A HIGHLY PORTABLE SYSTEM FOR ACQUIRING AND PROCESSING AXBT'S (U)

JUL 81 D STEIGER

UNCLASSIFIED NRL-MR-4536

END DATE NUMEO 7-81
A HIGHLY PORTABLE SYSTEM FOR ACQUIRING AND PROCESSING AXBT'S.

D. Steiger

Naval Research Laboratory
Washington, DC 20375

July 3, 1981

Approved for public release; distribution unlimited.

Real-time processing
Portable data acquisition system
Intelligent computer terminal
Airborne Expendable Bathythermograph

At the Naval Research Laboratory highly portable intelligent computer terminals are being utilized aboard aircraft to acquire and process data received from Airborne Expendable Bathythermographs (AXBT's). Discussed in the paper is the design and implementation of the data acquisition and processing system which includes a detailed description of the hardware and software utilized.
CONTENTS

I. INTRODUCTION ... 1

II. DESIGN OF PORTABLE DATA ACQUISITION AND PROCESSING SYSTEM 1

III. DATA ACQUISITION SOFTWARE DESCRIPTION 3

IV. PROGRAM DEVELOPMENT ... 5

V. DATA PROCESSING SOFTWARE DESCRIPTION 6

VI. DISCUSSION ... 6

REFERENCES ... 13

APPENDIX I ASSEMBLY LANGUAGE PROGRAM FOR AXBT DATA ACQUISITION SYSTEM .. 14

APPENDIX II OPERATING INSTRUCTIONS FOR THE TERMINAL AXBT DATA ACQUISITION SYSTEM ... 18

APPENDIX III LISTING OF AXBT PROCESSING PROGRAM 20
A HIGHLY PORTABLE SYSTEM FOR ACQUIRING AND PROCESSING AXBT's

I. Introduction

The Acoustics and Environmental Sciences Divisions of the Naval Research Laboratory are engaged in field studies for the Navy in many areas of the world. During these studies AXBT (Aircraft Expendable Bathythermographs) are utilized to obtain the temperature of the ocean from the surface to a depth of approximately 300 meters. The temperature information is used in acoustic propagation models and in studies to characterize the microstructure of the ocean. Also, the AXBT's have been used to locate and delineate ocean eddy's through which acoustic studies have been performed.

During experiments performed aboard an aircraft it is often impractical or inappropriate to install oceanographic computer systems due to the size, weight or resources required to install, maintain and operate the computer system. A terminal data acquisition and processing system is utilized due to its small size, light weight, ease of operation and highly portable nature. Several terminal systems have been developed which can be easily used aboard aircraft. One of these systems is used for acquiring and processing information from AXBT's.

The AXBT data acquisition and processing system was developed using a HP2645 Intelligent Terminal for data acquisition and recording. The AXBT data that is stored on cassette cartridges by the HP2645 terminal is processed by the HP2647 Intelligence Graphics terminal and hard copy numerical and graphical output is obtained by using an HP2631G graphics printer which is interfaced to the terminal. Figure 1 is a photograph of the AXBT data acquisition and processing system installed aboard an NRL aircraft.

II. Design of Portable Data Acquisition and Processing System

A functional diagram of the AXBT Intelligent Terminal Data Acquisition and Processing System is shown in Figure 2. The system consists of an RO-308/SSQ-36 Bathythermograph Data Recorder, CHRONO-LOG Series 70000 Time Code Generator, NRL designed Switch Panel, an HP2645 terminal, an HP2647 terminal and an HP2631G Printer. The components of the system are described in detail below.

1. RO-308/SSQ-36 Bathythermograph Data Recorder

The Bathythermograph Data Recorder is used to record ocean temperature information by converting radio signals transmitted by a temperature sensing sinking probe. The radio frequency signal is converted to a digital output in the form of an eight bit binary data word. The digital output of the Recorder is interfaced to the terminal AXBT data acquisition system.

Manuscript submitted April 7, 1981.
2. AXBT Data Acquisition and Processing System

The AXBT data acquisition system consists of two RO-308/SSQ-36 Data Recorders. The recorders are capable of receiving signals at several different frequencies. This is necessary if there are several AXBT's deployed from the aircraft in the same area. The frequency at which the AXBT will transmit is preset and the AXBT's are dropped in an order that alternates the frequency. The output of the AXBT recorder is in analog form and produced on a strip chart recorder and in a binary 8 bit format on a rear connector. The output is in degrees Fahrenheit with a resolution of one-half degree represented by the least significant bit.

