PHASE 1 INSPECTION REPORT

NATIONAL DAM SAFETY PROGRAM

Land of Lakes Dam (MO 30451),
Mississippi - Kaskaskia - St. Louis Basin,
Jefferson County, Missouri. Phase I
Inspection Report.

PREPARED BY: U.S. ARMY ENGINEER DISTRICT, ST. LOUIS
FOR: STATE OF MISSOURI

NOVEMBER 1978
Phase I Dam Inspection Report
National Dam Safety Program
Lake of Lakes Dam (MO 30451)
Jefferson County, Missouri

Reitz & Jens, Inc.

U.S. Army Engineer District, St. Louis
Dam Inventory and Inspection Section, LMSED-PD
210 Tucker Blvd., North, St. Louis, Mo. 63101

November 1978
Approximately 35

Approved for release; distribution unlimited.

This report was prepared under the National Program of Inspection of Non-Federal Dams. This report assesses the general condition of the dam with respect to safety, based on available data and on visual inspection, to determine if the dam poses hazards to human life or property.
SUBJECT: Land of Lakes Dam, Missouri ID No. 30451
Dam Phase I Inspection Report

This report presents the results of field inspection and evaluation of the Land of Lakes Dam.

It was prepared under the National Program of Inspection of Non-Federal Dams.

This dam has been classified as unsafe, non-emergency by the St. Louis District as a result of the application of the following criteria:

1) Spillway will not pass 45 percent of the Probable Maximum Flood
2) Overtopping could result in dam failure.
3) Seepage at the toe could result in dam failure.
4) Dam failure significantly increases the hazard to loss of life downstream.

SUBMITTED BY: ________________________
Chief, Engineering Division

SIGNED

19 MAR 1979
Date

APPROVED BY: ________________________
Colonel, CE, District Engineer

20 MAR 1979
Date
PHASE I REPORT
NATIONAL DAM SAFETY PROGRAM

Name of Dam: Land of Lakes Dam
State Located: Missouri
County Located: Jefferson County
Stream: Unnamed Tributary of Bear Creek
Date of Inspection: 15, 17, 24 and 29 November 1978

Land of Lakes Dam was inspected by an interdisciplinary team of engineers from Reitz & Jens, Inc. under contract with the St. Louis District Corps of Engineers. The purpose of the inspection was to make an assessment of the general condition of the dam with respect to safety, based upon available data and visual inspection, in order to determine if the dam poses hazards to human life or property.

The guidelines used in the assessment were furnished by the Department of the Army, Office of the Chief of Engineers and developed with the help of several Federal and State agencies, professional engineering organizations and private engineers. Based on these guidelines this dam is classified as a small dam with a high downstream hazard potential. The estimated damage zone from failure of the dam extends three miles downstream from the dam.

Failure would threaten the life and property of twenty-five families and cause appreciable damage to three improved roads.

Our inspection and evaluation indicates that the dam is deficient in that the spillways do not meet the criteria set forth in the guidelines for a dam having the above size and hazard potential. Considering the volume of water impounded, the small floodplain downstream and the 25 buildings downstream, the Probable Maximum Flood (PMF) is the appropriate spillway design flood. The probable maximum flood is defined as the flood discharge that may be expected from the most severe combination of critical meteorological and hydrologic conditions reasonably possible in the region. The dam will begin to be overtopped by a flood having a discharge (peak and volume) equal to 45% of the PMF. The spillways will pass a 1% chance flood (100-year flood) without overtopping which is a flood that has a 1% chance of being exceeded in any given year.

Other deficiencies noted by the inspection team were underseepage or seepage at the base of the dam embankment and heavy growth of trees and shrubs on the downstream slope of the dam. Seepage and stability analyses comparable to the requirements of the "Recommended Guidelines for Safety Inspection of Dams" were not available which is considered a deficiency.

We recommend the owner take immediate action to correct or control the deficiencies described. A detailed discussion of each deficiency is included in the following report.

