This/PLACES Barium Event Jan: Quick-Look Field Report of "In Situ" Probe Measurements

E. P. Szuszkiewicz, J. C. Holmes, and M. Swinney

Ionospheric Diagnostics Section
Space Science Division

and

C. S. Lin

Rendix Field Engineering Corporation
9250 Route 108
Columbia, MD 20145

March 16, 1981

This work was partially sponsored by the Defense Nuclear Agency under Subtask 12-AXXIX, work unit 05014, and work unit title "Nuclear Weapons Effects Program."

NAVAL RESEARCH LABORATORY
Washington, D.C.

Approved for public release; distribution unlimited.
On 12 December 1980, a 48 kg barium payload was launched from the A-15 site of the Eglin/Santa Rosa Island Test Range. The barium was released in the F region of the ionosphere at an altitude of 182.7 km. Approximately 32 minutes later a second rocket was launched, carrying a plasma diagnostics complement which included a pair of pulsed-plasma-probes and an ion mass spectrometer for direct measurements of electron density N_e, temperature T_e, density fluctuations δN_e, associated density fluctuation power spectra $P_{\delta N_e}(k)$, and ion composition M_i. The barium release and all associated measurements have been designated by code name JAN. (Continues)
This report presents quick-look field analyses of the pulsed-plasma-probe data. A brief description is given on the probe instrumentation, vehicle/payload performance, and "in situ" observations of barium cloud plasma densities and structure.
CONTENTS

I. INTRODUCTION .. 1

II. PROBE INSTRUMENTATION, PAYLOAD CONFIGURATION AND OVERALL SYSTEM PERFORMANCE .. 1

III. ELECTRON DENSITY PROFILES ... 2

REFERENCES .. 12
DNA/PLACES BARIUM EVENT JAN: QUICK-LOOK FIELD REPORT OF "IN SITU" PROBE MEASUREMENTS

I. INTRODUCTION

At 2311:00 (GMT) on 12 December 1980, a 48 kg barium payload was launched from the A-15 site of Eglin/Santa Rosa Island Test Range. The barium was released in the F_1 region of the ionosphere at 2313:42.1 and at an altitude of 182.7 km.

At 2342:50.8 a second rocket was launched, carrying a plasma diagnostic complement which included a pair of pulsed-plasma-probes and an ion mass spectrometer for direct measurements of electron density N_e, temperature T_e, density fluctuation δN_e, associated density fluctuation power spectra $P_n(k)$, and ion composition M_i. The probe payload penetrated the highest density region (i.e., the highest density observed along the payload's trajectory) of the barium ion cloud at 2344:40.8, a time defined as R+31 MIN. The barium release and all associated measurements have been designated by code name JAN.

This report presents quick-look field analyses of the pulsed-plasma-probe data. A brief description will be given on the probe instrumentation, vehicle/payload performance, and "in situ" observations of plasma densities and structure in the ambient ionosphere and throughout the intense barium ion cloud structure.

II. PROBE INSTRUMENTATION, PAYLOAD CONFIGURATION AND OVERALL SYSTEM PERFORMANCE

A pair of pulsed-plasma-probes were diametrically deployed from the forward-most lateral surface of the payload.

The payload's ACS was designed to maintain the vehicle axis parallel to the geomagnetic field throughout flight... a condition which optimized data integrity from points of view focused on magnetic-field and vehicle aspect perturbations. Initial results indicate that the ACS functioned according to design. Table 1 lists timer functions and altitudes related to the plasma instrumentation on the probe payload while Figure 1 presents the payload trajectory (alt vs time) as determined by a single station radar solution. The Figure was constructed from the trajectory data listed in Table 2.

The pulsed-plasma-probe\(^1-4\) is a specially designed Langmuir technique which eliminates distortions of the measurement procedure known to degrade the conventional approach to Langmuir probe measurements. In addition, the pulsed probe technique makes possible the determination of absolute electron density under fluctuating plasma conditions and simultaneously determines the electron density \(N_e\), temperature \(T_e\), density fluctuations \(\delta N_e\), associated power spectra \(P_n(k)\) and mean ion mass \(<M_i>\). The probe's highest resolution capability in event JAN involved \(\delta N_e\), with resolution down to scale sizes equal to 0.5 meters at a 1km/sec payload velocity.