The data acquisition system utilizes an HP2645 intelligent terminal and is shown in Figure 3. The terminal contains a programmable microprocessor, 128K bytes of ROM (Read Only Memory) and RAM (Random Access Memory), keyboard, display, cartridge tape units and control electronics. The terminal has all of the salient features of a microcomputer and can be used as such or as a computer terminal. The major features of the terminal are described below.

a. HP2645 Intelligent Terminal

The interior view of the terminal is shown in Figure 4. There are fifteen available circuit boards that can be inserted into the backplane of the terminal. Ten of these electronic circuit boards are used for control of the terminal leaving five interface locations available. Two of the control boards are high density HP13297A-003 32K Byte RAM boards. The strapping configurations for these boards are documented in Table I. For the AXBT data acquisition system three interfaces are required, namely, the AXBT Recorder, the Time Code Generator and the Switch Panel.

b. I/O Terminal Interfaces

The HP13255 Terminal Duplex Register Board described in Reference 1 was selected for interfacing with the AXBT Recorder, digital clock and switch panel. All of these devices provide binary outputs at TTL logic levels. The Duplex Register Board contains 8 data receiving lines and 8 status lines. It was recognized that the eight status lines could be used for data input as well as the eight data lines resulting in sixteen data lines for input. The polarity of the status lines on the interface is reversed from the data lines except for bits zero and one. By using the status lines the input capacity could be increased from five eight bit words to five sixteen bit words, thereby doubling the data acquisition capacity of the terminal. The problem of polarity can be handled with software by masking the two status bits of opposite polarity complementing the remainder and adding the two bits to the remainder to reform the byte.

c. External Storage

The HP2645 Terminal has two cassette drive units mounted below the display. Each cassette is capable of storing 110K Bytes of information. The information stored on these cassettes are source, object, assembler and debugger programs and the data acquired from the AXBT data acquisition system. The cassettes can be operated using functional keys from the keyboard or under program control. Both ASCII and binary types can be read and written by the
3. **Time Code Generator**

The Time Code Generator provides digital BCD (Binary Coded Decimal) outputs of day of year, hour, minutes and seconds. The depth of the AXBT is determined by its fall rate in the ocean. For the SSQ-36 AXBT the fall rate is five feet per second. Therefore, only seconds need be recorded for determining AXBT depth in the ocean. When a temperature is recorded, seconds of time to determine the depth is recorded as well.

4. **Switch Panel**

The switch panel is used in the AXBT data acquisition system to record the AXBT number and to inhibit data recording prior to the AXBT sending useful information. Prior to recording AXBT information extraneous interrupts were found to occur resulting in erroneous data recording and the AXBT transmitter would continue to operate long after useful AXBT information was being transmitted.

The AXBT number is set into the least significant eight bits on the switch panel in BCD format. The AXBT number is recorded using the data bits on the terminal interfaces at the same time as a temperature reading is being taken. Bit fifteen on the switch panel is used to start and stop the data acquisition process. The eight most significant bits of the switch panel are interfaced to the status lines of the terminal interface board. Bit fifteen is checked by the software to determine when data recording is required. The AXBT data recorded on these tapes are used by the HP2647 data processing terminal as input.

5. **HP2647 Data Processing System**

The HP2647 Intelligent Graphics Terminal is constructed in an identical manner to the HP2645. The terminal has additional electronic boards to provide graphics capability and the use of a BASIC interpreter. Two interface slots are available in the terminal. An HP-IB interface was used in the terminal to output to the HP2631G graphics printer. The program in the terminal receives its data from cassettes and processes the data using a program written in BASIC.

III. **Data Acquisition Software Description**

Programs for the HP2645 intelligent terminal can be developed by preparing the source program and using the assembler available on the terminal or by using an HP1000 mini-computer system to prepare the program and provide a cross assembly for loading into the terminal. Since the debugging of the program can only be performed on the terminal the program for the terminal AXBT data acquisition was developed on the terminal.

The terminal uses a Intel 8080 compatible microprocessor. The microprocessor differences are in the way I/O is managed. Therefore, the program with the exception of I/O is Intel 8080 compatible. The terminal has many software subroutines stored in ROM that can be used by the program by addressing the starting location of the subroutines. These subroutines, since they
are stored in ROMs can not be altered. The routine PUTIO for performing I/O to the terminal display and cartridge tape units was used. This routine will write ASCII records to the display and either tape drive depending upon the device specified. The terminal AXBT program has been programmed to use only the right tape drive to store data.

The terminal has a 10 millisecond internal clock. The clock is used to schedule the AXBT program by storing the number of 10 millisecond intervals required in a location called TIMER which the terminal executive system decrements. Upon decrementing the location to zero the executive system software transfers control to a predetermined location. The starting address of the user program is stored at this location which in turn permits the scheduling of subroutines. The AXBT data acquisition program was scheduled to execute every second. This required the storing of 100 in the location TIMER which equates to one second. It was necessary to schedule the AXBT program to operate once per second because there were many interrupts occurring during this time and there was only a small variation of the temperature data over many seconds.

The terminal data acquisition program is entered by transferring control from the terminal executive program to the program CHTIMO. The function of CHTIMO is to schedule the data acquisition program to run at one second intervals. This is accomplished by checking for the TIMER location to go to zero. When 100 ten millisecond intervals have occurred software control transfers to the main program CONTRL, otherwise a return to the terminal executive program is executed.

The program CONTRL is used to call two subroutines, namely, INIT2, and INPUT. These programs are discussed below.

1. Subroutine INIT2

 The program INIT2 stores 100 in the location TIMER which allows the terminal executive system to decrement the location TIMER 100 times, which takes one second before going to zero. The program INIT2 is called every time the program CHTIMO calls the program CONTRL.

