LEVEL

FIXED STATE UTILITY SCALING:
COMPARISON OF DIFFERENT CRITERIA

SHIN-ICHI MAYEKAWA
THE UNIVERSITY OF IOWA

REPORT PREPARED UNDER OFFICE OF NAVAL RESEARCH
CONTRACT N00014-77-C-0428

MELVIN R. NOVICK, PRINCIPAL INVESTIGATOR
THE UNIVERSITY OF IOWA
IOWA CITY, IOWA

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
REPRODUCTION IN WHOLE OR IN PART IS PERMITTED FOR
ANY PURPOSE OF THE UNITED STATES GOVERNMENT.
Several methods of fitting utilities using fixed state gambles and least-squares criteria are compared. It was found that similar results are found when the maximization is done in the probability, log-odds, or root arc-sine matrix.
Fixed State Utility Scaling

Comparison of Different Criteria

Shin-ichi Mayekawa

The University of Iowa
I. Introduction

In the Bayesian view of decision making, the posterior probability distribution of the variable of interest and its utility function are the essential ingredients of a decision process. The method used to assess the utility function installed in the CADA monitor (Novick, Hamer, Libby, Chen, and Woodworth, 1980) is called the fixed-state utility assessment procedure (Novick and Lindley, 1979) in which the investigator is asked to specify subjective indifference probabilities for gamble pairs. The assessment of the utility function or the scaling of the subjective utility is then done through a least squares procedure based on the log-odds transformed observations (subjective indifference probabilities).

In Novick and Lindley (1979), the following notation is used:

Observations

\[p_{ijk} \quad i = 0, 1, \ldots, N-1 \]
\[j = 1, 2, \ldots, N \]
\[k = 2, 3, \ldots, N + 1 \]
\[i < j < k \]

where \(N + 2 \) is the number of ordered outcomes. \(p_{ijk} \) denotes the numerical values of the subjective probability with which the subject receives the outcome \(k \) in a gamble between outcome \(i \) and outcome \(k \), which makes the gamble indifferent to receiving the outcome \(j \) for sure.

Parameters

If \(u_i, i = 0, 1, 2, \ldots, N+1, u_0 = 0, u_{N+1} = 1 \), is the utility of the
I-th outcome, then the true indifference probabilities are

\[P_{ijk} : = \frac{(u_j - u_i)}{(u_k - u_i)}. \]

Given N observed indifference probabilities the N unspecified utilities can be calculated under certain conditions. However, in most situations the observations contain errors and it is therefore useful to obtain additional observations and to attempt to fit a utility function.

In this paper several different methods of fitting (scaling) will be discussed. Throughout this paper, we assume that the utilities are monotonic to the outcomes: that is, under the appropriate ordering of the outcomes, we assume that if i < j then u_i < u_j. We further assume that p_{ijk}'s are measured in the absolute scale, that is, p_{ijk}'s are assumed to have a unique origin and a unique unit.

II. Least Squares Method

The simplest way to estimate the utilities is to solve the least squares problem:

\[Q_2 : = \sum_{ijk} \left(p_{ijk} - \hat{p}_{ijk} \right)^2 \rightarrow \text{min w.r.t. u's, where } \sum_{ijk} \text{ denotes summation over all the observed } p_{ijk}'s, \text{ and } \hat{p}_{ijk} \text{ is the function of the utilities as defined by (1).} \]

This solution, although straightforward, lacks the consideration of the comparative magnitude of the deviations or the relative weight of each observation. As indicated by Novick and Lindley (1979), the value of p_{ijk} close to 1/2 seems to have a relatively large magnitude of deviations, that is, the closer p_{ijk}'s are to 1/2, the less reliable they are. Thus, observed values p_{ijk} distant from 1/2 would have little influence on the solution.
One way to handle this problem is to define the least squares criterion using transformed observations. The transformation which removes the heterogeneity of the deviations of the observations must be chosen. Among the transformations which serve this purpose, we only consider the following two transformations:

1. \(f_L(x) = \ln\left(\frac{x}{1-x} \right) \),
2. \(f_A(x) = \sin^{-1}(x^{1/2}) \).

\(f_L \) and \(f_A \) are called log-odds transformation and arcsine transformation, respectively.

The least squares criterion defined on these transformed values are:

3. \(Q_3 = \sum_{ijk} \left[(f_L(p_{ijk}) - f_L(\hat{p}_{ijk}))^2 \right] + \min \),
4. \(Q_4 = \sum_{ijk} \left[(f_A(p_{ijk}) - f_A(\hat{p}_{ijk}))^2 \right] + \min \).

Another way to handle this problem is to define the weighted least squares criterion such that the heterogeneity of the deviations may be absorbed in the weights. Because the observations are assumed to be less reliable around 1/2, we may define the weighted least squares criterion as follows:

5. \(Q_1 = \sum_{ijk} \left[w_{ijk}(p_{ijk} - \hat{p}_{ijk})^2 \right] + \min \),
6. \(w_{ijk} = \frac{1}{\hat{p}_{ijk}(1-\hat{p}_{ijk})} \).