III. ELECTRON DENSITY PROFILES

The relative electron density profile observed "in situ" by the pulsed probe measurement of baseline electron current \(I^e_B\) (See e.g., Ref. 1 or 2) is presented in Figure 2.
The abscissa is expressed as seconds-after-launch, extending over the domain \(t_0 + 75 \leq t \leq t_0 + 373 \); while the ordinate is \(\log (I_B^e) \). The barium ion cloud was encountered on the upleg portion of the trajectory at \(t \approx 99.5 \text{ sec} \) (ALT \(\approx 145 \text{ Km} \)). Peak densities within the cloud were observed at \(t \approx 110 \text{ sec} \) (ALT \(\approx 155 \text{ Km} \)). For \(t > 135 \text{ sec} \) the probe continued relative density measurements within the undisturbed background ionosphere to an apogee of 241 Km \((t = 245 \text{ sec}) \). (That \(I_B^e \) is a reasonable representation of relative electron density without major distortions from aspect sensitivities and/or vehicle potential effects has been verified by a simultaneous measurement of baseline ion saturation currents \(I_B^i \) shown in Figure 3. For discussions relative to this point see References 4 and 5.)

To establish initial estimates of absolute electron densities, I-V characteristics generated by the pulsed sweep currents (See e.g., Ref. 3) were hand analyzed at three positions within the cloud. The results indicated a simple \(I_B^e \) to \(N_e \) conversion according to

\[
N_e (\text{cm}^{-3}) = 5.62 \times 10^{10} I_B^e \text{ (amps)}
\]

with an estimated accuracy of \(\pm 32\% \). More exact analyses will result in absolute density determinations with a better than 10% accuracy. This conversion has been applied to Figure 2, resulting in initial estimates of peak barium ion densities \((t \approx 110 \text{ sec}, \text{ALT} = 155 \text{ Km}) \) of \(7.3 \times 10^6 \text{ cm}^{-3} \). This value represents an enhancement of 300 over ambient
ionospheric conditions at that altitude. An expanded view of the ion cloud domain \((95 < t \text{ (sec)} < 135)\) is shown in Figure 4 while Table 3 lists densities, altitudes and coordinates of specific observations relevant to a first-order view of the ion cloud and the background ionosphere.
Table 1 — Timer Events Related to the Plasma Instrumentation on the Probe Payload

<table>
<thead>
<tr>
<th>TIME</th>
<th>EVENT</th>
<th>ALTITUDE (Nom.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_o</td>
<td>Launch</td>
<td>0</td>
</tr>
<tr>
<td>$t_o + 66$</td>
<td>a) Nose Cone Separation</td>
<td>90 Km</td>
</tr>
<tr>
<td></td>
<td>b) Probe Door Deploy</td>
<td></td>
</tr>
<tr>
<td>$t_o + 76$</td>
<td>a) Payload Separation</td>
<td>105 Km</td>
</tr>
<tr>
<td></td>
<td>b) ACS ON</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c) Mass Spec RF ON</td>
<td></td>
</tr>
<tr>
<td>$t_o + 78$</td>
<td>Yo-Yo Despin</td>
<td>110 Km</td>
</tr>
<tr>
<td>$t_o + 80$</td>
<td>Probe Deploy</td>
<td>112 Km</td>
</tr>
<tr>
<td>$t_o + 93$</td>
<td>Mass Spec HV ON</td>
<td>120 Km</td>
</tr>
<tr>
<td>$t_o + 108$</td>
<td>ACS de-activate</td>
<td>152 Km</td>
</tr>
<tr>
<td>$t_o + 166$</td>
<td>ACS Re-activate</td>
<td>213 Km</td>
</tr>
</tbody>
</table>
Fig. 1 - Probe payload trajectory from single radar station solution (See Table 2)
Table 2 — Event JAN Probe Payload Trajectory Information Excerpted from a Single Station Radar Solution Prior to Smoothing

