TWO COMPUTER PROGRAMS FOR THE EVALUATION OF THE ACOUSTIC PRESSURE ETCA(V)

DEC 78 A B COPPENS, J V SANDERS, G I IOANNOU

UNCLASSIFIED NPS-61-79-002
TWO COMPUTER PROGRAMS FOR THE EVALUATION
OF THE ACOUSTIC PRESSURE AMPLITUDE AND PHASE
AT THE BOTTOM OF A WEDGE-SHAPED, FLUID
LAYER OVERLAYING A FAST, FLUID HALF SPACE.

by

A.B. Coppens, J.V. Sanders,
G. Ioannou, and M. Kawamura

December 1978

NPS Publication

Approved for public release, distribution unlimited

Prepared for:
Commander
Naval Ocean Systems Center
San Diego, California 92152
The materials presented herein were produced with the support of Naval Ocean Systems Center, San Diego and the Earth Physics Program, Office of Naval Research, Washington, D.C.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Alan B. Coppens
Associate Professor of Physics

James V. Sanders
Associate Professor of Physics

Approved by:

J. H. Dyer, Chairman
Department of Physics
and Chemistry

William M. Tolles
Dean of Research
TWO COMPUTER PROGRAMS FOR THE EVALUATION OF THE ACOUSTIC PRESSURE AMPLITUDE AND PHASE AT THE BOTTOM OF A WEDGE-SHAPED, FLUID LAYER OVERLYING A FAST, FLUID HALF SPACE

Alan B. Coppens, James V. Sanders, Ioannis Ioannou, and Masami Kawamura

Naval Postgraduate School
Code 61cz/Sd
Monterey, California 93940

Commander
Naval Ocean Systems Center
San Diego, California 92152

December 1978

Approved for public release; distribution unlimited

Acoustic Propagation, Wedge, Continental Shelf, Normal Modes, Fast Bottom, Method of Images

The pressure amplitude and phase distribution along the interface between a tapered fluid layer and an underlying fast fluid bottom were investigated theoretically. Two computer models, both based on the method of images, were designed: WEDGE 1 assumes that the source is at a finite distance from the apex of the wedge, and WEDGE 2 assumes an infinite distance. The pressure amplitude along the interface rapidly falls off for...
3. (20) Distances closer to the apex than the distance at which adiabatic mode theory predicts cutoff for the lowest mode. This distance is termed the "dump distance". The results of the two programs agree whenever the source is several dump distances from the apex. The predictions of these programs will be used as input for a further program that will use the Green's function approach to predict the acoustic pressure field in the lower medium.
TABLE OF CONTENTS

1. **INTRODUCTION**
2. **THEORY**
 a. Finite distance from source to receiver.
 b. Infinite distance from source to receiver.
3. **TESTING**
 a. Verification of WEDGE 1
 b. Verification of WEDGE 2
4. **DISCUSSION OF RESULTS**
5. **CONCLUSIONS**

APPENDIX I: Equations for the Computer Program
APPENDIX II: WEDGE 1
APPENDIX III: WEDGE 2

DISTRIBUTION LIST
1. **INTRODUCTION**

Sound radiated from a source located in a layer of fluid of uniform depth overlying a second fluid with greater sound speed (a "fast" bottom) can be trapped in the upper layer. This trapping mechanism can be described by either ray or normal-mode theory: By ray theory, if the angle of incidence of the ray on the bottom exceeds the critical angle θ_c

$$\cos \theta_c = \frac{c_1}{c_2}$$

where θ is the grazing angle the ray makes with the bottom and c_1 and c_2 are the speeds of sound in the top and bottom respectively, the acoustic energy is totally reflected and no energy is transmitted into the bottom. By normal mode theory, each normal mode has associated with it a cutoff frequency

$$f_n = \left(\frac{c_1}{2h}\right)\left(n-\frac{1}{2}\right)\cosec \theta_c$$

where n is the mode number and h the thickness of the upper layer. For frequencies above cutoff, the mode carries energy in the upper layer; acoustic energy is trapped in the upper layer and propagates to great distances. If both boundaries are smooth, the propagation loss is only that associated with cylindrical spreading and absorption losses.

If the upper layer is tapered so that it forms a wedge subtending an angle β, then as sound propagates towards the shallower portion of the layer it will reach a depth at which transmission of acoustic energy into the lower layer is possible. From the ray point of view, a trapped ray will, on each encounter with the sloping bottom, increase its angles of incidence, until, after a sufficient number of encounters, the grazing angle will have
increased to a value greater than critical and energy enters the bottom. From the mode point of view, as the depth of the upper layer decreases, the cutoff frequency of a given mode increases until eventually the cutoff frequency exceeds that of the sound and energy enters the bottom. For a given frequency f, the thickness of the wedge at which the lowest mode attains cutoff is

$$h_1 = \frac{\lambda}{4 \sin \theta_c}$$

where $\lambda = c_1/f$ is the wavelength in the wedge. The distance from the apex measured along the interface at which the lowest mode attains cutoff, the "dump distance" is

$$X_0 = h_1 \tan \beta = \frac{\lambda}{4 \sin \theta_c \tan \beta} \quad (1)$$

Obtaining an exact solution to the propagation of sound from the wedge into the bottom is difficult because the problem is not separable; refraction at the bottom interface results in components of the propagation vector at the bottom that depend on x. This precludes writing the boundary condition for the normal component of particle velocity at the interface in terms of one coordinate. As a result, the acoustic field cannot be considered as a product of functions of separate spatial coordinates.

Many of the usual approximate techniques also become inapplicable. For example, in the "adiabatic" assumption each normal mode in the wedge is assumed to retain its identity. This means that the problem can be treated using normal modes, whose propagation vectors will adjust slowly so that the propagation looks as if it were occurring in a layer of constant depth whose depth is the local depth. However, when cutoff is reached, the discrete set of normal
modes is replaced by the continuous set of untrapped modes, and the concept of modal identity loses its validity.

Our approach is to use the method of images to predict the amplitude and phase of the pressure at the bottom interface. The method of Green's functions is then used to obtain the beam pattern of the sound radiated into the bottom. The reflections of sound from the surface and bottom are replaced by images of the source in the same way as for a sound source in a fluid layer overlying an infinite fluid half-surface, a classical problem first solved by Pekeris. In the case of a wedge, the images lie on the circumference of a circle whose center is the apex of the wedge. The lowest images (closest to the source) correspond to rays of sound which make grazing reflections from the surfaces of the wedge. Higher images correspond to rays with greater angles of elevation and depression; these rays suffer more reflections from the surfaces of the wedge. Finally, images are encountered for which the rays exceed the critical angle at the bottom. Still higher images correspond to more reflections from the bottom (with reflection coefficients less than one in magnitude) so the effective strength of these higher images will be progressively reduced. (This avoids certain problems involved with diffraction from the apex of the wedge.) Phase coherent summation of the contributions from the source and images yields the desired pressure and phase at the bottom of the wedge.

