LEVEL II
MISSOURI-KANSAS CITY BASIN

BECKER LAKE DAM
FRANKLIN COUNTY, MO.
MO 31495

PHASE 1 INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

Prepared by: U.S. Army Engineer District, St. Louis
For: State of Missouri

October, 1980

DISTRIBUTION STATEMENT A
Approved for public release:
Distribution Unlimited
Phase I Dam Inspection Report
National Dam Safety Program
Becker Lake Dam (MO 31495)
Franklin County, Missouri

Hoskins-Western-Sonderegger, Inc.

U.S. Army Engineer District, St. Louis
Dam Inventory and Inspection Section, LMSED-PD
210 Tucker Blvd., North, St. Louis, Mo. 63101

October 1980

Approximately 70

Approved for release; distribution unlimited.

National Dam Safety Program, Becker Lake Dam (MO 31495), Missouri - Kansas City Basin, Franklin County, Missouri.

Dam Safety, Lake, Dam Inspection, Private Dams

This report was prepared under the National Program of Inspection of Non-Federal Dams. This report assesses the general condition of the dam with respect to safety, based on available data and on visual inspection, to determine if the dam poses hazards to human life or property.
INSTRUCTIONS FOR PREPARATION OF REPORT DOCUMENTATION PAGE

RESPONSIBILITY. The controlling DoD office will be responsible for completion of the Report Documentation Page, DD Form 1473, in all technical reports prepared by or for DoD organizations.

CLASSIFICATION. Since this Report Documentation Page, DD Form 1473, is used in preparing announcements, bibliographies, and data banks, it should be unclassified if possible. If a classification is required, identify the classified items on the page by the appropriate symbol.

COMPLETION GUIDE

General. Make Blocks 1, 4, 5, 6, 7, 11, 13, 15, and 16 agree with the corresponding information on the report cover. Leave Blocks 2 and 3 blank.

Block 1. Report Number. Enter the unique alphanumeric report number shown on the cover.

Block 2. Government Accession No. Leave Blank. This space is for use by the Defense Documentation Center.

Block 3. Performer's Catalog Number. Leave blank. This space is for use of the report recipient to assist in future retrieval of the document.

Block 4. Title and Subtitle. Enter the title in all capital letters exactly as it appears on the publication. Titles should be unclassified whenever possible. Write out the English equivalent for Greek letters and mathematical symbols in the title (see "Abstracting Scientific and Technical Reports of Defense-Sponsored RDT&E" AD-667 000). If the report has a subtitle, this subtitle should follow the main title, be separated by a comma or semicolon if appropriate, and be initially capitalized. If a publication has a title in a foreign language, translate the title into English and follow the English translation with the title in the original language. Make every effort to simplify the title before publication.

Block 5. Type of Report and Period Covered. Indicate here whether report is interim, final, etc., and, if applicable, inclusive dates of period covered, such as the life of a contract covered in a final contractor report.

Block 6. Performing Organization Report Number. Only numbers other than the official report number shown in Block 1, such as series numbers for in-house reports or a contractor/grantee number assigned by him, will be placed in this space. If no such numbers are used, leave this space blank.

Block 7. Author(s). Include corresponding information from the report cover. Give the name(s) of the author(s) in conventional order (for example, John R. Doe or, if author prefers, J. Robert Doe). In addition, list the affiliation of an author if it differs from that of the performing organization.

Block 8. Contract or Grant Number(s). For a contractor or grantee report, enter the complete contract or grant number(s) under which the work reported was accomplished. Leave blank in in-house reports.

Block 9. Performing Organization Name and Address. For in-house reports enter the name and address, including office symbol, of the performing organization. For contractor or grantee reports enter the name and address of the contractor or grantee who prepared the report and identify the appropriate corporate division, school, laboratory, etc., of the author. List city, state, and ZIP Code.

Block 10. Program Element, Project, Task Area, and Work Unit Numbers. Enter here the number code from the applicable Department of Defense form, such as the DD Form 1498, "Research and Technology Work Unit Summary" or the DD Form 1634, "Research and Development Planning Summary," which identifies the program element, project, task area, and work unit or equivalent under which the work was authorized.

Block 11. Controlling Office Name and Address. Enter the full, official name and address, including office symbol, of the controlling office. (Equates to funding/sponsoring agency. For definition see DoD Directive 5200.20, "Distribution Statements on Technical Documents.")

Block 12. Report Date. Enter here the day, month, and year or month and year as shown on the cover.

Block 13. Number of Pages. Enter the total number of pages.

Block 14. Monitoring Agency Name and Address (if different from Controlling Office). For use when the controlling or funding office does not directly administer a project, contract, or grant, but delegates the administrative responsibility to another organization.

Block 18. Supplementary Notes. Enter information not included elsewhere but useful, such as: Prepared in cooperation with . . . Translation of (or by) . . . Presented at conference . . . To be published in . . .

Block 19. Key Words. Select terms or short phrases that identify the principal subjects covered in the report, and are sufficiently specific and precise to be used as index entries for cataloging, conforming to standard terminology. The DoD "Thesaurus of Engineering and Scientific Terms" (TEST), AD-672 000, can be helpful.

Block 20. Abstract. The abstract should be a brief (not to exceed 200 words) factual summary of the most significant information contained in the report. If possible, the abstract of a classified report should be unclassified and the abstract to an unclassified report should consist of publicly-releasable information. If the report contains a significant bibliography or literature survey, mention it here. For information on preparing abstracts see "Abstracting Scientific and Technical Reports of Defense-Sponsored RDT&E," AD-667 000.
SUBJECT: Becker Lake Dam Phase I Inspection Report

This report presents the results of field inspection and evaluation of the Becker Lake Dam (NO 31495).

It was prepared under the National Program of Inspection of Non-Federal Dams.

This dam has been classified as unsafe, non-emergency by the St. Louis District as a result of the application of the following criteria:

a. The combined capacity of the spillways will not pass 50 percent of the Probable Maximum Flood without overtopping the dam.

b. Overtopping of the dam could result in failure of the dam.

c. Dam failure significantly increases the hazard to loss of life downstream.