2. Subroutine INPUT

 The function of subroutine INPUT is to obtain the data from the external sensors and devices. It accomplishes this task by requesting data from the devices using a memory mapped I/O scheme. All of the three interface boards in the terminal have a unique address determined by the strapping configuration on the boards which are given in Table 2. Under program control a request is made of the sensor to send data. The data is buffered into the terminal interface I/O board. By addressing the terminal interface board with its unique address the data can be handled by the microprocessor under program control.

 Program INPUT first addresses the status bits of the Switch Panel to determine if bit 15 is set. If bit 15 is set the data acquisition commences otherwise a return to the terminal executive program is executed. When bit 15 is set the program addresses the data bits of the Switch Panel which contains the AXBT number in BCD format. The AXBT number is then converted from
BCD to ASCII and stored in memory.

Temperature from the AXBT Recorder is obtained by setting the IN flip-flop on the terminal interface and waiting for the flip-flop to be reset by an interrupt from the recorder. Upon receiving an interrupt the binary data bits from the interface are converted from binary to ASCII and stored in memory. During this process the least significant bit representing one-half degree is masked off from the binary word before the conversion. If the bit exists an ASCII five is included in the temperature word otherwise an ASCII zero is included.

After obtaining the temperature value, seconds of time in BCD format is obtained by addressing the clock terminal interface. Seconds of time are also stored in memory to determine the depth of the AXBT when the temperature was recorded.

The AXBT number, temperature and seconds of time form one ASCII record. This record is output to the display and right cartridge tape by the program OUTERM. The program OUTERM moves the ASCII record to a system buffer and calls the system program PUTIO. This program records the data on the display and the right cartridge tape.

The assembly language program for AXBT data acquisition is documented in Appendix I.

IV. Program Development

The source program is written in a compatible INTEL 8080 language with the only exception being the I/O operations. These I/O operations are accomplished using programs stored in a terminal ROM, and by using memory mapped instructions to the I/O interfaces.

1. Preparing the Program

For assembling and loading, the source and binary programs must reside on cartridge tape. The source program can be placed on the tape by entering the source code into the terminal display memory through the terminal keyboard. Once in the display memory the source code is transferred to tape using the terminal function keys which provide the capability to transfer data between the terminal and other devices. An alternate method of obtaining the source code on tape is by kevins the program into a file using the HP1000 mini-computer system. The file can then be edited and "dumped" to cartridge tape in ASCII format.

2. Assembling the Program

The HP13290B Debugger/Assembler is a commercially available product from Hewlett-Packard, and it resides on cartridge tape. By placing the tape in the left drive of the terminal it is loaded using the function keys on the terminal. Once having loaded the assembler the source program which resides on tape is placed on the left drive and blank tape to receive the assembled code in the right drive. After having successfully completed the assembly the right tape with the assembled code is then placed in the left tape drive and under keyboard command is loaded into the terminal. At this
point the program is ready for execution. Operating instructions for the AXBT data acquisition system are given in Appendix II. An alternate manner of assembling the program is to use the cross-compiler available on the HP1000 mini-computer system. The assembled program is stored on tape in the same format as the assembly on the terminal. Refer to Reference 2 for specific instruction on using the HP13290B Debugger/Assembler.

V. Data Processing Software Description

The HP2647 Intelligent Graphics Terminal is used to process the AXBT data acquired by the HP2645 terminal. The requirements of this processing are to read the data from the cassette tapes, convert the temperature from degrees Fahrenheit to degrees Centigrade, determine the depth from the seconds of time, and provide a hard copy listing and plot of temperature versus depth. The HP2647 terminal was selected as the data processing device because it supports a BASIC interpreter. Computations and plotting are made relatively easy as compared with assembly language programs written for the HP2645 terminal.

The processing program is written in BASIC programming language. The data is read from the right cartridge tape and stored into a buffer in the terminal. Often there are a few data points recorded at the start of an AXBT recording that are erroneous which are caused by spurious interrupts from the AXBT receiver. The program provides the option of deleting these points until the researcher is satisfied that the surface temperature is correct. These erroneous data points are easy to detect since readings are not reasonable values of temperature. After having determined the correct starting point of the data the AXBT records are read, converted to degrees centigrade, checked for reasonableness and stored in a memory buffer. If a reading is not reasonable, that is, if the previous value is more than three degrees different from the current value then the previous value is used since temperature of the water varies slowly. The data processing is concluded when the AXBT number changes.

The AXBT record in processed form is output to the printer following each reading. The program requests the operator to enter a "9" if ready for a plot, otherwise a "0". The plot is produced on the graphics display and a hard copy of the plot can be obtained on the graphics printer by the operator.

Appendix III contains a program listing of the AXBT processing system.