Once the pressure amplitude and phase distribution on the interface are known, the interface can be treated as an apparent acoustical source. Application of straightforward Green's-function
techniques then results in an integral expression for the sound field in the bottom,

\[p(\vec{r}, t) = \frac{e^{j\omega t}}{4\pi} \int_{-\infty}^{\infty} e^{j\left[\frac{1}{2}k_0(\xi') + \Omega(\xi')\right]} \frac{1}{\xi'} \frac{2}{\pi} F(2, 1, \frac{1}{2}) (2, i\xi'; \xi - \xi') d\xi' \]

\[| \vec{r} - \vec{r}' | = \sqrt{(\xi - \xi')^2 + (\zeta - \zeta')^2} \]

Under the assumption that the field in the bottom is studied for \(| \vec{r} - \vec{r}' | \gg \lambda \), these equations can be well approximated by

\[p(\vec{r}, t) = \frac{e^{j\omega t}}{4} \sqrt{\frac{2k_0}{\pi}} \eta \int_{0}^{\infty} \frac{P(\xi') e^{j[\omega t + k_0 \xi\xi' + \Omega(\xi')]} \exp\left\{i\left[\frac{k_0 X_0}{2} \sqrt{(\xi - \xi')^2 + \eta^2} + \Omega(\xi')\right]\right\}}{[\zeta - \zeta']^2 + \eta^2} d\xi' \]

\[\xi = \xi/X_0, \quad \xi' = \xi'/X_0, \quad \eta = \zeta/X_0 \]

where

\[k_0 X_0 = \frac{\pi/2}{\sin \theta \tan \beta} \]

and in the above integrals

\[p(\xi') e^{j\omega t} = P(\xi') e^{j[\omega t + k_0 \xi\xi' + \Omega(\xi')]} , \quad \xi > 0 \]

is the image-calculated pressure at the interface and we must have \(P(\xi') = 0 \) for \(\xi' < 0 \) to satisfy the boundary condition to the right of the apex of the wedge.

The first stage of this investigation, the subject of this report, is the prediction of the pressure and phase distribution along the interface.
2. THEORY

a. Finite distance from source to receiver

Figure 1 shows a wedge with a pressure-release surface and a fast bottom. The origin of coordinates is at the apex with the x axis along the bottom, positioned at the left, and the y axis positioned downward. A source is a distance x from the axis and a depth H below the sea surface. The line connecting the source to the apex makes an angle ϕ_d with the sea surface and an angle

$$\phi_o = \phi - \phi_d$$ \hspace{1cm} (4)

with the bottom. The distance between a receiving point on the bottom at distance x from the n^{th} image is

$$\ell_n = \sqrt{x^2 + x^2 - 2xX \cos \phi_n}$$ \hspace{1cm} (5)

where ϕ_n is the angle between the line joining the image to the apex and the sea bottom. (See Fig. 1.) Each ϕ_n is given by

$$\phi_n = 2 \text{INT}[\frac{n+1}{2}] + (-1)^n \phi_o$$ \hspace{1cm} (6)

where $\text{INT}[\]$ denotes the largest integer which is equal to, or smaller than the argument. The number of times an image interacts with the bottom is equal to the number of times the line from the image to the receiving point intersects the images of the bottom. The grazing angle on the bottom for the m^{th} bounce (counted away from the receiving point) for the n^{th} image is the angle between the line joining the n^{th} image to the receiver and the m^{th} image of the bottom.
Fig. 1 The Geometry of the image solution
\[\theta_{nm} = \theta_{no} - 2 m \beta \]

where \(\theta_{no} \) is the grazing angle at the receiving point.

If the distance from the source to the point on the bottom at which the initial bounce takes place is large compared to a wavelength in the wedge, the reflection coefficient for the \(n \)th image at the \(m \)th bounce, can be approximated by the plane-wave reflection coefficient,

\[R_{nm} = \frac{\rho_1 c_1 - \gamma_{nm}}{\rho_2 c_2 + \gamma_{nm}} \]

where \(c_1, c_2, \rho_1, \rho_2 \) are the sound speeds and densities of the two media, and

\[\gamma_{nm} = \sqrt{1 - \left(\frac{c_1}{c_2}\right)^2 \cos^2 \theta_{nm}}, \quad \theta_{nm} > \theta_c = \cos^{-1}\left(\frac{c_1}{c_2}\right) \]

\[\gamma_{nm} = -\frac{i \sqrt{\left(\frac{c_2}{c_1}\right)^2 \cos^2 \theta_{nm} - 1}}{\sin \theta_{nm}}, \quad \theta_{nm} < \theta_c \]
For a source of unit pressure at 1m from its center, the complex pressure \(p(x,t) = P(x)e^{j\omega t} \) infinitesimally above the bottom has complex amplitude

\[
\begin{align*}
\mathcal{P}(\nu) &= \frac{1}{\nu} e^{-jH\omega} \\
&+ \sum_{n=0}^{N} \left[\frac{1}{\nu_n} e^{-jH\omega} (-1)^{n} \right] ^{\text{INT}[\frac{n+1}{2}]} \left(\prod_{m=1}^{N} R_{nm} \right) \\
&+ \sum_{n=0}^{N} \left[\frac{1}{\nu_n} e^{-jH\omega} (-1)^{n} \right] ^{\text{INT}[\frac{n+1}{2}]} \left(\prod_{m=0}^{N} R_{nm} \right)
\end{align*}
\]

(10)

where the first term is the contribution from the direct path, the second term is the contribution from the images above the wedge and the last term denotes the contribution of the images below the wedge; \(k \) is the wave number in the wedge;

\[
M_n = \text{INT} \left[\frac{\Phi_n}{\beta} \right], \quad N = \text{INT} \left[\frac{\pi}{\beta} \right]
\]

(11)

and the \((-1)^{\text{INT}[\cdot]}\) accounts for the phase shift on each interaction with the pressure release surface. The second and third terms differ only in that there is a 0th bounce associated with the images above the wedge.

