RELIABILITY VS. DIAGNOSTICITY IN HIERARCHICAL INFERENCE. (U)

JUN 81 6 M. GRIFFIN, W. EDWARDS

MDA903-80-C-0194

UNCLASSIFIED
TECHNICAL REPORT SSRI 81-3

RELIABILITY VS. DIAGNOSTICITY
IN HIERARCHICAL INFEERENCE

By

GREGORY M. GRIFFIN

AND

WARD EDWARDS

SPONSORED BY

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY
PRIME CONTRACT MDA903-80-C-0194
UNDER SUBCONTRACT FROM
DECISIONS AND DESIGNS, INCORPORATED

JUNE 1981

THE VIEWS AND CONCLUSIONS CONTAINED IN THIS DOCUMENT ARE THOSE OF THE AUTHORS AND SHOULD NOT BE INTERPRETED AS NECESSARILY REPRESENTING THE OFFICIAL POLICIES, EITHER EXPRESSED OR IMPLIED, OF THE DEFENSE ADVANCED RESEARCH PROJECTS AGENCY OR THE UNITED STATES GOVERNMENT.

SOCIAL SCIENCE RESEARCH INSTITUTE
UNIVERSITY OF SOUTHERN CALIFORNIA
LOS ANGELES, CALIFORNIA
This study examined the performance of subjects in a cascaded inference task where two subjects worked together, one subject having diagnosticity information and the other having reliability information. This was compared to a condition in which a single subject received both types of information. Additionally, the effects of different "experts" having the power to make the final decision in the two-person conditions was explored. Seventy-two subjects made inferences about the probability of success vs. failure of hypothetical job applicants presented in a personnel manager scenario.
Subjects were paid bonuses according to their performance on the task.

Contrary to hypotheses, there were no between conditions differences. Single subjects performed just as well as subjects working together. This study replicates previous work using single subjects in the general pattern of responses: subjects were somewhat radical in comparison to the normative model.
SUMMARY

This study examined the performance of subjects in a cascaded inference task where two subjects worked together, one subject having diagnosticity information and the other having reliability information. This was compared to a condition in which a single subject received both types of information. Additionally, the effects of different "experts" having the power to make the final decision in the two-person conditions was explored. Seventy-two subjects made inferences about the probability of success vs. failure of hypothetical job applicants presented in a personnel manager scenario. Subjects were paid bonuses according to their performance on the task.

Contrary to hypotheses, there were no between conditions differences. Single subjects performed just as well as subjects working together. This study replicates previous work using single subjects in the general pattern of responses: subjects were somewhat radical in comparison to the normative model.
LIST OF TABLES

Table 1: Level of Diagnosticity, Reliability, and Normative Probability 8

Table 2: Correlation Means and Standard Deviations for Logs of Responses with Logs of Normative Result and Various Heuristics 11

Table 3: Sample Statistics for Slopes of Log Responses with Log Normative Odds 13
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Mean Log-Odds Responses for Varying Levels of Reliability and Diagnosticity</td>
<td>10</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Mean Log-Odds Responses Plotted on Normative Log-Odds Results</td>
<td>15</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Comparison of Normative Final Odds vs. Normative Final Probability for Hierarchical Inference</td>
<td>17</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENT

This research was supported by the Advanced Research Projects Agency of the Department of Defense and was monitored by the Office of Naval Research, prime contract MDA903-80-C-0194, under subcontract from Decisions and Designs, Inc. Special thanks go to Richard S. John, William G. Stillwell and Detlof von Winterfeldt, whose valuable comments aided in the execution and reporting of this research.
TABLE OF CONTENTS

Summary .. iv
List of Tables ... v
List of Figures .. vi
Acknowledgement ... vii
INTRODUCTION .. 1
METHOD .. 4
 Subjects ... 4
 Materials and Stimuli 4
 Procedure .. 4
RESULTS ... 6
 Design ... 6
 Analyses .. 7
DISCUSSION ... 14
REFERENCES .. 18
REFERENCE NOTES 19
INTRODUCTION

