outlet. The bottom of the pool was approximately 3.5 feet below the water surface.

(3) The emergency spillway and exit channel are located in the right abutment of the dam.

(4) The exit channel from the emergency spillway drops off at the edge of the old gulley channel bank. The drop-off falls vertically a distance of about 15 feet and is very seriously eroded. Any significant flow through the spillway would headcut this gulley back into the reservoir.

(5) The downstream channel was badly choked with trees and brush.

(6) No drawdown facilities are available to evacuate the pool.

d. Overtopping Potential. The spillways are too small to pass 100% of the probable maximum flood without overtopping. The
Spillways will pass 16% of the PMF without overtopping. The 100-year (1 percent) peak outflow discharge is approximately 20% of the spillway capacity. Significant overtopping of this dam would probably result in potential of failure. The results of the routings through the dam are tabulated in regards to the following conditions.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>100 Yr.</td>
<td>1500</td>
<td>70</td>
<td>968.0</td>
<td>+1.7</td>
<td>0</td>
</tr>
<tr>
<td>1/2 PMF</td>
<td>3700</td>
<td>3500</td>
<td>972.1</td>
<td>-2.4</td>
<td>5+</td>
</tr>
<tr>
<td>PMF</td>
<td>7500</td>
<td>7200</td>
<td>973.4</td>
<td>-3.7</td>
<td>7+</td>
</tr>
<tr>
<td>0.16 PMF</td>
<td>1200</td>
<td>350</td>
<td>969.7</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

According to the recommended guidelines from the Department of the Army, Office of the Chief of Engineers, this dam is classified as having a high hazard rating and an intermediate size. Therefore, the PMF is the test for the adequacy of the dam and its spillway.

The estimated damage zone is described in Paragraph 1.2d in this report.
SECTION 6 - STRUCTURAL STABILITY

6.1 EVALUATION OF STRUCTURAL STABILITY

a. Visual Observation. The slide in the right downstream section and the resulting steepened slope and seepage would indicate that this dam is not structurally stable.

b. Design and Construction Data. No design or construction data were available. Seepage and stability analyses comparable to the requirements of the "Recommended Guidelines for Safety Inspection of Dams" were not available, which is considered a deficiency. These seepage and stability analyses should be performed for appropriate loading conditions (including earthquake loads) and made a matter of record.

c. Operating Records. There are no controlled operating facilities for this dam.

d. Post Construction Changes. The inspection team is not aware of any post construction changes for this structure.

e. Seismic Stability. This dam is located in Seismic Zone 1. Additional studies would be required to determine the effects of an earthquake of the magnitude predicted in this area on the stability of this dam.
SECTION 7 - ASSESSMENT/REMEDIAL MEASURES

7.1 DAM ASSESSMENT

a. Safety. This dam is not considered to be structurally stable from the standpoint of shear strength and seepage pressures. Additional studies would be required to determine the adverse effects of overtopping or significant emergency spillway flows on the safety of the structure against breaching, but it appears that such flows would induce a high potential of failure of this structure.

b. Adequacy of Information. Due to the lack of engineering data, the conclusions in this report are based upon performance history and visual observations. Seepage and stability analyses comparable to the requirements of the "Recommended Guidelines for Safety Inspection of Dams" were not available, which is considered a deficiency.

c. Urgency. Because of the potential for further embankment failure in the area of the slump at the right abutment, steps should be taken immediately to correct this deficiency. A program should be developed as soon as possible to monitor the other deficiencies described in this report. The actions recommended in paragraphs 7.2a(2) and 7.2a(3) should be pursued on a high priority basis."

d. Necessity for Phase II. Phase II investigation is not considered necessary.

e. Seismic Stability. This dam is located in Seismic Zone 1. Additional studies would be required to assess the affects of such an earthquake on the structural stability of this dam.

7.2 REMEDIAL MEASURES

a. Alternatives.

(1) Structural stability and seepage analyses for the design and rehabilitation of the downstream section of the dam and the abutments should be made. Stability analyses should include seismic considerations.