In general the least squares criteria can be written as

7. \(Q_a = \sum_{ijk} \left[w_{ijk}(f_a(p_{ijk}) - f_a(\hat{p}_{ijk}))^2 \right] + \min \),
where

\[w_{aijk} = 1 \quad \text{for } a = 2, 3, \text{ and } 4 \]
\[= 1/\hat{p}_{ijk} (1-\hat{p}_{ijk}) \quad \text{for } a = 1, \]

and

\[f_a(x) = x \quad \text{for } a = 1 \text{ and } 2, \]
\[= f_L(x) \quad \text{for } a = 3, \]
\[= f_A(x) \quad \text{for } a = 4. \]

III. Solution

Rewriting (9) in a matrix form, we have

\[Q_a = [f_a(p) - f_a(\hat{p})]'W_a[f_a(p) - f_a(\hat{p})] \rightarrow \min, \]

where denoting the number of the observations by \(K \), \(f_a(x) \) is the \(K \times 1 \) vector whose \(e \)-th element is \(f_a(x_e) \), \(W_a \) is the \(K \times K \) diagonal matrix whose \(e \)-th diagonal element is \(w_{ae} \), and \(p \) and \(\hat{p} \) are the \(K \times 1 \) vectors consisting of \(p_{ijk} \)'s and \(\hat{p}_{ijk} \)'s, respectively. The subscript "e" stands for any ijk triad.

Because \(u_0 \) and \(u_{N+1} \) are fixed, there are only \(N \) free values of \(u \) which must be estimated. The solution of the problem is given by solving

\[(10) \frac{\partial Q_a}{\partial u} = [\frac{\partial f_a(\hat{p})}{\partial u}] W_a[f_a(\hat{p}) - f_a(p)] \]
\[= 0 \]

where \(u \) is the \(N \times 1 \) vector of the utility scale, i.e.

\[u = [u_1, u_2, ..., u_N]^t, \]

and

\[\left[\frac{\partial f_a(\hat{p})}{\partial u} \right] \]
is the $K \times n$ matrix whose (e,c) element is

$$\frac{\partial f_a(\hat{p}_c)}{\partial u_c} = \frac{\partial f_a(\hat{p}_{ijk})}{\partial u_c}.$$

[The weight matrix is treated as a constant even when $a = 1$.]

Specifically, in a scalar form $\frac{\partial f_a(\hat{p}_{ijk})}{\partial u_c}$ can be written as follows:

(12) For $a = 1$ and 2,

$$\frac{\partial f_a(\hat{p}_{ijk})}{\partial u_c} = \frac{\partial \hat{p}_{ijk}}{\partial u_c} = \begin{cases} \frac{-(u_k-u_j)}{(u_k-u_i)^2} & \text{if } c = 1 \\ \frac{1}{(u_k-u_i)} & \text{if } c = j \\ \frac{-(j-u_k)}{(u_k-u_i)^2} & \text{if } c = k, \end{cases}$$

for $a = 3$,

$$\frac{\partial f_a(\hat{p}_{ijk})}{\partial u_c} = \left(\frac{1}{\hat{p}_{ijk}} + \frac{1}{1-\hat{p}_{ijk}} \right) \frac{\partial \hat{p}_{ijk}}{\partial u_c}$$

and for $a = 4$,

$$\frac{\partial f_a(\hat{p}_{ijk})}{\partial u_c} = 2 - \sqrt{\frac{1}{\hat{p}_{ijk}(1-\hat{p}_{ijk})}} \frac{\partial \hat{p}_{ijk}}{\partial u_c}.$$

Among the various numerical methods for solving (11), the Gauss-Newton method seems to be appropriate here because it does not require the evaluation of the second derivatives and yet is as efficient as the Newton-Raphson method. The direction for search in the Gauss-Newton method is defined by

(13) $S(u) = -\left[\left(\frac{\partial f_a(\hat{p})}{\partial u} \right)^T \left(\frac{\partial f_a(\hat{p})}{\partial u} \right) \right]^{-1} \frac{\partial \hat{q}_a}{\partial u}$

The Gauss-Newton method with the step-size halving is always convergent. However, we must consider the monotonicity restrictions.
Usually, the restrictions can be enforced by setting the parameters which fall out of the proper region equal to the boundary surface. However, we cannot apply this simple method because our restrictions do not include the equalities: that is, \(u_i \) must be strictly less than \(u_{i+1} \). To enforce the monotonicity restrictions, therefore, we modified the step-size halving procedure of the Gauss-Newton method so that all the updated parameters may satisfy the restrictions in each iteration. As long as the initial estimates satisfy the restrictions, this method is guaranteed to converge to the restricted minimum.

For the weighted least squares case \((a = 1)\), the \(W \) matrix must be successively updated in each iteration by

\[
W_{i+1} = \frac{1}{\hat{p}_{i+1}^k}(1 - \hat{p}_{i+1})
\]

using the latest value of \(\hat{p}_{i+1} \).

