NONLINEAR PROCESSES IN PLASMAS

Sponsored by: Air Force Office of Scientific Research
Contract No. F-49620-80-C-0034

Princeton University
Plasma Physics Laboratory

Prepared by: Russell M. Kulsrud

Apr 1980

Final Technical Report

Approved for public release.
CONTENTS

Summary
I. Activities and Accomplishments 2
II. Publications 4
III. Ph.D. Theses Supported 7
IV. Personnel Supported 8

Accession For

NTIS DBRAI □
DTIC TAB □
Unannounced □
Justification □

A. D. BLOSE
Technical Information Officer

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFSC)
NOTICE OF TRANSMITTAL TO DDC
This technical report has been reviewed and is approved for public release IAW AFR 190-12 (7b). Distribution is unlimited.
A. D. BLOSE
Technical Information Officer
SUMMARY

This final report covers the work carried out under Contract F 49620-80-C-0034 between the Air Force Office of Scientific Research and Princeton University during the period January 1, 1980 to February 28, 1981. (The period January 1, 1981 - February 28, 1981 comprised a no cost extension of the contract that was originally understood to run only till December 31, 1980.)

In accordance with the contract, research was authorized in the following areas:

1) The study of the plasma state of matter, with particular emphasis on its nonlinear collective effects;

2) The application of knowledge gained of the plasma state to the interpretation of various dynamic phenomena in which collective effects play a role such as anomalous transport phenomena, nonlinear wave absorption, and plasma-wave turbulence, both in the laboratory and in space.

In this report, the principle results obtained are described in Part I, papers published or being published are listed in Part II, graduate thesis supported are listed in Part III and research personnel engaged are listed in Part IV.
I. ACTIVITIES AND ACCOMPLISHMENTS

The results obtained under the auspices of this contract are comprised in the list of publications included in part II some of which have already appeared in press and some of which are to soon appear. Some specific interesting results are:

Perkins and Goldman have found that even for frequencies above the maximum ionospheric plasma frequency, sufficiently strong radar signals used to modify the ionosphere are subject to strong instabilities that fluctuate the power of this signal by a factor of order unity. This result enables them to explain the Novozhilov Sovel'yev experiment, (Geomagn, and Aerom 18, 145, 1978). It may put an upper limit on the extent to which the ionosphere may be modified. It appears the power beamed back to earth by a Satellite Power Station could also be so limited.

Work on tearing modes and reconnection has continued. In an effort to understand major disruptions in Tokamaks the earlier results on helical symmetries perturbations have been examined for stability against further breakup of the magnetic field. Although it is possible under certain conditions to obtain this further breakup, the conditions are stringent. Since spontaneous reconnection is generally slower than indicated by experiment, efforts have been made to find means to speed it up. It has been found that the introduction of anomalous electron viscosity can lead to substantially faster reconnection. Yet there is the growing feeling that resistive reconnection of smooth equilibria is too slow and that it must be preceded by a strong MHD instability or other nonlinear ideal effects that lead towards a sharp discontinuity in field behaviour.
Considerable progress in the new and exciting field of stochasticity has been made. One interesting result, previously established, was that in magnetic field lines fluttering with sufficient magnitude to produce substantial anomalous electron thermal conductivity, very energetic electrons such as runaways are lost at a substantially slower rate. This should provide a good method to experimentally test the reality of this mechanism for anomalous transport.

A new approach to the important problem of strange attractors has been made by Jensen and Oberman. The evolution of a nonlinear dissipative dynamical system towards a specific nonlinear state is usually approached by reducing the solution to a sequence of discrete maps of the dynamical states on to each other and considerable effort has been directed to studying the large iterates of these maps in their own right. Jensen and Oberman have shown that the statistics of such maps is very amenable to the path integral method and are obtaining results in exact agreement with numerical experiments.

Finally, the stability conditions for the interpretation of two ion beams of equal density or of one ion beam into a plasma of equal density has been determined. During the extension period considerable effort has been devoted to the study of the physics of this problem for unequal densities. Work on this problem is continuing under a subsequent Air Force Office of Scientific Research Grant.

The above are only some examples of the results of interest obtained during the past year. Further examples may be found by inspection of the papers themselves. They represent work done by members of the contract often working with others, students and colleagues not under direct support of the contract. However, the investigations were largely initiated and inspired by these members.
II. PUBLICATIONS


III. Ph.D. THESES SUPPORTED

No thesis related to this contract was completed during this period. However, four Ph.D. Theses students were supervised by members of this contract during the entire period and all are expected to finish during 1981. None of them were directly supported by the contract.


IV. PERSONNEL SUPPORTED

The personnel supported during the 14 month period of this contract were E. A. Foote, P. K. Kaw, J. A. Krommes, R. M. Kulsrud, C. R. Oberman, F. W. Perkins, and E. J. Valeo. Foote was supported only during February 1981. Her married name now is Chrien.
Research was carried out in the following areas:
1. The study of plasma state of matter, with particular emphasis on its nonlinear collective effects.
2. The application of knowledge gained of the plasma state to the interpretation of various dynamic phenomena in which collective effects play a role such as anomalous transport phenomena, nonlinear wave absorption, and plasma-wave turbulence, both in the laboratory and in DD 1473...