Some of the most important and interesting information processing tasks that men and women in the real world face are essentially hierarchical (or cascaded) in nature and involve different people with different types of information that must be combined. In a large class of such hierarchical tasks a distinction is made between the diagnostic impact of a piece of information and its reliability. In a legal context, for example, a witness may testify about having seen the defendant on the scene of the crime. This piece of information might be relevant to whether or not the defendant committed the crime. In order to degrade the diagnostic impact of the piece of information, the defense attorney may try to establish that the witness' testimony is unreliable. Schum (Notes 1 & 2) has formalized hierarchical structures like these and a substantial empirical literature exists on how people perform in simple cascaded inference tasks (e.g. Peterson, 1973).

The normative formula for calculating posterior odds (in terms of the probability forms of reliability \(R \) and diagnosticity \(D \)) assuming equal priors and symmetric reliability and diagnosticity is:

\[
\text{Post. Odds} = \frac{(2RD - R - D + 1)}{(-2RD + D + R)}
\]
This assumes equal priors, symmetric reliability, and symmetric diagnosticity.

Most of the empirical research on hierarchical inference had a single person process both diagnosticity and reliability information. Typically, these experiments have found that subjects were radical in comparison to the normative responses specified by Modified Bayes Theorem (MBT) (Gettys and Willke, 1969). That is, the unreliability of the report of the diagnostic event was taken into account, but not enough. In contrast to this single person paradigm, many real world inference problems involve different experts, some with diagnosticity expertise and some with reliability expertise. It is at least questionable whether the single person results would generalize to the multiple expert inferences. Specifically, one might expect the reliability information to be taken into account more strongly when the use of the information is advocated by a person with special expertise in reliability.

The present experiment examined this hypothesis by comparing the relative impact of reliability and diagnosticity in a single vs. two person paradigm, in which one person had reliability information and the other had diagnosticity information. We also used a power manipulation in the two person groups which gave the ability to make the final decision on the response to either the
reliability or the diagnosticity "expert". We felt that this power manipulation would affect the relative impact of the reliability and diagnosticity information.

The early experiments in cascaded inference usually used a paradigm in which subjects performed a sampling task or a difficult perceptual task. These laboratory tasks do not parallel any real world tasks. Furthermore, subjects must first make a judgement about the probability of the event and then aggregate that judgement with the diagnostic impact of the event. Schum's normative models closely parallel complex real-world hierarchical tasks, but do not provide the specific correct inputs into the models, so a numerical comparison between subjects' responses and the normative responses is difficult to make.

In this study we asked subjects to role play the parts of personnel officers evaluating job applicants for positions as electronics repairpersons.

Subjects received training in the interpretation of diagnosticity, reliability, or both; and saw probabilities and likelihood ratios representing their information. The fairly detailed, pilot tested scenario provided a setting in which to present pass/fail test scores for the hypothetical job applicants that had a specific diagnostic impact on the probability of success on the job, along with reliability information on the pass/fail score. The goals of the design were as far as possible to combine an interesting task with availability of a normatively correct solution, and to focus
attention on the hierarchical nature of the task.

METHOD

Subjects

Subjects were 41 male and 31 female undergraduates enrolled in an introductory psychology course at the University of Southern California. Subjects signed up for and participated in several hours of research in partial fulfillment of class requirements.

Materials and Stimuli

The scenario included some training in the use of probability and odds. Depending on the condition to which subjects were assigned the instructions included information about the meaning of reliability, diagnosticity, or both.

We presented the diagnosticities and reliabilities on forms that contained relative frequencies, probabilities, and odds. Subjects responded in odds on a logarithmically spaced response scale (log-odds scale). The scale was symmetric around "1:1" with endpoints of "1000:1" and "1:1000".

Procedure

Subjects were randomly assigned to one of four experimental conditions: In condition 1 subjects worked alone and received both the reliability and diagnosticity information. In condition 2, subjects worked in pairs. One member of each pair received diagnosticity information and training; the other received similar information and training about reliability. The pair was asked to reach a consensus
judgement. Conditions 3 and 4 were identical to condition 2 except that either the diagnosticity expert (condition 3) or the reliability expert (condition 4) was given the power to overrule the other subject on the final response.