The complex pressure amplitude along the bottom can be written as a simple sum

\[
\begin{align*}
\mathcal{P}(\nu) &= \sum_{n=1}^{N} \frac{1}{\nu_n} e^{-jH\omega} (-1)^{n} \text{INT}[\frac{n+1}{2}] \left(1 + \frac{1}{R_{Dm}} \right) \left(\prod_{m=0}^{N} R_{nm} \right)
\end{align*}
\]

(12)

Computer program (WEDGE 1) calculates the pressure-amplitude and phase-distribution along the bottom resulting from a source at a finite distance from the receiver.
A refinement which includes the effect of a directional source is presented in M. Kawamura and I. Ioannou, "Pressure on the Interface Between a Converging Fluid Wedge and a Fast Fluid Bottom", M.S. Thesis, NPS, (Dec. 1978) and named WEDGE O. In both of these programs the complex pressure amplitude \(P(x) \) was "normalized" by multiplying the right hand side of Eq(9) by \(r_0 \). This has the effect of assuring that the source generates a pressure amplitude at one meter which is proportional to its distance from the apex. The advantage is that the effects on \(r_0 P(x) \) of changing \(r_0 \) are easily studied without having to correct for the \(1/r_0 \) diminuation in \(P(x) \).

b. Infinite distance from source to receiver.

In the case of a distant source, inspection of Fig. 2 yields the approximations

\[
\theta_{n0} = \varphi_n
\]

\[
\theta_{nm} = \varphi_n - 2m\beta
\]

Now, since

\[
R_{n0} = \overline{R}(\theta_{n0}) = \overline{R}(\varphi_n)
\]

and the expressions for the reflection coefficients are

\[
\prod_{m=0}^{\infty} R_{0m} = R_0 = \overline{R}(\varphi_0)
\]

\[
\prod_{m=0}^{\infty} R_{1m} = R_1 = \overline{R}(\varphi_1)
\]

\[
\prod_{m=0}^{\infty} R_{2m} = R_0 R_1 = \overline{R}(\varphi_0) \overline{R}(\varphi_1)
\]

\[
\prod_{m=0}^{\infty} R_{nm} = \prod_{m=0}^{\infty} R_{n-2,m} R_n = \prod_{m=0}^{\infty} \overline{R}(\varphi_{n-2}) \overline{R}(\varphi_n)
\]
Fig. 2 Geometry of the distant source approximation
The right hand sides of Eq. 15 depend only on \(n \), so we can define

\[
\Gamma(n) = \begin{cases}
 R_0 & n = 0 \\
 R_1 & n = 1 \\
 \Gamma(n-2) R_n & n = 2, 3, \ldots
\end{cases}
\]

(16)

Also, the geometry of Fig. 2 gives

\[
r_n = r - x \cos \phi_n
\]

(17)

Substitution of Eqs. (15), (16) and (17) into Eq. (12) yields

\[
P(\lambda) = \frac{1}{\lambda} e^{-\lambda R_0} \sum_{n=0}^{N} e^{\lambda R_n \cos \phi_n} (-1)^{\lfloor \frac{n+1}{2} \rfloor} \left(1 + \frac{1}{R_n} \right) \Gamma(n)
\]

(18)
Computer program (WEDGE 2) evaluates Eq. (18) and can be used to calculate the pressure amplitude and phase distribution along the bottom resulting from a source infinitely distant from the receiver.

As in WEDGE 1, what was actually computed was the "normalized" complex pressure amplitude $r_P(x)$.

3. TESTING.

a. Verification of WEDGE 1

To verify that WEDGE 1 was performing the calculations correctly, several runs were made for bottoms with high impedances to approximate a rigid boundary. For these runs the wedge angle was chosen to produce a limited number of images so that calculation of the pressure was simple enough to be performed on a hand calculator.

Runs were made for 90° and 45° wedge angles. In all cases the agreement between hand calculation and WEDGE 1 output was considered to be very good. An example is given in Figs. 3 and 4 for a 45° wedge $c_1/c_2 = 0.2$ and $\rho_1/\rho_2 = 0.05$. In these and the following figures the pressure amplitude is normalized so that its greatest value is unity. (This normalization was not done in WEDGE 0.)

b. Verification of WEDGE 2

Having affirmed that WEDGE 1 was producing valid output for the pressure amplitude and phase distribution at the interface between the wedge and the bottom, comparisons between WEDGE 1 and WEDGE 2 were made. Because WEDGE 2 is valid only for distant sources, comparisons were performed for source distances greater than 100 times the dump distance X_0. One example of this comparison is given in Fig. 5. WEDGE 2 results are plotted only where, by visual inspection, they do not exactly overlap the results of WEDGE 1.
Rigid boundary
slope angle = 45°
slope depth = 50.0 m
source depth = 50.0 m
source dist. = 100.0 m
frequency = 50.0 kHz
lowest mode cut-off frequency = 50.0 kHz
lowest mode cut-off distance = 5.14 m

- WEDGE 1
+ Direct Computation

Fig. 3 Comparison of pressure amplitudes

Pressure Amplitude (Normalized)

Normalized distance (z/z₀)
Rigid boundary
slope angle = 45°
c1 = 1000.0 m/s
c2 = 5000.0 m/s
ρ1 = 1000 kg/m³
ρ2 = 20,000 kg/m³
source dist. = 100.0 m
source depth = 50.0 m
frequency = 50.0 kHz
lowest mode cut off depth = 5.103 m
lowest mode cut off dist. from the apex = 7.217 m

Fig. 4 Comparison of phase angles
wedge angle = 3°
c1 = 1500.0 m/s
c2 = 1730.0 m/s
ρ1 = 1025 kg/m³
ρ2 = 2070 kg/m³
source depth = 24.24 km/WEDGE 1
source dist. = 926 km/WEDGE 1
source elevation angle = 1.5° WEDGE 2
frequency = 10 kHz
lowest mode cut off depth = 75.27 m
lowest mode cut off distance = 1431.62 m

Fig. 5 Comparison of pressure amplitudes
For the WEDGE 1 calculations the source was located 647 dump distances from the apex and at mid-depth. For WEDGE 2, the source, defined to be at infinity, was positioned at mid-depth so that the same normal modes were excited in each case.

In all cases investigated, the amplitudes of the pressure on the bottom calculated by the two programs were in excellent agreement.

Phase results are not displayed because the phases fluctuated so rapidly with respect to the increment in distance that no discernable pattern could be seen. However, detailed comparisons of the numerical outputs of WEDGE 1 and WEDGE 2 confirmed that the two programs were also in agreement in their calculations of the phases of the pressures at the interface.