VI. Discussion

The major benefits of using the terminal AXBT data acquisition and processing system is its compactness, lightweight and reliability. If final processed data is not required during flight only the data acquisition terminal, Time Code Generator and Switch Panel need be installed in the aircraft. The results obtained by the terminal AXBT system are identical to those that can be obtained by a mini-computer system. Other terminal data acquisition systems for magnetic field surveys and acoustic experiments aboard ship and aircraft have been developed and have been found to operate in the same reliable manner as the AXBT system. The magnetics system has been documented in Reference 5.
TABLE 1

SWITCH POSITIONS FOR HP13297A-003 32K BYTE RAM

<table>
<thead>
<tr>
<th>SWITCH</th>
<th>BOARD 1</th>
<th>BOARD 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>INH</td>
<td>OPEN</td>
<td>OPEN</td>
</tr>
<tr>
<td>32K</td>
<td>OPEN</td>
<td>CLOSED</td>
</tr>
<tr>
<td>16K</td>
<td>OPEN</td>
<td>OPEN</td>
</tr>
<tr>
<td>8K</td>
<td>OPEN</td>
<td>OPEN</td>
</tr>
<tr>
<td>4K</td>
<td>OPEN</td>
<td>OPEN</td>
</tr>
<tr>
<td>INH</td>
<td>OPEN</td>
<td>OPEN</td>
</tr>
<tr>
<td>32K</td>
<td>OPEN</td>
<td>CLOSED</td>
</tr>
<tr>
<td>16K</td>
<td>CLOSED</td>
<td>CLOSED</td>
</tr>
<tr>
<td>8K</td>
<td>OPEN</td>
<td>OPEN</td>
</tr>
<tr>
<td>4K</td>
<td>OPEN</td>
<td>OPEN</td>
</tr>
<tr>
<td>R.M</td>
<td>OPEN</td>
<td>OPEN</td>
</tr>
<tr>
<td>RAM</td>
<td>OPEN</td>
<td>OPEN</td>
</tr>
<tr>
<td>R.M</td>
<td>OPEN</td>
<td>OPEN</td>
</tr>
<tr>
<td>RAM</td>
<td>OPEN</td>
<td>OPEN</td>
</tr>
<tr>
<td>M1</td>
<td>CLOSED</td>
<td>CLOSED</td>
</tr>
<tr>
<td>.M2</td>
<td>OPEN</td>
<td>OPEN</td>
</tr>
<tr>
<td>.M3</td>
<td>OPEN</td>
<td>OPEN</td>
</tr>
<tr>
<td>FST</td>
<td>OPEN</td>
<td>OPEN</td>
</tr>
<tr>
<td>RPT</td>
<td>OPEN</td>
<td>OPEN</td>
</tr>
<tr>
<td>WPT</td>
<td>OPEN</td>
<td>OPEN</td>
</tr>
</tbody>
</table>
TABLE 2

JUMPER CONNECTIONS FOR HP13255
TERMINAL DUMPLEX BOARDS

<table>
<thead>
<tr>
<th>DEVICE</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>P</th>
<th>Q</th>
<th>R</th>
<th>ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIME CODE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OUT</td>
<td>IN</td>
<td>OUT</td>
<td>OUT</td>
<td>IN</td>
<td>IN</td>
<td>OUT</td>
<td>OUT</td>
<td>IN</td>
</tr>
<tr>
<td>GENERATOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OUT</td>
<td>IN</td>
<td>OUT</td>
<td>OUT</td>
<td>IN</td>
<td>IN</td>
<td>OUT</td>
<td>IN</td>
<td>OUT</td>
</tr>
<tr>
<td>SWITCH PANEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OUT</td>
<td>IN</td>
<td>OUT</td>
<td>OUT</td>
<td>IN</td>
<td>OUT</td>
<td>IN</td>
<td>OUT</td>
<td>IN</td>
</tr>
</tbody>
</table>

| AXBT RECEIVER | OUT| IN| OUT| OUT| IN| OUT| OUT| IN| OUT| OUT| IN| OUT| IN| OUT| OUT| IN| OUT| IN| OUT| IN| OUT| IN| OUT| IN| OUT| IN| 106XXX |
Fig. 1 - AXRL intelligent terminal data acquisition and processing system installed aboard NRL aircraft
Fig. 2 — Functional block diagram of terminal AXBT system
Fig. 3 HP 2645 intelligent terminal
Fig. 4 - Interior view of HP 2645 intelligent terminal
REFERENCES

1. HP13255 Terminal Duplex Register Module Manual, Hewlett Packard
 Part Number 13255-91031.

2. HP13290B Debugger/Assembler Reference Manual, Hewlett Packard
 Part Number: 13290-90009.

3. Clamous, J. D. and Steiger, D., "Can Intelligent Terminals and Modern
 Calculators Replace Oceanographic Computer Systems?", Woods Hole
 Oceanographic Institution Proceedings, Second Working Conference on
 Oceanographic Data Systems (September 1978).