(2) The effects of overtopping and of emergency spillway flows on the erosional stability and safety of the dam and abutments against breaching should be evaluated.
(3) Consideration should be given to increasing the height of the dam and the emergency spillway crest to temporarily impound the probable maximum flood without overtopping or causing emergency spillway flow in accordance with the results of studies for item 2, above. These evaluations concerning impoundment and overtopping should include detailed evaluation of the topographic characteristics of the reservoir area.

(4) The services of an Engineer experienced in the design and construction of earth dams should be obtained to evaluate the present dam and spillway, make the necessary analyses and to design the required protective measures.

b. O & M Procedures.

(1) Erosion on the upstream slopes of the dam and abutment troughs should be corrected.

(2) Some clearing of trees and brush in the downstream channel should be done to prevent encroachment of emergency spillway discharge on the toe of the dam. Such clearing should be done in accordance with the actions taken in paragraph 7.2 above.

(3) A program of regular inspection and maintenance should be initiated to prevent excessive erosion of the embankment, emergency spillway, and abutments.
PHOTO NO. 2 - UPSTREAM FACE FROM LEFT ABUTMENT.

PHOTO NO. 3 - CREST TAKEN FROM LEFT END.
PHOTO NO. 4 - DOWNSTREAM FACE FROM LEFT ABUTMENT SHOWING SLIDE NEAR RIGHT ABUTMENT.

PHOTO NO. 5 - PRINCIPAL SPILLWAY RISER.
PHOTO NO. 6 - LOOKING UPSTREAM IN EMERGENCY SPILLWAY.

PHOTO NO. 7 - LOOKING DOWNSTREAM IN EMERGENCY SPILLWAY.
PHOTO NO. 8 - EXIT CHANNEL OF EMERGENCY SPILLWAY.
15 FOOT VERTICAL DROP-OFF & SERIOUS EROSION.

PHOTO NO. 9 - LOOKING UPSTREAM IN EXIT CHANNEL. SHOWING
HEAD CUT.
PHOTO NO. 10 - DOWNSTREAM SLOPE FROM RIGHT ABUTMENT.

PHOTO NO. 11 - SEEPAGE SPOT AT DOWNSTREAM TOE IN LEFT ABUTMENT.
PHOTO NO. 12 - SEEPAGE AT TOE IN LEFT ABUTMENT.

PHOTO NO. 13 - SLIDE AND ERODED AREA IN RIGHT ABUTMENT TROUGH DOWNSTREAM.
PHOTO NO. 14 - SEEPAGE FROM SLIDE AREA IN RIGHT ABUTMENT TROUGH.

PHOTO NO. 15 - PRINCIPAL SPILLWAY PIPE AT LOWER RIGHT CORNER. OUTLET END COMPLETELY SUBMERGED.
PHOTO NO. 16 - PRINCIPAL SPILLWAY OUTLET. PIPE SUBMERGED.

PHOTO NO. 17 - UPSTREAM FROM CREST OF DAM.
PHOTO NO. 18 - DOWNSTREAM FROM STA. 2+50.
APPENDIX C
PROJECT PLATES
APPENDIX D
HYDRAULIC AND HYDROLOGIC DATA
1. The SCS dimensionless unit hydrograph and the systemized computer program HEC-1 (Dam Safety Version), July, 1978, prepared by the Hydrologic Engineering Center, U.S. Corps of Engineers, Davis, California, were used to develop the inflow hydrographs.

a. The twenty-four hour, 100-year rainfall for the dam location was taken from the data for the rainfall station at Maryville, Mo. as supplied by the St. Louis District, Corps of Engineers per their letter dated 6 March 1979. The twenty-four hour probable maximum precipitation was taken from the curves of Hydrometeorological Report No. 33 and current Corps of Engineers and St. Louis policy and guidance for hydraulics and hydrology.

b. Drainage area = 1.08 square miles (694 acres).

c. Time of concentration of runoff = 48 minutes (computed from "Kirpich" formula).

d. The antecedent storm conditions for the probable maximum precipitation were heavy rainfall and low temperatures which occurred on the previous 5 days (SCS AMC III). The antecedent storm conditions for the 100-year precipitation were an average of the conditions which have preceded the occurrence of the maximum annual flood on numerous watersheds (SCS AMC II). The initial pool elevation was assumed at the sill of the riser of the principal spillway.

e. The total twenty-four hour storm duration losses for the 100-year storm were 3.71 inches. The total losses for the PMF storm were 2.33 inches. These data are based on SCS runoff curve No. 83 and No. 67 for antecedent moisture conditions SCS AMC III and AMC II respectively. The watershed is composed of primarily SCS soil group B (Marshall-Judson-Kennebec Soils) and consists mostly of woods and pasture with very little of the watershed in cropland.

f. Average soil loss rates = 0.10 inch per hour approximately (for PMF storm, AMC III).