4. DISCUSSION OF RESULTS

Figures 5 and 6 show the pressure amplitude (normalized to give a peak value of unity) as a function of distance from the apex (normalized by dividing by the dump distance). Both figures are for the same wedge geometry and wedge and bottom properties; they differ only in the location of the source. In Fig. 5 the WEDGE 1, source is at 647 dump distances and at mid-depth. In Fig. 6 WEDGE 1, the source is at 64.7 dump distances and at a depth of 1000 m (one-fifth of the depth at that distance). In both figures the WEDGE 2 calculation was carried out with the source position to give the same source angle as the corresponding WEDGE 1 calculations.
In all cases the pressure amplitude on the bottom increases smoothly from zero at the apex to a local maximum at the dump distance. The pressure amplitude then decreases at distances further from the apex until modal interference becomes important at about two dump distances when the position of the source is such that the second mode is strongly excited (Fig. 6) and at about three dump distances when the second mode is weakly excited (Fig. 5).

Comparison of the results for WEDGE 1 and WEDGE 2 in Fig. 6 shows that there is little difference between the pressure distribution produced by a source at 65 dump distances and one infinitely distant; the positions and magnitudes of the interferences peaks are slightly different, but the results out to about two dump distances are indistinguishable in the two cases.

5. CONCLUSIONS

Two programs have been generated to calculate the pressure amplitude and the phase distribution on the interface between a fluid wedge and an underlying semi-infinite fluid medium. The first program, WEDGE 1, is the more general in that it allows the source to be positioned anywhere within the wedge. The second WEDGE 2 is more restricted in that the source is assumed to be infinitely distant from the apex of the wedge. In practice this means that for reasonably good predictions of the pressure and phase at the interface out to a couple of times the dump distance \(X_0\), the source should lie more than about 100 \(X_0\) away from the apex. In running comparable cases, the difference in computation time between the two programs amounts to a factor of five, with WEDGE 2 being the faster of the two.
APPENDIX I

Equations for the computer program (WEDGE 1)

\[\pi = 4 \tan (1) \]
\[k = 2 \pi f / c \]
\[r = \rho c \]
\[\phi_0 = \beta - \sin (H/x) \]
\[\phi_n = 2 \text{INT} \left(\frac{(n+1)/2}{\beta} + (-1)^n \right) \]
\[\theta_{nm} = \tan^{-1} \left(\sin \phi_n / (\cos \phi_n - x/x) \right) \]
\[D_n = \sqrt{x^2 + x^2 - 2 \times x \times \cos \phi_n / x} \]
\[M = \text{INT} \left(\phi_n / 2 \beta \right) \]
\[\theta_{nm} = \theta_{no} - 2 \pi \beta \]
\[\psi_1 = \sqrt{1 - (C_2/C_1)^2 \cos^2 \theta_{nm} / \sin \theta_{nm}} \]
\[\psi_2 = -i \sqrt{(C_2/C_1)^2 \cos^2 \theta_{nm} - 1} / \sin \theta_{nm} \]
\[\psi = \psi_1 \text{ or } \psi_2 \]
\[R_{xy} = (x_2/x_1 - \psi_1) / (x_2/x_1 + \psi_1) \]
\[P = \sum_{n=0}^{N} \left(1/D_n, e^{i\pi D_n}(-1)^{\text{INT}(n+1/2)}(1+1/R_{xy}) \prod_{m=0}^{M} (R_{nm}) \right) \]
\[P = |P| \]
\[|P| = \tan^{-1} \left(\text{Im}(P) / \text{Re}(P) \right) \]

* \text{INT()} \text{ max. integer of an argument} \]
\[2 \text{INT} \left(\frac{n+1}{2} \right) = n + 1/2 \left[1 - (-1)^n \right] \]
\[** \text{INT} \left(\frac{n+1}{2} \right) = 1/4 \left[2n + 1 - (-1)^n \right] \]
FLOW CHART FOR SUBROUTINE 'PRES'
(WEDGE 1)

