A one minute goal setting study replicated most of the basic phenomena of goal setting: success was related to satisfaction; goal level was negatively related to expectancy; expectancy was positively related to goal acceptance; expectancy and goal acceptance were not related to performance when goal level was controlled. Goal level was significantly related to performance for the sample as a whole. A unique feature of the present study was the use of 14 different goal levels including levels...
far beyond the subjects' capacity. It was found that at impossible goal levels, goals were not related to performance. For goal levels reasonably close to the subjects' ability, goal level and performance were linearly related. Thus the overall relationship was curvilinear.
The World's Shortest Goal Setting Study1

Edwin A. Locke
University of Maryland

1 This study was supported by Contract No. N00014-79-C-0680 from the Office of Naval Research, Organizational Effectiveness Research Program. The author would like to thank William Fitzpatrick for performing the data analyses.

Reproduction in whole or in part is permitted for any purpose of the U.S. Government
The World's Shortest Goal Setting Study

Abstract

A one minute goal setting study replicated most of the basic phenomena of goal setting: success was related to satisfaction; goal level was negatively related to expectancy; expectancy was positively related to goal acceptance; expectancy and goal acceptance were not related to performance when goal level was controlled. Goal level was significantly related to performance for the sample as a whole. A unique feature of the present study was the use of 14 different goal levels including levels far beyond the subjects' capacity. It was found that at impossible goal levels, goals were not related to performance. For goal levels reasonably close to the subjects' ability, goal level and performance were linearly related. Thus the overall relationship was curvilinear.
The World's Shortest Goal Setting Study

The longest successful goal setting study reported in the literature is that by Latham and Baldes (1975) which has remained successful for over 7 years (see Latham and Locke, 1979, Table 1, footnote b). Other field treatments have lasted up to 9 months (e.g., Ivancevich, 1976). Laboratory studies of goal setting, in contrast, are much shorter, typically ranging from 10 or 20 minutes to 2 hours. Regardless of the length of the study the results have been highly consistent across both field and laboratory settings (Locke, Shaw, Saari, and Latham, in press).

The present study demonstrates that the basic phenomena shown in previous goal setting studies can be obtained in a study lasting only 1 minute. The present study also included the widest range of goal difficulty yet studied (14 goal levels). This made it possible to examine the effects of "impossible" goals on performance and goal acceptance. Based on previous findings, the following predictions were made:

H-1: There will be a positive relationship between success in reaching the goal and satisfaction with performance (Locke, 1966, 1967a).

H-2: There will be a negative relationship between goal level and expectancy (and between goal level and objective probability of success; Locke, 1968).

H-3: There will be a positive relationship between expectancy and goal acceptance (Mento, Cartledge & Locke, 1980).
H-4: There will be a positive relationship between valence (value of attaining the goal) and goal acceptance (Mento et al, 1980).

H-5: There will be no (non-spurious) relationship between expectancy, valence or any combination thereof and task performance (Mento et al, 1980).

H-6: Goal acceptance will not be related to performance (based on previous negative findings summarized in Locke et al, in press).

H-7: There will be a linear relationship between goal level (i.e., goal difficulty) and performance within the range of the subjects' abilities (Locke, 1968, 1967b).

Thus far no laboratory study has looked at the effect of assigning goals which are far beyond the range of the subjects' abilities. Based on logic it was predicted that:

H-8: There will be no relationship between goal level and performance once the goal exceeds the capacity of all subjects. Combining H-7 and H-8, over the total range of goals used, a curvilinear relationship between goal level and performance was predicted.

Method

Subjects. The subjects were 247 members of an Introductory Psychology class. The experiment was run at a beginning of the weekly discussion sections. All students in each section were assigned the same goals; thus each section constituted a goal condition. Goals were assigned to sections at random.
Task. The task was brainstorming; specifically students were asked to give uses for common objects (ignoring quality etc.). All subjects were first given a 1-minute practice trial during which they were asked to list as many uses as they could for a rubber tire. On the experimental trial, subjects were asked to list all the uses they could think of for a wire coat hanger in 1-minute. A subject's score on the practice trial, which was used as a measure of ability, and on the experimental trial was the total number of uses given without regard to quality. (The answer sheets were checked for totally irrelevant responses.)