[Signature]
HENRY M. REITZ, President
Reitz & Jens, Inc.

[Signature]
JOHN J. BAILLET, JR., Vice President
Chief Engineer
Reitz & Jens, Inc.
PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM
Land of Lakes Dam, MO ID No. 30451

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Paragraph No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SECTION 1 - PROJECT INFORMATION</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>General</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Description of Project</td>
<td>1</td>
</tr>
<tr>
<td>1.3</td>
<td>Pertinent Data</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>SECTION 2 - ENGINEERING DATA</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Design</td>
<td>4</td>
</tr>
<tr>
<td>2.2</td>
<td>Construction</td>
<td>4</td>
</tr>
<tr>
<td>2.3</td>
<td>Operation</td>
<td>4</td>
</tr>
<tr>
<td>2.4</td>
<td>Evaluation</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>SECTION 3 - VISUAL INSPECTION</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Findings</td>
<td>5</td>
</tr>
<tr>
<td>3.2</td>
<td>Evaluation</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>SECTION 4 - OPERATIONAL PROCEDURES</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Procedures</td>
<td>7</td>
</tr>
<tr>
<td>4.2</td>
<td>Maintenance of Dam</td>
<td>7</td>
</tr>
<tr>
<td>4.3</td>
<td>Maintenance of Operating Facilities</td>
<td>7</td>
</tr>
<tr>
<td>4.4</td>
<td>Description of Any Warning System in Effect</td>
<td>7</td>
</tr>
<tr>
<td>4.5</td>
<td>Evaluation</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>SECTION 5 - HYDRAULIC/HYDROLOGIC</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Evaluation of Features</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>SECTION 6 - STRUCTURAL STABILITY</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Evaluation of Structural Stability</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>SECTION 7 - ASSESSMENT/REMEDIAL MEASURES</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Dam Assessment</td>
<td>10</td>
</tr>
<tr>
<td>7.2</td>
<td>Remedial Measures</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>APPENDIX</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Hydrologic Computations</td>
<td></td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS
(Cont.)

LIST OF PLATES

<table>
<thead>
<tr>
<th>Plate No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Overview - Lake and Environs</td>
</tr>
<tr>
<td>2</td>
<td>Location and Vicinity Map</td>
</tr>
<tr>
<td>3</td>
<td>Plan and Profile Sheet (in pocket on back cover)</td>
</tr>
<tr>
<td>A-1 (5 sheets)</td>
<td>Hydrologic and Hydraulic Computations (HEC-1 Input and Output)</td>
</tr>
</tbody>
</table>

LIST OF INDICES AND PHOTOGRAPH NUMBERS

<table>
<thead>
<tr>
<th>Index No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Index of Dam Photos (D-1 through D-8)</td>
</tr>
<tr>
<td>2</td>
<td>Index of Panorama Photos (P-1 through P-4)</td>
</tr>
<tr>
<td>3</td>
<td>Index of Spillway Photos (S-1 through S-5)</td>
</tr>
<tr>
<td>4</td>
<td>Index of Valley Below Dam Photos (V-1 through V-3)</td>
</tr>
<tr>
<td>5</td>
<td>Index of Seepage Photos (SE-1 through SE-4)</td>
</tr>
</tbody>
</table>
SECTION 1 - PROJECT INFORMATION

1.1 GENERAL

a. Authority The National Dam Inspection Act, Public Law 92-367, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a program of safety inspection of dams throughout the United States. Pursuant to the above, the St. Louis District, Corps of Engineers, District Engineer contracted with Reitz & Jens, Inc. (Contract DACW43-78-C-0162) for a safety inspection of the Land of Lakes Dam, MO ID No. 30451.

b. Purpose of Inspection The purpose of the inspection was to make an assessment of the general condition of the dam with respect to safety, based upon available data and visual inspection to determine if the dam poses hazards to human life or property.

c. Evaluation Criteria Criteria used to evaluate the dam were furnished by the Department of the Army, Office of the Chief of Engineers, in "Recommended Guidelines for Safety Inspection of Dams". These guidelines were developed with the help of several Federal agencies and many State agencies, professional engineering organizations and private engineers.