The experimenter assigned subjects to their roles with a flip of a coin, in their sight. The experimenter then read aloud the general set of instructions to the subjects while they had a copy of them. General instructions contained a scenario description, a summary of the type of information to be provided, a description of how bonuses were to be awarded (using a modification of the quadratic scoring rule), and a brief lesson on the use of probability and odds.

The experimenter encouraged subjects to ask questions when confused and quizzed them on key points.

The experimenter then read and discussed the instructions on the diagnosticity information (to the diagnosticity expert alone in the two person conditions). These instructions contained information about the probabilistic meaning of diagnosticity, the presentation of the diagnosticities, and how the diagnosticities would vary. Next, the experimenter presented the reliability instructions (separately to the reliability expert in the two person conditions) answering the same set of questions about the reliabilities. Covering the full set of instructions took about 30 to 75 minutes depending on how much help subjects needed.
Subjects then worked through two practice trials. During practice trials, subjects were free to ask questions. After each practice trial, the experimenter questioned the subjects to determine if they understood the meaning of their response, in terms of the relative chance of success/failure of the hypothetical job applicant.

Occasionally subjects revised their odds in the incorrect direction. We assumed this indicated that subjects did not fully understand the task. If this occurred during the practice trials, the experimenter encouraged subjects to rethink their responses (but they were not required to change them.) (During data collection trials if this happened the meaning of the response was explained again. This happened rarely.)

The subjects then ran the 12 data collection trials. The experimenter scored a subset of eight of the trials and paid each subject a bonus of three to five dollars, awarded according to their performance as scored by a modified form of the quadratic scoring rule.

The same experimenter ran all subjects.

RESULTS

Design

The between groups variable was the four conditions described previously. Ten full sets of responses were collected in each condition (except in condition 4 where 11 full sets were collected by mistake.) Therefore, there were 10 subjects in condition 1, 20 in conditions 2 and 3, and 22
in condition 4.

Within subjects both reliability and diagnosticity varied at six levels. The levels were .60, .67, .75, .80, .90, and .95. However, the six levels of each were not fully crossed, but grouped as three sets of 2 x 2's thus yielding the 12 trials. Within any one of the 2 x 2's, the cells off the diagonal yielded the same final normative probability. The three 2 x 2's and the normative final probabilities are presented in Table 1.

Insert Table 1 about here.

Analyses

ANOVA's. Preliminary ANOVA's were run on "reflected" log-likelihood ratios. (Normative odds were both greater and less than unity. For the purpose of analysis, the reciprocal of the raw response and of the normative response was taken on trials in which the normative result was less than unity before being logged for all analyses unless otherwise noted.) A separate ANOVA was run on each of the 2 x 2's. The F ratio for the between subjects manipulation did not approach a level of classical significance. This was unexpected since one of the differences between conditions is that condition 1 had only single subjects working alone whereas the other conditions had two subjects working together.
TABLE 1

Level of Reliability, Diagnosticity, and Normative Probability

<table>
<thead>
<tr>
<th>Reliability</th>
<th>Diagnosticity</th>
<th>Normative Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>.9</td>
<td>.9</td>
<td>.820</td>
</tr>
<tr>
<td>.9</td>
<td>.75</td>
<td>.700</td>
</tr>
<tr>
<td>.75</td>
<td>.9</td>
<td>.700</td>
</tr>
<tr>
<td>.75</td>
<td>.75</td>
<td>.625</td>
</tr>
<tr>
<td>.95</td>
<td>.95</td>
<td>.905</td>
</tr>
<tr>
<td>.95</td>
<td>.6</td>
<td>.590</td>
</tr>
<tr>
<td>.6</td>
<td>.95</td>
<td>.590</td>
</tr>
<tr>
<td>.6</td>
<td>.6</td>
<td>.520</td>
</tr>
<tr>
<td>.8</td>
<td>.8</td>
<td>.680</td>
</tr>
<tr>
<td>.8</td>
<td>.67</td>
<td>.602</td>
</tr>
<tr>
<td>.67</td>
<td>.8</td>
<td>.602</td>
</tr>
<tr>
<td>.67</td>
<td>.67</td>
<td>.558</td>
</tr>
</tbody>
</table>
For the within subject variables (diagnosticity and reliability), diagnosticity was highly significant (P < .0001) in all three of the 2 x 2's. Reliability was significant in two of the 2 x 2's (P < .0001 & P = .002). An interaction of reliability and diagnosticity was significant in one (P = <.0104). The mean log-likelihood ratios are plotted in Figure 1, collapsing over condition.