Goals. There were 14 assigned goal levels ranging by 2's from 2 to 28. The N's varied from goal to goal due to the size of and attendance at discussion sections: 2(N=30); 4(N=8); 6(N=9); 8(N=22); 10(N=17); 12(N=19); 14(N=23); 16(N=20); 18(N=12); 20(N=26); 22(N=17); 24(N=10); 26(N=23); 28(N=11).

Procedure. After the practice trial, students were assigned their goal for the experimental trial. They wrote this number at the top of the page and circled it on their numbered answer sheet in order to allow clear feedback regarding progress in relation to the goal. Then they indicated their expectancy of reaching the goal on a 0 to 10 scale and the valence of reaching the goal on a 0 to 10 scale. The object for the experimental trial was then announced and the subjects worked for one minute. Finally they filled out a three item post-experimental goal
questionnaire. The first item measured degree of goal acceptance on a 3 point scale (tried to reach the goal; could not reach goal but tried to get close; ignored or rejected assigned goal). The second item asked what goal was set if they had rejected the assigned goal. The third item asked for a rating of satisfaction with performance on a 7 point scale. All subjects who failed to complete any item (including the expectancy and valence items) were removed from the analysis.

Results

The correlations among the variables are shown in Table 1.

H-1: Success and Satisfaction

The point bi-serial correlation between success in reaching the goal and satisfaction with performance was .38 (p<.001)

Among those who failed to reach their goal, those who beat their practice trial scores were marginally more satisfied than those who failed to beat their practice trial scores (t=1.66,202 d.f., p<.10.) This suggests that subjects with hard or impossible goals may have used, to a degree, their practice trial scores as substitute or additional standards for judging their performance.

Table 1 Here
H-2: Goal Level and Expectancy

Goal level correlated -.61 (p<.001) with expectancy of success, and -.68 (p<.001) with objective probability of success. Figure 1 shows the relation between goal level and expectancy, objective probability of success, and valence. It is evident that the expectancy ratings were much more optimistic than the facts warranted at hard goal levels. Expectancy correlated .58 (p<.001) with objective probability of success. Valence showed no relationship to goal level (r=-.03,ns).

H-3: Expectancy and Goal Acceptance

Expectancy correlated .41 (p<.001) with goal acceptance.

H-4: Valence and Goal Acceptance

Valence correlated .15 (p<.01) with goal acceptance. The product of E and V (ExV) was also related to goal acceptance (r=.31,p<.001). In a stepwise regression analysis, entering expectancy, valence and ExV, only the effect of expectancy was significant (F=15.5,d.f.1,243, p<.001). However, when goal level was entered into the equation, it explained additional variance in goal acceptance (F=22.7,d.f.,1,242,p<.001) and reduced the variance explained by expectancy to borderline significance (F=3.7,d.f.1,242,p<.10).

H-5: Expectancy, Valence and Performance

Expectancy correlated -.19 (p<.01) with performance. In a stepwise regression, when expectancy was entered after controlling
for practice score (ability), the F was 29.5(d.f.1,244,p<.001). When valence and ExV were entered as well, the effect of expectancy remained significant, but this effect disappeared when goal level was entered. Thus expectancy was initially significant only because of its (negative) association with goal level.

While the overall relation between expectancy and performance was negative, there was a slight curvilinear relationship caused by low average performance among the 11 subjects with expectancies of 0 and .10 (eta=.33,F=2.14,d.f.,9,236,p<.05 for difference from r). This can be accounted for by the low ability of these subjects (x=4.2 as compared to 5.7 for the entire sample).