2. The combined discharge rating consisted of three components: the flow through the principal spillway, the flow through the emergency spillway and the flow going over the top of the dam.
a. The principal spillway rating was developed by using the weir and full conduit flow equations.

1. Weir flow equation ($Q = CLH^{1.5}$)

 where C = weir coefficient = 3.1
 L = effective weir length, ft. = 12.6
 H = total head, ft.

2. Full conduit flow equation

 $$Q = a\sqrt{\frac{2gH}{1 + K_e + K_b + K_pL}}$$

 where a = cross-sectional area of pipe, $ft^2 = 0.785$
 H = total head, ft.
 K_e = coefficient for entrance loss = 0.5
 K_b = coefficient for bend loss = 0.45
 K_p = coefficient for pipe friction loss = 0.0185
 L = length of pipe, ft. = 150

b. The emergency spillway rating was developed using the Corps of Engineers Surface Water Profile HEC-2 computer program.

c. The flows over the dam are based on the broad-crested weir equation ($Q = CLH^{1.5}$) where H is the head on the dam crest, L is the effective length acting as a weir, and C is an appropriate weir coefficient which varies with head and is based on U.S. Geological Survey criteria. The weir coefficient varied from 2.56 to 3.04 while the effective length varied from 20 to 50 feet with an overall length of 310 feet.

3. Floods were routed through the reservoir using the HEC-1 (Dam Safety Version) program to determine the capabilities of the spillway and dam embankment crest. The output and plotted hydrographs are shown attached in this Appendix.
Combined Dam Rating Curve
Lowell Pierce Dam
Missouri Dam #11,009

Elevation, M.S.L.

Discharge in C.F.S.

PLATE D-4
ANALYSIS OF DAM OVERTIPPING USING RATES IN PMF
HYDROLOGIC-HYDRAULIC ANALYSES OF SAFETY OF LOCULL PIERCE DAM 11009
RATIOS OF PMF ROUTED THROUGH THE RESERVOIR

JOB SPECIFICATION

<table>
<thead>
<tr>
<th>LPQ</th>
<th>MVR</th>
<th>MRM</th>
<th>LIOY</th>
<th>LIMK</th>
<th>LPLT</th>
<th>IPR</th>
<th>NPTAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>248</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

MULTI-PLAN ANALYSIS TO BE PERFORMED

NPLAN = 1
NPLT = 6
LPLT = 1

RIOS* = 0.20
RIOS* = 0.35
RIOS* = 0.50
RIOS* = 0.50
RIOS* = 1.00

SUP-AREA RUNOFF COMPUTATION

HYDROGRAPH DATA

<table>
<thead>
<tr>
<th>HVDG</th>
<th>HNRG</th>
<th>TAREG</th>
<th>SNAP</th>
<th>TRSA</th>
<th>TRSC</th>
<th>RATIO</th>
<th>ISNOW</th>
<th>ISAH</th>
<th>LOCAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

PRECIP DATA

<table>
<thead>
<tr>
<th>SPE</th>
<th>PMS</th>
<th>PG6</th>
<th>R12</th>
<th>R24</th>
<th>R40</th>
<th>R72</th>
<th>R96</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>33.70</td>
<td>102.00</td>
<td>121.00</td>
<td>110.00</td>
<td>10.00</td>
<td>10.00</td>
<td>10.00</td>
</tr>
</tbody>
</table>

LOSS DATA

<table>
<thead>
<tr>
<th>LORQ</th>
<th>SIRK</th>
<th>DLIVR</th>
<th>RISH</th>
<th>RSRH</th>
<th>RSH</th>
<th>RISH</th>
<th>RSH</th>
<th>RISH</th>
<th>RSH</th>
<th>RSH</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>-1.00</td>
<td>-1.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>