 Processing", NRL Memorandum 4055 (August 24, 1979).
APPENDIX I

ASSEMBLY LANGUAGE PROGRAM FOR AXBT DATA ACQUISITION SYSTEM

******* T=00000 IS ON LU 20

0001 ;TAPE#1 TAB VER 13 XBT DATA TIME SET AT ONE SECOND
0002 ALTO EQU 20B ;DEFINES PROGRAM AS ALT I/O DRIVER
0003 TIMER EQU 176179Q ;TIME OUT COUNTER
0004 PUTIO EQU 4199H ;SUBROUTINE TO OUTPUT DATA IN ASCII
0005 OUTDEV EQU 0FF4DH ;SPECIFIES OUTPUT DEVICE
0006 GTIO80 EQU 3D18H ;SYSTEM SUBROUTINE TO GET AN I/O BUFFER
0007 GETIO7 EQU 3D46H ;SYSTEM BUFFER ADDRESS
0008 XRFLIM EQU 0FF47H ;SPECIFIES THE NUMBER OF CHAR TO OUTPUT
0009 INMAGD EQU 1050010Q ;ADDRESS TO INPUT LS SWITCH PANEL CHARS
0010 INMAGS EQU 1050000Q ;ADDRESS TO INPUT MS SWITCH PANEL CHARS
0011 CMNFF EQU 1050070Q ;SETS IN FF ON SWITCH PANEL INTERFACE
0012 CMNFF EQU 1050050Q ;RESETS IN FF ON SWITCH PANEL INTERFACE
0013 CMNFF EQU 1050030Q ;ADDRESS TO READ FLAG ON SWITCH PANEL INT
0014 CMNFF EQU 1060010Q ;ADDRESS TO INPUT AXBT READING MS CHARS
0015 INDVMS EQU 1060000Q ;ADDRESS TO INPUT AXBT STATUS WORD
0016 SNFIF EQU 1060070Q ;SETS AXBT IN FF
0017 RDMF EQU 1060050Q ;RESETS AXBT IN FF
0018 CMNFF EQU 1060030Q ;ADDRESS TO READ FLAG ON AXBT INTERFACE
0019 CMNFF EQU 1060010Q ;ADDRESS TO INPUT LS CLOCK CHAR(S)SEC
0020 CMNFF EQU 1040000Q ;ADDRESS TO INPUT MS CLOCK CHAR(S)MIN
0021 CMNFF EQU 1040070Q ;SETS CLOCK IN FF
0022 CMNFF EQU 1040050Q ;RESETS CLOCK IN FF
0023 CMNFF EQU 1040030Q ;ADDRESS TO READ FLAG ON CLOCK INT
0024 CMNFF EQU 1040010Q ;MASKS FOUR LS,B,USED IN BCD TO ASCII SUBR
0025 CMNFF EQU 17Q ;MASKS MINUTES ON CLOCK DATA
0026 CMNFF EQU 37Q ;MASKS AXBT VALUE WITHOUT 5 DEG
0027 CMNFF EQU 1Q ;MASKS .5 DEG BIT ON AXBT VALUE
0028 CMNFF EQU 37Q ;MASKS 6 MSBITS OF STATUS WORD,USED FOR REVSTA
0029 CMNFF EQU 3Q ;MASKS 2 LSBITS OF STATUS WORD,USED FOR REVSTA
0030 CMNFF EQU 8Q ;MASK TO CHECK RESET STATUS ON AXBT READING
0031 CMNFF EQU 0 ;ENTRY VECTORS
0032 CMNFF ORG 60000H ;ABSOLUTE STARTING ADDRESS IN HEX
0033 CMNFF TAB 50H ;ALTERNATE I/O CODE PRESENT
0034 CMNFF DB 70H ;CHECK FOR CORRECT LOCATION
0035 CMNFF DB 100H ;INITIALIZATION FROM RESET
0036 CMNFF DB 100H ;INITIALIZATION FROM PROGRAM
0037 CMNFF DB 100H ;INITERRUPT LOCATION NOT USED RETURN
0038 CMNFF DB 100H ;MONITOR ROUTINE USED TO DECREMENT INTERVAL TIMER
0039 CMNFF DB 100H ;DATA INPUT ROUTINE
0040 CMNFF DB 100H ;DATA OUTPUT ROUTINE
0041 CMNFF DB 100H ;ROUTINE TO CONTROL DATA ACQUISITION
0042 CMNFF DB 100H ;STATUS LOCATION NOT USED RETURN
0043 CMNFF DB 100H ;START ADDRESS OF PROGRAM, CHECK FOR TIMEOUT
0044 CMNFF DB 100H ;RETURN TO TERMINAL EXEC WAIT LOOP
0045 CMNFF DB 100H ;INPUT THE DATA
0046 CMNFF DB 100H ;LOAD ADDRESS OF DATA01 INTO REG D
0047 CMNFF DB 100H ;LOAD ADDRESS OF DATA01 INTO REG D
0048 CMNFF DB 100H ;LOAD ADDRESS OF DATA01 INTO REG D
0049 CMNFF DB 100H ;LOAD ADDRESS OF DATA01 INTO REG D
0050 CMNFF DB 100H ;LOAD ADDRESS OF DATA01 INTO REG D
0051 CMNFF DB 100H ;LOAD ADDRESS OF DATA01 INTO REG D
0052 CMNFF DB 100H ;LOAD ADDRESS OF DATA01 INTO REG D
0053 CMNFF DB 100H ;LOAD ADDRESS OF DATA01 INTO REG D
0054 CMNFF DB 100H ;LOAD ADDRESS OF DATA01 INTO REG D
0055 CMNFF DB 100H ;LOAD ADDRESS OF DATA01 INTO REG D
0056 CMNFF DB 100H ;LOAD ADDRESS OF DATA01 INTO REG D
0057 CMNFF DB 100H ;LOAD ADDRESS OF DATA01 INTO REG D
0058 CMNFF DB 100H ;LOAD ADDRESS OF DATA01 INTO REG D
0059 CMNFF DB 100H ;LOAD ADDRESS OF DATA01 INTO REG D
0060 CMNFF DB 100H ;LOAD ADDRESS OF DATA01 INTO REG D
0061 CMNFF DB 100H ;LOAD ADDRESS OF DATA01 INTO REG D
0062 CMNFF DB 100H ;LOAD ADDRESS OF DATA01 INTO REG D