SIGNED

SUBMITTED BY:
Chief, Engineering Division

APPROVED BY:
Colonel, CE, District Engineer

28 APR 1981
Date

28 APR 1981
Date
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>PARAGRAPH NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Assessment Summary</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Overview Photograph</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>General</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Description of Project</td>
<td>1</td>
</tr>
<tr>
<td>1.3</td>
<td>Pertinent Data</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>Design</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Construction</td>
<td>6</td>
</tr>
<tr>
<td>2.3</td>
<td>Operation</td>
<td>6</td>
</tr>
<tr>
<td>2.4</td>
<td>Evaluation</td>
<td>6</td>
</tr>
<tr>
<td>3.1</td>
<td>Findings</td>
<td>7</td>
</tr>
<tr>
<td>3.2</td>
<td>Evaluation</td>
<td>9</td>
</tr>
<tr>
<td>4.1</td>
<td>Procedures</td>
<td>10</td>
</tr>
<tr>
<td>4.2</td>
<td>Maintenance of Dam</td>
<td>10</td>
</tr>
<tr>
<td>4.3</td>
<td>Maintenance of Operating Facilities</td>
<td>10</td>
</tr>
<tr>
<td>4.4</td>
<td>Description of Any Warning System in Effect</td>
<td>10</td>
</tr>
<tr>
<td>4.5</td>
<td>Evaluation</td>
<td>10</td>
</tr>
<tr>
<td>5.1</td>
<td>Evaluation of Features</td>
<td>11</td>
</tr>
<tr>
<td>6.1</td>
<td>Evaluation of Structural Stability</td>
<td>12</td>
</tr>
<tr>
<td>7.1</td>
<td>Dam Assessment</td>
<td>13</td>
</tr>
<tr>
<td>7.2</td>
<td>Remedial Measures</td>
<td>13</td>
</tr>
</tbody>
</table>
APPENDIX A - MAPS

Plate A-1 Vicinity Topography
Plate A-2 Location Map

APPENDIX B - PHOTOGRAPHS

Plate B-1 Photo Index
Plate B-2 Photo No. 2 Crest from Left End
 Photo No. 3 Upstream Slope from Left End
Plate B-3 Photo No. 4 Downstream Slope from Left End
 Photo No. 5 Principal Spillway Inlet
Plate B-4 Photo No. 6 View Upstream Across Lake, Principal
 Photo No. 7 View Downstream. Outlet End of
 Photo No. 8 Principal Spillway in Lower Center
 of Photo
Plate B-5 Photo No. 9 View of Entrance to Emergency Spillway
Plate B-6 Photo No. 10 Outlet End of Principal Spillway
 Photo No. 11 View Upstream Showing Outlet End of
 Principal Spillway
Plate B-7 Photo No. 12 Overview Taken from Upstream on Right
 Photo No. 13 View of Right End of Dam and Emergency
 Spillway
Plate B-8 Photo No. 14 Overview Taken from East End of Lake
 Photo No. 15 About 1/2 Mile Below Dam Looking Down-
 stream in Channel from Dam at Con-
 fluence with Larger Creek Coming In
 from the Left
Plate B-9 Photo No. 16 Trailer Houses on Bank of the Larger
 Creek Just Below the Confluence

APPENDIX C - PROJECT PLATES

Plate C-1 Phase I - Plan and Centerline Profile of Dam
Plate C-2 Phase I - Maximum Cross Section of Dam and Profile along
 Centerline of Emergency Spillway
Plate C-3 SCS - Plan View. Sketch of Dam and Spillways
Plate C-4 SCS - Cross Section of Dam Showing Principal Spillway
Plate C-5 SCS - Inlet and Anti-Seep Collar Details

APPENDIX D - HYDRAULIC AND HYDROLOGIC DATA

Plates D-1 and D-2 Hydrologic Computations
Plate D-3 Principal Spillway Rating Curve
Plate D-4 Emergency Spillway Rating Curve
Plate D-5 Elevation - Area Curve
Plate D-6 Ratio - Discharge Curves
Plates D-7 through D-29 Computer Input and Output for Ratios
 of the PMF
Becker Lake Dam was inspected by an interdisciplinary team of engineers from Hoskins-Western-Sonderegger, Inc. The purpose of the inspection was to make an assessment of the general conditions of the dam with respect to safety, based upon available data and visual inspection, in order to determine if the dam poses hazards to human life or property.

The guidelines used in the assessment were furnished by the Department of the Army, Office of the Chief of Engineers and developed with the help of several Federal and State agencies, professional engineering organizations, and private engineers.

Becker Lake Dam has a height of thirty (30) feet and a storage capacity at the minimum top elevation of the dam of fifty-eight (58) acre-feet. In accordance with the guidelines, a small size dam has a height greater than or equal to twenty-five (25) feet but less than forty (40) feet and a storage capacity greater than or equal to fifty (50) acre-feet but less than one thousand (1,000) acre-feet. The size classification is determined by either the storage capacity or height, whichever gives the larger size category. Becker Lake Dam is classified as a small size dam.

In accordance with the guidelines and based on visual observation, the dam is classified as having a high hazard potential. Failure would threaten life and property. The estimated damage zone extends approximately one (1) mile downstream of the dam. Within the damage zone are a dwelling at about 0.4 mile, a dwelling at 0.6 mile, a trailer and 3 dwellings at 0.8 mile and Highway T at 0.9 mile.

Our inspection and evaluation indicates that the spillways do not meet the criteria set forth in the recommended guidelines for a small dam having a high hazard potential. Considering the small volume of water impounded and the downstream channel from the dam, one-half of the Probable Maximum Flood is the appropriate spillway design flood. The spillways will pass the 100-year flood (1% probability flood - a flood having a one percent chance of being exceeded in any one year) without overtopping the dam. The spillways will pass 14% of the Probable Maximum Flood without overtopping the dam. The Probable Maximum Flood (PMF) is defined as the flood that may be expected from the most severe combination of critical meteorologic and hydrologic conditions that are reasonably possible in the region.
Becker Lake Dam is in excellent condition and is very well maintained. The only deficiencies noted are inadequate spillway capacity and the lack of seepage and stability analyses as required by the guidelines for all dams having a high hazard potential.

Limited design data were available for this dam. Based on this data and on the analyses made during and subsequent to the field inspection, the following recommendations are made:

a. Alternatives.

(1) The emergency spillway size and/or the height of the dam should be increased in order to pass 50% of the probable maximum flood without overtopping the dam.

b. Operation and Maintenance Procedures.

(1) Seepage and stability analyses comparable to the requirements of the recommended guidelines should be performed by an engineer experienced in the design and construction of dams.

(2) Regular maintenance, as now practiced by the owner, should be continued.

(3) A plan for periodic inspection of the structure should be initiated and records of inspection made a part of this project file.

Rey S. Decker
E-3703
Gordon Jamison
Harold Ulmer
E-19246
Harold P. Hoskins, Chairman of the Board
Hoskins-Western-Sonderegger, Inc.
E-8696
PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM
BECKER LAKE DAM - MO 31495
FRANKLIN COUNTY, MISSOURI

SECTION 1 - PROJECT INFORMATION

1.1 GENERAL

a. Authority. The National Dam Inspection Act, Public Law 92-367, authorized the Secretary of the Army through the Corps of Engineers, to initiate a program of safety inspection of dams throughout the United States. Pursuant to the above, the St. Louis District, Corps of Engineers, District Engineer directed that a safety inspection of Becker Lake Dam be made.

b. Purpose of Inspection. The purpose of the inspection was to make an assessment of the general condition of the dam with respect to safety, based upon available data and visual inspection, in order to determine if the dam poses hazards to human life or property.

c. Evaluation Criteria. Criteria used to evaluate the dam were furnished by the Department of the Army, Office of the Chief of Engineers, in "Recommended Guidelines for Safety Inspection of Dams", Appendix D to "Report of the Chief of Engineers on the National Program of Inspection of Dams", dated May, 1975, and published by the Department of the Army, Office of the Chief of Engineers.