H-6: Goal Acceptance and Performance

There was a negative correlation between goal acceptance and performance (r= -.13,p<.05), but in a regression analysis there was no effect of goal acceptance on performance after entering ability and goal level.

H-7, H-8: Goals and Performance

The overall correlation between goal level and performance was .48 (p<.001). In a regression analysis, the goal level effect was highly significant even after controlling for ability, expectancy, valence and ExV (F=51.4,d.f. 1,241,p<.001).

As shown by Figure 2, the relation between goal level and performance was non-linear (eta=.61,F=4.4,d.f.12,233,p<.001 for difference from r). In Figure 2 the data for the higher goal levels have been grouped in order to smooth the curves. For goal levels 2 through 10 (10 was the highest goal any subject reached) the Pearson r between goal level and performance was .82(p<.001), while for goal levels 12-28, the corresponding r was .11(ns). Regression analyses within each of these goal ranges
supported the significant effects of goal level (controlling for ability) in the former group and its non-significant effect in the latter group.

Figure 2 here

A regression analysis on the subjects with goal levels 2-10 showed that only the ability and goal effects were significant when ability, goal level, expectancy, valence and VxE were entered in the equation. The R for ability plus goal level was .85 ($R^2 = .72, p < .001$).

Discussion

This 1 minute study replicated most of the basic phenomena of goal setting. These results testify to the extraordinary robustness of the technique of goal setting (Locke et al, in press). It might be argued that the correlation between goal level and performance is somewhat spurious in that subjects with very easy goals (e.g., 2 and 4) were told to stop working when they attained their goals. However, this procedure was necessary because subjects who have very easy goals typically set new goals if their assigned goals are attained too easily (Locke et al, in press). The result is that they are no longer genuine easy goal subjects. Furthermore, having subjects stop when they reach their targets simulates restriction of output, a common and long-recognized organizational phenomenon.

To determine the effects of goal level just among subjects with
high goals, the mean performance of subjects assigned a goal of 6 (which was higher than the mean ability score of the total sample of 5.7) was compared with the mean performance of those with goals from 8 through 28. The mean of the latter group was significantly higher than that of the former (F=3.91, d.f. 1, 207, p<.05).

This was the first laboratory study to deliberately assign impossible goals. No subject in goal groups 12 and above reached the assigned goal. Although increasing goal difficulty led to a decrease in goal acceptance, this involved mainly a shift from "tried to reach the goal" to "tried to get close". In no group did more than 19% of the subjects claim they were trying for a totally different goal and the percentage was not significantly higher for those with impossible goals as compared to those with reachable goals. When a substitute goal was set, it was typically to try to "do my best" -- a relatively high, though non-quantitative goal. As noted in Figure 2, the result was flat rather than declining performance as goals became more and more impossible. This indicates that impossible goals do not necessarily lead to markedly lower performance, providing that most subjects are still trying to get as close as they can to the goal and the rest are trying to do their best.

Goal acceptance in this study was, of course, greatly facilitated by the fact that the study lasted only 1 minute. Different results might well be obtained in a longer range experiment.
REFERENCES

Table 1

(Pearson) Correlations Among Variables\(^a\)

(N = 247)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ability</td>
<td>- .03</td>
<td>.30</td>
<td>.18</td>
<td>.30</td>
<td>.34</td>
<td>.19</td>
<td>.19</td>
</tr>
<tr>
<td>Goal Level</td>
<td>-</td>
<td>-.61</td>
<td>-.03</td>
<td>-.35</td>
<td>.48</td>
<td>-.45</td>
<td>-.37</td>
</tr>
<tr>
<td>Expectancy</td>
<td>-</td>
<td>.22</td>
<td>.69</td>
<td>-.19</td>
<td>.41</td>
<td>.31</td>
<td>.58</td>
</tr>
<tr>
<td>Valence</td>
<td>-</td>
<td>.78</td>
<td>.09</td>
<td>.15</td>
<td>.10</td>
<td>.04</td>
<td></td>
</tr>
<tr>
<td>ExV</td>
<td>-</td>
<td>-.06</td>
<td>.31</td>
<td>.25</td>
<td>.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Performance</td>
<td>-</td>
<td>-.13</td>
<td>.03</td>
<td>.47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goal Acceptance</td>
<td>-</td>
<td>.16</td>
<td>.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Satisfaction</td>
<td>-</td>
<td></td>
<td>.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) an r of .125 is significant of p < .05