14
STAX D ;SAVE IT
INX D ;INCREMENT DATA STORAGE LOCATION
POP B ;RESTORE REGISTER B
GETD EQU $;ROUTINE TO GET THE AXBT DATA
LDA SDINFF ;SETS IN FF ON AXBT INTERFACE
WAITD EQU $;ROUTINE TO WAIT FOR INTERRUPT
LDA CDINFF ;LOAD REG A WITH FLAG
ANI INSFF ;(CHECK IF IN FF
SUI INSFF ;HAS BEEN RESET)
JP WAITD ;IF RESET HAS NOT OCCURRED WAIT
LDA INDVMD ;INTERRUPT HAS OCCURRED GET AXBT DATA
STA DATAx ;SAVE AXBT BINARY VALUE, WILL USE TO OBTAIN LSB
ANI MASK3 ;DELETE LSB FROM AXBT WORD BEFORE ASCII CONVERSION
RRC ;ROTATE AXBT WORD RIGHT 1 BIT
PUSH D ;SAVE REG D IN STACK, GOOD HOUSEKEEPING
LDA ASC2 ;SAVE IT TEMPORARILY
MOV A, D ;MOVE LS AXBT ASCII CHAR TO REG A
MOV A, C ;MOVE SECOND AXBT ASCII CHAR TO REG A
MOV A, B ;MOVE IT TEMPORARILY
MOV A, D ;MOVE LS AXBT ASCII CHAR TO REG A
STA ASC3 ;SAVE IT TEMPORARILY
POP B ;RESTORE REG B FROM STACK
POP D ;RESTORE REG D FROM STACK
LDA ASC1 ;LOAD MS AXBT ASCII CHAR TO REG A
STA D ;STORE CHAR IN DATA LOCATION
INX D ;INCREMENT DATA LOCATION
LDA ASC2 ;LOAD A WITH SECOND AXBT ASCII CHAR
STA D ;STORE CHAR IN DATA LOCATION
INX D ;INCREMENT DATA LOCATION
LDA ASC3 ;LOAD A WITH LS AXBT ASCII CHAR
STA D ;STORE IT IN DATA LOCATION
INX D ;INCREMENT DATA LOCATION
LDA DATAx ;INCREMENT DATA STORAGE LOCATION
ANI MASK4 ;MASK OFF LS BIT FOR 5 DEG VALUE
SUI MASK4 ;SUBTRACT BIT FOR TEST OF 5 DEG
JM PUTAZ ;IF 5 DEG BIT NOT THERE, JUMP TO PUT A 0
MVI A, 55H ;MOVE ASCII FIVE TO REG A
STAX D ;STORE IT IN DATA LOCATION
INX D ;INCREMENT DATA LOCATION
JMP GETCLK ;JUMP TO GET TIME
PUTAZ EQU $;PLACE AN ASCII ZERO IN DATA LOC
MVI A, 30H ;MOVE ASCII ZERO TO REG A
STA D ;STORE ZERO IN DATA LOCATION
INX D ;INCREMENT DATA LOCATION
GETCLK EQU $;GET SECONDS OF TIME FROM CLOCK
LDA SCINFF ;SET IN FF ON CLOCK INTERFACE
LDA RCINFF ;RESET IN FF ON CLOCK INTERFACE
LDA INCLKD ;INPUT THE CLOCK DATA
CHA ;COMPLEMENT THE CLOCK DATA
ANI MASK2 ;ELIMINATE MINUTES BIT ON CLOCK DATA
RRC ;SAVE B REG IN STACK, GOOD HOUSEKEEPING
CALL BCD2AS ;CONVERT CLOCK SECONDS FROM BCD TO ASCII
STA D ;SAVE THE MS ASCII SECONDS CHARACTER
STA D ;SAVE THE MS ASCII SECONDS CHARACTER
INX D ;INCREMENT DATA LOCATION
MVI A, B ;MOVE THE MS ASCII CHAR SEC TO REG A
STA D ;SAVE THE LS ASCII CHAR SEC
INX D ;INCREMENT THE DATA LOCATION
POP B ;RESTORE REG B, GOOD HOUSEKEEPING
;ROUTINE TO OUTPUT 8 DATA CHARACTERS TO DISPLAY AND RT CTU
LXI H, DATA81 ;LOAD IMMEDIATE ADDRESS TO REG H
MVI D, 8 ;LOAD REG A WITH 8(NUMBER OF CHARS)
CALL OUTERM ;ROUTINE TO OUTPUT THE DATA
0129 RET ;RETURN
0130 DATAX DB 0 ;TEMPORARY STORAGE OF AXBT DATA
0131 ASC1 DB 0 ;TEMPORARY STORAGE OF FIRST AXBT CHAR