1.2 DESCRIPTION OF PROJECT

a. Description of Dam and Appurtenances.

(1) Embankment. The embankment is an earthen structure approximately 295 feet in length and 30 feet in height. The maximum water storage at the minimum top of dam is 58± acre-feet.

(2) Principal Spillway. The principal spillway is an uncontrolled SCS type hood inlet pipe spillway.

(a) Inlet Structure. The hood inlet spillway consists of a pipe conduit with the inlet end formed by cutting the pipe at an angle. The long side of the cut is placed on top and figuratively forms a hood over the entrance. An anti-vortex wall or plate is located on the upper side of the pipe at the inlet. Photo No. 5 and Plate C-5 show the hood inlet.

(b) Conduit. The pipe spillway conduit is made of 8-inch diameter welded steel pipe. The conduit is 112.5 feet long.
(c) **Stilling Basin.** The pipe conduit outlets onto a concrete slab. The invert is at the top of the slab and is enclosed by a steel grating animal protection cage. Photos 10 and 11 show the outlet end of the conduit.

(3) **Emergency Spillway.** The emergency spillway is an uncontrolled earthen channel excavated in the right abutment. The channel is elliptical in shape with a bottom width of approximately five feet and side slopes of approximately 1V on 3.3H. There is a training dike on the left (inside) of the channel.

(4) **Low-Level Outlet.** There is no low-level outlet for this dam.

(5) Pertinent physical data are given in paragraph 1.3.

b. **Location.** The dam is located approximately one mile east of Labadie in the northeast corner of Franklin County, Missouri, as shown on Plate A-2. The dam is shown on Plate A-1 in the SE 1/4 of Section 30, T44N, R2E.

c. **Size Classification.** Criteria for determining the size classification of dams and impoundments are presented in the guidelines referenced in paragraph 1.1c above. Becker Lake Dam has a height of 30 feet and a storage capacity at the minimum top of dam of 58 acre-feet. This dam is classified as a small size dam. A small size dam has a height greater than or equal to 25 feet but less than 40 feet and a storage capacity greater than or equal to 50 acre-feet but less than 1,000 acre-feet. The size classification is determined by either the storage or height, whichever gives the larger size category.

d. **Hazard Classification.** Guidelines for determining hazard classification of dams and impoundments are presented in the guidelines as referenced in paragraph 1.1c above.

Aerial photographs of the downstream damage zone of this dam were taken in October, 1980. These photographs were used as reference in the field observations of the damage zone which were made during the inspection. Based on the field observations and on the referenced guidelines this dam is in the High Hazard Potential Classification. The estimated damage zone extends approximately one mile downstream of the dam. Within the damage zone are a dwelling at about 0.4 mile, a dwelling at 0.6 mile, a trailer and 3 dwellings at 0.8 mile and Highway T at 0.9 mile.

e. **Ownership.** The dam is owned by Mr. Harold Becker, Box 115, Labadie, Missouri 63055.

f. **Purpose of Dam.** Flood control and recreation.

g. **Design and Construction History.** Becker Lake Dam was built in 1971. Minimal design data were found which consists of three sheets of plans as prepared by local SCS personnel. Mr. Becker reported that the cutoff extended 10 to 12 feet and landed in good clay.
h. Normal Operating Procedure. There are no operating facilities for this dam. The pool level is controlled by rainfall, infiltration, evaporation, and the capacity of the uncontrolled spillways.

1.3 PERTINENT DATA

a. Drainage Area. 102.6 acres (0.16 square miles).

b. Discharge at Damsite.

(1) All discharges at the damsite are through the following:
 (a) An uncontrolled eight-inch welded steel pipe spillway with hood inlet.
 (b) An uncontrolled earthen emergency spillway cut through the right abutment.

(2) Estimated maximum flood at damsite -- unknown.

(3) The principal spillway capacity varies from 0 c.f.s. at elevation 106.5 feet to 5.5 c.f.s. at the crest of the emergency spillway (elevation 110.0 feet) to 5.7 c.f.s. at the minimum top of dam (elevation 111.6 feet).

(4) The emergency spillway capacity varies from 0 c.f.s. at its crest (elevation 110.0 feet) to 49 c.f.s. at the minimum top of dam (elevation 111.6 feet).

(5) Total spillway capacity at the minimum top of dam is 55 c.f.s. ±

c. Elevations (feet, SCS plans).

(1) Observed pool - 105.2

(2) Normal pool - 106.5

(3) Spillway crests
 Principal - 106.5
 Emergency - 110.0

(4) Maximum experienced pool - unknown

(5) Top of dam (minimum) - 111.6

(6) Streambed - 82±

(7) Maximum tailwater - unknown
d. **Reservoir.** Length (feet) of pool.
 (1) At principal spillway crest - 900\(\dagger\)
 (2) At emergency spillway crest - 1050\(\dagger\)
 (3) At top of dam (minimum) - 1100\(\dagger\)

e. **Storage (acre-feet).**
 (1) Observed pool - 28\(\dagger\)
 (2) Normal pool - 32\(\dagger\)
 (3) Spillway crests
 - Principal - 32\(\dagger\)
 - Emergency - 49\(\dagger\)
 (4) Maximum experienced pool - unknown
 (5) Top of dam (minimum) - 58\(\dagger\)

f. **Reservoir Surface (acres).**
 (1) Observed pool - 3.7\(\dagger\)
 (2) Normal pool - 4.1\(\dagger\)
 (3) Spillway crests
 - Principal - 4.1\(\dagger\)
 - Emergency - 5.3\(\dagger\)
 (4) Maximum experienced pool - unknown
 (5) Top of dam (minimum) - 5.9\(\dagger\)

g. **Dam.**
 (1) Type - earthfill
 (2) Length - 295 ft. \(\dagger\)
 (3) Height - 30 ft. \(\dagger\)
 (4) Top width - 12 ft. \(\dagger\)
 (5) Side slopes
 (a) Downstream - 1V to 2.4\(\dagger\)H (measured)
 (b) Upstream - 1V to 3.4\(\dagger\)H (measured)
(6) Zoning - none

(7) Impervious core - none

(8) Cutoff - 10 to 12 feet in depth, 1:1 side slopes

(9) Grout curtain - none

(10) Wave protection - vegetation

(11) Drains - none

h. Diversion Channel and Regulating Tunnel. None

i. Spillways.

(1) Principal

 (a) Type - The principal spillway is an uncontrolled 8-inch diameter welded steel pipe conduit equipped with a hood inlet.

 (b) Crest (invert) Elevation - 106.5 ft.
 Outlet - 82.0 ft.