<table>
<thead>
<tr>
<th>TIME AFTER LIFT-OFF (SEC)</th>
<th>GMT</th>
<th>ALTITUDE</th>
<th>RANGE</th>
<th>LAT</th>
<th>LONG</th>
<th>VEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>2343:40.8</td>
<td>225,862</td>
<td>251,479</td>
<td>68.83</td>
<td>167.31</td>
<td>6721</td>
</tr>
<tr>
<td>100</td>
<td>2344:30.8</td>
<td>479,240</td>
<td>549,004</td>
<td>146.05</td>
<td>29.6615</td>
<td>2.05</td>
</tr>
<tr>
<td>150</td>
<td>2345:20.8</td>
<td>658,330</td>
<td>783,270</td>
<td>200.63</td>
<td>29.2428</td>
<td>1.65</td>
</tr>
<tr>
<td>200</td>
<td>2346:10.8</td>
<td>761,631</td>
<td>956,354</td>
<td>232.11</td>
<td>28.8321</td>
<td>1.29</td>
</tr>
<tr>
<td>245.3</td>
<td>2346:56.1</td>
<td>791,530</td>
<td>1,067,348</td>
<td>241.22</td>
<td>325.28</td>
<td>1.04</td>
</tr>
<tr>
<td>250</td>
<td>2347:0.8</td>
<td>791,208</td>
<td>1,076,545</td>
<td>241.13</td>
<td>328.09</td>
<td>0.94</td>
</tr>
<tr>
<td>300</td>
<td>2347:50.8</td>
<td>747,856</td>
<td>1,115,627</td>
<td>1,076,545</td>
<td>352.19</td>
<td>0.94</td>
</tr>
<tr>
<td>350</td>
<td>2348:40.8</td>
<td>650,406</td>
<td>1,209,267</td>
<td>1,115,627</td>
<td>368.53</td>
<td>1.05</td>
</tr>
<tr>
<td>400</td>
<td>2349:30.8</td>
<td>437,197</td>
<td>1,260,127</td>
<td>1,209,267</td>
<td>384.03</td>
<td>1.68</td>
</tr>
<tr>
<td>448</td>
<td>2350:18.7</td>
<td>178,136</td>
<td>1,336,673</td>
<td>1,260,127</td>
<td>407.36</td>
<td>2.31</td>
</tr>
</tbody>
</table>
Fig 2 - Relative electron density profile as measured by baseline electron current I_B^e as a function of seconds after launch. Absolute electron densities can be estimated from the conversion $N_e [\text{cm}^{-3}] = 5.62 \times 10^{10} I_B^e [\text{amps}]$. See text for statement of accuracy.
Fig. 3 - Relative electron density profile as measured by baseline ion current I_B as a function of seconds after launch. Note that ion current increases downward. Agreement between Figures 2 and 3 establishes credibility in the I_B measurements as a reasonable representation of relative density (See text).
Fig 4 - An expanded view of the barium ion cloud density profile as measured by baseline electron currents. Absolute electron densities can be estimated within an accuracy of $\pm 32\%$ (detailed analyses will yield $\pm 10\%$ or better) by the conversion $N_e [\text{cm}^{-3}] = 5.62 \times 10^{10} I_B [$amps$]$.

DNR PLACES-NRL E PROBE LIFT UP TIME 347 17 42 50
Table 3 — Summary of Relevant Plasma Densities and Coordinates

<table>
<thead>
<tr>
<th>POINT OF INTEREST</th>
<th>SEC AFTER LAUNCH</th>
<th>ELECTRON DENSITY</th>
<th>ALT</th>
<th>LAT</th>
<th>LONG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloud Entry</td>
<td>99.5</td>
<td>1.7×10^4</td>
<td>145</td>
<td>29.67°</td>
<td>86.87°</td>
</tr>
<tr>
<td>Cloud Peak</td>
<td>110</td>
<td>2.4×10^4</td>
<td>155</td>
<td>29.58°</td>
<td>86.88°</td>
</tr>
<tr>
<td>Cloud Exit</td>
<td>135</td>
<td>5.6×10^4</td>
<td>185</td>
<td>29.41°</td>
<td>86.9°</td>
</tr>
<tr>
<td>Apogee</td>
<td>245</td>
<td>5.6×10^5</td>
<td>241</td>
<td>28.468</td>
<td>87.022</td>
</tr>
</tbody>
</table>
REFERENCES

