THALLIUM MERCURY LASER DEVELOPMENT

C. S. Liu and D. W. Feldman

FINAL REPORT (PHASE III)

Contract No. N00014-78-A-0131

OFFICE OF NAVAL RESEARCH
THALLIUM MERCURY LASER DEVELOPMENT

C. S. Liu and D. W. Feldman

FINAL REPORT (PHASE III)

Contract No. N00014-78-C-0131

OFFICE OF NAVAL RESEARCH

Westinghouse R&D Center
1310 Beulah Road
Pittsburgh, Pennsylvania 15235

DISTRIBUTION STATEMENT A
Approved for public release
Distribution Unlimited

376.45
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION AND SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>2. EXPERIMENTS AND RESULTS</td>
<td>3</td>
</tr>
<tr>
<td>3. CONCLUSIONS</td>
<td>10</td>
</tr>
<tr>
<td>4. REFERENCES</td>
<td>11</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Fig. No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Longitudinal discharge tube with sidearm feed-through</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Laser output energy as a function of reservoir temperatures</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>Laser output energy as a function of pulse repetition rate</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>Laser conversion efficiency as a function of the specific output energy.</td>
<td>9</td>
</tr>
</tbody>
</table>
THALLIUM MERCURY LASER DEVELOPMENT

C. S. Liu and D. W. Feldman
Westinghouse R&D Center
Pittsburgh, Pennsylvania 15235

1. INTRODUCTION AND SUMMARY

This report summarizes research work performed at the Westinghouse R&D Center under ONR Contract No. N00014-78-C-0131 for the period between Feb. 1, 1980 and Jan. 31, 1981. The major effort was to investigate the feasibility of generating ultra-short laser pulses (<5 ns) from a CuBr laser for Navy bathymetry applications.

Technical requirements for the bathymetry laser are:
- Wavelength: 500 to 550 nm primary, with desired 550 to 600 nm secondary line.
- Pulse Width and Shape: 2 ns desired, 5 ns maximum with rise and fall times less than 2 ns.
- Peak Power: 75 kW peak desired, 20 kW minimum.
- Pulse Repetition Rate: 13 kHz desired; 3 kHz minimum.
- Weight and Prime Power: Weight less than 100 lb, laser volume 2 to 3 ft3, prime power less than 1 kW.

In addition, the bathymetry laser must be suitable for fabrication of a subsequent operational version which can be utilized in an airborne environment. Thus the desired characteristics of ruggedness, reliability, maintainability, operator safety, low electrical interference, and long lifetime are implied for this laser.

An evaluation of current laser technology reveals that no laser devices are presently available which satisfy these requirements simultaneously. However, virtually all of the key technical features have been realized separately, and some laser technologies have already
demonstrated simultaneous satisfaction of all but the pulse width and/or prime power requirements. A search of these technologies leads to the conclusion that a single copper halide laser oscillator can satisfy all the technical requirements for the bathymetry applications. Since the round trip photon time of a 0.75 m, laser cavity is 5 ns, short CuBr laser tubes were tested. A laser pulse of ~140 μJ with less than 5 nsec (4.5 nsec) duration, corresponding to a peak power of ~30 kW, operated at ~15 kHz was produced from a long-lived, sealed-off CuBr laser having a longitudinal discharge 2 cm in diameter and 22 cm long. These experimental results have provided sufficient evidence that the short CuBr laser can be used for Navy bathymetry applications.
2. EXPERIMENTS AND RESULTS

Continuously pulsed, high prf CuBr lasers have been operated at several hundred μJ per pulse\(^1\) in self-heated, sealed-off laser tubes with efficiencies of ~0.8%. However, the laser pulse width were 20 to 50 nsec long. In order to shorten the laser pulse without sacrificing beam quality and laser efficiency significantly, one should increase the laser excitation rate and reduce the cavity length\(^2\) simultaneously. The necessary but not sufficient condition for obtaining a laser pulse of less than 5 ns is that the round trip photon transit time inside the optical cavity must be much less than 5 nsec. These conditions may be achieved through the use of a fast electrical circuitry and a compact resonator structure (\(\ell \sim 30\) cm).