 (c) Length - 112.5 ft.

(2) Emergency

 (a) Type - The emergency spillway is an uncontrolled vegetated earth channel cut through the right abutment. The channel is elliptical in shape with a bottom width of approximately 5 feet and side slopes of approximately 1V on 3.3H.

 (b) Control Section - A level section 15 ft. long near the centerline of the dam.

 (c) Crest Elevation - 110.0 ft

 (d) Upstream Channel - Vegetated, open and clear. Approach grade - 4.4%.

 (e) Downstream Channel - Vegetated, open and clear. 3.5% grade. Discharges into old channel approximately 300 feet downstream.

j. Regulating Outlets. None
SECTION 2 - ENGINEERING DATA

2.1 DESIGN

Design data consisting of three sheets of drawings were furnished by the owner. Information on the sheets consists of a sketch plan of the dam and emergency spillway, a cross section through the dam showing a hood inlet type principal spillway, and details for construction of the hood inlet and anti-seep collars. The drawings were done by Soil Conservation Service and copies are included in this report in Appendix C.

2.2 CONSTRUCTION

No construction data were available. Mr. Becker reported that the dam was constructed in 1971 and that the core trench had been excavated to depths of 10 to 12 feet into clay.

2.3 OPERATION

No data were available on spillway operation. Mr. Becker reported that flows have never occurred in the emergency spillway.

2.4 EVALUATION

a. Availability. The data included in Appendix C were readily available from the owner.

b. Adequacy. The Soil Conservation Service plans furnished by the owner and the field surveys and visual observations presented herein are considered adequate to support the conclusions of this report. Seepage and stability analyses comparable to the requirements of the "Recommended Guidelines for Safety Inspection of Dams" were not available, which is considered a deficiency. These seepage and stability analyses should be performed for appropriate loading conditions (including earthquake loads) and made a matter of record.

c. Validity. The data furnished are considered to be valid.
SECTION 3 - VISUAL INSPECTION

3.1 FINDINGS

a. General. A visual inspection of the Becker Lake Dam was made on October 7, 1980. Engineers from Hoskins-Western-Sonderegger, Inc., Lincoln, Nebraska, making the inspection were:

Rey S. Decker - Geotechnical
Garold G. Ulmer - Hydraulics and Hydrology
Gordon Jamison - Hydraulics and Hydrology

The owner, Mr. Harold Becker, and Mr. Leonard A. Knoernschild, District Conservationist, Soil Conservation Service, Franklin County, were present during the inspection.

b. Dam.

(1) Geology and Soils (abutment and embankment). The embankment is situated on the Menfro soil in the loess mantled uplands. Bedrock, which is not exposed at the site, occurs at greater than 10 feet depth. It is the Joachim Formation; a yellowish brown, argillaceous dolomite with interbedded limestones and shales of the Ordovician System. The significant structural features within 10 miles of the site are the Eureka-House Springs Anticline and the Moselle Fault.

Groundwater movement at the site is controlled by the underlying loess composed of silty clays and clayey silts. Hydraulic conductivities range from 1 to 0.1 ft/day. The Menfro soil developed on the loess can be described as well drained. The loess mantling the bedrock surface ranges from approximately 10 to 20 feet thick. The bedrock is locally "tight", not yielding to municipal wells. Secondary porosity is limited with a low potential for sinkhole collapse.

The epicenter for a May, 1945 earthquake was located on the Moselle Fault (Frank, 1945). The focus was calculated at 44 kilometers suggesting deep-seated movement. This fault occurs approximately 8 miles to the southwest of the site.

The Eureka-House Springs Anticline crests to the east in Section 36, T44N, R3E.

The site occurs in Seismic Zone 2 which is indicative of a moderate probability for damage. Earthquakes having a Modified Mercalli intensity of IV or over occurring within a radial distance of 50 miles are as follows:
The soil in the abutments and embankment is a silty clay (CL) material.

(2) Upstream Slope. The upstream slope is very well vegetated with adapted grasses. No brush or trees were observed. No erosion, cracks, slumps, slides or deformations were observed on the slope. The vegetative growth has provided good protection against erosion. The slope is somewhat flatter than the planned IV on 3H. The upstream slope is shown in Photo No. 3.

(3) Crest. The crest is well vegetated with adapted grasses. No significant erosion, cracks or slumps were observed. The center section (Stations 1+50 to 2+50) is about 0.5 feet lower than the ends. The crest is shown in Photo No. 2.

(4) Downstream Slope. The downstream slope is very well vegetated with adapted grasses. No cracks, slumps, slides or other deformations were noted. No erosion or rodent activity was evident. No evidence of seepage was observed in the abutment troughs, on the slope or along the toe of the dam; however, seepage water was standing in the scour hole downstream from the outlet of the pipe spillway. Test borings taken up the slope from the toe of the dam indicated dry to moist CL material to a depth of 2 to 3 feet. Photo No. 4 shows the downstream slope.

c. Appurtenant Structures.

(1) Principal Spillway.

(a) Inlet Structure. The hood inlet was clear and unobstructed and is constructed as shown on Plate C-5. The water level in the lake was 1.3 feet below the invert of the inlet at the time of inspection. Photo No. 5 shows the inlet.

(b) Conduit. The 8-inch welded steel pipe conduit appeared to be in excellent condition. Plate C-4 shows three anti-seep collars. Mr. Becker reported that the spillway had not operated during the summer.

(c) Stilling Basin. The spillway conduit outlets onto a concrete slab that is enclosed by a steel grating cage which serves as an animal guard and to some extent as an energy dissipator. A scour hole located immediately downstream from the concrete slab contained seepage water. There was no flow from the
stilling basin nor was there any sign of boils. Photos 10 and 11 show the outlet end of the conduit and the scour hole.

(2) **Emergency Spillway.** The emergency spillway is in excellent condition. A training dike on the left side of the channel diverts spillway flows away from the right abutment trough of the dam. The spillway is covered with an excellent growth of adapted grasses which had recently been mowed. Mr. Becker stated that the spillway had never operated. Photos 8, 9 and 13 show the emergency spillway. Photo No. 1 - Overview distinctly shows the spillway as it appears from overhead.

(3) **Low-Level Outlet.** There is no low-level outlet.

d. **Reservoir Area.** The area surrounding the reservoir is well vegetated with grasses. No significant erosion or siltation was noted around the reservoir. Photo No. 6 shows a portion of the reservoir.

e. **Downstream Channel.** The downstream channel is overgrown with trees and brush. Photo No. 7 shows the channel downstream from the dam. Photo No. 15 shows the channel at the outlet confluence with the larger drainageway from the southeast.

3.2 **EVALUATION**

This structure appears to be in excellent structural condition and is very well maintained.
SECTION 4 - OPERATIONAL PROCEDURES

4.1 PROCEDURES

There are no controlled outlet works for this dam. The pool level is controlled by rainfall, infiltration, evaporation, and the capacity of the uncontrolled spillways.