<table>
<thead>
<tr>
<th>DEPARTMENT OF DEFENSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSISTANT SECRETARY OF DEFENSE</td>
</tr>
<tr>
<td>COMM. DMD, CONT & INTELL</td>
</tr>
<tr>
<td>WASHINGTON, D.C. 20301</td>
</tr>
<tr>
<td>OICY ATTN J. BABCOCK</td>
</tr>
<tr>
<td>OICY ATTN M. EPSTEIN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIRECTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMAND CONTROL TECHNICAL CENTER</td>
</tr>
<tr>
<td>PENTAGON RM BE 685</td>
</tr>
<tr>
<td>WASHINGTON, D.C. 20301</td>
</tr>
<tr>
<td>OICY ATTN C-650</td>
</tr>
<tr>
<td>OICY ATTN C-312 R. MASON</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIRECTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFENSE ADVANCED RSCH PROJ AGENCY</td>
</tr>
<tr>
<td>ARCHITECT BUILDING</td>
</tr>
<tr>
<td>1400 WILSON BLVD.</td>
</tr>
<tr>
<td>ARLINGTON, VA. 22209</td>
</tr>
<tr>
<td>OICY ATTN NUCLEAR MONITORING RESEARCH</td>
</tr>
<tr>
<td>OICY ATTN STRATEGIC TECH OFFICE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DEPARTMENT OF THE AIR FORCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEADQUARTERS SPACE DIVISION (AFSC) LOS ANGELES AIR FORCE STATION</td>
</tr>
<tr>
<td>P.O. BOX 92960</td>
</tr>
<tr>
<td>LOS ANGELES, CA 90009</td>
</tr>
<tr>
<td>OICY DIRECTOR, STP,</td>
</tr>
<tr>
<td>COL D.E. THURSBY</td>
</tr>
<tr>
<td>OICY MAJ C. JUND</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIRECTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFENSE INTELLIGENCE AGENCY</td>
</tr>
<tr>
<td>WASHINGTON, D.C. 20301</td>
</tr>
<tr>
<td>OICY ATTN DT-1B</td>
</tr>
<tr>
<td>OICY ATTN DB-4C E. O'FARRELL</td>
</tr>
<tr>
<td>OICY ATTN DIAP A. WISE</td>
</tr>
<tr>
<td>OICY ATTN DIAST-5</td>
</tr>
<tr>
<td>OICY ATTN DT-18Z R. MORTON</td>
</tr>
<tr>
<td>OICY ATTN HQ #-TR J. STEWART</td>
</tr>
<tr>
<td>OICY ATTN W. WITTIG DC-7D</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIRECTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFENSE NUCLEAR AGENCY</td>
</tr>
<tr>
<td>WASHINGTON, D.C. 20305</td>
</tr>
<tr>
<td>OICY ATTN STVL</td>
</tr>
<tr>
<td>OICY ATTN TITL</td>
</tr>
<tr>
<td>OICY ATTN DOST</td>
</tr>
<tr>
<td>OICY ATTN RAAE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMMANDER</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIELD COMMAND</td>
</tr>
<tr>
<td>DEFENSE NUCLEAR AGENCY</td>
</tr>
<tr>
<td>KIRTLAND AFB, NM 87115</td>
</tr>
<tr>
<td>OICY ATTN FCPR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIRECTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERSERVICE NUCLEAR WEAPONS SCHOOL</td>
</tr>
<tr>
<td>KIRTLAND AFB, NM 87115</td>
</tr>
<tr>
<td>OICY ATTN FCPR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIRECTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>JOINT STRAT TGT PLANNING STAFF</td>
</tr>
<tr>
<td>OFFUTT AFB</td>
</tr>
<tr>
<td>OMAHA, NE 68113</td>
</tr>
<tr>
<td>OICY ATTN JLW-2</td>
</tr>
<tr>
<td>OICY ATTN JPST G. GOETZ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JOINT CHIEFS OF STAFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>WASHINGTON, D.C. 20301</td>
</tr>
<tr>
<td>OICY ATTN J-3 WWMCCS EVALUATION OFFICE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHIEF</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIVERMORE DIVISION FLD COMMAND DNA</td>
</tr>
<tr>
<td>DEPARTMENT OF DEFENSE</td>
</tr>
<tr>
<td>LAWRENCE LIVERMORE LABORATORY</td>
</tr>
<tr>
<td>P.O. BOX 808</td>
</tr>
<tr>
<td>LIVERMORE, CA 94550</td>
</tr>
<tr>
<td>OICY ATTN FCPRL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIRECTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>NATIONAL SECURITY AGENCY</td>
</tr>
<tr>
<td>DEPARTMENT OF DEFENSE</td>
</tr>
<tr>
<td>FT. GEORGE G. MEADE, MD 20755</td>
</tr>
<tr>
<td>OICY ATTN JOHN SKILLMAN W52</td>
</tr>
<tr>
<td>OICY ATTN FRANK LEONARD</td>
</tr>
<tr>
<td>OICY ATTN W14 FAT CLARK</td>
</tr>
<tr>
<td>OICY ATTN OLIVER H. BARTLETT W32</td>
</tr>
<tr>
<td>OICY ATTN R5</td>
</tr>
</tbody>
</table>
IONOSPHERIC MODELING DISTRIBUTION LIST
UNCLASSIFIED ONLY

PLEASE DISTRIBUTE ONE COPY (EXCEPT WHERE NOTED OTHERWISE) TO EACH OF THE FOLLOWING PEOPLE:

ADVANCED RESEARCH PROJECTS AGENCY (ARPA)
STRATEGIC TECHNOLOGY OFFICE
ARLINGTON, VA 22217
CPT DONALD M. LEVINE
NAVAL RESEARCH LABORATORY
WASHINGTON, D.C. 20375
DR. R. MEIER - CODE 4141
DR. TIMOTHY COFFEY - CODE 4000
DR. S. OSSAKOW - CODE 4780
DR. J. GOODMAN - CODE 4180
DR. E. SZYSZCZEWICZ - CODE 4187 (50 COPIES)
DIRECTOR OF SPACE AND ENVIRONMENTAL LABORATORY
NOAA
BOULDER, CO 80302
DR. A. GLENN JEAN
DR. G. W. ADAMS
DR. D. N. ANDERSON
DR. K. DAVIES
DR. R. F. DONNELLY
AIR FORCE GEOPHYSICS LABORATORY
HANSCOM AIR FORCE BASE, MA 01731
DR. T. ELKINS
DR. W. SWIDER
MRS. R. SAGALYN
DR. J. M. FORBES
DR. T. J. KENESHEA
DR. J. AARONS
DR. R. NARCISI
OFFICE OF NAVAL RESEARCH
800 NORTH QUINCY STREET
ARLINGTON, VA 22217
U.S. ARMY ABERDEEN RESEARCH AND DEVELOPMENT CENTER BALLISTIC RESEARCH LABORATORY
ABERDEEN, MD 21001
DR. J. HEIMERL

COMMANDER
NAVAL AIR SYSTEMS COMMAND
DEPARTMENT OF THE NAVY
WASHINGTON, D.C. 20360
DR. T. CZUBA
HARVARD UNIVERSITY
HARVARD SQUARE
CAMBRIDGE, MASS. 02138
DR. M. B. McELROY
DR. R. LINIZEN
PENNSYLVANIA STATE UNIVERSITY
UNIVERSITY PARK, PA 16802
DR. J. S. NISBET
DR. P. R. ROHRBAUGH
DR. D. E. BARAN
DR. L. A. CARPENTER
DR. M. LEE
DR. R. DIVANY
DR. P. BENNETT
DR. E. KLEVANS
UNIVERSITY OF CALIFORNIA, LOS ANGELES
405 HILLGARD AVENUE
LOS ANGELES, CA 90024
DR. R. STENZEL
DR. F. V. CORONITI
DR. C. KENNEL
DR. W. GEKELMAN
UNIVERSITY OF CALIFORNIA, BERKELEY
BERKELEY, CA 94720
DR. M. HUDSON
UTAH STATE UNIVERSITY
41H AND 8TH STREETS
LOGAN, UTAH 84322
DR. P. M. BANKS
DR. R. HARRIS
DR. V. PETERSON
DR. R. MEGILL
DR. K. BAKER
DR. R. WILLIAMSON

22
CORNELL UNIVERSITY
ITHACA, N.Y. 14850
DR. W. E. SWARTZ
DR. R. SUDAN
DR. D. FARLEY
DR. M. KELLEY

NASA
GOODARDO SPACE FLIGHT CENTER
GREENBELT, MD 20771
DR. S. J. BAUER/CODE 600
DR. R. HARTEL/CODE 621
DR. R. GOLDGERG/CODE 912
DR. S. CHANDRA
DR. K. MAEDO
DR. R. BENSON/CODE 621

PRINCETON UNIVERSITY
PLASMA PHYSICS LABORATORY
PRINCETON, N.J. 08540
DR. F. PERKINS
DR. E. FRIEMAN

INSTITUTE FOR DEFENSE ANALYSIS
400 ARMY/NAVY DRIVE
ARLINGTON, VA 22202
DR. E. BAUER

UNIVERSITY OF MARYLAND
COLLEGE PARK, MD 20742
DR. K. PAPADOPOULOS
DR. E. OTT

UNIVERSITY OF PITTSBURGH
PITTSBURGH, PA 15213
DR. N. ZABUSKY
DR. M. BIONDI

DEFENSE DOCUMENTATION CENTER
CAMERON STATION
ALEXANDRIA, VA 22314
(12 COPIES IF OPEN PUBLICATION
OTHERWISE 2 COPIES) 12 CY ATTN TC

UNIVERSITY OF CALIFORNIA
LOS ALAMOS SCIENTIFIC LABORATORY
J-10, MS-664
LOS ALAMOS, NEW MEXICO 87545
DR. M. PONGRATZ
DR. D. SIMONS
DR. G. BARASCH
DR. L. DUNCAN

OFFICE OF ASSISTANT SECRETARY OF NAVY
FOR RESEARCH, ENGINEERING AND SYSTEMS
PENTAGON RM 4D745
WASHINGTON, DC 20350
03 CY ATTN DR. H. RABIN
DEPUTY ASSISTANT
SEC. OF NAVY