As a guide to the design of the laser tube, Table 1 contains some parameters for a bathymetry laser.

| Table 1. Design Parameters for a Bathymetry Laser Tube |
|---------------------------------|-----------------|
| Laser Medium: | CuBr |
| Temperature: | 300°C to 600°C |
| Volumetric Energy Yield: | 2.0 - 5.0 μJ/cm³|
| Pulse Repetition Rate: | \(\sim 16\) kHz |
| Energy Output Per Pulse: | \(\sim 375\) μJ @ <5 nsec |
| Peak Power: | \(\sim 75\) kW |
| Discharge Dimensions: | 25 cm x 2.0 cm diameter |
| Efficiency: | \(\geq\) 2% |

Both transverse and longitudinal discharge excited CuBr laser tubes were investigated. However, because of the difficulty of impedance matching between the laser discharge in the transverse configuration and the existing pulser, most of our experimental effort in this contract period was devoted to longitudinal discharge excited CuBr lasers.
The longitudinal laser tube was fabricated from high quality quartz with molybdenum:quartz cup seals serving as electrical feed-throughs. Optical grade quartz windows were fused onto the discharge tube ends. Electrodes were made of molybdenum cups. In previous experiments this type of laser tube was successfully operated for hundreds of hours without failure under a power loading of 50 W/cm².

The resonator consisted of a total reflector and a flat output coupler. The total reflector was a quartz corner cube, whereas the output coupler was simply the flat quartz window fused onto one end of the laser tube. The use of a quartz corner cube reflector enabled us to obtain excellent reflectivity in the visible and to place it very close to the Brewster window (inside the oven) which gave a resonator whose length was only a few centimeters longer than the discharge region (see Figure 1). With a discharge length of 22 cm, the overall resonator was ~30 cm with a photon round trip time of 2 nsec. The alignment of the resonator was automatic because of the retro-reflection properties of a corner cube reflector and thus the axis of the resonator was defined by the normal to the quartz plate coupler. This eliminated the need for mirror gimbals or other alignment mechanisms operating at high temperatures. In principle the corner cube could also be fused to the discharge tube shortening the laser cavity even more and eliminating all external laser cavity optics.

The electrical circuit has been described previously³ and is a standard Blumlein configuration. To avoid problems of temperature control the laser was operated in a pulse burst mode lasting about 2 msec. In this way the average electrical power dissipated was negligible but the burst lasted sufficiently long to simulate steady state conditions.

The variation of laser output energy with laser tube temperature is illustrated in Figure 2. At 400°C the CuBr vapor density was near threshold at 1.6×10^{15} cm⁻³ and laser emission only at 5106 Å was observed. Peak laser energy was obtained at 525°C where the CuBr density was 7.9×10^{16} cm⁻³. Under optimum conditions, we obtained a 4.5 nsec wide laser pulse with ~140 µJ/pulse at 0.135% electrical to optical conversion efficiency.
The laser output energy as a function of pulse repetition rate
is shown in Figure 3. The CuBr laser lased from 3 kHz to 22 kHz and
its optimum prf was at \(\approx 16 \) kHz. In the low prf regime the yellow laser
radiation at 5782 Å was weak, at 16 kHz the ratio of laser radiation at
5106 Å and 5782 Å was 3:1 and at very high prf the laser radiation is
predominantly yellow. The laser pulse width was almost independent of
the pulse repetition rate and was always approximately 4.5 nsec.