Insert Figure 1 about here.

The general picture that emerges is that diagnosticity has a large effect, reliability has a smaller effect, and possibly there is an interaction which indicates that reliability has a greater effect at the higher levels of diagnosticity.

For closer examination of the data we used individual correlational and regression analyses.

Correlational and regression analyses. Table 2 shows correlational analyses on a subject by subject basis.

Insert Table 2 about here

All of these analyses were performed on the log-likelihood ratios obtained in the following ways and the log of the odds that the subjects gave. Row 1 used the full-range normative likelihood ratios (and responses), row 2 used responses and normative likelihood ratios that are reflected
Figure 1: Mean Log-Odds Responses for Varying Levels of Reliability and Diagnosticity
<table>
<thead>
<tr>
<th>COMPARISON</th>
<th>CONDITION 1</th>
<th></th>
<th>CONDITION 2</th>
<th></th>
<th>CONDITION 3</th>
<th></th>
<th>CONDITION 4</th>
<th></th>
<th></th>
<th></th>
<th>GRAND MEAN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>SD</td>
<td>X</td>
<td>SD</td>
<td>X</td>
<td>SD</td>
<td>X</td>
<td>SD</td>
<td>X</td>
<td>SD</td>
<td></td>
</tr>
<tr>
<td>Optimal (non-reflected)</td>
<td>.872</td>
<td>.130</td>
<td>.900</td>
<td>.056</td>
<td>.864</td>
<td>.086</td>
<td>.854</td>
<td>.055</td>
<td>.872</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimal (reflected)</td>
<td>.733</td>
<td>.230</td>
<td>.726</td>
<td>.201</td>
<td>.727</td>
<td>.151</td>
<td>.673</td>
<td>.112</td>
<td>.714</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reliability</td>
<td>.364</td>
<td>.227</td>
<td>.359</td>
<td>.169</td>
<td>.327</td>
<td>.185</td>
<td>.282</td>
<td>.158</td>
<td>.332</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnosticity</td>
<td>.714</td>
<td>.239</td>
<td>.779</td>
<td>.227</td>
<td>.859</td>
<td>.093</td>
<td>.779</td>
<td>.254</td>
<td>.783</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum (D,R)</td>
<td>.690</td>
<td>.238</td>
<td>.640</td>
<td>.231</td>
<td>.651</td>
<td>.159</td>
<td>.604</td>
<td>.115</td>
<td>.645</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P(R) X L(D)</td>
<td>.744</td>
<td>.230</td>
<td>.744</td>
<td>.195</td>
<td>.770</td>
<td>.149</td>
<td>.706</td>
<td>.124</td>
<td>.740</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P(R) X P(D)</td>
<td>.755</td>
<td>.234</td>
<td>.811</td>
<td>.219</td>
<td>.855</td>
<td>.087</td>
<td>.804</td>
<td>.225</td>
<td>.806</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P(R) X log L(D)</td>
<td>.736</td>
<td>.220</td>
<td>.743</td>
<td>.275</td>
<td>.853</td>
<td>.010</td>
<td>.774</td>
<td>.199</td>
<td>.776</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L(D)^R</td>
<td>.786</td>
<td>.219</td>
<td>.828</td>
<td>.198</td>
<td>.877</td>
<td>.091</td>
<td>.805</td>
<td>.196</td>
<td>.823</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
so that all are greater than or equal to unity. All of the rest of the rows also used reflected responses and likelihood ratios. Rows 3 and 4 used, respectively, the likelihood ratios obtained just by using the reliability or diagnosticity information. Row 6 used reliability times diagnosticity, both in probability form, and then converted to likelihood ratio form. Row 7 multiplies reliability in probability form times the likelihood ratio form of diagnosticity; and row 8 uses the likelihood ratio of diagnosticity raised to a power equal to the probability form of the reliability. (Formulas are in Table 2.) As in the ANOVA, no interpretable differences among conditions were found.