IV. Maximum Likelihood Method Based on the Normal Distribution

In the previous sections, we used the word "relative magnitudes of the deviations" without introducing the statistical concept. In this section, however, we assume that the observations are the random variables. Under the assumption that \(f_a(p_{ijk}) \) has the normal distribution with the mean \(f_a(p_{ijk}) \) and the constant variance \(\sigma^2 \),

\[
f_a(p_{ijk}) \sim N(f_a(p_{ijk}), \sigma^2),
\]

for \(a = 2, 3, \) and \(4, \)

or under the assumption that \(p_{ijk} \) has the normal distribution with the mean \(\hat{p}_{ijk} \) and the variance \(\hat{c}_{p_{ijk}} (1 - \hat{p}_{ijk}) \), where \(c \) is the unknown parameter to be estimated,
(16) \(p_{ijk} \sim N(\hat{p}_{ijk}, c^2 p_{ijk} (1-\hat{p}_{ijk})) \),

it can be shown that the least squares solutions described in the previous sections coincide with the maximum likelihood solutions. That is, the derivatives of the log likelihood function for the assumption (15),

(17) \[
\ln L = -\frac{N}{2} \ln(2\pi) - \frac{N}{2} \ln \sigma^2 - \frac{1}{2\sigma^2} \sum_{ijk} (f_a(p_{ijk}) - f_a(\hat{p}_{ijk})^2)
\]

for \(a = 2, 3, \) and \(4, \)

with respect to \(\sigma^2 \) and \(u_c \)'s result in the equations

(18) \[
\sigma^2 = \frac{1}{N} \sum_{ijk} [(f_a(p_{ijk})-f_a(\hat{p}_{ijk}))^2]/N
\]

and

(19) \[
\frac{\partial \ln L}{\partial u_c} = \frac{1}{\sigma^2} \sum_{ijk} (f_a(p_{ijk}) - f_a(\hat{p}_{ijk})) \frac{\partial f_a(\hat{p}_{ijk})}{\partial u_c}
\]

and for the assumption (16), the derivatives of the log likelihood function

(20) \[
\ln L = -\frac{N}{2} \ln(2\pi) - \frac{1}{2} \sum_{ijk} \ln c^2 d^2_{ijk} - \frac{1}{2} \sum_{ijk} \frac{(p_{ijk} - \hat{p}_{ijk})^2}{c^2 d^2_{ijk}}
\]

where

\[
d^2_{ijk} = \hat{p}_{ijk} (1-\hat{p}_{ijk}),
\]

with respect to \(c^2 \) and \(u_c \)'s result in the equations

(21) \[
c^2 = \frac{1}{N} \sum_{ijk} \frac{(p_{ijk} - \hat{p}_{ijk})^2}{\hat{p}_{ijk} (1-\hat{p}_{ijk})}
\]
and

$$(22) \quad \frac{\partial \ln L}{\partial u_c} = \frac{1}{c^2} \sum_{ijk} \frac{(p_{ijk} - \hat{p}_{ijk})}{d^2_{ij}} \frac{\hat{p}_{ijk}}{\partial u_c}$$

These equations can be written as (11) using the same notation, and

the Gauss-Newton method is also appropriate as the numerical method.

One of the merits of the maximum likelihood solution is the inverse matrix of

$$(23) \quad I_a(u) = \left(\frac{\partial a(p)}{\partial u} \right)' W_a \left(\frac{\partial a(p)}{\partial u} \right),$$

which appeared in (12), can provide the asymptotic variance/covariance matrix of the estimated parameters (see Jennrich and Moor, 1975).

From the Bayesian point of view this is equivalent to saying that with the uniform prior distribution, the posterior distribution of the parameter \(u \) is approximately multivariate normal with the mean vector \(\hat{u} \), the maximum likelihood estimates, and the variance/covariance matrix \(I_a(u) \) (See Lindley 1965). That is, using the approximate posterior distributions, we can draw rough inferences concerning the imprecision of the estimated utility scale. For example, we can draw the approximate 95 percent HDR of the utility function using the posterior marginal distributions.

V. Maximum Likelihood Method Based on the Beta Distribution

Under the assumption that each observation has the beta distribution with parameters \(a\hat{p}_{ijk} + b \) and \(a(1-\hat{p}_{ijk}) + b \),

$$(24) \quad \hat{p}_{ijk} \sim \beta(a\hat{p}_{ijk} + b, a(1-\hat{p}_{ijk}) + b),$$
where \(a\) is the unknown parameter related to the variance and \(b\) is the constant related to the location, the solution which maximizes

\[
\ln L := \sum_{ijk} \ln \frac{ap_{ijk} + b}{B[ap_{ijk} + b, a(1-p_{ijk}) + b]},
\]

where \(B[\alpha, \beta]\) denotes the beta function with the arguments \(\alpha\) and \(\beta\), was proposed by Mayekawa (1980). In this formulation, the variance of \(p_{ijk}\) can be written as

\[
\sigma^2_{ijk} = \frac{(ap_{ijk} + b)(a(1-p_{ijk}) + b)}{(a + 2b)^2 (a + 2b + 1)}
\]

which shows that this assumption is compatible with the previous consideration of the errors.