START

CHARACTERIZATION

INPUT

DEFINE CONSTANTS

INITIAL CONDITION

CALCULATE ϕ_n

$\phi_n < \pi$

NO

CALCULATE P_{im}

OUTPUT

STOP

YES

SET $m = m + 1$

CALCULATE θ_{im}

DEFINE m_{max}

NO

CALCULATE θ_{cm}

$\theta_{cm} > \theta_c$

NO

DEFINE $\psi = \psi_1$

CALCULATE R_{nm}

YES

DEFINE $\psi = \psi_2$

CALCULATE P_{nm}

m = 0

m = m_{max}
C WEDGE 1
C *** MAIN PROGRAM ***
C
C***
C * THIS PROGRAM EMPLOYS THE METHOD OF IMAGES TO OBTAIN THE PRESSURE *
C * AND PHASE DISTRIBUTION ALONG THE BOTTOM OF A WEDGE-SHAPED FLUID *
C * LAYER OVERLYING A FAST BOTTOM. *
C *
C * ASSUMPTIONS *
C * (1) PLANE WAVE REFLECTION COEFFICIENTS, *
C * (2) SOURCE IS POINT SOURCE. *
C***
C
C * NOTATION *
C I/O OUT=OUTPUT
C IN=INPUT
C CHARACTER
V =VARIABLE
P =PARAMETER
C =CONSTANT
R =REAL NUMBER
I =INTEGER
Z =COMPLEX NUMBER
C
C SYMBOL MEANING I/O CHARACTER
C PA PRESSURE AMPLITUDE ON THE BOTTOM OUT V,R
C PH PRESSURE PHASE ON THE BOTTOM OUT V,R
C C1 SOUND SPEED IN MEDIUM 1 (WEDGE) IN C,R
C C2 SOUND SPEED IN MEDIUM 2 (BOTTOM) IN C,R
C R01 DENSITY OF MEDIUM 1 IN C,R
C R02 DENSITY OF MEDIUM 2 IN C,R
C BETA SLOPE ANGLE OF BOTTOM IN C,R
C X SOURCE DISTANCE FROM THE APEX IN METERS IN C,R
C XX DISTANCE FROM THE APEX IN METER OUT V,R
C AT WHICH PA AND PH ARE CALCULATED
C F DRIVING FREQUENCY IN C,R
C H SOURCE DEPTH IN METERS IN C,R
C ANGEL CRITICAL ANGLE C,R
C HO LOWEST POSSIBLE MODE CUT OFF DEPTH IN METERS C,R
C X0 LOWEST POSSIBLE MODE CUT OFF DISTANCE FROM THE C,R
C APEX IN METERS
C X1 DISTANCE FROM APEX AT WHICH CALCULATION STARTS IN C,R
C X2 DISTANCE FROM APEX AT WHICH CALCULATION STOPS IN C,R
C DX RANGE OF CALCULATION IN METERS C,R
C N NUMBER OF POINTS FOR WHICH PA AND PH ARE IN C,I
C CALCULATED
C PAI 3.1415...... C,R
C WN WAVE NUMBER C,R
C C21 SOUND SPEED RATIO =C2/C1 C,R
C RC21 ACOUSTIC IMPEDANCE RATIO C,R
C ANG0 ANGLE FORMED BY SOURCE, APEX AND BOTTOM C,R
C DISTX TEMPORARY FOR XX(I)/X P,R
C PAMP TEMPORARY FOR PA P,R
C PHAS TEMPORARY FOR PH P,R
C
C***
C
C 21
C
((PROGRAM))
C
DEFINE CHARACTERS OF VARIABLES, PARAMETERS AND CONSTANTS
IMPLICIT REAL*8(A-H,O-Z), INTEGER(I-N)
DIMENSION PA(101), PH(101), XX(101)
COMMON C21, RC21, BETA, WN, PAI, ANGLO, X, H, F
C
READ IN DATA
READ(5,100) C1, C2, RO1, RO2, BETA
READ(5,500) X1, X2, X, H, F
READ(5,600) N
C
CALCULATE AND WRITE CONSTANTS
WRITE (6,700) C1, C2, RO1, RO2, X1, X2, X, H, BETA, F
ANGLC = DARCOS(C1/C2)
HO = C1/(4.0D0 * F * DSIN(ANGLC))
XO = HO / DSIN(BETA)
WRITE (6,400) HO, XO
C
CALCULATE RANGE DX
DX = X2 - X1
C
CALCULATE CONSTANTS FOR SUBROUTINE
PAI = 4.0D0 * DATAN(1.0D0)
WN = 2.0D0 * PAI / F / C1
C21 = C2 / C1
RC21 = C2 * RO2 / (C1 * RO1)
ANGLO = BETA - DARSIN(CH/X)
WRITE (6,200)
C
CALCULATE Pressures with respect to distance XX
WHERE XX IS CHANGED BY INCREMENT
L = N+1
DO 10 I = 1, L
XX(I) = X1 + DFLOAT(I-1) * DX / DFLOAT(N)
DISTX = XX(I) / X
CALL PRES (DISTX, PA, PHAS)
PA(I) = PAMP
PH(I) = PHAS
WRITE (6,300) XX(I), PA(I), PH(I)
10 CONTINUE
WRITE (6,800)
C
PLOT THE PRESSURE AMPLITUDE VS. DISTANCE XX
AND PRESSURE PHASE VS. DISTANCE XX
WRITE (6,700) C1, C2, RO1, RO2, X1, X2, X, H, BETA, F
CALL DPLTP (XX, PA, N, 0)
WRITE (6,800)
WRITE (6,700) C1, C2, RO1, RO2, X1, X2, X, H, BETA, F
CALL DPLTP (XX, PH, N, 0)
C I/O FORMATS

100 FORMAT (5F15.0)
200 FORMAT (/22X,'DISTANCE',17X,'PRESSURE AMP.',12X,'PHASE ANGLE'//)
300 FORMAT (20X,D15.7,10X,D15.7,10X,D15.7)
400 FORMAT (/20X,'LOWEST POSSIBLE MODE CUT OFF DEPTH',9X,D15.7
C /20X,'DISTANCE FROM APEX',20X,D15.7//)
500 FORMAT (5F15.0)
600 FORMAT (I3)
700 FORMAT (/25X,'INPUT DATA',15X,'WEDGE1'//
C 25X,'C',15X,D15.7,5X,'C2=',D15.7/
C 25X,'R01=',D15.7,5X,'R02=',D15.7/
C 25X,'X1=',D15.7,5X,'X2=',D15.7/
C 25X,'X=',D15.7,5X,'H=',D15.7/
C 25X,'BETA=',D15.7,5X,'F=',D15.7//)
800 FORMAT (1H1)
STOP
END
SUBROUTINE 'PRES'

Calculates the pressure amplitude and phase at a point on the bottom by using the method of images.

Where C21, RC21, BETAM, N, PAI, X, M, and F are input constants.

DISTX is input variable from main routine, and PAMP and PHAS are outputs to main routine.

NOTATION

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>MEANING</th>
<th>I/O CHARACTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRES</td>
<td>Pressure caused by Nth pair of images</td>
<td>P+Z</td>
</tr>
<tr>
<td>P</td>
<td>Sum of PRES. (if all possible pair of images are added P is PAMP)</td>
<td>P+R</td>
</tr>
<tr>
<td>ANGLN</td>
<td>Angle formed by image, apex and bottom</td>
<td>P+R</td>
</tr>
<tr>
<td>DD</td>
<td>Parameter for convenience</td>
<td>P+R</td>
</tr>
<tr>
<td>R</td>
<td>Total reflection loss of (N')th image</td>
<td>P+Z</td>
</tr>
<tr>
<td>N</td>
<td>Nth image or Nth pair of images</td>
<td>P+I</td>
</tr>
<tr>
<td>M</td>
<td>Mth bottom bounce</td>
<td>P+I</td>
</tr>
<tr>
<td>MM</td>
<td>Maximum numbers of bottom bounces</td>
<td>P+I</td>
</tr>
<tr>
<td>THETA0</td>
<td>Angle formed by the Nth image, the receiving point, and the bottom</td>
<td>P+R</td>
</tr>
<tr>
<td>DR</td>
<td>Distance from Nth image to the receiving point, normalized by dividing by xo</td>
<td>P+R</td>
</tr>
<tr>
<td>THETAM</td>
<td>Grazing angle to the bottom</td>
<td>P+R</td>
</tr>
<tr>
<td>CHECK</td>
<td>Identifies if grazing angle exceeds critical angle</td>
<td>P+R</td>
</tr>
<tr>
<td>PSAI</td>
<td>Parameter in reflection coefficient</td>
<td>P+Z</td>
</tr>
<tr>
<td>REFL</td>
<td>Reflection coefficient of intermediate bounce</td>
<td>P+Z</td>
</tr>
<tr>
<td>REFLNO</td>
<td>Reflection coefficient of the last bounce</td>
<td>P+Z</td>
</tr>
<tr>
<td>Z</td>
<td>Parameter for convenience</td>
<td>P+Z</td>
</tr>
</tbody>
</table>

24
SUBROUTINE PRES (DISTX, PAMP, PHAS)

DEFINE CHARACTERS OF VARIABLE PARAMETERS AND CONSTANTS

IMPLICIT REAL*8(A-H,O-Z), INTEGER(I-N)
COMPLEX*16 PSAI, REFL, REFLNO, R, Z, PRES
COMMON C21, RC21, BETA, W*, P, ANGLO, X, H, F

C INITIALIZE COMPLEX PRESSURE P=0.0+J0.0

P=DCMPLX(0.0DO,0.0DO)