1.2 DESCRIPTION OF PROJECT

a. Description of Dam and Appurtenances The dam is an earth structure built across a draw in the hills on the southeast side of the Bear Creek valley. The drainage area consists of a narrow "V" valley with steeply sloping sides rising to rounded ridges. The steeper slopes, consisting of about 50% of the drainage area, are wooded. The rounded ridges were once cultivated but are now fallow and are in the process of low-density residential development. The general soil type in the watershed is Union Silt Loam. The dam axis runs generally north-south. The spillway is a concrete paved channel at the south abutment of the dam. There is a fairly wide berm between the spillway and the adjoining road ditch to the south. This berm can overflow into the road ditch at higher spillway discharges. A subdivision access road crosses the valley below the dam. This road traverses completely around the lake to serve 8 or 9 houses with lake access on their rear lot lines.

Topography in the vicinity of the dam is shown on Plate 3.

Pertinent physical data are given in paragraph 1.3 below.

b. Location The dam is located in north central Jefferson County about one and one-fourth miles northeast of House Springs as shown on Plate 2. The dam and lake are located in the SW¼ of the NW¼ of Section 35, T43N, R4E, and are shown on the Jefferson County Missouri, House Springs Quadrangle Sheet, 1954 Edition.

c. Size Classification Criteria for determining the size classification of dams and impoundments are presented in the guidelines referenced in paragraph 1.1.c above. Based on these criteria, this dam and impoundment is in the small size category.

d. Hazard Classification Guidelines for determining hazard classification are presented in the same guidelines referenced in paragraph c above.
Based on referenced guidelines this dam is in the High Hazard Classification.

e. Ownership The dam is owned by the Land of Lakes Improvement Association. The trustees are: Paul Vanderhock, Jimmy L. Rathbers, Margaret Dodge. The address of record is Route 3, Box 145, House Springs, Missouri, 63051.

f. Purpose of Dam The dam forms a 2.7-acre recreational lake.

g. Design and Construction History The inspection team was unable to find any design data on this dam. Records on file in the county seat refer to the dam. One of these is dated July 1946 and was filed by H. Glenn Weber President of Weber Realty Co. Another is dated January 1971 and transfers the lake from Jefferson County Development Co. to the Land of Lakes Improvement Association, Inc. An unsuccessful attempt was made to contact the original owner in search of design and/or construction data.

h. Normal Operating Procedure Normal rainfall, runoff, transpiration, and evaporation all combine to maintain a relatively stable water surface elevation. The maximum water depth ever experienced at the spillway is unknown.

1.3 PERTINENT DATA

a. Drainage Area - 69 acres.

b. Discharge at Damsite

(1) All discharge at the damsite is through an uncontrolled spillway.

(2) Estimated experienced maximum flood at damsite - unknown.

(3) Estimated ungated spillway capacity at maximum pool elevation - 394 cfs.

c. Elevation (Feet Above M.S.L.)

(1) Top of dam - 539.4 to 540.4 (see Plate 3).

(2) Spillway crest - 536.15

(3) Streambed at centerline of dam - 510+ (est.)

(4) Maximum tailwater - unknown.

d. Reservoir Length of maximum pool - 700 feet.

e. Storage (Acre Feet)

(1) Top of dam - 36 acre feet.

(2) Spillway crest - 26 acre feet.

f. Reservoir Surface (Acres)

(1) Top of dam - 3.1 acres

(2) Spillway crest - 2.7 acres.
g. **Dam**

(1) Type - earth embankment

(2) Length - 320 feet

(3) Height - 30+ feet maximum (from survey).

(4) Top width - 10+ feet.

(5) Side Slopes -

 (a) Downstream - 1V on 2.4H (determined from section at Station 2+25, see Plate 3).

 (b) Upstream - 1V on 3H to water surface at Station 2+25.