In this section we will consider the two specific cases in which \(b\) is set equal to zero and one, respectively. When \(b\) is set equal to zero, the mean of the distribution is equal to \(\hat{p}_{ijk}\) and when \(b\) is set equal to one, the mode of the distribution is equal to \(\hat{p}_{ijk}\).

Fischer's information matrix under this assumption is given by

\[
I_{kk} = a^2 \sum_{ijk} \left(\frac{\partial \hat{p}_{ijk}}{\partial \hat{u}_k} \right)^2 \left[\psi'(ap_{ijk} + b) + \varphi'(a(1-p_{ijk}) + b) \right],
\]

\[
I_{km} = a^2 \sum_{ijk} \left(\frac{\partial \hat{p}_{ijk}}{\partial \hat{u}_m} \right) \left(\frac{\partial \hat{p}_{ijk}}{\partial \hat{u}_k} \right) \left[\psi'(ap_{ijk} + b) + \varphi'(a(1-p_{ijk}) + b) \right],
\]

\[
I_{N+1, N+1} = \sum_{ijk} p^2_{ijk} \psi(a \hat{p}_{ijk} + b) + (1-p_{ijk}) \varphi(a(1-p_{ijk}) + b) - \psi'(a + 2b),
\]
and

\[I_{k,N+1} = I_{N+1,k} \]

\[= a \sum_{ijk} \left[\hat{p}_{ijk} \left(\frac{\partial \hat{p}_{ijk}}{\partial u_k} \right) \psi (a \hat{p}_{ijk} + b) - (1-\hat{p}_{ijk}) \left(\frac{\partial \hat{p}_{ijk}}{\partial u_k} \right) \psi (a(1 - \hat{p}_{ijk}) + b) \right] , \]

where

\[\psi^\gamma (x) = \frac{d^2 \ln \gamma(x)}{dx^2} . \]

To estimate the parameters Fisher's scoring method, with the modified step-size halving as before, is used.

VI. Results

Using the nine-point fixed-state method in Component 31 of the CADA monitor, in which \(N = 7 \), fourteen indifference probabilities were collected for seventeen subjects (\(K = 14 \)). The outcome used in the assessment procedure was the GPA and the subjects were the students of The University of Iowa. For each subject, six utility scales based on the different criteria were estimated. In order to see the differences of the utility scales the interscale correlation coefficients (CC) and the sums of the interscale absolute differences (SAD) were calculated for each subject.

Generally speaking, the differences were very little for all the subjects. Among seventeen subjects, the minimum of the mean correlation coefficients (MCC) over six scales was .96732 and the maximum of the mean of the sums of the absolute differences (MSAD) was .09056, both of which were obtained for the subject #4. However, close
examination shows that while the differences between the scale based on the beta distribution with \(b = 1 \) and the other scales are fairly large, the differences among the other scales are very small for this subject, which may indicate that the beta scales with \(b = 1 \) converged at the local minimum for the subject #4.

The minimum of MCC and the maximum of MSAD among the sixteen subjects excluding the subject #4 was .99325 for the subject #9 and .04912 for the subject #3 respectively. The estimated utility scales and the 95 percent approximate HDR for the subject #3 are shown in Fig. 1 and Fig. 2. As indicated above, the differences of the six utility scales are the largest for this subject except subject #4. For all the other fifteen subjects the utility scales and their HDR's were very similar to each other. One of the typical results (subject #8) are shown in Fig. 3 and Fig. 4.

While there seems to be no consistent qualitative differences among the different scales, it is clear that the fit of the model and the interscale differences are negatively correlated. That is, if the fit is good (lower sum of the residuals for the normal models, or higher likelihood for the beta models), the differences among the scales become smaller. In Table 1 the correlation coefficients among the least squares criterions (\(Q_1 \) through \(Q_4 \) minimized, the log likelihoods (with \(b = 0 \) and \(b = 1 \)), CC's, and SAD's over seventeen subjects are shown. It is also clear that the fit and the size of the HDR's for the beta scales with \(b = 1 \) seem to be very sensitive to the fit and always resulted in the largest intervals when the fit was poor. (The HDR for the subject #3 in Fig. 2 lies out of the range of the graph.)
VII. Discussion

As shown in the previous sections, for almost all the subjects, the differences among the utility scales based on the different criteria or distributional assumptions are very small. The fact that the least square solution under the assumption that p_{ijk}'s have the constant variances all over the range showing no qualitative differences tells us that the least squares solutions are very robust. While the other scales seem to be theoretically more sound, the least squares solution based on the probability itself might be recommended as the simplest method. However, as for the computations, there are no great differences among the least squares solutions, which indicates the choice is very arbitrary.