CURVE NO. = 0.00
WEIGHT = 0.00
EFFECTIVE CPU = 1.00

UNMET HYDROGRAPH DATA

<table>
<thead>
<tr>
<th>EC</th>
<th>0.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAGS</td>
<td>0.00</td>
</tr>
</tbody>
</table>

RICKETSON DATA

<table>
<thead>
<tr>
<th>STRO</th>
<th>0.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>QRECS</td>
<td>-0.00</td>
</tr>
<tr>
<td>PHI</td>
<td>1.00</td>
</tr>
</tbody>
</table>

UNIT HYDROGRAPH

31	71.8	50.7	11.1	3.8	0.00	1.00
32	62.7	50.7	11.1	3.8	0.00	1.00
33	24.0	20.0	1.5	1.5	0.00	1.00

PLATE 0-7
Hydrograph at Staakaqusi for Plan 1, RI10 1

<table>
<thead>
<tr>
<th>Peak</th>
<th>6-Hour</th>
<th>24-Hour</th>
<th>72-Hour</th>
<th>Total Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFS</td>
<td>3732.4</td>
<td>1351.2</td>
<td>413.2</td>
<td>11091.4</td>
</tr>
<tr>
<td>CMS</td>
<td>106.4</td>
<td>38.5</td>
<td>12.0</td>
<td>336.4</td>
</tr>
<tr>
<td>INCHES</td>
<td>11.60</td>
<td>4.16</td>
<td>1.41</td>
<td>14.11</td>
</tr>
<tr>
<td>MM</td>
<td>294.52</td>
<td>350.59</td>
<td>350.59</td>
<td>350.59</td>
</tr>
<tr>
<td>AC-Ft</td>
<td>670.8</td>
<td>819.8</td>
<td>819.8</td>
<td>819.8</td>
</tr>
<tr>
<td>THOUS CU M</td>
<td>1076.4</td>
<td>1010.4</td>
<td>1010.4</td>
<td>1010.4</td>
</tr>
</tbody>
</table>

Hydrograph at Staakaqusi for Plan 1, RI10 4

<table>
<thead>
<tr>
<th>Peak</th>
<th>6-Hour</th>
<th>24-Hour</th>
<th>72-Hour</th>
<th>Total Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFS</td>
<td>4851.0</td>
<td>1751.2</td>
<td>531.1</td>
<td>15466.4</td>
</tr>
<tr>
<td>CMS</td>
<td>137.0</td>
<td>50.0</td>
<td>15.0</td>
<td>437.0</td>
</tr>
<tr>
<td>INCHES</td>
<td>15.07</td>
<td>10.42</td>
<td>10.42</td>
<td>10.42</td>
</tr>
<tr>
<td>MM</td>
<td>382.97</td>
<td>481.49</td>
<td>463.79</td>
<td>463.79</td>
</tr>
<tr>
<td>AC-Ft</td>
<td>871.6</td>
<td>1065.6</td>
<td>1065.6</td>
<td>1065.6</td>
</tr>
<tr>
<td>THOUS CU M</td>
<td>1074.0</td>
<td>1113.3</td>
<td>1113.3</td>
<td>1113.3</td>
</tr>
</tbody>
</table>

Hydrograph at Staakaqusi for Plan 1, RI10 5

<table>
<thead>
<tr>
<th>Peak</th>
<th>6-Hour</th>
<th>24-Hour</th>
<th>72-Hour</th>
<th>Total Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFS</td>
<td>3917.1</td>
<td>2102.1</td>
<td>601.1</td>
<td>19026.4</td>
</tr>
<tr>
<td>CMS</td>
<td>169.8</td>
<td>61.9</td>
<td>19.9</td>
<td>538.8</td>
</tr>
<tr>
<td>INCHES</td>
<td>18.55</td>
<td>27.68</td>
<td>27.68</td>
<td>27.68</td>
</tr>
<tr>
<td>MM</td>
<td>471.23</td>
<td>575.99</td>
<td>575.99</td>
<td>575.99</td>
</tr>
<tr>
<td>AC-Ft</td>
<td>1012.9</td>
<td>1310.0</td>
<td>1310.0</td>
<td>1310.0</td>
</tr>
<tr>
<td>THOUS CU M</td>
<td>1322.1</td>
<td>1616.6</td>
<td>1616.6</td>
<td>1616.6</td>
</tr>
</tbody>
</table>