an r of .164 is significant of p < .01
Figure Captions

Figure 1: Relation of Goal Level to Expectancy, Objective Probability of Success and Valence

Figure 2: Relation of Goal Level to Performance
Performance

\(\text{Goal} \)

\(f = 0.82 \)

\(f = 1.14 \)

Goal \(\Rightarrow \) Performance
LIST 1
MANDATORY

Defense Documentation Center
ATTN: DDC-TC
Accessions Division
Cameron Station
Alexandria, VA 22314

Library of Congress
Science and Technology Division
Washington, DC 20540

Chief of Naval Research
Office of Naval Research
Code 452
800 N. Quincy Street
Arlington, VA 22217

Commanding Officer
Naval Research Laboratory
Code 2627
Washington, DC 20375

(12 copies)
(3 copies)
(6 copies)
LIST 2
ONR FIELD

Commanding Officer
ONR Branch Office
1030 E. Green Street
Pasadena, CA 91106

Psychologist
ONR Branch Office
1030 E. Green Street
Pasadena, CA 91106

Commanding Officer
ONR Branch Office
536 S. Clark Street
Chicago, IL 60605

Psychologist
ONR Branch Office
536 S. Clark Street
Chicago, IL 60605

Commanding Officer
ONR Branch Office
Bldg. 114, Section D
666 Summer Street
Boston, MA 02210

Psychologist
ONR Branch Office
Bldg. 114, Section D
666 Summer Street
Boston, MA 02210

Office of Naval Research
Director, Technology Programs
Code 200
800 N. Quincy Street
Arlington, VA 22217
LIST 3
OPNAV

Deputy Chief of Naval Operations
(Manpower, Personnel, and Training)
Scientific Advisor to DCNO (Op-01T)
2705 Arlington Annex
Washington, DC 20350

Deputy Chief of Naval Operations
(Manpower, Personnel, and Training)
Director, Human Resource Management
Division (Op-15)
Department of the Navy
Washington, DC 20350

Deputy Chief of Naval Operations
(Manpower, Personnel, and Training)
Head, Research, Development, and
Studies Branch (Op-102)
1812 Arlington Annex
Washington, DC 20350

Deputy Chief of Naval Operations
(Manpower, Personnel, and Training)
Director, Human Resource Management
Plans and Policy Branch (Op-150)
Department of the Navy
Washington, DC 20350

Chief of Naval Operations
Head, Manpower, Personnel, Training
and Reserves Team (Op-964D)
The Pentagon, 4A578
Washington, DC 20350

Chief of Naval Operations
Assistant, Personnel Logistics
Planning (Op-987P10)
The Pentagon, 5D772
Washington, DC 20350
LIST 4
NAVMAT & NPRDC

NAVMAT

Naval Material Command
Program Administrator, Manpower, Personnel, and Training
Code 08T244
1044 Crystal Plaza #5
Washington, DC 20360

Naval Material Command
Management Training Center
NMAT 09M32
Jefferson Plaza, Bldg #2, Rm 150
1421 Jefferson Davis Highway
Arlington, VA 20360

NPRDC

Commanding Officer (5 Copies)
Naval Personnel R&D Center
San Diego, CA 92152

Navy Personnel R&D Center
Washington Liaison Office
Building 200, 2N
Washington Navy Yard
Washington, DC 20374
LIST 6
NAVAL POSTGRADUATE SCHOOL