On the contrary, the maximum likelihood solutions based on the beta distributions require a great deal of effort to evaluate the beta function, psy function, and the derivative of the psy function, which may affect the computational time on small computers seriously.

Finally, we may mention the reliability of the utility scales. Unlike the area of the mental test theory, little attention has been paid to the reliability concept in psychological scaling. The reasons are:

1) In the mental test theory, the observations and the estimated scales are essentially the same quantity, which leads to the variance-ratio definition of the reliability coefficient.
2) In the psychological scaling, usually, the observations and the scale have a functional relation. For example, we have to estimate the utility scale through the subjective probabilities. This fact makes it difficult to calculate the observed variance.

If we have the repeated observations, it is possible to calculate the interscale correlation coefficient among the two scales based on the different sets of observations like split-half methods. On the contrary, it is possible to define the reliability of the scale as

\[
(28) \quad p = \frac{\text{Var}(p_{ijk})}{\text{Var}(p_{ijk})}
\]

which can be calculated without repeated observations. However, because this quantity is defined on the probability, rather than the utility, it may not be appropriate to call this the reliability of the utility scale. Further study of the reliability seems to be necessary.
REFERENCES

Fig. 1 Utilities (subject #3)

- **W**: \(\Omega_1 \) (weighted L.S.)
- **P**: \(\Omega_2 \) (probability)
- **L**: \(\Omega_3 \) (log-odds)
- **A**: \(\Omega_4 \) (arc sin)
- **O**: Beta (b=0)
- **1**: Beta (b=1)

The goodness of fit for each model (the values of \(\Omega_2 \) and the likelihoods) is: .6737, .2772, 1.4458, .3144, -2.6458, and 1.2851, respectively.
Fig. 2 Approximate 95% HDR's

HDR for Beta (b=1) model lies out of the range of this graph.
The goodness of fit for each model is: .2894, .0941, .5744, .1175, 14.0572, 16.8665, respectively. Beta models are close to the weighted L.S. Model.
Fig. 4 Approximate 95% of HDR's
<table>
<thead>
<tr>
<th>L.S. criterions</th>
<th>log likelihoods</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q₁</td>
</tr>
<tr>
<td>Q₁</td>
<td>1.000</td>
</tr>
<tr>
<td>Q₂</td>
<td>0.7354</td>
</tr>
<tr>
<td>Q₃</td>
<td>0.8097</td>
</tr>
<tr>
<td>Q₄</td>
<td>0.2390</td>
</tr>
<tr>
<td>b = 0</td>
<td>0.5245</td>
</tr>
<tr>
<td>b = 1</td>
<td>0.5245</td>
</tr>
<tr>
<td>MSAD</td>
<td>0.5245</td>
</tr>
<tr>
<td>MCC</td>
<td>0.5245</td>
</tr>
</tbody>
</table>

Table 1. Correlation coefficients among the fits and the differences
Dear [Name],

I hope this message finds you well. I am writing to inform you that the role of...
Navy

1 Psychologist
ONR Branch Office
536 S. Clark Street
Chicago, IL 60605

1 Psychologist
ONR Branch Office
666 Summer Street
Boston, MA 02210

1 Office of Naval Research
Code 437
800 N. Quincy Street
Arlington, VA 22217

Navy

1 Dr. Alfred F. Smode
Training Analysis & Evaluation Group
(TAEG)
Dept. of the Navy
Orlando, FL 32813

1 Dr. Richard Sorensen
Navy Personnel R&D Center
San Diego, CA 92152

1 Dr. Ronald Weitzman
Code 54 WZ
Department of Administrative Sciences
U. S. Naval Postgraduate School
Monterey, CA 93940