0132 ASC2 DB 0 ;TEMPORARY STORAGE OF SECOND AXBT CHAR
0133 ASC3 DB 0 ;TEMPORARY STORAGE OF THIRD AXBT CHAR
0134 DATA01 DS 0 ;RESERVE 8 WORDS OF DATA STORAGE
0135 ;TAPE62 TAB VER 13 SINGLE CHANNEL DATA WITH INTERRUPT 4/24/79
0136 INIT1 EQU $;INITIALIZATION ROUTINE
0137 INIT2 EQU $;INITIALIZATION ROUTINE
0138 MVI A,100 ;MOVE 100 TO REG A(100 TEN MILLSEC)
0139 STA TIMER ;STORE 100 IN LOC TIMER(EQUIVALENT TO 1 SEC)
0140 RET ;RETURN
0141 COUNT4 DB 0H ;TEMPORARY STORAGE
0142 ;MONITOR ROUTINE FOR TIMING DATA INPUT
0143 MONIT EQU $;MONITOR ROUTINE
0144 LXI H,TIMER ;LOAD IMMEDIATE ADDRESS OF TIMER
0145 DCR M ;DECREMENT THE TIMER LOCATION
0146 RET ;RETURN
0147 ;ROUTINE TO CHECK FOR TIMEOUT
0148 CHTIMO EQU $;CONTROL ROUTINE TO GET AND PROCESS DATA
0149 LDA TIMER ;LOAD REG A WITH VALUE OF LOC TIMER
0150 ORA A ;RETURN JUMP TO RETURN IF NOT TIMED OUT
0151 JMP CONTRO ;TIME IS NEGATIVE,ACQUIRE DATA
0152 ;CONTROL ROUTINE TO GET AND PROCESS DATA
0153 CONTRO EQU $;RESERVE 2 LOCATIONS TO SAVE BUFFER ADDRESS
0154 CALL INIT2 ;RESET TIMER
0155 CALL INPUT ;ROUTINE TO ACQUIRE THE DATA
0156 RET ;RETURN
0157 ;BCD TO ASCII CONVERSION ROUTINE
0158 BCD2AS EQU $;BCD TO ASCII CONVERSION ROUTINE
0159 ;INPUT REG A=DATA
0160 ;OUTPUT REG A=MSBYTE,REG B=LSBYTE
0161 BCD2AS EQU $;OUTPUT REG A=MSBYTE,REG B=LSBYTE
0162 STA CNBYTE ;STORE DATA BYTE IN TEMPORARY STORAGE
0163 RRC ;SHIFT DATA BYTE FOUR BITS TO
0164 RRC ;(GET MS BCD CHARACTER
0165 RRC ;(
0166 RRC ;
0167 ANI MASK1 ;MASK OFF BCD CHARACTER
0168 ACI 30H ;ADD 30 HEX TO CONVERT TO ASCII
0169 STA ASMSB ;STORE MS ASCII CHARACTER
0170 LDA CNBYTE ;LOAD REG A WITH DATA BYTE
0171 ANI MASK1 ;MASK OFF LS BCD CHARACTER
0172 ACI 30H ;ADD 30 HEX TO CONVERT TO ASCII
0173 MOV B,A ;MOVE LS CHAR TO REG B
0174 LDA ASMSB ;LOAD MS ASCII CHAR TO REG A
0175 RET ;RETURN
0176 ASMSB DB 0 ;TEMPORARY STORAGE MS CHAR
0177 CNBYTE DB 0 ;TEMPORARY STORAGE DATA BYTE
0178 OUTERM OUTPUTS A RECORD TO THE TERMINAL
0179 ;INPUT REGISTER HAL ADDRESS OF FIRST BYTE
0180 ;A NO OF CHAR TO OUTPUT
0181 D OUTPUT DEVICE
0182 0=LEFT CTU
0183 2=RIGHT CTU
0184 ;DISPLAY
0185 BUFER DS 2 ;RESERVE 2 LOCATIONS TO SAVE BUFFER ADDRESS
0186 MCHAR DS 1 ;RESERVE 1 LOCATION FOR NUMBER OF CHAR
0187 MCHAS EQU $;OUTPUT ROUTINE
0188 MCHAS EQU $;OUTPUT ROUTINE
0189 STA MCHAS ;SAVE THE NUMBER OF CHARS FROM REG A
0190 MOV A,D ;LOAD REG A WITH OUTPUT DEVICES CODE
0191 STA OUTDEV ;SAVE OUTPUT DEVICES CODE
0192 SHLD BUFER ;SAVE BUFFER ADDRESS
0193 CALL GTIOB ;GET A SYSTEM BUFFER
0194 MVI M,200Q ;CLAIM BUFFER WITH BIT
1. Turn on power to the terminal, Time Code Generator and Switch Panel.