C RESET COUNTER N=0

N=0

10 CONTINUE

C CALCULATE ANGLN AND DETERMINE IF ANGLE IS IN THE RANGE OR NOT
C IF ANGLE.GT.PAI GO TO THE NEXT STEP

ANGLN=2.0DO*INT((N+1.)/2.)*BETA+(-1)**N*ANGLO
IF (ANGLN.GE.PAI) GO TO 50

C CALCULATE PARAMETER THETA0 AND DR

DD=DCOS(ANGLN)-DISTX
THETA0=DATAN2(DSIN(ANGLN),DD)
DR=DSQRT(1.0DO+DISTX**2-2.0DO*DISTX*DCOS(ANGLN))

C INITIALIZE THE TOTAL REFLECTION COEFFICIENT R=1.0+J0.0

R=DCMPLX(1.0DO,0.0DO)

C DEFINE MM BY EACH PATH WHICH IS DETERMINED BY THE N TH IMAGE

MM=IDINT(ANGLN/(2.0DO*BETA))
L=MM+1
DO 40 M=1,L

C CALCULATE PARAMETERS THETAM AND CHECK

THETAM=THETA0-2.0DO*DFLOAT(M-1)*BETA
CHECK=1.0DO-C21**2*DCOS(THETAM)**2

C IDENTIFY THE INCIDENT ANGLE WHICH IS LESS THAN THE CRITICAL
C ANGLE OR NOT
C IF(CHECK.GT.0.0DO) GO TO 20

C CALCULATE PARAMETER PSAI FOR THE REFLECTION COEFFICIENT OF EACH
C BOUNCE. THERE ARE TWO WAYS WHICH DEPEND ON THE IDENTIFICATION
C OF A CHECK

PSAI=DCMPLX(0.0DO,-DSQRT(-CHECK)/DSIN(THETAM))
GO TO 30

20 CONTINUE

PSAI=DCMPLX(DSQRT(CHECK)/DSIN(THETAM),0.0DO)

30 CONTINUE
C CALCULATE REFLECTIVITY
C REFLECTIVITY = (RC21 - PSAI) / (RC21 + PSAI)
C IF THE BOUNCE IS THE LAST FROM THE SOURCE, THEN REFLNO = REFL
C IF(M.EQ.1) REFLNO = REFL
C CALCULATE THE TOTAL REFLECTION COEFFICIENT R BY EACH PATH
C R = R * REFLECTIVITY
40 CONTINUE
C CALCULATE PARAMETERS Z AND PRESSURE
C Z = DCMPLX(0.0, 0.0) - W * X * X * D R
C PRESSURE = DCEXP(Z) * TAN(C(NF1) * X / 2) * T
C (1.0 + 1.00 / REFLNO) * R / D R
C CALCULATE THE PRESSURE P WHICH IS A SUM OF PRESSURE
C P = P + PRESSURE
C SET TO THE NEXT PAIR OF IMAGE
C N = N + 1
GO TO 10
50 CONTINUE
C CALCULATE PA AND PHASE AND RETURN BACK TO THE MAIN ROUTINE
C PAMP = CDABS(P)
C PREAL = P
C PP = P - PREAL
C PMAG = DSIGN(CDABS(P) - PP)
C PHASE = DATAN2(PMAG, PREAL)
RETURN
END
APPENDIX III

FLOW CHART FOR SUBROUTINE 'PRES'
(WEDGE 2)

START

INPUT FROM MAIN

CHARACTERIZATION

TRANSFERRED CONSTANTS FROM MAIN

INITIAL CONDITION

CALCULATE Q_n

$Q_n < \pi$

NO

EVEN

CALL REFL(φ_n)

$\xi_0 = \xi_0 = \text{REFL}(\xi_0)$

$\xi_{A1} = \xi_{A1} = \xi_{0} - \varphi_n$

$\xi = \xi_A$

ODD

CALL REFL(φ_n)

$\xi_0 = \xi_0 = \text{REFL}(\xi_0)$

$\xi_{B0} = \xi_{B0} = \xi_{0} + \varphi_n$

$\xi = \xi_B$

$\varphi_n < \Theta_c$

$\Psi = \psi_1$

$\Psi = \psi_2$

CALCULATE REFL(φ_n)

RETURN TO SUB-PRES

$\Psi = \psi_2$

CALCULATE $P|\xi$

OUTPUT FOR MAIN

RETURN TO MAIN

$P = \sum B$

SET $n = n + 1$

27
WEDGE 2

*** MAIN PROGRAM ***

**
* THIS PROGRAM EMPLOYS THE METHOD OF IMAGES TO OBTAIN THE PRESSURE *
* AND PHASE DISTRIBUTION ALONG THE BOTTOM OF A WEDGE-SHAPED FLUID. *
**
* ASSUMPTIONS *
* (1) PLANE WAVE REFLECTION COEFFICIENTS. *
* (2) SOURCE IS A POINT SOURCE. *
* (3) SOURCE IS A DISTANT SOURCE. *
**
* NOTATION *
I/O OUT=OUTPUT IN=INPUT
CHARACTER
V =VARIABLE
P =PARAMETER
C =CONSTANT
R =REAL NUMBER
I =INTEGER
Z =COMPLEX NUMBER

SYMBOL MEANING I/O CHARACTER
 PA PRESSURE AMPLITUDE ON THE BOTTOM OUT V>R
 PH PRESSURE PHASE ON THE BOTTOM OUT V>R
 C1 SOUND SPEED IN MEDIUM 1 (WEDGE) IN C>R
 C2 SOUND SPEED IN MEDIUM 2 (BOTTOM) IN C>R
 R01 DENSITY OF MEDIUM 1 IN C>R
 R02 DENSITY OF MEDIUM 2 IN C>R
 BETA SLOPE ANGLE OF BOTTOM IN C>R
 XX DISTANCE FROM THE APEX IN METER AT WHICH PA AND PH ARE OUT V>R
 CALCULATED
 F DRIVING FREQUENCY IN C>R
 ANOLC CRITICAL ANGLE C>R
 HO LOWEST POSSIBLE MODE CUT OFF DEPTH IN METERS C>R
 X0 LOWEST POSSIBLE MODE CUT OFF DISTANCE FROM THE APEX IN C>R
 METERS
 X1 DISTANCE FROM APEX AT WHICH CALCULATION STARTS C>R
 X2 DISTANCE FROM APEX AT WHICH CALCULATION STOPS C>R
 DX RANGE OF CALCULATION IN METERS C>R
 N NUMBER OF POINTS FOR WHICH PA AND PH ARE CALCULATED C>R
 PAI 3.1415....... C>R
 WN WAVE NUMBER C>R
 C21 SOUND SPEED RATIO =C2/C1 C>R
 R21 ACOUSTIC IMPEDANCE RATIO C>R
 ANOLANGLE FORMED BY SOURCE, APEX AND BOTTOM C>R
 DISTX TEMPORARY FOR XX(I)/X P>R
 PAMP TEMPORARY FOR PA P>R
 PHAB TEMPORARY FOR PH P>R