(6) Zoning - unknown

(7) Impervious core - unknown

(8) Cutoff - unknown

(9) Grout curtain - unknown

h. **Diversion and Regulating Tunnel** - None

i. **Spillways** Earth channel with concrete bottom at south end of dam.

j. **Regulating Outlets** - None
SECTION 2 - ENGINEERING DATA

2.1 DESIGN

No design data were found to be readily available.

2.2 CONSTRUCTION

Apparently, the dam was constructed prior to 1946 (see paragraph 1.2.g).

2.3 OPERATION

The maximum loading on the dam is unknown. The lake level seems to remain fairly stable despite some seepage through or under the dam during average precipitation of 38 inches per year. There are no records of operation of the dam.

2.4 EVALUATION

a. Availability No engineering data were available.

b. Adequacy The engineering data available were inadequate to make a detailed assessment of design, construction and operation. The owner should have an engineer, experienced in the design of dams, perform detailed seepage and stability analyses.

However, for the size of dam, materials used and measurements taken, a satisfactory hydrologic/hydraulic evaluation resulted. Also, for the section and presence of the primary spillway plus the visual inspection of a dam with reservoir of at least 30 years of age, the general condition of the dam, when considered by the experienced engineers, indicated that even though a detailed assessment of the design and construction in an analytical sense was not possible, a defensible evaluation of the dam as a structure, was feasible.

c. Validity This report is primarily for safety through maintenance and operation and the conclusions and evaluation for the Phase I Inspection are considered adequate for the definitive statement in this report.
SECTION 3 - VISUAL INSPECTION

3.1 FINDINGS

a. General A visual inspection of the Land of Lakes Dam was made on 29 November 1978. This followed three days of field measurements by a survey party on 15, 17 and 24 November 1978. The training and experience of personnel in these inspections included hydrologic/hydraulic engineering, soils and materials engineering, surveying and structural engineering. This section only states those aspects visually observed during the inspections. It does not comment upon items which may have been installed but were not evident during the field work.

b. Dam The dam is an earth dam. Top width - 10 feet. Downstream slope - 1V to 2.4H; upstream slope to water surface - 1V to 3H. Height of dam - 24 feet. In its 350 feet of length, the top of dam varies approximately one foot in elevation.

There is no erosion protection on the reservoir side of the dam (D-1, D-3, D-4). At and into the waterline, there is a series of tree stumps approximately 8 to 15 inches in diameter that clearly indicate that at some time in the past there had been large tree growth on the lake side of the dam (D-1, D-3, D-4, D-8). The surface of the dam is in grass that is well maintained on the top and lake sides (D-1, D-3, D-4, D-8). There are two locations in which shallow sloughs or other disturbance of the otherwise uniform upstream slope of the dam are visible (D-4). The downstream slope of the dam is covered by heavy underbrush and sapling growth (D-1, D-2, D-5, D-6, D-7).

Inspection of the downstream slope of the dam indicated seep water ponding, which appears to be either underseepage or at the original ground contact (SE-1, SE-2, SE-3) which, through a surface channel, connects to a natural draw below the dam (SE-4).

c. Spillways There is no indication of a primary pipe spillway. An emergency open spillway is on the south end of the dam which has been lined with Portland cement concrete (S-3, S-4, S-5) that does not appear to have been placed to any geometric section. It is paved 18 feet wide for a length of 50 feet to where its grade breaks downslope (S-3) from which there is a narrower, slushed concrete section (S-1). The concrete lining is carried to the bottom of the dam where some broken rubble has been piled off to the side (S-2). The spillway alignment, in its upper part, appears to be in virgin soil but not on a bedrock exposure at the base of the concrete. As it carries water downslope, at least a part of the alignment appears to be in earth fill. The controlling vertical distance between the elevation on the concrete in the spillway and the top of the dam is 4 feet.