1 Dr. Robert Wisher
Code 309
Navy Personnel R&D Center
San Diego, CA 92152

1 DR. MARTIN F. WISKOFF
NAVY PERSONNEL R&D CENTER
SAN DIEGO, CA 92152

1 Office of the Chief of Naval Operations
Research Development & Studies Branch
(OP-115)
Washington, DC 20350

1 LT Frank C. Petho, MSC, USN (Ph.D)
Code L51
Naval Aerospace Medical Research Laborat
Pensacola, FL 32508

1 Dr. Bernard Rimland (03B)
Navy Personnel R&D Center
San Diego, CA 92152

1 Dr. Worth Scanland
Chief of Naval Education and Training
Code N-5
NAS, Pensacola, FL 32508

1 Dr. Robert G. Smith
Office of Chief of Naval Operations
OP-987H
Washington, DC 20350
| Army | 1 Technical Director
| U.S. Army Research Institute for the Behavioral and Social Sciences
| 5001 Eisenhower Avenue
| Alexandria, VA 22333 |
| 1 Dr. Myron Fischl
| U.S. Army Research Institute for the Social and Behavioral Sciences
| 5001 Eisenhower Avenue
| Alexandria, VA 22333 |
| 1 Dr. Dexter Fletcher
| U.S. Army Research Institute
| 5001 Eisenhower Avenue
| Alexandria, VA 22333 |
| 1 Dr. Michael Kaplan
| U.S. Army Research Institute
| 5001 Eisenhower Avenue
| Alexandria, VA 22333 |
| 1 Dr. Milton S. Katz
| Training Technical Area
| U.S. Army Research Institute
| 5001 Eisenhower Avenue
| Alexandria, VA 22333 |
| 1 Dr. Harold F. O'Neil, Jr.
| Attn: PERI-OK
| Army Research Institute
| 5001 Eisenhower Avenue
| Alexandria, VA 22333 |
| 1 Mr. Robert Ross
| U.S. Army Research Institute for the Social and Behavioral Sciences
| 5001 Eisenhower Avenue
| Alexandria, VA 22333 |
| 1 Dr. Robert Sasmor
| U.S. Army Research Institute for the Behavioral and Social Sciences
| 5001 Eisenhower Avenue
| Alexandria, VA 22333 |
| Army | 1 Commandant
| US Army Institute of Administration
| Attn: Dr. Sherrill
| FT Benjamin Harrison, IN 46256 |
| 1 Dr. Frederick Steinheiser
| U.S. Army Research Institute
| 5001 Eisenhower Avenue
| Alexandria, VA 22333 |
| 1 Dr. Joseph Ward
| U.S. Army Research Institute
| 5001 Eisenhower Avenue
<p>| Alexandria, VA 22333 |</p>
<table>
<thead>
<tr>
<th>Air Force</th>
<th>Marines</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Air Force Human Resources Lab 1 H. William Greenup</td>
<td></td>
</tr>
<tr>
<td>AFHRL/MPD</td>
<td>Education Advisor (E031)</td>
</tr>
<tr>
<td>Brooks AFB, TX 78235</td>
<td>Education Center, MCDEC</td>
</tr>
<tr>
<td>1 Dr. Earl A. Alluisi 1 Director, Office of Manpower Utilization</td>
<td></td>
</tr>
<tr>
<td>HQ, AFHRL (AFSC)</td>
<td></td>
</tr>
<tr>
<td>Brooks AFB, TX 78235</td>
<td></td>
</tr>
<tr>
<td>1 Research and Measurement Division 1 Director, Office of Manpower Utilization</td>
<td></td>
</tr>
<tr>
<td>Research Branch, AFMPC/MPCYPR</td>
<td></td>
</tr>
<tr>
<td>Randolph AFB, TX 78148</td>
<td></td>
</tr>
<tr>
<td>1 Dr. Malcolm Ree 1 DR. A.L. SLAFKOSKY</td>
<td></td>
</tr>
<tr>
<td>AFHRL/MP</td>
<td>SCIENTIFIC ADVISOR (CODE RD-1)</td>
</tr>
<tr>
<td>Brooks AFB, TX 78235</td>
<td></td>
</tr>
<tr>
<td>1 Dr. Marty Rockway 1 DR. A.L. SLAFKOSKY</td>
<td></td>
</tr>
<tr>
<td>Technical Director</td>
<td>SCIENTIFIC ADVISOR (CODE RD-1)</td>
</tr>
<tr>
<td>AFHRL(OT)</td>
<td></td>
</tr>
<tr>
<td>Williams AFB, AZ 58224</td>
<td></td>
</tr>
</tbody>
</table>
Coast Guard

1 Mr. Thomas A. Warm
U. S. Coast Guard Institute
P. O. Substation 18
Oklahoma City, OK 73169

Other DoD

12 Defense Technical Information Center
Cameron Station, Bldg 5
Alexandria, VA 22314
Attn: TC

1 Dr. William Graham
Testing Directorate
MEPCOM/MEPCT-P
Ft. Sheridan, IL 60037

1 Military Assistant for Training and Personnel Technology
Office of the Under Secretary of Defense for Research & Engineering
Room 3D129, The Pentagon
Washington, DC 20301