4.2 MAINTENANCE OF DAM

This structure is very well maintained. Mr. Becker mows as needed and apparently removes all trees and brush at frequent intervals. He also traps out muskrat and/or beaver whenever they appear.

4.3 MAINTENANCE OF OPERATING FACILITIES

No operating facilities exist at this dam.

4.4 DESCRIPTION OF ANY WARNING SYSTEM IN EFFECT

There is no warning system in effect for this dam.

4.5 EVALUATION

The excellent condition of this dam is due to the frequent maintenance work performed by Mr. Becker.
SECTION 5 - HYDRAULIC/HYDROLOGIC

5.1 EVALUATION OF FEATURES

a. Design Data. Drawings for this dam, which were done by the Soil Conservation Service, were furnished by the owner and are included in Appendix C of this report.

b. Experience Data. The drainage area, reservoir surface area, and elevation-storage data were developed from the USGS Labadie, Missouri 7-1/2 minute topographic quadrangle map. The hydraulic computations for the spillway and dam overtopping discharge ratings were based on data collected in the field at the time of the field inspection. Hydraulic/hydrologic computations are included as Appendix D of this report.

(1) The dam and its spillways appear to be in excellent structural condition and well maintained.

d. Overtopping Potential. The spillways are too small to pass 50% of the probable maximum flood without overtopping the dam. The spillways will pass 14% of the probable maximum flood and will also pass the 1% probability flood without overtopping. Overtopping is dangerous because the flow of water over the crest could erode the face of the dam and, if continued long enough, could breach the dam with a sudden release of all of the impounded water onto the downstream floodplain.

The results of the routings through the dam are tabulated in regards to the following conditions:

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Inflow Discharge c.f.s.</th>
<th>Outflow Discharge c.f.s.</th>
<th>Maximum Pool Elevation</th>
<th>*Maximum Depth Over Dam Feet</th>
<th>Duration Over Top Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1%</td>
<td>440</td>
<td>35</td>
<td>111.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1/2 PMF</td>
<td>945</td>
<td>875</td>
<td>112.8</td>
<td>1.2</td>
<td>5+</td>
</tr>
<tr>
<td>PMF</td>
<td>1890</td>
<td>1860</td>
<td>113.5</td>
<td>1.9</td>
<td>7+</td>
</tr>
<tr>
<td>0.14 PMF</td>
<td>275</td>
<td>55</td>
<td>111.6</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*Minimum top of dam elevation - 111.6 ft.

According to the recommended guidelines from the Department of the Army, Office of the Chief of Engineers, this dam is classified as having a high hazard potential and a small size. Therefore, the 1/2 PMF to PMF is the test for the adequacy of the dam and its spillway.

The estimated damage zone is described in paragraph 1.2 d in this report.
6.1 EVALUATION OF STRUCTURAL STABILITY

a. Visual Observation. Based on visual observation this dam appears to be in excellent structural condition and is very well maintained. There is no evidence of cracks, slides, slumps, erosion, animal burrows or seepage on the downstream slope. The nature of the embankment materials combined with flatter than normal slopes should provide adequate safety against shear failure for a dam of this height.

b. Design and Construction Data. Very sketchy design data prepared by the Soil Conservation Service was loaned to the inspection team by the owner. Seepage and stability analyses comparable to the requirements of the "Recommended Guidelines for Safety Inspection of Dams" were not available, which is considered a deficiency.

c. Operating Records. There are no controlled operating facilities for this dam.

d. Post-Construction Changes. No changes have been made on this dam since it was constructed.

e. Seismic Stability. This dam is located in Seismic Zone 2. An earthquake of the magnitude predicted in this area could be expected to cause moderate structural damage to this dam.
SECTION 7 - ASSESSMENT/REMEDIAL MEASURES

7.1 DAM ASSESSMENT

a. Safety. Based on visual inspection this dam appears to be in excellent structural condition and is very well maintained. Approximate analyses presented in this report indicate that the spillways will pass the 1 percent probability flood without overtopping the dam but 50 percent of the probable maximum flood will overtop the dam by 1.2 feet for about 5 hours. The effects of overtopping on the stability of the dam are not known. Seepage and stability analyses comparable to the requirements of the "Recommended Guidelines for Safety Inspection of Dams" were not available which is considered a deficiency.

b. Adequacy of Information. The conclusions in this report are based upon minimal engineering data, performance history, and visual observations. Seepage and stability analyses comparable to the requirements of the "Recommended Guidelines for Safety Inspection of Dams" were not available which is considered a deficiency.

c. Urgency. There does not appear to be an immediate urgency to accomplish the remedial measures recommended in paragraph 7.2.b. The item recommended in paragraph 7.2.a should be pursued on a high priority basis.

d. Necessity for Further Investigations. Prior to any action being taken on the remedial measure recommended in item 7.2.a, the owner should have a breach routing of the dam performed to determine the downstream effects in case of failure of the dam.

e. Seismic Stability. This dam is located in Seismic Zone 2. An earthquake of this magnitude is expected to produce moderate damage to this dam. It is recommended that the prescribed seismic loading for Seismic Zone 2 be applied in any stability analyses performed for this dam.

7.2 REMEDIAL MEASURES

The following remedial measures and maintenance procedures are recommended. All remedial measures should be performed under the guidance of a registered professional engineer experienced in the design and construction of earth dams.

a. Alternatives.

(1) The emergency spillway size and/or the height of the dam should be increased in order to pass 50% of the probable maximum flood without overtopping the dam.
b. Operation and Maintenance Procedures.

(1) Seepage and stability analyses comparable to the requirements of the recommended guidelines should be performed by an engineer experienced in the design and construction of dams.

(2) Regular maintenance, as now practiced by the owner, should be continued.

(3) A plan for periodic inspection of the structure should be initiated and records of inspection made a part of this project file.
PHOTO NO. 2 - CREST FROM LEFT END

PHOTO NO. 3 - UPSTREAM SLOPE FROM LEFT END
PHOTO NO. 4 - DOWNSTREAM SLOPE FROM LEFT END

PHOTO NO. 5 - PRINCIPAL SPILLWAY INLET
PHOTO NO. 6 - VIEW UPSTREAM ACROSS LAKE, PRINCIPAL SPILLWAY INLET IN FOREGROUND

PHOTO NO. 7 - VIEW DOWNSTREAM. OUTLET END OF PRINCIPAL SPILLWAY IN LOWER CENTER OF PHOTO
PHOTO NO. 12 - OVERVIEW TAKEN FROM UPSTREAM ON RIGHT SIDE

PHOTO NO. 13 - VIEW OF RIGHT END OF DAM AND EMERGENCY SPILLWAY
PHOTO NO. 14 - OVERVIEW TAKEN FROM EAST END OF LAKE

PHOTO NO. 15 - ABOUT 1/2 MILE BELOW DAM, LOOKING DOWNSTREAM IN CHANNEL FROM DAM AT CONFLUENCE WITH LARGER CREEK COMING IN FROM THE LEFT
PHOTO NO. 16 - TRAILER HOUSES ON BANK OF THE LARGER CREEK JUST BELOW THE CONFLUENCE
APPENDIX C
PROJECT PLATES
PLAN OF DAM
Scale: 1' = 100'