**
C PROGRAM
C DEFINE CHARACTERS OF VARIABLES, PARAMETERS AND CONSTANTS
C
C IMPLICIT REAL*8(A-H,O-Z), INTEGER(I-N)
DIMENSION PA(101), PH(101), XX(101)
COMMON C21, RC21, BETA, WN, PAI, ANGLO, F
C
C READ IN DATA
C
READ(5,100) C1, C2, R01, R02, BETA
READ(5,500) X1, X2, F, ANGLO
READ(5,600) N
C
C CALCULATE AND WRITE CONSTANTS
C
WRITE (6,700) C1, C2, R01, R02, X1, X2, BETA, F, ANGLO
ANGLO = DARCOS(C1/C2)
HO = C1/(4.0000*F*DHSIN(ANGLO))
X0 = HO/DHSIN(BETA)
WRITE (6,400) HO, X0
C
C CALCULATE RANGE DX
C
DX = X2 - X1
C
C CALCULATE CONSTANTS FOR SUBROUTINE
C
PAI = 4.0000*DATAN(1.000)
WN = 2.0000*PAI/F/C1
C21 = C2/C1
RC21 = C2*R02/(C1*R01)
WRITE (6,200)
C
C CALCULATE PRESSURES WITH RESPECT TO DISTANCE XX
C WHERE XX IS CHANGED BY INCRRNENT
C
L = N+1
DO 10 I = 1, L
DISTX = X1 + DFLOAT(I-1)*DX/DFLOAT(N)
XX(I) = DISTX
CALL PRES (DISTX, PAI, PHAS)
PA(I) = PAMP
PH(I) = PHAS
WRITE (6,300) XX(I), PA(I), PH(I)
10 CONTINUE
C
C PLOT THE PRESSURE AMPLITUDE VS. DISTANCE XX
C AND "PRESSURE PHASE VS. "DISTANCE"XX
C
WRITE (6,800)
WRITE (6,700) C1, C2, R01, R02, X1, X2, BETA, F, ANGLO
CALL DPLTP (XX, PA, N=0)
WRITE (6,800)
WRITE (6,700) C1, C2, R01, R02, X1, X2, BETA, F, ANGLO
CALL DPLTP (XX, PH, N=0)
C I/O FORMATS

C 100 FORMAT (5F15.0)
 200 FORMAT (12X,'DISTANCE';17X,'PRESSURE AMP.';12X,'PHASE ANGLE'/)
 300 FORMAT (20X,D15.7;10X,D15.7;10X,D15.7)
 400 FORMAT (20X,'LOWEST POSSIBLE MODE CUT OFF DEPTH';9X,D15.7)
 500 FORMAT (4F15.0)
 600 FORMAT (I3)
 700 FORMAT (15X,'INPUT DATA';25X,'WEDGE2'/)
 C 25X,'C1 ='D15.7;5X,'C2 ='D15.7/
 C 25X,'RO1 ='D15.7;5X,'RO2 ='D15.7/
 C 25X,'X1 ='D15.7;5X,'X2 ='D15.7/
 C 25X,'BETA='D15.7;5X,'F ='D15.7/
 C 42X,'SOURCE ANGLE='D15.7/
 800 FORMAT (1H1)
 STOP
 END
SUBROUTINE 'PRES' CALCULATES THE PRESSURE AMPLITUDE AND PHASE AT A POINT ON THE BOTTOM BY USING METHOD OF IMAGES.

WHERE \(c_1, r_2, \beta, \alpha, \psi, \lambda, \theta \) AND \(f \) ARE INPUT CONSTANTS FROM MAIN ROUTINE;
DIST \(x \) IS INPUT VARIABLE FROM MAIN ROUTINE; AND,
PAMP AND PHAS ARE OUTPUTS TO MAIN ROUTINE.

NOTATION

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>MEANING</th>
<th>I/O CHARACTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRES</td>
<td>PRESSURE CAUSED BY (n) TH PAIR OF IMAGES</td>
<td>(p, z)</td>
</tr>
<tr>
<td>P</td>
<td>SUM OF PRES. (IF ALL POSSIBLE PAIR OF IMAGES ARE (p, z))</td>
<td>(p, z)</td>
</tr>
<tr>
<td>ANGLN</td>
<td>ANGLE FORMED BY IMAGE, APEX AND BOTTOM</td>
<td>(P, R)</td>
</tr>
<tr>
<td>N</td>
<td>(n) TH IMAGE OR (n) TH PAIR OF IMAGES</td>
<td>(P, I)</td>
</tr>
<tr>
<td>IFLAG</td>
<td>IFLAG=0 WHEN (n) IS EVEN</td>
<td>(I, F)</td>
</tr>
<tr>
<td>REFL</td>
<td>REFLECTION COEFFICIENT OF INTERMEDIATE BOUNCE</td>
<td>(P, Z)</td>
</tr>
<tr>
<td>CHECK</td>
<td>PARAMETER FOR FUNCTION REFL</td>
<td>(P, R)</td>
</tr>
<tr>
<td>PSAI</td>
<td>PARAMETER FOR FUNCTION REFL</td>
<td>(P, Z)</td>
</tr>
<tr>
<td>REFLO</td>
<td>REFLECTION COEFFICIENT OF THE LAST BOUNCE</td>
<td>(P, Z)</td>
</tr>
<tr>
<td>R</td>
<td>TOTAL REFLECTION LOSS OF ((n')) TH IMAGE</td>
<td>(P, Z)</td>
</tr>
<tr>
<td>Z</td>
<td>TEMPORARY FOR (r) WHEN (n) IS EVEN</td>
<td>(P, Z)</td>
</tr>
<tr>
<td>Z</td>
<td>TEMPORARY FOR (r) WHEN (n) IS ODD</td>
<td>(P, Z)</td>
</tr>
<tr>
<td>Z</td>
<td>PARAMETER FOR CONVENIENCE</td>
<td>(P, Z)</td>
</tr>
</tbody>
</table>

31
((PROGRAM))

SUBROUTINE PRES (DISTX, PAMP, PHAS)