Hydrograph at Staakaqusi for Plan 1, RI10 6

<table>
<thead>
<tr>
<th>Peak</th>
<th>6-Hour</th>
<th>24-Hour</th>
<th>72-Hour</th>
<th>Total Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFS</td>
<td>3664.0</td>
<td>2702.0</td>
<td>826.0</td>
<td>23182.7</td>
</tr>
<tr>
<td>CMS</td>
<td>211.8</td>
<td>77.7</td>
<td>23.7</td>
<td>427.7</td>
</tr>
<tr>
<td>INCHES</td>
<td>23.19</td>
<td>28.35</td>
<td>28.35</td>
<td>28.35</td>
</tr>
<tr>
<td>MM</td>
<td>509.06</td>
<td>619.99</td>
<td>619.99</td>
<td>619.99</td>
</tr>
<tr>
<td>AC-Ft</td>
<td>1340.0</td>
<td>1638.0</td>
<td>1638.0</td>
<td>1638.0</td>
</tr>
<tr>
<td>THOUS CU M</td>
<td>1653.5</td>
<td>2020.0</td>
<td>2020.0</td>
<td>2020.0</td>
</tr>
</tbody>
</table>

Hydrograph Routing

<table>
<thead>
<tr>
<th>Result Flow Values</th>
<th>11009 Res.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESTAGE</td>
<td>ICORR</td>
</tr>
<tr>
<td>000002</td>
<td>1</td>
</tr>
</tbody>
</table>

Routing Data

<table>
<thead>
<tr>
<th>GroupName</th>
<th>Class</th>
<th>AVG</th>
<th>RMSE</th>
<th>RMSE</th>
<th>IPEP</th>
<th>IPEP</th>
<th>IPEP</th>
<th>IPEP</th>
<th>IPEP</th>
<th>IPEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.000</td>
<td>0.00</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>STAGE</td>
<td>NSIPS</td>
<td>NSIH</td>
<td>LAG</td>
<td>AMSKK</td>
<td>X</td>
<td>TK</td>
<td>SPM</td>
<td>ISPA</td>
<td>ISRAI</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>------</td>
<td>-----</td>
<td>-------</td>
<td>---</td>
<td>----</td>
<td>-----</td>
<td>------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>948.00</td>
<td>960.50</td>
<td>961.00</td>
<td>962.00</td>
<td>963.00</td>
<td>964.00</td>
<td>965.00</td>
<td>966.00</td>
<td>967.00</td>
<td>968.00</td>
<td></td>
</tr>
<tr>
<td>949.00</td>
<td>970.00</td>
<td>971.50</td>
<td>972.00</td>
<td>972.50</td>
<td>973.00</td>
<td>973.50</td>
<td>974.00</td>
<td>974.00</td>
<td>975.00</td>
<td></td>
</tr>
<tr>
<td>FLOW</td>
<td>0.00</td>
<td>1.80</td>
<td>18.20</td>
<td>18.20</td>
<td>18.20</td>
<td>18.20</td>
<td>18.20</td>
<td>18.20</td>
<td>18.20</td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>4.00</td>
<td>8.00</td>
<td>16.40</td>
<td>16.40</td>
<td>16.40</td>
<td>16.40</td>
<td>16.40</td>
<td>16.40</td>
<td>16.40</td>
<td></td>
</tr>
<tr>
<td>CAPACITY</td>
<td>80.00</td>
<td>90.00</td>
<td>100.00</td>
<td>110.00</td>
<td>120.00</td>
<td>130.00</td>
<td>140.00</td>
<td>150.00</td>
<td>160.00</td>
<td></td>
</tr>
<tr>
<td>ELEVATION</td>
<td>948.00</td>
<td>960.00</td>
<td>972.00</td>
<td>984.00</td>
<td>996.00</td>
<td>1008.00</td>
<td>1020.00</td>
<td>1032.00</td>
<td>1044.00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STATION</th>
<th>COCD</th>
<th>EXPD</th>
<th>DAMWIP</th>
<th>I DPEI</th>
<th>COCD</th>
<th>EXPD</th>
<th>DAMWIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>948.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