d. Reservoir The lake behind the dam and in the southeast, east and northeast (P-2, P-3, P-4) has a steep bank with the "rolling" being the flattest portions of the embankment adjoining the north and south ends of the dam (P-1). The southeast third of the edge at the lake is still in woods (P-2). Other portions are residential yards with grass extending down to the edge of the water (P-1, P-3, P-4). There is a rock ledge exposed in the eastern edge of the lake (P-2, P-3).
3.2 EVALUATION

The high degree of development in close proximity downstream from the dam, the inadequate capacity of the only spillway, the low difference between the control elevation of the spillway and the intermediate low point on the dam crest, the existing tree and shrub growth on the dam and the underseepage or seepage water standing at the toe of the dam jointly indicate need for immediate remedial action to eliminate a serious potential of failure.

The tree growth and shrubs on the downstream face of the dam should be removed and turf established. Trees and shrubs provide shelter and habitat for rodents whose burrowing activity might cause detrimental additional seepage. Furthermore, as the trees die or are cut, as occurred on the lake side, seepage through the embankment or sloughing may occur as roots decay.
SECTION 4 - OPERATIONAL PROCEDURES

4.1 PROCEDURES

There are no controlled outlet works for this dam; therefore, no regulating procedures exist. The pool is controlled by rainfall, runoff, evaporation and capacity of the uncontrolled spillway and, to some small extent, by seepage under and/or through the dam.

4.2 MAINTENANCE OF DAM

Based on the amount of brush and size of trees on the downstream slope, there has been inadequate attention given to mowing the slopes. It appears that the spillway has been recently paved with concrete apparently in response to erosion and degradation of the crest with resulting lower lake levels. No work seems to have been performed either in attempt to stop the seepage described in paragraph 3.1.b or to provide protective construction to control its effect on the dam embankment.

4.3 MAINTENANCE OF OPERATING FACILITIES

No operating facilities exist at this dam.

4.4 DESCRIPTION OF ANY WARNING SYSTEM IN EFFECT

The inspection team is not aware of any existing warning system for this dam.

4.5 EVALUATION

If the uncontrolled seepage and vegetation on the downstream slope is allowed to continue, a serious potential of failure may develop.
SECTION 5 - HYDRAULIC/HYDROLOGIC

5.1 EVALUATION OF FEATURES

a. **Design Data** No design data were found to be readily available.

b. **Experience Data** The drainage area is developed from USGS House Springs Missouri Quadrangle. Also available are 1"=2000' aerial stereo pairs taken 9 April 1977, by Surdex Corporation. Lake area is measured on a 1"=200' enlargement of a portion of one of these photographs and shown on Plate 1. The spillway and dam layout are from surveys made during the inspection.

c. **Visual Observations**

 (1) The spillway and exit channel are located at the south end of the dam.

 (2) Concrete spillway lining and the exit channel are in fairly good condition.

 (3) No drawdown facilities are available to evacuate the pool.

 (4) Maximum spillway releases will not endanger the integrity of the dam (see paragraph 3.2.b, paragraph 1.2.a and paragraph 4.2).

d. **Overtopping Potential** The spillway is too small to pass the required probable maximum flood without overtopping. The probable maximum flood is defined as the flood discharge that may be expected from the most severe combination of critical meteorologic and hydrologic conditions reasonably possible in the region. The dam will start to be overtopped by a flood equal to 45% of the PMF. The PMF will overtop the dam to a maximum depth of about 1.3 feet. Maximum rate of flow over the dam crest will be about 500 cubic feet per second. Overtopping flow will have a duration of about 0.8 hours. The existing lake and spillway will contain a 100-year frequency flood below the crest of the dam.

 According to the recommended guidelines from the Department of the Army, Office of the Chief of Engineers, the 100-year frequency flood is only adequate for a low hazard dam of small size.