Table 3 presents sample statistics computed on the slopes obtained using the log of the reflected obtained likelihood ratios as the dependent variable and the log of the normative reflected likelihood ratios as the independent variable.

Insert Table 3 about here.

Again, no interpretable differences between conditions are found. The high correlations with the normative responses and the slightly greater than unity betas of Table 3 indicate that subjects do a generally good job on the hierarchical task. The betas indicate that subjects are somewhat radical in their probability estimates—essentially
TABLE 3
Sample Statistics for Slopes
of Log Responses with Log Normative Odds

<table>
<thead>
<tr>
<th>Condition 1</th>
<th>Condition 2</th>
<th>Condition 3</th>
<th>Condition 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median</td>
<td>1.15</td>
<td>1.13</td>
<td>1.23</td>
</tr>
<tr>
<td>Mean</td>
<td>1.0990</td>
<td>1.0508</td>
<td>1.2330</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>.195</td>
<td>.275</td>
<td>.142</td>
</tr>
</tbody>
</table>
the typical finding. Figure 2 plots the mean log likelihood ratio for each of the 12 trials against the normatively correct log likelihood ratio, collapsing across individuals and conditions.

This also demonstrates the general pattern of radicalness.

Rows 3 and 4 of Table 2 (the correlations of obtained log likelihood ratios with those obtained from the reliability and diagnosticity levels used in the experiment) yield correlations which indicate that subjects relied more heavily on diagnosticity than reliability in making their inferences. (An examination of the normative formula provided earlier shows that each should be used equally in making the inferences.) Again, there were no interpretable between conditions differences.

The last four rows of Table 2 briefly examine four possible heuristics of which the likelihood form of diagnosticity, \(L(D) \), raised to the probability form of reliability, \(P(R) \), provides the best fit to the data. However, examination of the individual correlations (which are not provided in this report) shows individual differences in what the subjects seemed to be doing.

DISCUSSION

This study has two main conclusions: that reliability information in general is not used appropriately which leads
Figure 2: Mean Log-Odds Responses Plotted on Normative Log-Odds Results
to radicalism in probability estimates, and that different individuals working together, each receiving different types of information, respond much the same as would an individual working alone.

The former conclusion is a replication of the standard finding in cascaded inference (e.g., see Peterson et al., 1973). Schum, Du Charme, and DePitts (1973) suggest a possible explanation: it is non-obvious how unreliability degrades likelihood ratios, especially when they are large. Panel A of Figure 3 demonstrates this normative phenomenon.

Insert Figure 3 about here.

However, if instead of looking at adjusted likelihood ratios we examine adjusted conditional probabilities, the non-linearity of the appropriate degradation disappears (Panel B). This suggests that a log-odds scale may not be the most appropriate response mode for cascaded tasks.
Figure 3: Comparison of Normative Final Odds vs. Normative Final Probability for Hierarchical Inference
REFERENCES

Gettys, C.F. & Willke, T.A. The application of Bayes Theorem when the true data state is uncertain. *Organizational Behavior and Human Performance*, 1969, 4 (2), 125-141.