1 MAJOR Wayne Sellman, USAF
Office of the Assistant Secretary of Defense (MRA&L)
3B930 The Pentagon
Washington, DC 20301

1 DARPA
1400 Wilson Blvd.
Arlington, VA 22209
<table>
<thead>
<tr>
<th>Civil Govt</th>
<th>Non Govt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Dr. Andrew R. Molnar</td>
<td>1 Dr. Erling B. Andersen</td>
</tr>
<tr>
<td>Science Education Dev.</td>
<td>Department of Statistics</td>
</tr>
<tr>
<td>and Research</td>
<td>Studiestraede 6</td>
</tr>
<tr>
<td>National Science Foundation</td>
<td>1455 Copenhagen</td>
</tr>
<tr>
<td>Washington, DC 20550</td>
<td>DENMARK</td>
</tr>
<tr>
<td>1 Dr. Vern W. Urry</td>
<td>1 1 psychological research unit</td>
</tr>
<tr>
<td>Personnel R&D Center</td>
<td>Dept. of Defense (Army Office)</td>
</tr>
<tr>
<td>Office of Personnel Management</td>
<td>Campbell Park Office:</td>
</tr>
<tr>
<td>1900 E Street NW</td>
<td>Canberra ACT 2600, Australia</td>
</tr>
<tr>
<td>Washington, DC 20415</td>
<td></td>
</tr>
<tr>
<td>1 Dr. Joseph L. Young, Director</td>
<td>1 Dr. Isaac Bejar</td>
</tr>
<tr>
<td>Memory & Cognitive Processes</td>
<td>Educational Testing Service</td>
</tr>
<tr>
<td>National Science Foundation</td>
<td>Princeton, NJ 08540</td>
</tr>
<tr>
<td>Washington, DC 20550</td>
<td></td>
</tr>
<tr>
<td>1 Dr. Robert Brennan</td>
<td>1 Dr. Werner Birke</td>
</tr>
<tr>
<td>American College Testing Programs</td>
<td>DezWPs im Streitkraefteamt</td>
</tr>
<tr>
<td>P. O. Box 168</td>
<td>Postfach 20 50 03</td>
</tr>
<tr>
<td>Iowa City, IA 52240</td>
<td>D-5300 Bonn 2</td>
</tr>
<tr>
<td></td>
<td>WEST GERMANY</td>
</tr>
<tr>
<td>1 Dr. Nicholas A. Bond</td>
<td>1 Dr. Victor Bunderston</td>
</tr>
<tr>
<td>Dept. of Psychology</td>
<td>WICAT INC.</td>
</tr>
<tr>
<td>Sacramento State College</td>
<td>UNIVERSITY PLAZA, SUITE 10</td>
</tr>
<tr>
<td>600 Jay Street</td>
<td>1160 SO. STATE ST.</td>
</tr>
<tr>
<td>Sacramento, CA 95819</td>
<td>OREM, UT 84057</td>
</tr>
<tr>
<td>1 Dr. John B. Carroll</td>
<td>1 Dr. John B. Carroll</td>
</tr>
<tr>
<td>Psychometric Lab</td>
<td>Psychometric Lab</td>
</tr>
<tr>
<td>Univ. of No. Carolina</td>
<td>Univ. of No. Carolina</td>
</tr>
<tr>
<td>Davie Hall 013A</td>
<td>Davie Hall 013A</td>
</tr>
<tr>
<td>Chapel Hill, NC 27514</td>
<td>Chapel Hill, NC 27514</td>
</tr>
</tbody>
</table>
1 Charles Myers Library
Livingstone House
Livingstone Road
Stratford
London E15 2LJ
ENGLAND

1 Dr. Kenneth E. Clark
College of Arts & Sciences
University of Rochester
River Campus Station
Rochester, NY 14627

1 Dr. Norman Cliff
Dept. of Psychology
Univ. of So. California
University Park
Los Angeles, CA 90007

1 Dr. William E. Coffman
Director, Iowa Testing Programs
334 Lindquist Center
University of Iowa
Iowa City, IA 52242

1 Dr. Meredith P. Crawford
American Psychological Association
1200 17th Street, N.W.
Washington, DC 20036

1 Dr. Leonard Feldt
Lindquist Center for Measurement
University of Iowa
Iowa City, IA 52242

1 Dr. Richard L. Ferguson
The American College Testing Program
P.O. Box 168
Iowa City, IA 52240

1 Dr. Victor Fields
Dept. of Psychology
Montgomery College
Rockville, MD 20850

1 Univ. Prof. Dr. Gerhard Fischer
Liebigasse 5/3
A 1010 Vienna
AUSTRIA

1 Professor Donald Fitzgerald
University of New England
Armidale, New South Wales 2351
AUSTRALIA

1 Dr. Edwin A. Fleishman
Advanced Research Resources Organ.
Suite 900
4330 East West Highway
Washington, DC 20014

1 Dr. John R. Frederiksen
Bolt Beranek & Newman
50 Moulton Street
Cambridge, MA 02138

1 Dr. Robert Glaser
LRDC
UNIVERSITY OF PITTSBURGH
3939 O'HARA STREET
PITTSBURGH, PA 15213

1 Dr. Ron Hambleton
School of Education
University of Massachusetts
Amherst, MA 01002

1 Dr. Chester Harris
School of Education
University of California
Santa Barbara, CA 93106

1 Dr. Lloyd Humphreys
Department of Psychology
University of Illinois
Champaign, IL 61820

1 Library
HumRRO/Western Division
27857 Berwick Drive
Carmel, CA 93921

1 Dr. Steven Hunka
Department of Education
University of Alberta
Edmonton, Alberta
CANADA
1 Dr. Earl Hunt
Dept. of Psychology
University of Washington
Seattle, WA 98105