CENTERLINE PROFILE OF DAM
Scale As Shown
MAXIMUM CROSS-SECTION OF DAM AT STA. 1+70
Scale: 1" = 20'

PROFILE ALONG CENTERLINE OF EMERGENCY SPILLWAY
Scale: 1" = 25' H
1" = 5' V
PLAN VIEW - SKETCH OF DAM AND SPILLWAYS

Not to scale

Approximate surface area 3.9 acres.
Permanent pool elevation 106.5

UNITED STATES DEPARTMENT OF AGRICULTURE
SOIL CONSERVATION SERVICE

Recreation Dam

Landowner: Harold Becker
Franklin County, Missouri

Designed by: Date 9-28-71
Checked by: Date
Approved by: Kenneth W. Morgan Date 9-28-71
Notes:
1. All welds shall be watertight.
2. All pipe and steel plates shall have minimum thickness of __________.

Harold - Use 16" length of 8" pipe to fabricate canopy and then butt weld to pipe in fill. This will put inlet at correct elevation. End plate welded to pipe conduit.

SECTION A-A

SECTION ALONG C OF INLET

INLET SECTION
16" Long

ANTI-SEEP COLLAR
Not to Scale

U.S. DEPARTMENT OF AGRICULTURE
SOIL CONSERVATION SERVICE
APPENDIX D
HYDRAULIC AND HYDROLOGIC DATA
HYDROLOGIC COMPUTATIONS

1. The SCS dimensionless unit hydrograph and the systemized computer program HEC-1 (Dam Safety Version), July 1978, prepared by the Hydrologic Engineering Center, U.S. Corps of Engineers, Davis, California, were used to develop the inflow hydrographs (see this Appendix).

 a. Twenty-four hour, one percent probabilistic rainfall for the dam location was taken from the data for the rainfall station at Sullivan, MO. as supplied by the St. Louis District, Corps of Engineers per their letter dated 6 March 1979. The twenty-four hour probable maximum precipitation was taken from the curves of Hydrometeorological Report No. 33 and current Corps of Engineers and St. Louis policy and guidance for hydraulics and hydrology.

 b. Drainage area = 0.16 square miles (102.6 acres).

 c. Time of concentration of runoff = 10 minutes (computed from the "Kirpich" formula and verified using the California Hwy. and P.W. formula).

 d. The antecedent storm conditions for the probable maximum precipitation were heavy rainfall and low temperatures which occurred on the previous 5 days (SCS AMC III). The antecedent storm conditions for the one percent probabilistic precipitation were an average of the conditions which have preceded the occurrence of the maximum annual flood on numerous watersheds (SCS AMC II). The initial pool elevation was assumed at the invert of the principal spillway.

 e. The total twenty-four hour storm duration losses for the one percent probabilistic storm were 2.88 inches. The total losses for the PMF storm were 1.58 inches. These data are based on SCS runoff curve No. 75 and No. 88 for antecedent moisture conditions SCS AMC II and AMC III respectively. The watershed is composed of primarily SCS soil groups B and C (Menfro-Winfield soils). The watershed is primarily in grass and trees.

 f. Average soil loss rates = 0.05 inch per hour approximately (for PMF storm, AMC III).

2. The combined discharge rating consisted of three components: the flow through the principal spillway, the flow through the emergency spillway, and the flow going over the top of the dam.

 a. The principal spillway rating was developed by using the weir and full conduit flow equations and coefficients as found in SCS TR No. 3 "Hood Inlets for Culvert Spillways".

PLATE D-1
b. The emergency spillway rating curve was developed using the Corps of Engineers, Water Surface Profile HEC-2 computer program. The critical depth method was used assuming critical depth of the spillway dropoff.

c. The flows over the dam were determined by using the dam overtopping analyses (irregular top of dam) within the HEC-1 (Dam Safety Version) program.

3. Floods were routed through the reservoir using the HEC-1 (Dam Safety Version) program to determine the capabilities of the spillway and dam embankment crest. The input, output and plotted hydrographs are attached to this Appendix.
BECKER LAKE DAM
MO. ID. NO. 31495
PRINCIPAL SPILLWAY
RATING CURVE

Minimum Top Of Dam

Full Pipe Flow

Emergency Spillway Crest

Transition

Principa Spillway Crest

ELEVATION IN FEET (BGS, ASSUMED)

Minimum Top Of Dam

Full Pipe Flow

Emergency Spillway Crest

Transition

Principa Spillway Crest

DISCHARGE IN CFS
BECKER LAKE DAM
MO. ID. NO. 31495
EMERGENCY SPILLWAY
RATING CURVE

ELEVATION IN FEET (S.G. 0.0)

Minimum Top Of Dam

Elevation Spillway Crest

RATE O-4

0 100 200 300 400 500 600 700 800 900

DISCHARGE IN CFS
<table>
<thead>
<tr>
<th>A1</th>
<th>SAFETY ANALYSIS OF DAM OVERTOPPING USING ASSIGNED FLOOD FREQUENCIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2</td>
<td>H & H ANALYSIS BY ROUTING PMF RATIOS THRU THE RESERVOIR</td>
</tr>
<tr>
<td>B</td>
<td>0.000268000000000000000005</td>
</tr>
<tr>
<td>B1000005</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>0.0000010000000600000001</td>
</tr>
<tr>
<td>J1000.050000,100000,150000,200000,250000,350000,500000,5000001,0</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>0.000000000000001</td>
</tr>
<tr>
<td>K1</td>
<td>CALCULATION OF INFLO HYDRO TO BECKER LAKE</td>
</tr>
<tr>
<td>M</td>
<td>0.00001000000200000016</td>
</tr>
<tr>
<td>P</td>
<td>0.0000000000025,5000001020000012100000130</td>
</tr>
<tr>
<td>T</td>
<td>-1.0 -88.0</td>
</tr>
<tr>
<td>W2</td>
<td>0.000017</td>
</tr>
<tr>
<td>X</td>
<td>0.0000001</td>
</tr>
<tr>
<td>K</td>
<td>0.000000200000000000000001</td>
</tr>
<tr>
<td>K1</td>
<td>ROUTED FLOWS THRU BECKER LAKE DAM</td>
</tr>
<tr>
<td>Y</td>
<td>0.00000001</td>
</tr>
<tr>
<td>Y1000001</td>
<td>-105.5 -1</td>
</tr>
<tr>
<td>Y40106.5000106,60000107,20000107,30000107,50000109,00000110,0000110,5000111.0</td>
<td></td>
</tr>
<tr>
<td>Y40111.5000112,0000112,5000113,0000113,5000114,0000114,5000115,0000116.0</td>
<td></td>
</tr>
<tr>
<td>Y50000000000000,2000000,6000000,9000000,0000005,2000005,4000005,50000010,50000022.6</td>
<td></td>
</tr>
<tr>
<td>Y50000470000000860000141000002040000028400000379000004910000061600000906</td>
<td></td>
</tr>
<tr>
<td>S00000.000000000000001,2000002,3000003,6000005,3000007,4000009.9</td>
<td></td>
</tr>
<tr>
<td>$S008.00000000,00000095,00000100,00000105,00000110,00000115,00000120.0</td>
<td></td>
</tr>
<tr>
<td>$S0106.5</td>
<td></td>
</tr>
<tr>
<td>$S0111.6000002,8000001,500000235</td>
<td></td>
</tr>
<tr>
<td>$S10010000001750000018000000195000002450000029500000307</td>
<td></td>
</tr>
<tr>
<td>$S10111.60000112,1000112,1000112,3000112,7000112,8000115,0</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>0.000099</td>
</tr>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>
FLOOD HYDROGRAPH PACKAGE (HEC-1)