 The effect from rupture of the dam could extend approximately three miles downstream of the dam. There are 23 inhabited homes within one-half mile downstream of the dam which could be severely damaged and lives of the inhabitants could be lost should failure of the dam occur.
SECTION 6 - STRUCTURAL STABILITY

6.1 EVALUATION OF STRUCTURAL STABILITY

a. Visual Observations Visual observations which adversely affect the structural stability of this dam are discussed in Section 3, paragraph 3.1.b.

b. Design and Construction Data No design or construction data relating to the structural stability of the dam were found.

c. Operating Records No appurtenant structures requiring operation exist at this dam.

d. Post Construction Changes No post construction changes other than the paving of the spillway with slushed concrete lining described in paragraph 3.1.c exist which will affect the stability of the dam.

e. Seismic Stability Considering the seismic zone (2) in which this dam is located, an earthquake of this magnitude is not expected to cause a structural failure of this dam.
SECTION 7 - ASSESSMENT/REMEDIAL MEASURES

7.1 DAM ASSESSMENT

a. Safety The spillway is inadequate to pass the required Probable Maximum Flood (PMF). The reservoir and principal spillway are adequate to contain a flood which has a 1% chance of being exceeded (100-year flood) in any given year.

Several items were noted during the visual inspection by the inspection team which should be corrected or controlled. The heavy growth of trees and shrubs on the downstream slope of the dam is a safety deficiency. Underseepage or seepage along the contact between the base of the dam and natural soil could lead to failure of the dam by piping or sloughing of the embankment.

Seepage and stability analyses comparable to the requirements of the "Recommended Guidelines for Safety Inspection of Dams" were not available which is considered a deficiency.

b. Adequacy of Information Due to the lack of engineering design and construction data, the conclusions in this report were based on performance history and external visual conditions. The inspection team considers these data sufficient to support the conclusions herein.

c. Urgency The remedial measures recommended in paragraph 7.2 should be accomplished in the near future. If the safety deficiencies listed in paragraph a are not corrected in the near future, they will continue to deteriorate and lead to a serious potential of failure.

d. Necessity for Phase II Based on the results of the Phase I Inspection no Phase II Inspection is recommended.

e. Seismic Stability This dam is located in Seismic Zone 2. An earthquake of this magnitude is not expected to be hazardous to this dam.

7.2 REMEDIAL MEASURES

a. The owner should obtain the services of an experienced engineer to design and observe construction of the following remedial measures. These services would include preparation of stability and seepage analyses as part of the design of item (3) below.

(1) Spillway size and/or height of dam should be increased to pass the Probable Maximum Flood without overtopping the dam. In either case, the spillway should be protected to prevent erosion.

(2) The tree and shrub growth on the downstream face of the dam should be removed, the stumps and roots grubbed out and the slope should be dressed, seeded, fertilized and mulched to establish turf that can be mowed.

(3) Underseepage or seepage along the contact between the dam embankment and natural ground should be stopped or protective construction should be installed to prevent loss of embankment or base material by piping.
b. O&M Maintenance and Procedures The following O&M maintenance and procedures are recommended:

(1) After removal of existing tree growth, vegetation on the dam should be periodically cut.

(2) After completion of the remedial measures, detailed inspections of the dam should be made periodically by an engineer experienced in the design and construction of dams. Records should be kept of these inspections and major maintenance.
APPENDIX A

HYDROLOGIC CALCULATIONS
HYDROLOGIC AND HYDRAULIC ANALYSIS METHODOLOGY

1. The hydrologic analysis used in development of the overtopping potential is based on applying a hypothetical storm to a unit hydrograph to obtain the inflow hydrograph for a reservoir routing. The Probable Maximum Precipitation for those dams in the high hazard potential category is derived and determined from regional charts prepared by the National Weather Service in "Hydrometeorological Report No. 33". Reduction factors have not been applied. A 24-hour storm duration is assumed with the 24-hour rainfall depths distributed over 6-hour periods in accordance with procedures outlined in EM 1110-2-1411 (SPF Determination). The maximum 6-hour rainfall period is then distributed to hourly increments by the same criteria. Within-the-hour distribution is based upon NOAA Technical Memorandum NWS HYDRO-35. The non-peak 6-hour rainfall periods are distributed uniformly. All distributed values are arranged in a critical sequence by the SPF criteria. The final inflow hydrograph is produced by deduction of infiltration losses appropriate to the soil, land use and antecedent moisture conditions.