Figure 4 illustrates the variation of laser efficiency at
optimal conditions with specific output energy. An efficiency of \(\approx .4\% \)
was attained with specific output energy of less than 0.5 \(\mu \text{J cm}^{-3} \). The
laser efficiency decreased rapidly to \(\approx .15\% \) as the output energy density
was increased to \(\approx 2 \mu \text{J cm}^{-3} \). However, the short pulse of \(\approx 4.5 \) nsec was
only obtained when the output energy density was over 2 \(\mu \text{J cm}^{-3} \). Operating
under high efficiency and low specific output energy mode (\(< .5 \mu \text{J cm}^{-3} \)),
and shortening the resonator length has no effect on the laser pulse
width. The laser pulse width was about \(\approx 20 \) nsec which was controlled
by the lifetime of the upper and lower laser levels. In order to produce
ultra-short CuBr laser pulses, it is necessary to pump the laser harder
(\(> 2 \text{ J/cm}^3 \)) as well as to shorten the cavity length. With an output
specific energy of 2 J/cm\(^3\), we obtained a laser pulse width of 8.5 nsec
with a 60 cm long cavity length and reduced it to 4.5 nsec by decreasing
the cavity length to 30 cm. Table 2 list the laser output performance
with various parameters.

<table>
<thead>
<tr>
<th>Cavity Length cm</th>
<th>Prf kHz</th>
<th>Specific Energy (\mu \text{J/cm}^3)</th>
<th>Pulse Length ns</th>
<th>Laser Energy (\mu \text{J})</th>
<th>Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>16</td>
<td>0.5</td>
<td>20</td>
<td>35</td>
<td>.4%</td>
</tr>
<tr>
<td>30</td>
<td>16</td>
<td>2.1</td>
<td>4.5</td>
<td>145</td>
<td>.135%</td>
</tr>
<tr>
<td>60</td>
<td>16</td>
<td>0.5</td>
<td>25</td>
<td>35</td>
<td>.4%</td>
</tr>
<tr>
<td>60</td>
<td>16</td>
<td>2.1</td>
<td>8.5</td>
<td>145</td>
<td>.14%</td>
</tr>
</tbody>
</table>
Fig. 2 – Laser output energy as a function of reservoir temperature

CuBr + 10 Torr Ne
Laser Tube: D = 2 cm
L = 22 cm
PRF = 16 KHz
Pulse Width = 4.5 nsec
T = 525°C
Curve 727434-A

CuBr + 10 Torr Ne
Laser Tube D = 2 cm
L = 22 cm
Pulse Width = 4.5 nsec
T = 525°C

Predominantly Yellow

Fig. 3 - Laser output energy as a function of pulse repetition rate
Fig. 4 — Laser conversion efficiency as a function of the specific output energy.

Laser Tube \(J = 2 \text{ cm} \)
PrF = 16 kHz
Cavity Length \(\approx 30 \text{ cm} \)
\(T = 925^\circ \text{C} \)

- Pulse Width \(\approx 20 \text{ nsec} \)
- Pulse Width = 4.2 \text{ nsec}
3. CONCLUSIONS

A short resonator (30 cm) CuBr laser was built and its performance measured as a function of various operating conditions. Aside from packaging and prime power considerations which were not addressed in this study, the CuBr laser has exceeded all minimum specifications for the Navy bathymetry application. One set of simultaneously obtained operating conditions are as follows: 140 µJ per pulse, 4.5 ns laser pulse width, 16 kHz repetition rate, 0.15% efficiency, 525°C operating temperature.

Our analysis indicates that in order to develop a Cu vapor laser for bathymetry application having an ultra-short laser pulse width (<5 nsec) the laser cavity has to be made shorter than or equal to 30 cm and the excitation rate has to be very high. Further issues relating to other bathymetry laser requirements such as energy per pulse, efficiency, repetition rate, lifetime, compactness, ruggedness and portability have been easily achieved by our existing laser tube.

We believe a CuBr laser can be built which will considerably exceed the performance obtained. For example, to increase the energy per pulse a MOPA configuration can be used. The efficiency can be increased by better power supply design such as matching the input impedance of the laser discharge with the output impedance of the pulser, and by increasing the current density and decreasing the current pulse width.

We are encouraged and optimistic about the CuBr laser performance. It seems to be that pure copper lasers are good for scaling up to high average power units but CuBr lasers tend naturally to be short pulse, high prf and long-lived lasers. We recommend that additional work be done to package a CuBr laser with existing performance into a practical system, and to demonstrate a CuBr laser with greatly improved performance.
4. REFERENCES

This report has been typed by Martha Fischer.