DAM SAFETY VERSION ~~JULY 1978~~

LAST MODIFICATION 26 FEB 73

BECKER LAKE DAM / NO ID NO 31994

SAFETY ANALYSIS OF DAM OVERTOPPING USING ASSIGNED FLOOD FREQUENCIES

H & H ANALYSIS OF ROUTING PHI RATIOS THRU THE RESERVOIR

JOB SPECIFICATION

<table>
<thead>
<tr>
<th>NO</th>
<th>NHR</th>
<th>NMIN</th>
<th>IDAY</th>
<th>IHRS</th>
<th>IHRS</th>
<th>MTRC</th>
<th>IJPL</th>
<th>IPRT</th>
<th>NSTAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>288</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

MULTI-PLAN ANALYSES TO BE PERFORMED

RTI0S = 01, 10, 15, 20, 25, 30, 50, 100

SUB-AREA RUNOFF COMPUTATION

CALCULATION OF INFLO HYDRO TO BECKER LAKE

<table>
<thead>
<tr>
<th>ISTAG</th>
<th>ICOMP</th>
<th>ICON</th>
<th>ITAPE</th>
<th>JPLY</th>
<th>JPRT</th>
<th>INAME</th>
<th>ISTATE</th>
<th>IAUTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

HYDROGRAPH DATA

<table>
<thead>
<tr>
<th>INYDS</th>
<th>IUNG</th>
<th>TAREA</th>
<th>SNAP</th>
<th>TRSODA</th>
<th>TRSPC</th>
<th>RATIO</th>
<th>ISNOW</th>
<th>ISAME</th>
<th>LOCAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>0.16</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

PRECIP DATA

<table>
<thead>
<tr>
<th>SPRT</th>
<th>R12</th>
<th>R24</th>
<th>R48</th>
<th>R72</th>
<th>R96</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>25.50</td>
<td>102.00</td>
<td>121.00</td>
<td>130.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

LOSS DATA

<table>
<thead>
<tr>
<th>LRTG</th>
<th>STRK</th>
<th>OMTK</th>
<th>RTHL</th>
<th>ERAIN</th>
<th>STKRG</th>
<th>RTION</th>
<th>STRTL</th>
<th>CNSTL</th>
<th>ALSX</th>
<th>RTIMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

CURVE NO = -88.00 WEHYNESS = -1.00 EFFECT CN = 88.00

UNIT HYDROGRAPH DATA

<table>
<thead>
<tr>
<th>TC</th>
<th>LAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.17</td>
</tr>
</tbody>
</table>

RECESSION DATA

<table>
<thead>
<tr>
<th>STRG</th>
<th>QRECSN</th>
<th>RTIOR</th>
<th>RTI0R</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>-0.01</td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>

UNIT HYDROGRAPH 12 END OF PERIOD ORDINATES, TC = 0.00 HOURS, LAG = 0.17 VOL = 1.00

<table>
<thead>
<tr>
<th>111</th>
<th>396</th>
<th>345</th>
<th>216</th>
<th>100</th>
<th>50.0</th>
<th>31.0</th>
<th>16.0</th>
<th>9.0</th>
<th>4.0</th>
<th>END-OF-PERIOD FLOW</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Plan 1, Rtg 4</th>
<th>Peak</th>
<th>6-Hour</th>
<th>24-Hour</th>
<th>72-Hour</th>
<th>Total Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFS</td>
<td>INCHES</td>
<td>FT</td>
<td>FT</td>
<td>FT</td>
<td></td>
</tr>
<tr>
<td>258</td>
<td>3.81</td>
<td>4.13</td>
<td>4.13</td>
<td>166.93</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>120.07</td>
<td></td>
</tr>
<tr>
<td>THOUS CU M</td>
<td>40</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

Hydrograph at STA000001 for Plan 1, Rtg 4

<table>
<thead>
<tr>
<th>Plan 1, Rtg 5</th>
<th>Peak</th>
<th>6-Hour</th>
<th>24-Hour</th>
<th>72-Hour</th>
<th>Total Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFS</td>
<td>INCHES</td>
<td>FT</td>
<td>FT</td>
<td>FT</td>
<td></td>
</tr>
<tr>
<td>471</td>
<td>5.59</td>
<td>7.58</td>
<td>7.58</td>
<td>278.8</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>61</td>
<td>61</td>
<td>61</td>
<td>200.12</td>
<td></td>
</tr>
<tr>
<td>THOUS CU M</td>
<td>61</td>
<td>81</td>
<td>81</td>
<td>81</td>
<td></td>
</tr>
</tbody>
</table>

Hydrograph at STA000001 for Plan 1, Rtg 5

<table>
<thead>
<tr>
<th>Plan 1, Rtg 6</th>
<th>Peak</th>
<th>6-Hour</th>
<th>24-Hour</th>
<th>72-Hour</th>
<th>Total Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFS</td>
<td>INCHES</td>
<td>FT</td>
<td>FT</td>
<td>FT</td>
<td></td>
</tr>
<tr>
<td>660</td>
<td>8.95</td>
<td>11.03</td>
<td>11.03</td>
<td>336.8</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>94</td>
<td>94</td>
<td>94</td>
<td>280.39</td>
<td></td>
</tr>
<tr>
<td>THOUS CU M</td>
<td>94</td>
<td>116</td>
<td>116</td>
<td>116</td>
<td></td>
</tr>
</tbody>
</table>

Hydrograph at STA000001 for Plan 1, Rtg 6

<table>
<thead>
<tr>
<th>Plan 1, Rtg 7</th>
<th>Peak</th>
<th>6-Hour</th>
<th>24-Hour</th>
<th>72-Hour</th>
<th>Total Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFS</td>
<td>INCHES</td>
<td>FT</td>
<td>FT</td>
<td>FT</td>
<td></td>
</tr>
<tr>
<td>993</td>
<td>12.78</td>
<td>15.74</td>
<td>15.74</td>
<td>552.8</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>184</td>
<td>184</td>
<td>184</td>
<td>136.04</td>
<td></td>
</tr>
<tr>
<td>THOUS CU M</td>
<td>184</td>
<td>184</td>
<td>184</td>
<td>184</td>
<td></td>
</tr>
</tbody>
</table>