2. Insert cartridge tape marked Debugger/Assembler in left tape drive of terminal.

3. Press the key marked READ on the terminal. Wait for completion.
 Explanation: The first record of the Debugger/Assembler tape will be displayed.

4. Press the key marked f2 on the terminal. Wait for completion.
 Explanation: By pressing f2 the second record on the Debugger/Assembler tape will be loaded into the terminal memory. The message "OK >" will be displayed on the terminal.

5. Remove the Debugger/Assembler tape from left drive and insert the tape marked AXBT Version 13 Binary.
 Explanation: This is the binary AXBT program to be loaded into terminal memory.

6. Type the characters "L" and "CR" (Carriage Return). Wait for completion.
 Explanation: This sequence will load the binary program into terminal memory. The message "HP264X ASSEMBLER V2.0" will appear on the terminal display followed by an "OK> " prompt.

7. Place a blank cartridge in the right terminal drive.
 Explanation: The data will be recorded on this tape cartridge. The cartridge should be unprotected by moving the protect lever to the left position. The tape cartridge should be labeled by hand. The recommended labeling is day of year and starting hour of tape.

8. Type "/9169" then "CR" on the terminal keyboard.
 Explanation: An instruction in location 9169(16) must be modified so that control will be transferred from the terminal executive software to the AXBT program. An "87" will appear on the display.
9. Type "601A" then "CR" on the terminal.

Explanation: The starting location of the magnetics program is 601A(16). A "0" will appear on the display.

10. Type ":" (colon) on the terminal.

Explanation: The ":" will terminate the modification process. An "OK>" will appear on the terminal display.

11. Enter the AXBT number on the Switch Panel in BCD format in bits 7 through 4 and bits 3 through 0.

12. Set Bit 15 on the Switch Panel to the OFF position.

Explanation: Bit 15 in the OFF position inhibits data recording until useful information is being output by the AXBT recorder.

13. Press the RESET button on the terminal only once.

Explanation: Pressing the RESET button once forces a transfer in the terminal executive to the AXBT program. The program will start execution.

14. Wait until an AXBT is deployed from the aircraft and the AXBT recorder receives a valid signal. Turn Bit 15 to the "ON" position on the Switch Panel.

15. Record data for approximately three minutes and thirty seconds. At this time set the AXBT number on the switch panel to zero for approximately five seconds.

Explanation: Changing the AXBT number signals the end of an AXBT recording.

16. Set Bit 15 on the Switch Panel to the "OFF" position to inhibit data recording until the next AXBT is deployed.

17. Four AXBT's can be recorded on the same cassette tape. Replace the Right Cartridge tape if four AXBT's have been recorded. Go back to STEP 14.
APPENDIX III

LISTING OF AXBT PROCESSING PROGRAM

10 SET SHORT
20 ASSIGN "RIGHT TAPE" TO 01
30 ASSIGN "SH01" TO 06
40 PRINT 06,"AXBT","TEMPERATURE","DEPTH"
50 PRINT 06,"NUMBER","(DEG C)","(METERS)
60 PRINT 06,""
70 PLOT R
80 GCLR
90 PRINT "ENTER XBT NUMBER"
100 INPUT Xbt~no
110 DIM Temp(400)
120 FOR I=1 TO 400
130 NEXT I
140 READ #1,A2
150 SET SHORT
160 Xbtm=VAL(A$[1,2])
170 IF Xbtm-Xbtm=0 THEN 200
180 IF Xbtsw=1 THEN 390
190 GOTO 120
200 Xbtsw=1
210 Temp=VAL(A$[3,6])/10
220 Time=VAL(A$[7,8])
230 Lasttime=Time
240 Temp(I)=5/9*(Temp-32)
250 IF Tempedit=77 THEN 320
260 PRINT "TEMPERATURE",Temp(I)
270 PRINT "TYPE 7 AND CR IF TEMPERATURE OK,OTHERWISE TYPE 0 AND CR"
280 Templast=Temp(I)
290 INPUT Tempedit
300 IF Tempedit=7 THEN 140
310 IF Tempedit=77 THEN 320
320 IF Temp(I)-Templast>3 THEN Temp(I)=Templast
330 IF Temp(I)-Templast<3 THEN Temp(I)=Templast
340 PRINT Xbtm,Time,Temp(I),(I-1)*5# 3048
350 PRINT 06,Xbtm,Temp(I),(I-1)*5# 3048
360 Templast=Temp(I)
370 N=1
380 NEXT I
390 S(I)=0
400 PRINT "WHEN READY FOR GRAPH ENTER 9 AND CR"
410 INPUT V
420 PLOT R
430 GCLR
440 LOCATE (20,180,20,90)
450 SCALE (0,400,5,25)
460 LGGRID (-10,1,0,0,5,5,2)
470 LORG (5)
480 CSIZE (1,1,90)
490 LDIR (1.6)
500 MOVE (-40,15)
510 PRINT 00,"TEMPERATURE DEG C"
520 LDIR (0)
530 MOVE (200,3)
540 PRINT 00,"DEPTH IN METERS"
550 CSIZE (6,1,0)
560 MOVE (20,2)
570 PRINT 00,"AXBT#",Xbt~no
580 PENUM
590 MOVE (0,Temp(I))
600 PENDN
610 FOR K=1 TO N
620 DRAW ((K-1)*5# 3048,Temp(K))
630 NEXT K
640 STOP