Naval Postgraduate School
ATTN: Dr. Richard S. Elster
Department of Administrative Sciences
Monterey, CA 93940

Naval Postgraduate School
ATTN: Professor John Senger
Operations Research and
Administrative Science
Monterey, CA 93940

Superintendent
Naval Postgraduate School
Code 1424
Monterey, CA 93940
LIST 7
HRM

Officer in Charge
Human Resource Management Detachment
Naval Air Station
Alameda, CA 94591

Officer in Charge
Human Resource Management Detachment
Naval Submarine Base New London
P.O. Box 81
Groton, CT 06340

Officer in Charge
Human Resource Management Division
Naval Air Station
Mayport, FL 32228

Commanding Officer
Human Resource Management Center
Pearl Harbor, HI 96860

Commander in Chief
Human Resource Management Division
U.S. Pacific Fleet
Pearl Harbor, HI 96860

Officer in Charge
Human Resource Management Detachment
Naval Base
Charleston, SC 29408

Commanding Officer
Human Resource Management School
Naval Air Station Memphis
Millington, TN 38054

Human Resource Management School
Naval Air Station Memphis (96)
Millington, TN 38054
List 7 (Continued) 6 November 1979

Commanding Officer
Human Resource Management Center
1300 Wilson Boulevard
Arlington, VA 22209

Commanding Officer
Human Resource Management Center
5621-23 Tidewater Drive
Norfolk, VA 23511

Commander in Chief
Human Resource Management Division
U.S. Atlantic Fleet
Norfolk, VA 23511

Officer in Charge
Human Resource Management Detachment
Naval Air Station Ehidbey Island
Oak Harbor, WA 98278

Commanding Officer
Human Resource Management Center
Box 23
FPO New York 09510

Commander in Chief
Human Resource Management Division
U.S. Naval Force Europe
FPO New York 09510

Officer in Charge
Human Resource Management Detachment
Box 60
FPO San Francisco 96651

Officer in Charge
Human Resource Management Detachment
COMNAVFORJAPAN
FPO Seattle 98762
List 9
USMC

Commandant of the Marine Corps
Headquarters, U.S. Marine Corps
Code MPI-20
Washington, DC 20380

Headquarters, U.S. Marine Corps
ATTN: Dr. A. L. Slafkosky,
Code RD-1
Washington, DC 20380
LIST 12
ARMY

Army Research Institute
Field Unit - Monterey
P.O. Box 5787
Monterey, CA 93940

Deputy Chief of Staff for Personnel, Research Office
ATTN: DAPE-PBR
Washington, DC 20310

Headquarters, FORSCOM
ATTN: AFPR-HR
Ft. McPherson, GA 30330

Army Research Institute
Field Unit - Leavenworth
P.O. Box 3122
Fort Leavenworth, KS 66027

Technical Director (2 copies)
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333
LIST 13
AIR FORCE

Air University Library/LSE 76-443
Maxwell AFB, AL 36112

AFOSR/NL (Dr. Fregly)
Building 410
Bolling AFB
Washington, DC 20332

Air Force Institute of Technology
AFIT/LSGR (Lt. Col. Umstot)
Wright-Patterson AFB
Dayton, OH 45433

Technical Director
AFHRL/ORS
Brooks AFB
San Antonio, TX 78235

AFMPC/DMYP
(Research and Measurement Division)
Randolph AFB
Universal City, TX 78148
LIST 15
CURRENT CONTRACTORS

Dr. Clayton P. Alderfer
School of Organization
and Management
Yale University
New Haven, CT 06520

Dr. H. Russell Bernard
Department of Sociology
and Anthropology
West Virginia University
Morgantown, WV 26506

Dr. Arthur Blaives
Human Factors Laboratory, Code N-71
Naval Training Equipment Center
Orlando, FL 32813

Dr. Michael Borus
Ohio State University
Columbus, OH 43210

Dr. Joseph V. Brady
The Johns Hopkins University
School of Medicine
Division of Behavioral Biology
Baltimore, MD 21205