Hydrograph at STA000001 for Plan 1, Rtg 7

<table>
<thead>
<tr>
<th>Plan 1, Rtg 8</th>
<th>Peak</th>
<th>6-Hour</th>
<th>24-Hour</th>
<th>72-Hour</th>
<th>Total Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFS</td>
<td>INCHES</td>
<td>FT</td>
<td>FT</td>
<td>FT</td>
<td></td>
</tr>
<tr>
<td>1056</td>
<td>126.60</td>
<td>163.74</td>
<td>163.74</td>
<td>390.28</td>
<td></td>
</tr>
<tr>
<td>134</td>
<td>166</td>
<td>166</td>
<td>166</td>
<td>166</td>
<td></td>
</tr>
</tbody>
</table>

Hydrograph at STA000001 for Plan 1, Rtg 8

Plate D-12
Hydrograph Routing

Route Flow thru Becker Lake Dam

<table>
<thead>
<tr>
<th>000002</th>
<th>Iposing</th>
<th>ICMP</th>
<th>ICEN</th>
<th>ITAPE</th>
<th>JPLT</th>
<th>JPRT</th>
<th>INAME</th>
<th>I1STAGE</th>
<th>IAUTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>000002</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>QLOSS</th>
<th>CLOSS</th>
<th>AVG</th>
<th>IRES</th>
<th>ISAME</th>
<th>IOPT</th>
<th>IPMP</th>
<th>LSTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NSTPS</th>
<th>NSDRT</th>
<th>LAG</th>
<th>AMSK</th>
<th>X</th>
<th>TSK</th>
<th>STOR</th>
<th>ISPRAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STAGE</th>
<th>FLOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>106.50</td>
<td>47.00</td>
</tr>
<tr>
<td>105.80</td>
<td>48.00</td>
</tr>
<tr>
<td>107.00</td>
<td>51.00</td>
</tr>
<tr>
<td>111.80</td>
<td>120.00</td>
</tr>
<tr>
<td>112.50</td>
<td>124.00</td>
</tr>
<tr>
<td>111.50</td>
<td>127.00</td>
</tr>
</tbody>
</table>

Surface Area

- Capac: 0.0
- Elev: 88.0

CREST LENGTH

- At OR Below Elevation
 - 111.6: 100.0
 - 112.1: 175.0
 - 112.2: 180.0

Station 000000

End of Period Hydrograph Coordinates

![Hydrograph Coordinates Diagram](Figure)
<table>
<thead>
<tr>
<th>Station</th>
<th>Plan 1</th>
<th>Ratio 6</th>
<th>Outflow</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>10.00</td>
<td>10.00</td>
<td>10.00</td>
<td>10.00</td>
<td>10.00</td>
</tr>
<tr>
<td>20.00</td>
<td>20.00</td>
<td>20.00</td>
<td>20.00</td>
<td>20.00</td>
</tr>
<tr>
<td>30.00</td>
<td>30.00</td>
<td>30.00</td>
<td>30.00</td>
<td>30.00</td>
</tr>
<tr>
<td>40.00</td>
<td>40.00</td>
<td>40.00</td>
<td>40.00</td>
<td>40.00</td>
</tr>
<tr>
<td>50.00</td>
<td>50.00</td>
<td>50.00</td>
<td>50.00</td>
<td>50.00</td>
</tr>
<tr>
<td>60.00</td>
<td>60.00</td>
<td>60.00</td>
<td>60.00</td>
<td>60.00</td>
</tr>
<tr>
<td>70.00</td>
<td>70.00</td>
<td>70.00</td>
<td>70.00</td>
<td>70.00</td>
</tr>
<tr>
<td>80.00</td>
<td>80.00</td>
<td>80.00</td>
<td>80.00</td>
<td>80.00</td>
</tr>
<tr>
<td>90.00</td>
<td>90.00</td>
<td>90.00</td>
<td>90.00</td>
<td>90.00</td>
</tr>
<tr>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

PLT D-21
PEAK FLOW AND STORAGE (END OF PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS

FLOWS IN CUBIC FEET PER SECOND (CUBIC METERS PER SECOND)

AREA IN SQUARE MILES (SQUARE KILOMETERS)

<table>
<thead>
<tr>
<th>OPERATION</th>
<th>STATION</th>
<th>AREA</th>
<th>PLAN RATIO</th>
<th>RATIO .05</th>
<th>RATIO .10</th>
<th>RATIO .15</th>
<th>RATIO .20</th>
<th>RATIO .25</th>
<th>RATIO .30</th>
<th>RATIO .35</th>
<th>RATIO .50</th>
<th>RATIO 1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLAN 1</td>
<td>ELEVATION</td>
<td>INITIAL VALUE</td>
<td>SPILLWAY CREST</td>
<td>TOP OF DAM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>---------------</td>
<td>----------------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>STORAGE</td>
<td>106.39</td>
<td>106.39</td>
<td>111.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OUTFLOW</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RATIO OF PMF</th>
<th>MAXIMUM RESERVOIR W.S. ELEV</th>
<th>MAXIMUM DEPTH OVER DAM FT</th>
<th>MAXIMUM STORAGE AC-FT</th>
<th>MAXIMUM OUTFLOW CFS</th>
<th>DURATION OVER TOP HOURS</th>
<th>TIME OF MAX OUTFLOW HOURS</th>
<th>TIME OF FAILURE HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>18.68</td>
<td>0.00</td>
<td>45.7</td>
<td>3.5</td>
<td>0.00</td>
<td>18.28</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>11.98</td>
<td>0.00</td>
<td>63.1</td>
<td>19.2</td>
<td>0.00</td>
<td>31.28</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>11.62</td>
<td>0.02</td>
<td>63.4</td>
<td>20.2</td>
<td>0.00</td>
<td>31.28</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>11.82</td>
<td>0.02</td>
<td>63.3</td>
<td>20.0</td>
<td>0.00</td>
<td>31.28</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>12.34</td>
<td>0.73</td>
<td>63.1</td>
<td>20.6</td>
<td>0.00</td>
<td>31.28</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>12.53</td>
<td>0.75</td>
<td>63.0</td>
<td>20.2</td>
<td>0.00</td>
<td>31.28</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>12.81</td>
<td>1.93</td>
<td>63.0</td>
<td>20.2</td>
<td>0.00</td>
<td>31.28</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>13.16</td>
<td>1.86</td>
<td>72.3</td>
<td>155.2</td>
<td>7.13</td>
<td>31.72</td>
<td>0.00</td>
</tr>
</tbody>
</table>