2. The reservoir routing is accomplished by using Modified Puls routing techniques wherein the flood hydrograph is routed through lake storage. Hydraulic capacities of the spillway and crest of dam are used as outlet controls in the routing. Storage in the pool area is defined by an elevation-area curve. The hydraulic capacity of the spillway and the nearly level crest of dam is defined by a composite elevation discharge curve.

3. Dam overtopping analysis has been conducted by hydrologic methods for this dam and lake. This computation determines the percentage of the PMF hydrograph that the reservoir can contain without the dam being overtopped. An output summary in the hydrologic appendix displays this information as well as other characteristics of the simulated dam overtopping.

4. The above methodology has been accomplished for this report using the systemized computer program HEC-1 (Dam Safety Version), July 1978, prepared by the Hydrologic Engineering Center, U.S. Army Corps of Engineers, Davis, California. The numeric parameters estimated for this site are listed on Plate 1A. Definitions of these variables are contained in the "User's Manual" for the computer program.

5. The discharge in the spillway was calculated using critical depth at the control sections near where the dam centerline crosses the spillway channel, allowing 0.2 velocity head for non-uniform velocity distribution, velocity transition losses and friction in the short approach. At low flows this control is at a section running at a 45-degree angle upstream from Station 1+50. At higher flows this moves downstream to the axis of the dam.

6. Flow over the top of dam was calculated using a level crest and a discharge coefficient of 3.0 in the broad-crested weir equation. A correction was made for the short, lower section of the dam where overtopping flow starts. All spillway and overtopping discharge was included in a composite rating curve. Dummy values of 0.1 for dam length, coefficient of discharge and exponent were entered on the D card to suppress diagnostic statements in the output. The amount of this dummy flow is never greater than 0.02 cfs.
Flood Hydrograph Package (HFV-1)

DAM SAFETY VERSION JULY 1974
LAST MODIFICATION 3 AUG 74

Table 1: Inflow Hydrograph - SCS Method

<table>
<thead>
<tr>
<th>J1</th>
<th>0.40</th>
<th>0.45</th>
<th>0.50</th>
<th>0.55</th>
<th>1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>0</td>
<td>PMF</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Reservoir Routing - Pipe & Spillway Equations - Level Dam

<table>
<thead>
<tr>
<th>V1</th>
<th>1</th>
<th>-101.15</th>
<th>-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>V4</td>
<td>101.15</td>
<td>101.3</td>
<td>101.4</td>
</tr>
<tr>
<td>V4</td>
<td>104.4</td>
<td>104.9</td>
<td>105.0</td>
</tr>
<tr>
<td>V5</td>
<td>0.0</td>
<td>0.4</td>
<td>1.5</td>
</tr>
<tr>
<td>V5</td>
<td>394.0</td>
<td>527.0</td>
<td>635.0</td>
</tr>
<tr>
<td>A</td>
<td>0.7</td>
<td>2.74</td>
<td>3.2</td>
</tr>
<tr>
<td>E</td>
<td>75</td>
<td>100</td>
<td>120</td>
</tr>
<tr>
<td>δ</td>
<td>101.15</td>
<td>104.4</td>
<td>0.1</td>
</tr>
</tbody>
</table>
FLood HYDROGRAPH PACKAGE (HFC-1)
U.S. CORPS OF ENGINEERS

RUN DATE: 12/15/78
TIME: 14:43:43

********* IN 1965 LAND OF LAKES DAM * ADD -36 FOR USGS FLOW ****
********* DAM SAFETY PROGRAM - U. S. CORPS OF ENGINEERS *********
********* DFITZ * JENSEN, INC. - SEPTEMBER 1978 *********

JOINT SPECIFICATION

NO. WMH WMH WMH WMH WMH WMH WMH WMH WMH
PAR donations donation donation donation donation donation donation donation donation