REFERENCE NOTES

CONTRACT DISTRIBUTION LIST
(Unclassified Technical Reports)

Director
Advanced Research Projects Agency
Attention: Program Management Office
1400 Wilson Boulevard
Arlington, Virginia 22209

Office of Naval Research
Attention: Code 455
800 North Quincy Street
Arlington, Virginia 22217

Defense Technical Information Center
Attention: DDC-TC
Cameron Station
Alexandria, Virginia 22314

DCASMA Baltimore Office
Attention: Mrs. Betty L. Driskill
300 East Joppa Road
Towson, Maryland 21204

Director
Naval Research Laboratory
Attention: Code 2627
Washington, D.C. 20375

2 copies

3 copies

12 copies

1 copy

6 copies
Dean of Research Administration
Naval Postgraduate School
Attention: Patrick C. Parker
Monterey, CA 93940

Naval Personnel Research and Development Center (Code 305)
Attention: LCDR O'Bar
San Diego, CA 92152

Naval Personnel Research and Development Center
Manned Systems Design (Code 311)
Attention: Dr. Fred Muckler
San Diego, CA 92152

Director, Center for Advanced Research
Naval War College
Attention: Professor C. Lewis
Newport, RI 02840

Naval Research Laboratory
Communications Sciences Division (Code 54)
Attention: Dr. John Shore
Washington, D.C. 20375

Dean of the Academic Departments
U.S. Naval Academy
Annapolis, MD 21402

Chief, Intelligence Division
Marine Corps Development Center
Quantico, VA 22134

Deputy Under Secretary of the Army
(Operations Research)
The Pentagon, Room 2E621
Washington, D.C. 20310

Director, Army Library
Army Studies (ASDIRS)
The Pentagon, Room LA534
Washington, D.C. 20310

U.S. Army Research Institute
Organizations and Systems Research Laboratory
Attention: Dr. Edgar M. Johnson
5001 Eisenhower Avenue
Alexandria, VA 22333

Technical Director, U.S. Army Concepts Analysis Agency
8120 Woodmont Avenue
Bethesda, MD 20014

Director, Strategic Studies Institute
U.S. Army Combat Developments Command
Carlisle Barracks, PA 17013

Department of Engineering
United States Military Academy
Attention: COL A. F. Grum
West Point, NY 10996

Chief, Studies and Analysis Office
Headquarters, Army Training and Doctrine Command
Ft. Monroe, VA 23651

Department of the Air Force
Assistant for Requirements Development and Acquisition Programs
Office of the Deputy Chief of Staff for Research and Development
The Pentagon, Room 4C331
Washington, D.C. 20330

Air Force Office of Scientific Research
Life Sciences Directorate
Building 410, Bolling AFB
Washington, D.C. 20332

Commandant, Air University
Maxwell AFB, AL 36112

Chief, Systems Effectiveness Branch
Human Engineering Division
Attention: Dr. Donald A. Topmiller
Wright-Patterson AFB, OH 45433

Deputy Chief of Staff, Plans, and Operations
Directorate of Concepts (AR/XOCCC)
Attention: Major R. Linhard
The Pentagon, Room 4D 1047
Washington, D.C. 20330
SUPPLEMENTAL DISTRIBUTION LIST
(Unclassified Technical Reports)

Department of Defense

Director of Net Assessment
Office of the Secretary of Defense
Attention: MAJ Robert G. Gough, USAF
The Pentagon, Room 3A930
Washington, D.C. 20301

Assistant Director (Net Technical Assessment)
Office of the Deputy Director of Defense
Research and Engineering (Test and Evaluation)
The Pentagon, Room 3C125
Washington, D.C. 20301

Director, Cybernetics Technology Division
Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209

Command and Control Technical Center
Defense Communications Agency
Attention: Mr. John D. Hwang
Washington, D.C. 20301

Department of the Navy

Assistant Director (Net Technical Assessment)
Office of the Deputy Director of Defense
Research and Engineering (Test and Evaluation)
The Pentagon, Room 3C125
Washington, D.C. 20301

Director, Cybernetics Technology Division
Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209

Chairman, Department of Curriculum Development
National War College
Ft. McNair, 4th and P Streets, SW
Washington, D.C. 20319

Defense Intelligence School
Attention: Professor Douglas E. Hunter
Washington, D.C. 20374

Vice Director for Production
Management Office (Special Actions)
Defense Intelligence Agency
Room 1E863, The Pentagon
Washington, D.C. 20301

Dr. A. L. Slafkosky
Scientific Advisor
Commandant of the Marine Corps
(Code RD-1)
Washington, D.C. 20380