Mr. Frank Clark
ADTECH/Advanced Technology, Inc.
7923 Jones Branch Drive, Suite 500
McLean, VA 22102

Dr. Stuart W. Cook
University of Colorado
Institute of Behavioral Science
Boulder, CO 80309

Mr. Gerald M. Croan
Westinghouse National Issues
Center
Suite 1111
2341 Jefferson Davis Highway
Arlington, VA 22202
LIST 15 (Continued)

Dr. Larry Cummings
University of Wisconsin-Madison
Graduate School of Business
Center for the Study of Organizational Performance
1155 Observatory Drive
Madison, WI 53706

Dr. John P. French, Jr.
University of Michigan
Institute for Social Research
P.O. Box 1248
Ann Arbor, MI 48106

Dr. Paul S. Goodman
Graduate School of Industrial Administration
Carnegie-Mellon University
Pittsburgh, PA 15213

Dr. J. Richard Hackman
School of Organization and Management
Yale University
56 Hillhouse Avenue
New Haven, CT 06520

Dr. Asa G. Hilliard, Jr.
The Urban Institute for Human Services, Inc.
P.O. Box 15068
San Francisco, CA 94115

Dr. Charles L. Hulin
Department of Psychology
University of Illinois
Champaign, IL 61820

Dr. Edna J. Hunter
United States International University
School of Human Behavior
P.O. Box 26110
San Diego, CA 92126
LIST 15 (Continued)

Dr. Rudi Klauss
Syracuse University
Public Administration Department
Maxwell School
Syracuse, NY 13210

Dr. Judi Komaki
Georgia Institute of Technology
Engineering Experiment Station
Atlanta, GA 30332

Dr. Edward E. Lawler
Battelle Human Affairs
Research Centers
P.O. Box 5395
4000 N.E., 41st Street
Seattle, WA 98105

Dr. Edwin A. Locke
University of Maryland
College of Business and Management
and Department of Psychology
College Park, MD 20742

Dr. Ben Morgan
Performance Assessment Laboratory
Old Dominion University
Norfolk, VA 23508

Dr. Richard T. Movday
Graduate School of Management
and Business
University of Oregon
Eugene, OR 97403

Dr. Joseph Olmstead
Human Resources Research Organization
300 North Washington Street
Alexandria, VA 22314
LIST 15 (Continued)

Dr. Thomas M. Ostrom
The Ohio State University
Department of Psychology
116E Stadium
404C West 17th Avenue
Columbus, OH 43210

Dr. George E. Rowland
Temple University, The Merit Center
Ritter Annex, 9th Floor
College of Education
Philadelphia, PA 19122

Dr. Irwin G. Sarason
University of Washington
Department of Psychology
Seattle, WA 98195

Dr. Benjamin Schneider
Michigan State University
East Lansing, MI 48824

Dr. Saul B. Sells
Texas Christian University
Institute of Behavioral Research
Drawer C
Fort Worth, TX 76129

Dr. H. Wallace Sinaiko
Program Director, Manpower Research
and Advisory Services
Smithsonian Institution
801 N. Pitt Street, Suite 120
Alexandria, VA 22314

Dr. Richard Steers
Graduate School of Management
and Business
University of Oregon
Eugene, OR 97403
LIST 15 (Continued)

Dr. Arthur Stone
State University of New York
at Stony Brook
Department of Psychology
Stony Brook, NY 11794

Dr. James R. Terborg
University of Houston
Department of Psychology
Houston, TX 77004

Drs. P. Thorndyke and M. Weiner
The Rand Corporation
1700 Main Street
Santa Monica, CA 90406

Dr. Howard M. Weiss
Purdue University
Department of Psychological Sciences
West Lafayette, IN 47907

Dr. Philip G. Zimbardo
Stanford University
Department of Psychology
Stanford, CA 94305