MULTI-PLAN ANALYSES TO BE PERFORMED

PLAN: 1
HOTLINE: 1
LATITUDE: 1

TIME = 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

********** ********** ********** ********** **********

SU/R-AREA RUNOFF COMPUTATION

********** ********** ********** ********** **********

INFLOW HYDROGRAPH - SCS METHOD

HYDROGRAPH DATA

HYDROGRAPH LOCAL

LOSS DATA

RECESSION DATA

UNIT HYDROGRAPH DATA

END-OF-PERIOD FLOW

NOTES

PLATE 2 of 5

Sheet 2 of 5
Summary of Dam Safety Analysis

<table>
<thead>
<tr>
<th>Plan 1</th>
<th>Elevations</th>
<th>Initial Values</th>
<th>Spillway Coefficient</th>
<th>Top of Dam</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>101.15</td>
<td>101.16</td>
<td>104.40</td>
<td></td>
</tr>
</tbody>
</table>

Table

<table>
<thead>
<tr>
<th>Ratio of Maximum Reservoir</th>
<th>Maximum Depth Over Dam</th>
<th>Maximum Storage</th>
<th>Maximum Outflow</th>
<th>Duration Over Top</th>
<th>Time of Max Outflow</th>
<th>Time of Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.H.</td>
<td>W.S.E.</td>
<td>W.S.E.</td>
<td>W.S.E.</td>
<td>W.S.E.</td>
<td>W.S.E.</td>
<td>W.S.E.</td>
</tr>
<tr>
<td>0.40</td>
<td>104.35</td>
<td>0.40</td>
<td>36.</td>
<td>385.</td>
<td>0.00</td>
<td>15.83</td>
</tr>
<tr>
<td>0.45</td>
<td>104.58</td>
<td>0.40</td>
<td>36.</td>
<td>455.</td>
<td>0.17</td>
<td>15.83</td>
</tr>
<tr>
<td>0.50</td>
<td>104.77</td>
<td>0.40</td>
<td>37.</td>
<td>517.</td>
<td>0.31</td>
<td>15.93</td>
</tr>
<tr>
<td>0.55</td>
<td>104.91</td>
<td>0.40</td>
<td>37.</td>
<td>544.</td>
<td>0.33</td>
<td>15.93</td>
</tr>
<tr>
<td>1.00</td>
<td>105.69</td>
<td>0.40</td>
<td>40.</td>
<td>1264</td>
<td>0.74</td>
<td>15.75</td>
</tr>
</tbody>
</table>

Peak 6-Hour: 294, **24-Hour:** 96, **72-Hour:** 96, **Total Volume:** 77520.

CFS: 1257.2, **CFS:** 19.4, **CFS:** 81.1, **CFS:** 779.9, **CFS:** 779.9, **CFS:** 779.9.
PHOTO INDEX 2
FOR
PANORAMA

LAND OF LAKES DAM
JEFFERSON COUNTY, MO
DECEMBER 1978

PREPARED BY
REITZ & JENS, INC
PHOTO INDEX 3
FOR SPILLWAY
LAND OF LAKES DAM
JEFFERSON COUNTY, MO.
DECEMBER 1978

PREPARED BY
REITZ & JENS, INC.
PHOTO INDEX 3
FOR
SPILLWAY

LAND OF LAKES DAM
JEFFERSON COUNTY, MO.
DECEMBER 1978
PHOTO INDEX 5
FOR
SEEPAGE

LAND OF LAKES DAM
JEFFERSON COUNTY, MO.
DECEMBER 1978

PREPARED BY
REITZ & JENS, INC.
PLAN OF DAM AND SPILLWAYS

<table>
<thead>
<tr>
<th>0</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>300FT</th>
</tr>
</thead>
</table>

Original Survey

<table>
<thead>
<tr>
<th>BY</th>
<th>DATE</th>
<th>NOTE BOOK</th>
<th>Template</th>
<th>AREAS CHECKED</th>
</tr>
</thead>
</table>