DEFINE CHARACTERS OF VARIABLES, PARAMETERS AND CONSTANTS

IMPLICIT REAL*(A-H,O-Z), INTEGER(I-N)
COMPLEX*16 R, RA, RB, REFL, REFLNO, P, PRES, Z
COMMON C21, RC21, BETA, MN, PAI, ANGLO, F

INITIALIZE COMPLEX PRESSURE P=0.0+J0.0

P=DCMPLX(0.0,0.0)

RESET COUNTER N=0, RESET IFLAG=0

N=0
IFLAG=0
10 CONTINUE

CALCULATE ANGLN AND DETERMINE IF ANGLE IS IN THE RANGE OR NOT
IF ANGLE.GT.PAI GO TO THE NEXT STEP

ANGLN=2.0*DINT((N+1.)/2.)*BETA+(-1)*SN*ANGLO
IF (ANGLN.GE.PAI) GO TO 80

CALCULATE THE TOTAL REFLECTION COEFFICIENT R BY EACH PATH
IF (IFLAG.EQ.1) GO TO 40
REFLNO=REFL(ANGLN)
IF (N.GE.2) GO TO 20
RA=REFLNO
R=RA
GO TO 30

CONTINUE
RA=RA#REFLNO
R=RA

CONTINUE
IFLAG=1
GO TO 70

CONTINUE
REFLNO=REFL(ANGLN)
IF (N.GE.2) GO TO 50
RB=REFLNO
R=RB
GO TO 60

CONTINUE
RB=RB#REFLNO
R=RB

CONTINUE
IFLAG=0
70 CONTINUE
C CALCULATE PARAMETERS Z AND PRES
C
Z=DCMPLX(0.0D0,WN*DISTX*DCOS(ANGLN))
PRES=CDEXP(Z)*(-1)**INT((N+1.)/2.)*
C (1.0D0+1.0D0/REFLN0)**R
C
C CALCULATE THE PRESSURE P WHICH IS A SUM OF PRES
C
P=P+PRES
C
C SET TO THE NEXT PAIR OF IMAGE
C
N=N+1
GO TO 10
90 CONTINUE
C
C CALCULATE PA AND PH AND RETURN BACK TO THE MAIN ROUTINE
C
PAMP=CDABS(P)
PREAL=P
P=P-PREAL
PP=P*DCMPLX(0.0D0,1.0D0)
PIMAG=DSIGN(CDABS(P),-PP)
PHAS=DATAN2(PIMAG,PREAL)
RETURN
END
C *** SUB PROGRAM ***
C
C ((PROGRAM))
C
FUNCTION REFL (ANGLN)
C
DEFINE CHARACTERS OF VARIABLES, PARAMETERS AND CONSTANTS
C
IMPLICIT REAL*8(A-H,O-Z)
COMPLEX*16 REFL,PSAI
COMMON C21,RC21
C
CALCULATES PARAMETER CHECK
C
CHECK=1.00D0-C21**2*DCOS(ANGLN)**2
C
IDENTIFY THE GRAZING ANGLE WHICH IS LESS THAN THE CRITICAL
C
ANGLE OR NOT
C
IF (CHECK.GT.0.00D0) GO TO 10
C
CALCULATE PARAMETER PSAI FOR THE REFLECTION COEFFICIENT OF EACH
C
BOUNCE. THERE ARE TWO WAYS WHICH DEPEND ON THE IDENTIFICATION
C
OF A CHECK
C
PSAI= DCMPLX(0.00D0,-DSORT(-CHECK)/DSIN(ANGLN))
GO TO 20
10 CONTINUE
PSAI= DCMPLX(DSORT(CHECK)/DSIN(ANGLN),0.00D0)
20 CONTINUE
C
CALCULATE REFL
C
REFL=(RC21-PSAI)/(RC21+PSAI)
C
RETURN BACK TO THE SUBROUTINE PRES
C
RETURN
END
<table>
<thead>
<tr>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chief of Naval Research</td>
</tr>
<tr>
<td>Department of the Navy</td>
</tr>
<tr>
<td>800 North Quincy Street</td>
</tr>
<tr>
<td>Arlington, Virginia 22217</td>
</tr>
<tr>
<td>Commanding Officer</td>
</tr>
<tr>
<td>Office of Naval Research Branch Office</td>
</tr>
<tr>
<td>1030 East Green Street</td>
</tr>
<tr>
<td>Pasadena, California 91106</td>
</tr>
<tr>
<td>Director</td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
</tr>
<tr>
<td>Code 2627</td>
</tr>
<tr>
<td>Washington, D.C. 20375</td>
</tr>
<tr>
<td>Director</td>
</tr>
<tr>
<td>Defense Advanced Research Projects Agency</td>
</tr>
<tr>
<td>1400 Wilson Boulevard</td>
</tr>
<tr>
<td>Arlington, Virginia 22209</td>
</tr>
<tr>
<td>Air Force Office of Scientific Research</td>
</tr>
<tr>
<td>Department of the Air Force</td>
</tr>
<tr>
<td>Directorate of Physics (MPG)</td>
</tr>
<tr>
<td>Building 410</td>
</tr>
<tr>
<td>Bolling Air Force Base</td>
</tr>
<tr>
<td>Washington, D.C. 20332</td>
</tr>
<tr>
<td>Army Research Office</td>
</tr>
<tr>
<td>Department of the Army</td>
</tr>
<tr>
<td>Geosciences Division</td>
</tr>
<tr>
<td>Box 12211</td>
</tr>
<tr>
<td>Research Triangle Park, North Carolina 27709</td>
</tr>
<tr>
<td>Defense Documentation Center</td>
</tr>
<tr>
<td>Building 5</td>
</tr>
<tr>
<td>Cameron Station</td>
</tr>
<tr>
<td>Alexandria, Virginia 22314</td>
</tr>
<tr>
<td>35</td>
</tr>
</tbody>
</table>
Dr. E. P. Cooper, Code 013(b)
Commander, (66001) Code 1222
Naval Ocean Systems Center
San Diego, California 92152 2

Library
Code 0412
Naval Postgraduate School
Monterey, California 93940 2

Dean of Research
Code 012
Naval Postgraduate School
Monterey, California 93940 1

Chairman, Department of Physics and Chemistry
Code 61Dy
Naval Postgraduate School
Monterey, California 93940 2

Associate Professor A. B. Coppens
Code 61Cz
Naval Postgraduate School
Monterey, California 93940 5

Associate Professor J. V. Sanders
Code 61Sd
Naval Postgraduate School
Monterey, California 93940 5

Commander Ioannis Ioannou
Xanthipou-7
Holargos
Athens, Greece 5

Lieutenant Masami Kawamura
Ohara Kanshya 1-305
Etajima
Hiroshima, Japan 5