END-OF-PERIOD HYDROGRAPH ORDINATES

<table>
<thead>
<tr>
<th>ELEVATION</th>
<th>0.00</th>
<th>0.00</th>
<th>0.00</th>
<th>0.00</th>
<th>0.00</th>
<th>0.00</th>
<th>0.00</th>
<th>0.00</th>
<th>0.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1.50</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2.50</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>3.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>3.50</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>4.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>4.50</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>5.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

STORAGE

<table>
<thead>
<tr>
<th>ELEVATION</th>
<th>0.00</th>
<th>0.00</th>
<th>0.00</th>
<th>0.00</th>
<th>0.00</th>
<th>0.00</th>
<th>0.00</th>
<th>0.00</th>
<th>0.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
</tr>
<tr>
<td>0.50</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1.50</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2.50</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>3.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>3.50</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>4.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>4.50</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>5.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

PLATE 0-9
<table>
<thead>
<tr>
<th>OPERATION</th>
<th>STATION</th>
<th>AREA</th>
<th>PLAN</th>
<th>RATIO 1</th>
<th>RATIO 2</th>
<th>RATIO 3</th>
<th>RATIO 4</th>
<th>RATIO 5</th>
<th>RATIO 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>HYDROGRAPH AT</td>
<td>000061</td>
<td>1.68</td>
<td>1</td>
<td>1491.</td>
<td>1491.</td>
<td>2612.</td>
<td>9741.</td>
<td>16287.</td>
<td>16664.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.81</td>
<td></td>
<td>42271.</td>
<td>73971.</td>
<td>105507.</td>
<td>137391.</td>
<td>169081.</td>
<td>211351.</td>
</tr>
<tr>
<td>ROUTED TO</td>
<td>000062</td>
<td>1.68</td>
<td>1</td>
<td>619.</td>
<td>2268.</td>
<td>9457.</td>
<td>4563.</td>
<td>5679.</td>
<td>7152.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.81</td>
<td></td>
<td>17541.</td>
<td>66291.</td>
<td>97901.</td>
<td>129291.</td>
<td>160821.</td>
<td>202511.</td>
</tr>
</tbody>
</table>
Summary of Dam Safety Analysis

<table>
<thead>
<tr>
<th>PLAN</th>
<th>Elevation Storage Outflow</th>
<th>Initial Value</th>
<th>Spillway Crest</th>
<th>Top of Dam</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>960.00</td>
<td>960.00</td>
<td>197.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ratio of PMF</th>
<th>Maximum Reservoir M.S. Elev</th>
<th>Maximum Depth Over Dam</th>
<th>Maximum Storage AC-FT</th>
<th>Maximum Outflow CES</th>
<th>Duration Over Top</th>
<th>Time of Maximum Outflow</th>
<th>Time of Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>.75</td>
<td>970.33</td>
<td>1.45</td>
<td>206.0</td>
<td>639.9</td>
<td>2.42</td>
<td>16.8</td>
<td>0.00</td>
</tr>
<tr>
<td>.50</td>
<td>971.92</td>
<td>1.82</td>
<td>242.9</td>
<td>2298.6</td>
<td>3.81</td>
<td>16.25</td>
<td>0.00</td>
</tr>
<tr>
<td>.45</td>
<td>972.05</td>
<td>2.35</td>
<td>257.7</td>
<td>3667.7</td>
<td>5.17</td>
<td>16.17</td>
<td>0.00</td>
</tr>
<tr>
<td>.40</td>
<td>972.48</td>
<td>2.79</td>
<td>270.7</td>
<td>6663.0</td>
<td>6.00</td>
<td>16.17</td>
<td>0.00</td>
</tr>
<tr>
<td>.40</td>
<td>972.88</td>
<td>3.19</td>
<td>281.8</td>
<td>6679.0</td>
<td>6.50</td>
<td>16.17</td>
<td>0.00</td>
</tr>
<tr>
<td>1.00</td>
<td>973.37</td>
<td>3.67</td>
<td>294.6</td>
<td>1352.2</td>
<td>7.98</td>
<td>16.17</td>
<td>0.00</td>
</tr>
</tbody>
</table>