1 Dr. Samuel T. Mayo
Loyola University of Chicago
820 North Michigan Avenue
Chicago, IL 60611

1 Dr. Huynh Huynh
College of Education
University of South Carolina
Columbia, SC 29208

1 Dr. Jesse Orlansky
Institute for Defense Analyses
400 Army Navy Drive
Arlington, VA 22202

1 Professor John A. Keats
University of Newcastle
AUSTRALIA 2308

1 Dr. James A. Paulson
Portland State University
P.O. Box 751
Portland, OR 97207

1 MR. LUIGI PETRULLO
2431 N. EDGEWOOD STREET
ARLINGTON, VA 22207

1 Dr. Michael Levine
Department of Educational Psychology
210 Education Bldg.
University of Illinois
Champaign, IL 61801

1 Dr. Diane M. Ramsey-Klee
R-K RESEARCH & SYSTEM DESIGN
3947 RIDGEMONT DRIVE
MALIBU, CA 90265

1 Dr. Charles Lewis
Faculteit Sociale Wetenschappen
Rijksuniversiteit Groningen
Oude Boteringestraat
Groningen
NETHERLANDS

1 Dr. Mark D. Reckase
Educational Testing Service
Princeton, NJ 08540

1 Dr. Robert Linn
College of Education
University of Illinois
Urbana, IL 61801

1 Dr. James A. Paulson
Portland State University
P.O. Box 751
Portland, OR 97207

1 Dr. Leonard L. Rosenbaum, Chairman
Department of Psychology
Montgomery College
Rockville, MD 20850

1 Dr. Robert Linn
College of Education
University of Illinois
Urbana, IL 61801

1 Dr. Frederick M. Lord
Educational Testing Service
Princeton, NJ 08540

1 Mr. Marlin Kroger
1117 Via Goleta
Palos Verdes Estates, CA 90274

1 Dr. Frederick M. Lord
Educational Testing Service
Princeton, NJ 08540

1 Dr. Gary Marco
Educational Testing Service
Princeton, NJ 08540

1 Dr. Scott Maxwell
Department of Psychology
University of Houston
Houston, TX 77004

1 Professor John A. Keats
University of Newcastle
AUSTRALIA 2308
Iowa/Novick February 12, 1981

Non Govt

1 Dr. Ernst Z. Rothkopf
 Bell Laboratories
 600 Mountain Avenue
 Murray Hill, NJ 07974

1 Dr. Lawrence Rudner
 403 Elm Avenue
 Takoma Park, MD 20012

1 Dr. J. Ryan
 Department of Education
 University of South Carolina
 Columbia, SC 29208

1 PROF. FUMIKO SAMEJIMA
 DEPT. OF PSYCHOLOGY
 UNIVERSITY OF TENNESSEE
 KNOXVILLE, TN 37916

1 DR. ROBERT J. SEIDEL
 INSTRUCTIONAL TECHNOLOGY GROUP
 HUMRRO
 300 N. WASHINGTON ST.
 ALEXANDRIA, VA 22314

1 Dr. Kazuo Shigemasu
 University of Tohoku
 Department of Educational Psychology
 Kawauchi, Sendai 980
 JAPAN

1 Dr. Edwin Shirkey
 Department of Psychology
 University of Central Florida
 Orlando, FL 32816

1 Dr. Robert Smith
 Department of Computer Science
 Rutgers University
 New Brunswick, NJ 08903

1 Dr. Richard Snow
 School of Education
 Stanford University
 Stanford, CA 94305

Non Govt

1 Dr. Robert Sternberg
 Dept. of Psychology
 Yale University
 Box 11A, Yale Station
 New Haven, CT 06520

1 DR. PATRICK SUPPES
 INSTITUTE FOR MATHEMATICAL STUDIES IN
 THE SOCIAL SCIENCES
 STANFORD UNIVERSITY
 STANFORD, CA 94305

1 Dr. Hariharan Swaminathan
 Laboratory of Psychometric and
 Evaluation Research
 School of Education
 University of Massachusetts
 Amherst, MA 01003

1 Dr. Brad Sympton
 Psychometric Research Group
 Educational Testing Service
 Princeton, NJ 08541

1 Dr. Kikumi Tatsuoka
 Computer Based Education Research
 Laboratory
 252 Engineering Research Laboratory
 University of Illinois
 Urbana, IL 61801

1 Dr. David Thissen
 Department of Psychology
 University of Kansas
 Lawrence, KS 66044

1 Dr. Robert Tsutakawa
 Department of Statistics
 University of Missouri
 Columbia, MO 65201

1 Dr. J. Uhlaner
 Perceptronics, Inc.
 6271 Variel Avenue
 Woodland Hills, CA 91364
Non Govt

1 Dr. Howard Wainer
Bureau of Social Science Research
1990 M Street, N. W.
Washington, DC 20036

1 Dr. Phyllis Weaver
Graduate School of Education
Harvard University
200 Larsen Hall, Appian Way
Cambridge, MA 02138

1 DR. SUSAN E. WHITELY
PSYCHOLOGY DEPARTMENT
UNIVERSITY OF KANSAS
LAWRENCE, KANSAS 66044

1 Wolfgang Wildgrube
Streitkraefteamt
Box 20 50 03
D-5300 Bonn 2